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Abstract. We study those nonlinear partial differential equations which appear as Euler-Lagrange
equations of variational problems. On defining weak boundary values of solutions to such equations we
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analyse if the concept of mapping degree of current importance applies to Lagrangian problems.
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Introduction

Distribution theory steams from weak solutions of linear differential equations and it is hardly
efficient for nonlinear equations. The use of distributions is actually difficult in linear boundary
value problems, for no canonical duality theory is available for manifolds with boundary X. The
scale of Sobolev-Slobodetskij spaces W*P(X) makes it possible to consider the restrictions of
functions to the boundary surface, however, these latter are defined only if s — 1/p > 0. To go
beyond this range, one applies integral equalities obtained by manipulation of the Green formula.
The study of general boundary value problems for differential equations in Sobolev-Slobodetskij
spaces of negative smoothness goes back at least as far as [22].

For a boundary value problem, the Green formula is determined uniquely up to the counter-
part of boundary data within the entire Cauchy data, see [26, 9.2.2]. This allows one to avoid
much ambiguity in the choice of formal adjoint boundary value problem and to set up duality.
As a result one is in a position to introduce weak solutions of the boundary value problem, see
for instance Section 9.3.1 #bid. and elsewhere. The Cauchy data of a weak solution to an overde-
termined elliptic system in the interior of X are proved to possess weak boundary values at 0X
if and only if the solution is of finite order of growth near the boundary surface, see [26, 9.3.6].

When considering a boundary value problem for a nonlinear equation, one has no good guide
to an appropriate concept of weak solution. Perhaps one has to pass to the linearised problem.
In any case the definition of a weak solution is implicitly contained in the variational setting
of the boundary value problem. If the problem itself fails to be Lagrangian, it can be relaxed
to variational one. It is just the task of experienced researcher to recover the concept of weak
solution in the variational formulation, see [2].

*ammar.alsaedy@ymail.com
Ttarkhanov@math.uni-potsdam.de
(© Siberian Federal University. All rights reserved
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As but one tool of this work we introduce the concept of weak boundary values for solutions
of nonlinear differential equations. We restrict the discussion to those equations which appear as
Euler-Lagrange equations for a variational problem of minimasing the discrepancy Au — f in the
problem of finding a function w in X, such that Au = f(z,u) in X and Bu = ug at OX. Here,
A is an overdetermined elliptic operator of order one and B is a matrix of functions at 0X. The
direct approach of variational calculus of [17] applies well to search for a solution in the Sobolev
spaces W1P(X) with non-extreme 1 < p < co. However, the Euler-Lagrange equations include
the boundary condition B*|Au — f|P~2(Au— f) = 0 at X. The function |Au — f|P~2(Au— f) is
of class L¥' (X)), where 1/p+1/p’ = 1, and hence B*|Au — f|P~2(Au — f) has no clear meaning
at the boundary. We give this expression a weak meaning using the variational setting and an
appropriate Green formula.

On specifying the spaces of weak boundary values one is in a position to consider the nonlinear
mapping of Banach spaces or, more generally, Banach manifolds corresponding to the Lagrangian
problem. The tangent mapping is a morphism of tangent (Banach) bundles and it is given by the
linearisation of the nonlinear mapping at the points of X. The nonlinear mapping is called elliptic
if its tangent mapping is elliptic at each tangent space, cf. [20]. In this sense the Lagrangian
boundary value problems are never elliptic but for p = 2, for they degenerate at each boundary
point where Au = f(z,u). By a Hodge theory for a nonlinear mapping is meant the Hodge
theory for the corresponding morphism of tangent (Banach) bundles. This bundle is Hilbert, if
p = 2, in which case the problem arises if the Hodge decompositions depend continuously on
the point of the underlying Hilbert manifold. To treat this problem of differential geometry on
Hilbert manifold we exploit the results of [27].

Any Lagrangian boundary value problem proves to be a quasilinear Fredholm mapping. To
the best of our knowledge, this class of nonlinear mappings was first introduced in [24]. The
quasilinear Fredholm mappings admit a reasonable degree theory elaborated in [9]. As but
one consequence of our results we show that the degree theory of [9] applies to the Lagrangian
boundary value problems.

1. Lagrangian boundary value problems

By Lagrangian boundary value problems are meant those arising as the Euler-Lagrange equa-
tions for functionals minimising discrepancy in overdetermined problems.

Let & be a bounded closed domain with C*° boundary in R™. Consider the boundary value
problem

Au f(z,u) in X,
{Bu = g at 0X, (1.1)

where A is a (possibly, overdetermined) elliptic linear partial differential operator of the first
order near X, f a function of its numerical variables (z,u) € X x R® with values in R™, and B
an (¢ x £)-matrix of smooth functions on the boundary of X whose rank is ¢ for all x € 9X.

The operator A is given by an (m x £)-matrix of scalar differential operators in a neighbour-
hood U of X, and the principal symbol of A has rank ¢ for all (z,£) € U x (R™\ {0}). Our
standing requirement on f is that u + f(x,u) be a continuous mapping of WP (X R?) into
LP(x,R™).

Remark 1.1. Classical elliptic boundary value problems correspond to the case m = ¢ and
0 =1£/2.

The most conventional Banach space setting of this problem is WP, where 1 < p < oo.
Hence, we pick ug in W!=Y/PP(9X R") and look for a u € WP(X,RY) satisfying (1.1).

-6 —
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If the operator

A= ( g ) c WP (X, RY) — LP(X,R™) x WI—/PP(gx, RY)

has a left parametrix P = (G, P), then on applying P to (1.1) from the left we obtain
u=G f(,u) + Pug+ (PA—Tu (1.2)

in X for all u € WHP (X, RY) satisfying (1.1). (Note that A possesses a left parametrix if and only
if its null space is finite dimensional and its range is complemented, see [18]. In this case PA—T
can be thought of as projection onto the null space.) The operator u — G o f(-,u) is known as
the Hammerstein operator. If u +— f(-,u) maps W1 P(X, R?) compactly into LP(X,R™), then the
Leray-Schauder theory applies to equation (1.2). However, the solutions of the latter equation
need not satisfy (1.1).

Moreover, if A is overdetermined (i.e. m > ¢) then there is a nonzero differential operator
Al such that A*A = 0. Then, for the equation Au = f(-,u) to be solvable, it is necessary that
Alf(-,u) = 0 in X for some function u € W1P(X,R’). Another obstacle to the existence of
solutions of problem (1.1) is possible overdeterminacy of boundary conditions. This is the case,
e.g., if ¢/ = £, i.e. Bu represents the whole Cauchy data of u with respect to A — f(z,-) at
the boundary surface 9X. This gives evidence of replacing the exact equation Au = f(-,u) in
X by minimising the discrepancy Au — f(-,«) in the norm of LP(X,R™). For this purpose, we
introduce the functional

I(u):/X|Au—f(x,u)|pda: (1.3)

whose domain is the affine subspace D; of WP (X, RY) consisting of all u, such that Bu = ug at

0X. Obviously, every solution of (1.1) minimises (1.3). The converse assertion is not true.
Write m for the infimum of I(u) over u € D;. In order that u € Dy may satisfy I(u) = m it

is necessary that u would fulfill the so-called Euler-Lagrange equations. We now describe these.

Lemma 1.2. Let C be an (€ — £') x £) -matriz C of smooth functions on OX, such that

rank (ggg) =/

for all x € OX. Then there are unique matrices B* and C* of continuous functions on OX with
the property that

~/8X ((Bu7 C*g):ﬂ - (CU?B*g)w)dS = /X ((Au7g)a: - (u’ A*g)w)dx (14)

for allu € W'2(X RY) and g € WP (X, R™), where ds is the surface measure on the boundary.

As usual, A* stands for the formal adjoint of the differential operator A in a neighbourhood
of X.

Proof. For an explicit construction of matrices B* and C* we refer the reader to [2]. O

Formula (1.4) is usually referred to as the Green formula. On arguing as in Section 3 of [2]
one sees that if functional (1.3) has a local extremum at a function u € Dy then

/X (A= f)o. | Au— FP=2(Au— f)), dz =0 (1.5)

-7 —
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for all v € W1P(X,R) such that Bv = 0 at OX. Here, f’ is the Jacobi matrix of f(x,u) with
respect to u = (u1,...,ur), i.e., the (m x £) -matrix whose entries are f] , .

If g = |Au— f|P~2(Au— f) is of class W# (X, R™), then we can apply formula (1.4) on the
left-hand side and move A — f! from v to |Au — f|P72(Au — f), thus obtaining

[ cobrgpdst [ @a-5yonds=o
oxX

X

for all v € WP(X,RY) satisfying Bv = 0 at the boundary. We first choose v to be arbitrary
with compact support in the interior of X and so we conclude by the main lemma of variational
calculus that (A — f!)*g vanishes almost everywhere in X. Hence, the boundary integral is
equal to zero for all v € WHP(X,R?), such that Bv = 0 on dX. It is a simple matter to see
that the boundary integral actually vanishes for all functions v € WP (X, R?). Hence it follows
immediately that B*g =0 on 0X.

Lemma 1.3. For the variational problem I(u) — min over u € Dy, Euler-Lagrange’s equations
just amount to
(A= f(JAu—fP2(Au—f)) = 0 in X,
Bu = wuy at 0X, (1.6)
B*(JAu— fIP72(Au—f)) = 0 at OX.

Proof. If u € Dy and |Au — f|P~2(Au — f) is of class W' (X, R™) then this is precisely what
has been proved above. For general u € D; equalities (1.6) are understood in the weak sense
suggested by (1.5). To wit, the differential equation is satisfied in the sense of distributions in the
interior of X. The interpretation of the second boundary condition in (1.6) is more sophisticated.
This will be discussed in detail in Section 2. O

The differential equation of (1.6) represents a system of £ second order partial differential
equations for ¢ unknown functions. The number of boundary conditions just amounts to £.

Example 1.4. The variational problem of minimising the functional
I(u) :z/ (|dul? + |d*u|?)dx
X

over the set of all i-forms u of class WP (X) with normal part v(u) = ug at the boundary leads
to the LP -setting of the Neumann problem for the de Rham complex in X. To wit,

d*(|duP~2du) + d(|d*ulP~2d*u) = 0 in X,
viu) = up at O0X,
v(|dulP~2du) = 0 at OX,

cf. [16].

2. Weak boundary values

In (1.6), u is an element of W12 (X, RY), and so g = |Au—f[P~2(Au— f) belongs to LP (X, R™),
where p’ = p/(p — 1) is the dual exponent for p. Hence, the differential equation (4 — f!)*g =0
is readily interpreted in the sense of distributions in the interior of X', just as it comes from
(1.5) into consideration. One encounters difficulties in interpreting the equality B*g = 0 at the
boundary surface X, for g is defined almost everywhere in X. To give a meaning to B*g at 0X,

— 8 —
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we strongly invoke the fact that g satisfies (A — f!)*g = 0 weakly in the interior of X'. Namely,
if g € WP (X, R™), then

/ ((Bv,C*g)s — (Cv, B*g),)ds = / (A= f).g)e — (0. (A— F)g))de (21)
oxX

X

holds for all v € W1?(X,R?), which is due to Green formula (1.4). Since (A — f!)*g vanishes in
the interior of X', we may neglect the second term on the right-hand side and use (2.1) to specify
both C*g and B*g at the boundary in the general case g € LP (X, R™).

Definition 2.1. Let g € LP (X,R™) satisfy (A — f.)*g = 0 weakly in the interior of X. Then
we define

| (@009 = 0B )ds = [ (4= fiyv.g), de

ax X

for allvg € WYP'2(9x R and vy € WY/PP(dX REY), where v € WEP(X,RY) is an arbitrary
function satisfying Bv = vg and Cv = vy at OX.

Note that the equalities Bv = vy and Cv = v; at the boundary surface just amount to

=(e) (%)

at X, where the right-hand side belongs to W/ p’vp(ax ,RY). Hence, the existence of a function
v € WhP(X,R?) with the property that Bv = vy and Cv = v; at X and

||U||W1vP(X,R4) <C (||U0||W1/p’m(ax,w’) + ”UIHWl/P"P({)X,RZ*e/)) (2.2)
follows from the Sobolev trace theorem.

Theorem 2.2. Definition 2.1 is correct and specifies the boundary values C*g and B*g in the
dual spaces WP P (9X,RY) and W72 (9x , RY), respectively.

Proof. Suppose v and w are two functions in WP (X, RY) satisfying Bv = Bw and Cv = Cw at
0X. Set z = v —w. Then z € W'P(X,R?) satisfies Bz = 0 and Cz = 0 at the boundary. By
the spectral synthesis theorem for Sobolev spaces, there is a sequence

% €02 (X,RY)

comp

which approximates z in the WP (X, R?) -norm. Hence it follows that
| (= fovg),de = [ (A= fowg) dos [ (4 f)zg), ds =
X X X
= [ (@-rwg),dot fim [ (A= 1)a09), d,
X €T v—oo [y x

where the last integral on the right-hand side vanishes, for g satisfies (A — f/,)*g = 0 weakly in
the interior of X. We have thus proved that Definition 2.1 is correct, i.e. it does not depend on
the choice of v. Finally, combining Definition 2.1 and estimate (2.2) yields

[ (00,0701, = (0. B0 ds] < 1A = Dol ol ey

< Cllvollw/v v o mery Tl0Lllwrrr v o2 me-2)

for all vy € Wl/p"p(aX,R[) and v; € Wl/p,’p(aX,RZ*[), the constant C' being independent of
v and vy. Hence it follows that C*g € W~1/P"P (9X R") and B*g € W=1/PP (9, R~Y), as
desired. ]
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Thus, for each u € WP (X, RY) satisfying (A— f/)*(JAu— f|P~2(Au— f)) = 0 weakly in the
interior of X', both C*(|Au—f|P~2(Au—f)) and B*(|Au— f[P=2(Au— f)) have weak values at the
boundary surface X which belong to W2 2 (9x RY) and W=/ (9, R~ respectively.
This completes, in particular, the result of [23].

For a thorough treatment of weak boundary values of solutions to linear overdetermined
elliptic equations we refer the reader to [26, 9.4].

3. Variational boundary value problems after Browder

By the very nature, the function (A—f!)*(|Au—f[P~2(Au—f)) appears as distribution in the
interior of X, i.e. as element of

(Whe(x, RY) .

Since VOVL”(X ,RY) is not dense in WHP(X R), the continuous extension of this functional
to all of WHYP(X,R?) is not uniquely determined. In fact, any continuous extension of
(A—f)*(|Au— f|P~2(Au—f)) to a closed subspace V of W1 P(X,Rf) containing C> functions
of compact support in the interior of X with values in R? defines a variational boundary value
problem in the sense of [7]. We confine the discussion to (1.5).

Corresponding to the representation (1.5) for the critical points of functional (1.3), we have
the nonlinear Dirichlet form a(u,v) defined for all u and v in W1P(X,R?) by

a(u,v) = (|Au— fP7(Au = f), (A = fL)v),

where (g,h) stands for the natural sesquilinear pairing between g in L? (X,R™) and h in
LP(X,R™). By assumption, a(u,v) is well defined for all u and v in W1P (X, R?) and

la(u,v)| < C<||U||W1«P(X,Ré)) HU||W1»1>(X,W)

by Holder’s inequality, where ¢(r) is a continuous function of the real variable r depending on A
and f.

Let V be the closed subspace of W1P(X R) that consists of all v satisfying Bv = 0 at the
boundary 0X', and V* be the conjugate space of V', i.e. the space of all bounded conjugate linear
functionals on V. For w € V* and v € V, the value of w at v is denoted by (w,v). In particular,
ifwe LPI(X ,R?), the bounded conjugate linear functional (w,v) on V yields an element of V*
which we may again denote by w.

We are now in a position to define the variational boundary problem corresponding to (a, V).
Denote by F the mapping V — V* given by (Fu,v) := a(u,v) for all v € V. In particular, we
get

Fu= (A~ f)" (JAu— fIP7*(Au — [)) (3.1)
in the sense of distributions in the interior of X. Given w € V*, the variational boundary
problem corresponding to (a, V') consists in finding v € V' such that F'u = w. Hence it follows
that F'u = w holds weakly in the interior of X and Bu = 0 at the boundary. As usual, in order
to include also inhomogeneous conditions Bu = ug at 90X, one solves these first in functions
u € WHP(X,RY) which need not satisfy Fu = w.

If u € V satisfies F'u = w with w € V*, then w is a relevant extension of the distribution
(A= f1)*(JAu—f|P~2(Au—f)) in the interior of X to a continuous linear functional on V. Then
Definition 2.1 for the weak value of B*g at X transforms to

7/ (B*gavl)rds = /(g,(Aff;)v)Idxf(w,v):
ox X

= a(u,v) — (w,v)

— 10 —
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for all v; € W/P'P(9x, R, where v € WP(X,RY) is an arbitrary function satisfying Bv = 0
and Cv = vy at 0X. Since a(u,v) = (w,v) for all v € V, it follows that B*g = 0 at the boundary.
Thus, the study of Euler-Lagrange’s equations (1.6) can be carried out within the framework of
mapping properties of F': V — V*.

To formulate the hypothesis of our existence theorem, we need an additional concept. Namely,
by an admissible lower order operator is meant u — A f(z,u), where Af is a continuous function
of its numerical arguments satisfying an inequality of the form

87wl < e(lullwrrzn ) (Ju@)| @02 +1)

p2

where 0 < Q < Jifp<n,and Q =0, if p > n.
p

n

Theorem 3.1. Suppose that there exists an admissible lower order operator Af and a continuous
function ¢(r) of the real variable v with c(r) — 400 as r — oo, such that
1) If Aa(u,v) := (Af(z,u),v) is the nonlinear Dirichlet form corresponding to Af, then

?R(a(u,u —v) —a(v,u —v)+ Aa(u,u —v) — Aa(v,u — v)) >0

for allw and v of V.
2) For allu in'V,

Ra(u,u) > c(ulwrocepe ) lullwesceme):

Then, for every w in V*, the variational boundary problem for Fu = w with null V-boundary
conditions has at least one solution u.

Proof. The proof is along the lines of Theorem 1 of [7]. O

Note that in the case f =0 and Af = 0 the condition 1) is fulfilled. Indeed, we get

?R(a(u, u—v)—a(v,u — v)) =

/ <|Au|p — | AulP2R(Au, Av), — |AvP~2R(Av, Au), + |Av\p)dx >
X

WV

/ <|Au|p — | AulP~ Y| Av| — |AvP~ Y| Aul + \Av|p)d9c >
X

/ (IAuIP‘1 — |Av|1’—1) (|Au| - |Av|) dz
X

which is obviously nonnegative for all u,v € V. Furthermore, the condition 2) reduces to

WV

1A ey > € lllwroca ey )l ey

forallu e V.

4. Hodge theory for nonlinear mappings

Let V and W be Banach manifolds and F a differentiable mapping of V to W, i.e. we have
a short complex

0=VEwoo. (4.1)

— 11 —
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Given an arbitrary point v € V, the tangent mapping F’(v) : T,V — T, W is a bounded linear
mapping of tangent spaces to V and W at v and w = F(v), respectively. These mappings are
gathered together to form the Banach bundle morphism

0TV S TW S0,
see [27].

Definition 4.1. A differentiable mapping F : V — W is said to be Fredholm if the linear
mappings ' (v) : T,V — Tpu,)W are Fredholm for allv € V.

By the Hodge theory for the nonlinear mapping F’ we mean the Hodge theory for the tangent
bundle morphism. According to the properties of Fredholm mappings, there are bounded linear
projections P(v) and Q(v) in T,V and Ty, W, respectively, such that

%
TwW

N(F'(v)) & R(I—P(v)),
R(Q(v)) & R(F'(v)),

(4.2)

P(v) being a projection onto the finite-dimensional null-space of F'(v) and Q(v) being a projec-
tion onto a finite-dimensional direct complement of the range of F’(v) in T,,W.

Using the inverse mapping theorem of Banach we conclude that the restriction of F’(v) to
R(I — P(v)) is an isomorphism of this Banach space onto R(F’(v)). The mapping

-1
1I(v) = (F'(U) [R(1-P(v)) ) (I -Q(v))
is therefore a bounded linear operator from T,,W to T,V satisfying

Hw)F'(v) = I-P(v),
Flo)I(v) = I-Q(v),

ie. II(v) is a parametrix of F’'(v) for each v € V. Note that if V is contractible then the
parametrix I (v) can be chosen to depend continuously on the point v € V), see [9,27].

If V and W are Hilbert manifolds, there is a canonical way for the choice of P(v) and Q(v).
Namely, P(v) is the orthogonal projection onto N (F’(v)) and I—Q(v) is the orthogonal projection
onto R(F'(v)). By the lemma on the annihilator of the kernel of operator,

R(I - P(v)) R(F'(v)"),
R(Q(v)) = N(F'(v)"),

where F'(v)* is the Hilbert space adjoint for F’(v) : T,V — T, WW. We have thus proved

Theorem 4.2. If F : V — W is a Fredholm mapping of Hilbert manifolds, then the tangent
bundles of V and W split as

TV = N(F') @ R(F'™),
TW = N(F'*) & R(F).

These decompositions are scarcely useful to characterise the range of the global nonlinear
mapping (4.1).

Example 4.3. Let I be a differentiable selfmapping of R™, such that det F" = 1 in all of R™.
Then the decompositions of Theorem 4.2 reduce to TR™ = R(F"*) and TR™ = R(F’), however,
F need not be surjective in general. This is related to Jacobian problems, cf. [15].

- 12 —
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5. Quasilinear Fredholm mappings

Let V and W be real Banach spaces. Throughout we assume that V' is compactly embedded
into another Banach space V~. When we refer to topological properties of a set U C V, we will
mean the topology induced by V', unless we explicitly refer to the topology induced by V.

A mapping F': V — W is called quasilinear Fredholm if it can be written in the form

F(v) = L(v)v+ C(v) (5.1)

for v € V, where L is the restriction to V' of a continuous mapping L~ of V™ into the subset of
L(V, W) consisting of Fredholm operators of index zero, and C' : V. — W is compact. Of course,
quasilinear Fredholm mappings need not be differentiable.

Quasilinear Fredholm mappings were introduced in [24] in the study of the nonlinear Riemann-
Hilbert problem. Another typical situation in which quasilinear Fredholm mappings arise quite
naturally is the study of the Dirichlet problem for quasilinear elliptic equations. By [3], fully
nonlinear elliptic equations with general nonlinear Shapiro-Lopatinskii boundary conditions in-
duce quasilinear Fredholm mappings between appropriate function spaces, provided that the
"coefficients" are sufficiently smooth.

If F:V — W is any C! mapping, we may write F' as F'(v) = L(v)v+ F(0) for v € V, where
L(v) € L(V,W) is defined by

L(v) = /01 F'(tv)dt,

which is a curve integral in the space of bounded linear operators from V to W. Thus, the
algebraic representation of (5.1) is not very restrictive. The crucial point is that each L(v) is a
Fredholm operator of index zero and that the family L(v) is defined and depends continuously on
v for v belonging to a larger space V'~ in which V' is compactly embedded. The latter property
implies that v — L(v) factors through a compact embedding V' < V~, and so it is a compact
mapping from V to L(V,W).

We now establish several general properties of quasilinear Fredholm mappings, following [9].
The mapping L is usually referred to as a principal part of f. Note that if L : V — L(V, W)
is continuous at vy € V then the mapping of V to W given by v — L(v)(v — vp) is Fréchet
differentiable at vy and its Fréchet derivative at vy just amounts to L(vp).

Lemma 5.1. Two principal parts of a quasilinear Fredholm mapping F : V. — W differ by
a family of compact operators.

Proof. Suppose that F' : V' — W is represented by F(v) = L;(v)v + C;(v), for j = 1,2. Fix
vg € V and set G;(v) = L;(v)(v — o) for v € V. As mentioned, we get G';(vo) = L;(vo), for
7 =1,2. From the equality of both representations it follows that the difference

Gl (’U) - GQ(’U) = —(Cl(U) — CQ(U)) — (Ll(’l)) — LQ(’U))UO

is a compact mapping of V to W. But the Fréchet derivative of a compact mapping is compact,
so that G’ (vg) — G4(vg) = L1(vg) — La2(vg) is compact. O

Lemma 5.2. Let F': V — W be quasilinear Fredholm and be represented by F(v) = L(v)v+C(v)
forve V. IfF:V — W is Fréchet differentiable at vg € V', then F'(vo) — L(vg) is compact.

Proof. Write
R(v) = F(v) — L(v)(v — vo)

for v € V. The differentiability of F' at v implies that R'(vg) = F’'(vo)—L(vp). Since R: V. — W
is compact, it follows that F'(vg) — L(vg) is compact, too, as desired. O

— 13 —
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So far we have not used the property of L : V — L(V, W) to take on its values in Fredholm
operators of index zero. Our next lemma makes use of this property. The Fredholm operators
of index zero possess parametrices which are invertible mappings of W onto V. We confine
ourselves to formulation of this result, referring the reader to [27] and [9] for a proof. Recall that
an operator A € L(V,W) is Fredholm of index zero if and only if there exists P € GL(W,V)
with PA—1 € K(V). Let A()\) be a family of Fredholm operators of index zero acting from
V to W and continuously depending on a parameter A € A, A being a topological space. By
a strong parametrix for A(\) is meant any continuous family P : A — GL(W,V) satisfying
PMNAN) — I € K(V) for all A € A. In general, a family A(\) has no strong parametrix.
For instance, when A is the unit circle in the plane, the non-existence of strong parametrices
for certain continuous families A(\) of Fredholm operators of index zero just amounts to the
nontriviality of the Poincaré group of the Fredholm operators of index zero in £(V, W). However,
if A is a contractible paracompact Hausdorff space, then any continuous family A(\) of A € A
with values in Fredholm operators of index zero in L£(V, W) possesses a strong parametrix, see
Theorem 2.1 of [9] which is referred to as a fundamental result.

Lemma 5.3. Suppose ' : V. — W s a quasilinear Fredholm mapping represented by
Fw)=Lwv+C) forve V. Let I~ : V- — GL(W,V) be a continuous mapping with
the property that II~ (v)L™ (v) — I € K(V) for all ve V~. Then I~ (v)F(v) =v — K(v) holds
valid for all v € V, where K : V. — V is a compact mapping.

Proof. We get I~ (v)L~(v) = I — R~ (v) for v € V—, where R~ : V~ — K(V) is continuous.
Hence,

I~ (v)F(v) = 1" (v) (L(v)v+ C(v)) =

for all v € V', where K(v) = R~ (v)v — I~ (v)C(v). Since V is compactly embedded into V'~ and
both

R~: V- — L(V,W),

. v- = LV,W)
are continuous, the compactness of K : V' — V follows from the compactness of C': V' — W and
of each R~ (v) forve V. O

Theorem 5.4. Let F : V — W be a quasilinear Fredholm mapping. Then F can be represented
as

Fv) =T~ () (v — K(v)) (5.2)

forv € V, where T~ : V= — GL(V,W) is a continuous family of isomorphisms and K is a
compact mapping of V.

Proof. Write F in the form F(v) = L(v)v 4+ C(v) for v € V. On applying Theorem 2.1 of [9] we
choose II~: V~— GL(W,V) to be any strong parametrix for the family L~. Set

_ —, -1
T~ (v) := (I~ (v))
for v € V7~ and use Lemma 5.3 to get (5.2), as desired. O

If A e L(V,W)is a Fredholm operator of index zero, then the restriction of A to any bounded
closed subset of V' is proper. The following lemma is a generalisation of this assertion to nonlinear
mappings, which is of independent interest as a quite general criterion for establishing properness.
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Lemma 5.5. Assume that F : V — W is a quasilinear Fredholm mapping. If X C V is closed
and bounded, then F : X — W is proper.

Proof. Let F' : V. — W be represented by (5.1). Then the properness of F : ¥ — W follows
from the compactness of the embedding of V' into V', the compactness of C': V' — W and the
continuity of L™ : V— — L(V,W), together with the properness of L™ (v) : X — W for each
veV. O

We now turn to the boundary value problem composed in Lemma 1.3. The advantage of
using quasilinear Fredholm mappings lies in the fact that they require no linearisation of the
problem, which may be cumbersome. To illustrate the results explicitly, we restrict our attention
to the case p = 2, for the theory for p # 2 does not fit immediately the framework of quasilinear
Fredholm operators. If p = 2 then (1.6) transforms to

(A= f)"(Au—f) = 0 in &,
Bu = wug at 0X, (5.3)
B (A—f) = 0 at X,

cf. [2]. The differential equation of (5.3) is understood in the sense of distributions in the
interior of X. While the direct methods of variational calculus apply to look for a solution
u € HY(X,RY), direct constructions along more classical lines deal with solutions in H2*5(X, R),

where s = 0,1,.... Under obvious assumption on f, the problem corresponds to
HS (X, R@)
©®
F: H2(X RY) —»  HT3/2(0X,RY)
5]

];Ierl/Q(a)c'7 Réfl')

given by F'(u) = L(u)u + C(u), where

A Au —A*f = (fo)" (Au— )
L(v)u = Bu , Cu) = 0
B*Au -B*f

for v € HY(X,R").

Denote by Hp'5. ,(X,RY) the subspace of H*™2(X,R‘) that consists of all functions
u € HT2(X,RY) satisfying Bu = 0 and B*(Au) = 0 at dX. Applying Theorem 5 of [1] we con-
clude that the boundary value problem L(v) is formally selfadjoint relative to the Green formula
for the Laplacian A := A*A. Hence it follows that the operator A : HE2. (X, RY) — H*(X,R")
has index zero. We may select a compact operator K : Hf;é*A(X, RY) — H*(X,R*) such that
A+ K : H?';A(X, RY) — H*(X,R’) is a bijection. The surjectivity of the boundary operators
{B, B*A} then implies that the perturbation of L(v) by {KP,0,0} is bijective, where P is the
projection of H*T2(X,R?) onto the kernel of {B, B*A}. Since the Fredholm index is invariant
under compact perturbation, we deduce that L(v) is Fredholm of index zero, cf. Lemma 10.11
of [9]. Hence, F is a quasilinear Fredholm mapping.

6. Mapping degree of Lagrangian problems

In [9], an additive integer-valued degree theory for quasilinear Fredholm mappings is con-
structed. The theory is based upon a modification of the well-known techniques of [14] for
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formulating the solutions of the Dirichlet problem for a quasilinear second order elliptic equation
as the zeroes of a compact perturbation of the identity, i.e., fixed points of a compact mapping.
Following an idea of [3], it is shown in [9] that general elliptic boundary value problems with
sufficiently smooth "coefficients", induce quasilinear Fredholm mappings both in Sobolev and
Holder spaces.

The definition of degree in [9] turns upon first assigning a degree to each linear isomorphism
and then extending the degree to general quasilinear Fredholm mappings.

If V and W are finite dimensional of the same dimension, the choice of orientation of V' and
W defines the determinant det T" for all T € GL(V,W). Then ¢ : GL(V,W) — {£1}, defined by
e(T) = sgn det T', distinguishes the two connected components of GL(V,W). Of course, ¢(T') is
the Brower degree of T with respect to the choice of orientations.

If V = W is infinite dimensional, then the group of compact perturbations of the identity
in GL(V,V) also has two components, which are distinguished by the function ¢(7) = (—1)¥
where N is the number of the negative eigenvalues of T counted with their algebraic multiplicities.
Obviously, e(T') just amounts to the Leray-Schauder degree of T'.

For general spaces V and W the “group” GL(V, W) may be connected. If we divide GL(V, W)
into equivalence classes under the Calkin equivalence relation, to wit 7' ~ S if T'— S is com-
pact, then each equivalence class has two connected components. In fact, if T — S = K then
I-T7'S=T71K, and so T~'S is a compact perturbation of the identity. The Leray-Schauder
degree of T~1S distinguishes two connected components of the equivalence class indeed. It is
reasonable to define the degree so that it would distinguish the components of each Calkin equiv-
alence class. If T and S in GL(V,W) are equivalent, then they lie in the same component of
their equivalence class if and only if the Leray-Schauder degree of TS is equal to 1. Accord-
ingly, [9] defines a function € : GL(V,W) — {£1} to be an orientation provided that £(T")e(S)
just amounts to the Leray-Schauder degree of T-1S, if T, S € GL(V,W) are equivalent. An
orientation of GL(V, V) is always required to assign 1 to the identity.

Once an orientation ¢ is chosen, the degree of F' on an open set U C V is defined by

deg(F,U) =¢(T~(0)) deg( — K, U, 0), (6.1)

where T~ and K are as in (5.2) and deg(I — K, U, 0) is the Leray-Schauder degree of I — K in U
with respect to the value 0. The right-hand side of (6.1) is independent of representation (5.2).

The degree defined by (6.1) has the usual additivity, existence and Borsuk-Ulam properties,
see [9]. If V =W and GL(V,V) is connected, then any integer-valued degree theory on a class of
mappings which includes all linear isomorphisms and which coincides with the Leray-Schauder
degree on the class of compact perturbation of the identity can neither be homotopy invariant
nor can the classical regular value formula hold.

In [10] a rather different construction of mapping degree is given which uses a stronger notion
of orientation than the one used in [9]. If F: V — W is a C? quasilinear Fredholm map which
has 0 as a regular point, then the function o defined by o(z) = e(F'(z)) o(F’ o v), where 7 is
any path between 0 and the regular point 2 and o(F’ o) the parity of the family F’ along v, is
an orientation of the map F in the sense of [10]. Moreover, for any admissible set U in V, the
degree of F' with respect to o is

deg,(F,U,w) = Z o(z)

z€F~1(w)NU

provided that w ¢ F(9U) is a regular value of F' : U — W. We write it deg,(F,U) for short, if
w = 0.

A major breakthrough came with the paper [11] which remedied the shortcomings of [10].
Indeed, the theory of [10] has required C? mappings whereas C'* mappings would be more natural.
The paper [4] is inspired by the approach of [10] though the details are different. The authors
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define the orientation of a linear Fredholm operator T': V' — W of index zero between Banach
spaces as the choice of either of the connected components of the set of all finite rank operators
K such that T + K is invertible. They succeed in defining the degree deg(F, U, w) whenever
F:U — W is a C?! oriented Fredholm map of index zero between Banach manifolds and f~!(w)
is compact, and this degree satisfies the expected properties including invariance under oriented
homotopies. For a further progress we refer the reader to [5, 6].

We now turn to the Euler-Lagrange equations of Lemma 1.3. In the initial setting the operator

u e (A= f1)"(JAu—fP7*(Au—f))

is given the domain W'P(XRf) and maps it to (V(E/LP(X,R‘Z))’. Our objective is to single out
the principal part of the operator containing all second order derivatives of w. For this reason
our computations will be modulo terms which include the derivatives up to the first order of u.
Under obvious conditions on f they can be comprehended as nonlinear compact operators in the
relevant Banach spaces. We first write

Au=>" A dju+ A'u,

j=1
where A7 and A° are (m x ) -matrices of smooth functions on X'. On using this formula we get
(A= f)" (|Au—fIP~2(Au—f)) =
= [Au—fPPAT Au =Y A (Au—f) 9| Au— f|P? (6.2)
j=1

modulo first order terms. The function Au takes on its values in R, and we think of Au as an
m-column with entries Aju,..., A,u. By the definition, each Ay is an £-row of scalar partial
differential operators of the first order on X'. More precisely, we obtain

n

i=1
for k = 1,...,m, where A?C and Ag are the kth rows of the matrices A* and A°, respectively.
Now a trivial verification shows that

p—2

lau—1r2 = (D (Au-fi)?) T =
k=1

NE

= %Mu_ﬂ%‘l( Q(Ak’u,—fk)aj(AkU_fk‘)):

e

n

1
S a1y A;;,aja,»u)

= (p=2) [Au—f=(
k=1 i=1

modulo nonlinear terms which include the derivatives of u of order not exceeding one. On the
other hand, we have ‘ ‘
A= (A]x ... AL¥)

for all j =1,...,n, whence

AT (Au=f) = 30 Al (A= fo).
=1
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Substituting these equalities into (6.2) yields
(A= o) (|Au—fP~2(Au—f)) =

111“ fl Alku fk . 1 1 9:0
4 Fp—? 4*4 2 J% i a9
| “ | ( “ l;l |A’LL ?| |A’LL ” Z ! k%s ﬂ,t)

1,7=1
modulo nonlinear terms containing the derivatives of u of order < 1. It is easily seen that
n .
= Y A*AL0;0u = Af Agu
i,j=1

up to terms containing the derivatives of u of order at most one. This gives the final formula
(A=fo) (|Au—fIP~2(Au—f)) =

= |Au—f|P~ 2(A*Au—|— p—2) Z
k,l=1

Aju—fi Agu—fi
|Au— f| |Au— f|

A;‘Aku)
(6.3)

up to terms containing the derivatives of u of order < 1. Formula (6.3) gains in interest if we
observe that

A*A = zn: AL Ay,
k=1

Remark 6.1. For the classical p-Laplace operator in R™ equality (6.3) takes the form

n
Ayu = p*2<—A ~(p-2 g Okt
pte = |Vul u—(p—2) Z " 010ku
k=1
modulo terms containing the derivatives of u up to order one.

Summarising we conclude that the operator corresponding to the Euler-Lagrange equa-
tions (1.6)

WL (X, RY)
@
F: WYX R —  Wwire(x RY)
@

WL/ (9x R
can be written in the form F'(u) = L(u)u + C(u), where

Aw—fi Ago—fi
Av—fIP72( A* Au + (p—2) A7 Aru
Loy = | | ( g:l [Av—f] JAv—f] )
Bu
|Av— fIP~2B* Au

for v € WHP(X,RY), and C is a nonlinear compact operator. One sees readily that, if Av— f(-,v)
vanishes at some point of X', then the boundary value problem L(v) is degenerate.

Theorem 6.2. Let Av(x) — f(z,v) # 0 for all x € X. Then the differential equation of L(v) is
elliptic in X.
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Proof. The theorem just amounts to saying that the second order partial differential operator

L=A"A+ (p—2) Z aay A?Ak
k=1

Apv—fk
—= for k=1,
|Av—f|

Fix z € X and denote by o(L) = 0?(L)(z, &) the principal symbol of L at a point (z,&) € T* X,
where £ € T X is different from zero. An easy computation shows that

i (p— Q(Zam Al)*(gakU(Ak))v

k=1

is elliptic in X', where a; = .., m.

where o(Ag) = o'(A)(z,€) is the principal symbol of Ay, at (x,€). The invertibility of o(L) :

R? — R’ will be established once we prove that (o(L)u,u) > 0 for each nonzero vector u € R.
We get

2

b

(o(Lyu,uw) = > lo(Aul + ( — 2)| Y axo(Ag)u
k=1

k=1

which is obviously nonnegative if p > 2. Furthermore, if 1 < p < 2, then using the Cauchy
inequality yields

(e(Lu,u) >

NE

lo(Ap)ul* + (p = 2) Y o(Ar)ul® >
1 k=1

; (6.4)

o o

>

for 1+ (p—2) > 0.

It remains to show that (o(L)u,u) = 0 for u € R’ implies v = 0. If p > 2, then from
(o(L)u,u) = 0 it follows that o(Ag)u = 0 for all &k = 1,...,m. Since the pr1nc1pal symbol
mapping of A is injective, we conclude that v = 0, as desired. The same proof remains valid for
1 <p<?2, forif o(A)u # 0, then (o(L)u,u) > 0, which is due to (6.4). O

Thus, if the system of boundary operators {B, B*A} satisfies the Shapiro-Lopatinskii con-
dition, then L(v) is actually an elliptic boundary value problem. To get rid of degeneracy it
suffices to cancel the scalar factor |Av — f|P~2, thus obtaining a problem essentially selfadjoint
with respect to the Green formula, see Theorem 5 of [1]. Therefore, the theory of [4,11] still
applies to Lagrangian boundary value problems.

7. Perturbed Dirichlet problem

In this section we consider the Dirichlet problem for the perturbed Laplace equation and
prove criteria which are needed to apply the degree.
Let X be a bounded closed domain with smooth boundary in R™. Consider the problem

(7.1)

Au = f(z,u,u’) in X,
u = 0 at  0X,

where f is a nonlinear C* function of its numerical arguments (z,u,p) € X x R x R" satisfying

1< O, Ll <O, Il <G (7.2)
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with v < 1 and C a constant independent of z, u and p. Here, we use the designation
(p) = (1 + |p|")*/" with =2 or with any other r > 0, for all the expressions are equivalent.

Choose V := fOIl(X) and W := H~1(X) with norms

v = ([ pas)”

Iflw = sup | [ fadal
lullv=1"/x

Then, F(u) := Au — f(x,u,u') maps V continuously into W and it is an elliptic operator.

Lemma 7.1. The Laplace operator A : V. — W is an isomorphism and C', and so a C!
Fredholm operator of index 0.

Proof. To show that A :V — W is an isomorphism, note that if « € V and Au = 0 then v = 0,
for u is a harmonic function vanishing at the boundary. Thus, A : V — W is one to one. We
now assume that f € H~1(X). The equation Au = f for u € V is understood in the weak sense,
i.e., a(u,v) = f(v) for every v € V, where

a(u,v):/)((u',vl)zdx

stands for the inner product in V. By the Riesz representation theorem there is a unique uv € V'
satisfying a(u,v) = f(v) for all v € V. Hence it follows that A : V' — W is onto. Moreover, A is
a linear operator and hence C'. Thus, A:V — W is a C! isomorphism. O

Lemma 7.2. Under assumptions (7.2) the Nemytskii map u v~ f(x,u,u’) is a C' compact
operator.

Proof. We first observe that, for a fixed v € V, the function = — f(z,u(z),u'(z)) belongs to
LP(X) with any p > 1. Consider the map

HY(X) = L2(X) x LX) M 12(x) — H(X), (7.3)

where by the first arrow is meant the map uw — (u,u’) and by the second arrow the map
(u,u’) = f(x,u,u’). The first map is linear and bounded, hence it is continuous and C'. On
the other hand, from Theorem 10.58 of [21] and the first inequality of (7.2) it follows that Ny
is a continuous map from L?(X) x L?(X)"™ to L?(X). And finally the embedding of L?(X) into
H~Y(X) is also continuous and C'. Therefore, (7.3) is a composition of continuous maps and
thus is continuous. Moreover, since the last embedding is compact, (7.3) is a compact map from
V to W. On the other hand, the remaining estimates of (7.2) together with Theorem 10.58
of [21] imply that Ny is C, and so (7.3) is C'! as composition of C* maps. O

We conclude that the map F' : V — W is of the form L + C, where Lu := Au is a linear
Fredholm operator of index zero and Cu := — f(x, u,u’) is a compact operator. If u is a smooth
function with compact support in the interior of the closed domain X', then

|Au|lw = sup /Au@dx.
x

llvllv=1

On integrating by parts we get

|Aullw = sup ’/(u',v’)mdx‘: sup |(u,v)v|
X

llvllv=1 loflv=1
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and choosing
U

v =
[ullv

yields ||Aullw > ||ullv. On the other hand, ||Au|lw < |Jully, which is clear from the Cauchy-
Schwarz inequality. Thus,

[Aullw = ullv

which extends by continuity to all functions u € H L(x).
If w € V is a solution of (7.1) then Au = f(x,u,u’), hence

lully = lIf(,u,v)w <

< Cllf(x,U,U/)HLZ(X)

with ¢ a constant independent of u. Furthermore, applying the first estimate of (7.2) on f we
get

1f @) 3agey < O /X (W) da <

< 02(/25czac)H(/X<u'>2dgc)7 <

< C(+ulf),
where C' is a constant independent of v which may be different in diverse applications. Thus,
2
lully <€ (1 + Jlul?)”

for all u € V satisfying (7.1). Since the right hand side is a sublinear function of |lu||y, such
an a priori estimate occurs only if ||ully is bounded, i.e. ||ully < R for some constant R > 0
independent of w.

We may now appeal to the concept of mapping degree to show the existence of a solution to
problem (7.1). The specific concept we use here is that of regular point degree clarified in [11, 7.1].

Let U be the ball of radius 2R with centre at the origin in V. By Lemmata 7.1 and 7.2, F'is
a C! map from U to W. By the above a priori estimate, F'~1(0) belongs to the ball U/2, and
hence F' does not vanish at OU. It follows that the mapping degree deg (F,U) is well defined.
To compute this degree, we consider the homotopy

Fy(u) = Au—t f(x,u,u)

for t € [0,1]. Obviously, F; is a C* map, for each t € [0, 1], and the same a priori estimate shows
that F, *(0) C U/2. Therefore, F; does not vanish at OU for all ¢t € [0, 1]. Then, the homotopy
invariance of the mapping degree implies that deg (F,U) = deg (A, U).

By Lemma 7.1, A : V — W is a (linear) isomorphism, and so the mapping degree deg (A, U)
is different from zero. This implies immediately that deg (F,U) # 0. On using the normalisation
property of mapping degree [11] we conclude that the set F~1(0) is nonempty, i.e., problem (7.1)
has at least one solution u € V', as desired.

This result extends in an obvious way to the Dirichlet problem for perturbations of the
Laplace operator A = A*A, where A is a first order overdetermined elliptic differential operator
satisfying the uniqueness condition for the local Cauchy problem (U)s, see [26].
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8. The Dirichlet problem for the p-Laplace equation

In this section we consider the Dirichlet problem for the perturbed p-Laplace equation. Let
X be a bounded closed domain with smooth boundary in R™. Consider the problem

Apu = flz,u,u’) in X,
{ u = 0 at o0X, (8.1)

where Apu := V*(|Vu|P~2Vu). The right hand side f is assumed to be a nonlinear C! function of
its numerical arguments (z,u,p) € X x R x R™ satisfying inequalities (7.2) with some v < p — 1.

Choose V := VOVLP(X) and W := W~1#'(X) with norms

, 1/2
v = ([ )"
X

Iflw = sw | [ fads)
flullv=1"Jx
where 1/p+1/p’ = 1. Then, F(u) := Apu — f(z,u,u’) maps V continuously into W and it is a
degenerate elliptic operator.

Lemma 8.1. The map F : V — W is C! and it admits a reqular point ug in 'V, i.e., F'(ug) €
GL(V,W).

Proof. Using the chain rule we see that the Fréchet derivative of the p-Laplace operator at a
point ug € V is given by

Al (ug)u = V*(|Vuo\p_2(En + (p—2)|§7zz‘(|§7zz|)*)Vu) =
= V*(a(x)Vu)

_P_
for v € V. Note that a(x) is a symmetric (n X n)-matrix with entries in LP=2(X’). By Theo-
rem 6.2, A;(uo) is a second order elliptic operator away from the critical points of ug in X.

On the other hand, the Fréchet derivative of the map f : V= W given by u — f(z,u,u) is

[ (ug)u = fl (2, up, Vug)u + f;(x,uo,Vuo)Vu

for u € V. The inhomogeneous equation F'(ug)u = w with w € W just amounts to finding a
u € V which satisfies

V*(a(z)Vu) = f,(x,u0, Vug)u — f,(x,u0, Vug) Vu = w

weakly in X.

We now refer to [12] to see that in any ball around the origin in V' there is a function wug,
such that F’(ug)u = w has a unique solution v € V for each right hand side w € W. In other
words, F'(ug) € GL(V,W), i.e., up is a regular point of F, as desired. O

If w is a smooth function with compact support in the interior of the closed domain X', then

| Apullw = sup /Apuz_)da:.
X

llvllv=1

On integrating by parts we get

|Ayullw = sup ‘/(Apu,v)mdx‘ = sup ‘/ |Vu|P~2 (Vu, Vo) dz|.
X X

llvllv=1 llollv=1

— 22 —



Ammar Alsaedy, Nikolai Tarkhanov A Degree Theory for Lagrangian Boundary Value Problems. ..

Let
U

V=
lullv”

then
1
llwllv

1
= 7/ |Vul? de =
l[ullv Jx

-1
= ully,

/ |Vu|P~2 (Vu, Vv)de / |Vu|P~2 (Vu, Vu)de =
X X

whence || Apullw > [|ul?7". On the other hand, if v € W'P(X) and ||v||y = 1, then

’ 1/pl
| / VUl (Y, Voyedz| < (Voo ( / VUl (Vu, Vo)eds) " =
x x
-1
= ”qu/ )
the first estimate being due to the Holder inequality. Thus,

1Apullw = [lulf"

which extends by continuity to all functions u € WHP(X).
If w € V is a solution of (8.1) then A,u = f(z,u,u), hence

-1
lullv" = (@, u,u)llw <

< cellf(zu, )| o)

with ¢ a constant independent of w. Furthermore, on applying the first estimate of (7.2) on f we
obtain

| w )y < CP /X (W'Y da <

C (/é\f(u’)pdx)’y <

< OO uly),

N

where C is a constant independent of u which may be different in diverse applications. Thus,
lullvy < C (14 ||u||€,)’>’/17(p71)

for all u € V satisfying (8.1). Since v < p— 1, the right hand side of this inequality is a sublinear
function of |ju|ly. On arguing as in Section 7. we see that there is a constant R > 0 with the
property that |ju|ly < R is fulfilled for all u € V satistying (8.1).

Let U be the ball of radius 2R with centre at the origin in V. By Lemma 8.1, F is a C!
map from U to W and it has a regular point ug € U. By the above a priori estimate, F~*(0)
belongs to the ball U/2, and hence F'(u) # 0 for all uw € OU. It follows that the mapping degree
deg, (F,U) is well defined, see [11, 7.1]. To compute this degree, we consider the homotopy

Ft(u) - APU‘ - tf(x,u,u')

for t € [0,1]. Obviously, F} is a C* map, for each t € [0, 1], and the same a priori estimate shows
that F, '(0) C U/2. Therefore, F; does not vanish at OU for all ¢ € [0,1]. Then, the homotopy
invariance of the mapping degree implies that deg (F,U) = deg (4,,U).
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The mapping A, : V. — W is well known to be an isomorphism, see for instance [23] and
elsewhere. This allows one to conclude that the mapping degree deg (4,, U) is different from zero.
Hence it follows that deg (F,U) # 0, which implies immediately that F~1(0) # (). Therefore,
problem (8.1) has at least one solution u € V, as desired.

For a deeper discussion of the Dirichlet problem for compact perturbations of the p-Laplace
equation along more classical lines with f : X x R — R a Carathéodory function we refer the
reader to [8].

No attempt has been made here to generalise this result to the Dirichlet problem for the
p-Laplace operator u — A*(|Au[P~2 Au) related to a first order overdetermined elliptic differential
operator A satisfying the uniqueness condition for the local Cauchy problem (U)s.

Conclusion

As a byproduct of our study of Lagrangian boundary value problems in X we derived a
linearisation of the nonlinear Laplace operator in general outline up to first order terms. It looks
like
i Al’l}—fl(- ’U) Ak’l}—fk(-,U)
A)u = A*Au + A -

k,Elz:l ‘AU—f(~,U)| ‘Av_f('vvﬂ

where A is an (m X £)-matrix of first order partial differential operators on X and Aj,..., A,
the rows of A. If the principal symbol mapping of A is injective away from the zero section of
T*X and A > —1, then A(v) is elliptic. This operator is supplied with two boundary operators
B and B*A and the problem of solvability of the corresponding boundary value problem in X is
of central interest in the present paper.

Remark 8.2. The operator A(v) is elliptic for all real A > —1 and it coincides with A*A for
A = 0. Hence, the index of the boundary value problem {A(v), B, B*A} amounts to that of
{A*A, B, B* A} if the boundary operators satisfy the Shapiro-Lopatinskii condition.

A?‘Aku,

The first author gratefully acknowledges the financial support of the Deutscher Akademischer
Austauschdienst.
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TeOpI/ISI cTelieHn AJid JiarpaH2>KeBbIX Kpa€eBbIX 3a/Jda4
Ammap Anb-Caenu

Vuusepcurer AnaxpaiiHa
Barpan, pak
Hukosait TapxanoB
Ilorcmamckuit yuuBepcureT
ITorcmam, 'epmanus

Annoranus. Mbl n3ydaem Te HeJlMHEHHDbIE yPABHEHUsSI C YACTHBIMU IIPOM3BOAHBIMY, KOTOPbIE BO3HUKA-
10T KaK ypaBHeHHs Dilnepa-Jlarpamka BapHalioHHbIX 331249, Onpeesiss cjiabble IPaHINYHbIe 3HAYEHUS
pelleHnii TaKUX yPaBHEHUI, Mbl MHUIIMAPYEM TEOPHIO JIAIDAHXKEBBIX KPAEBBIX 33/a4 B (DYHKIMOHAIb-
HBIX IIPOCTPAHCTBAX MOAXOsAIIel ragkocTu. Mbl Takyke aHAIU3UPYEM, IPUMEHSAETCS JIM COBPEMEHHAS
KOHIIEMITUSI CTENIEHN OTOOPasKeHNsI K JIArPAHKEBBIM IIPOOJIeMaM.

KuroueBble ciioBa: HeJIMHEWHbIE YPaBHEHNUs, JIATPAHXKEBA CUCTEMa, CJIabble TPAHUYHBIE 3HAYEHUsT, KBa-
3UINHEHHBIE ornepaTopbl PpexoabMa, CTeleHb OTODPAYKEHUSI.
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Abstract. In this paper the conditions for the law of temperature behavior on a solid cylinder wall
describes, under which the solution of a linear conjugate inverse initial-boundary value problem describing
a two-layer axisymmetric creeping motion of viscous heat-conducting fluids tends to zero exponentially
with increases of time.
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1. Introduction and preliminaries

In work [1], the linear conjugate inverse initial boundary value problem describing a two-
layer creeping motion of viscous heat-conducting fluids in a cylinder with a solid side surface
r = Ry = const and interface r = h(t), 0 < h(t) < R was considered

1
Ve = 1 ('Ulrr + ; 'Ulr> + fl(t), 0<r< Ry, (1)
1
Vgt = o <U2rr + - v2r) + fo(t), Ry <r < Ry, (2)
R1 RZ
v (R1,t) = va(Ry,t), / ruy (r, t)dr + / rug(r, t)dr =0, (3)
0 Ry
p1vir (R, t) — pover(Ri,t) = —2ea;1 (R, 1), (4)
[v1(0,1)| < 00, wa(Ra,t) =0, (5)
U1 (T7 O) = Ov UQ(T7 O) = 07 (6)
2%&1 (Rl, t)

p1rf1(t) = pafo(t) — R
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and the closed conjugate problem for functions a;(r,t) is described the following equations:

ajt = X (ajrr + i%‘r) ; (8)

aj(r,0) =aj(r), la1(0,t)] < oo, (9)
az(Ra,t) = a(t), (10)

a1(R1,t) = as(Ry,t), ka1, (Ry,t) = kaas,(Ra,t). (11)

The interface is described by the formula

h(t) = Rl + Mha(8)], ha(t) = —Ril /O ror (Ry, £)dt. (12)

1

Here M = @a'R3/p1x1 is Marangoni number, a! = max |a(t)|. Note that M — 0 since the

te[0,T]
creeping motion considers in this paper.

In paper [1] the priori estimates were obtained for the functions v;(r,t), a;(r,t), f;(t). In
this paper, it will be proved that under certain conditions which set for the temperature on the
cylinder surface, the solution of the problem (1)—(11) tends to zero exponentially with increasing
time.

2. The behavior of the solution under ¢t — oo

A priori estimates for the function a;(r,t) satisfying the problem (8)-(11) have form [1]

1
t) <2 O+ mg———7r At Ay ()M 9 13
o101 < 2| . o0+ (s e (A + om0 (1)
1 1/4
as(r )] < o) +2 [ ———— A Ayt , 14
ealr0)] <10l +2 (g ADM)) (1)

where

At) < <\/AT, +% /0 t G(T)ew):—?nt, (15)

Ry Ro t Ro
A(t) =k / r(al,)? dr + ko / r(as,)? dr + pacp, / / rga(r,t) drdt. (16)
0 Ry 0 JR,

Here Aq is value of function A(t) at ¢ = 0 and

1/2 ; .Ra 1/2
G(t) = max (pjip») (/R rgs dr) , (17)
o (r, 1) = as(r, 1) — m, (18)
2x2a(t) Ry o (r— Ry)?
92(T7t) = (R2 2_ R1)2 (2 - 7,) - (R2 — R1)2 . (19)
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If the function a(t) and its derivatives o/(t), ' (t), o/”'(t) are defined for all ¢ > 0, there is a
question about the behavior of the problems solutions (1)—(11) at ¢ — co. From the definition
of (19) the inequality is valid for the functions go(r, t)

Ry ) 2 Rs X - & ,
/R1 rgzdréw/m 4X2<2 T)Q(t)+
2042
+ (1= Ry)*(o/ (1)) rr < 2Ra(Ra — Ry) (o ()* + m

(for integrals over r, an upper estimate is given but not their exact value, which can be quite
cumbersome), so from (17) we have

2 2 1/2
| 323302 (1) ] 3
J

)} v [232(32 R0 + TR

G(t) < [max(

PiCp;

<2[ ( 1 ﬂl/?[ 4X2 ()| + V/Ra(Ra — Ryl } (20)
< 2 |max — o ( .
i\ Picp; (Ra — )3/2 2(Re — R

J

So from (15) we obtain

1 1/2 Ay
ntT
04+ [ogn ()] [ e e

2

Ra(Rs — ) /O to/(T)eanTH et (21)

From (16) and (19) the estimate is valid
Rl R2
A<k [ rlad e+ ke / r(ad,)?dr+
0

4
+p20p2R2 |:R XZRI/ ‘Ck |d7‘+ RQ—Rl / |Ol |d7':| . (22)

We suppose that the following integrals converge

/0 S ol dr, /0 S (e dr, (23)

then the expression for function modules |a(7)| and |o/(7)| have the form
a(T)] = en(t)e™", o/ (7)] = az(t)e™" (24)

with non-negative functions a;(t), aq(t), at that ai(t) — 0, ae(t) — 0 at ¢ — oo and the
following estimate is valid

/ ap(T)dr < o0, k=1,2. (25)
0

The convergence of integrals

[ talar [ i,
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follows from (24), (25), so from (14), (21), (22) we obtain exponential convergence to zero of the
function ag(r,t) Vr € [Ry, Ral:

- A1(OO)D2 e -
as(r,t)| < ay(t)e ”t—|—2( e M2, 26
ax(r, )] < e (1) e (26)

where in the quality D we have designed the value of the expression in curly brackets (21) at
t =00
For aq(r,t) from the estimate (13)we find

_ Aj(00)D? 174 _
ar(r,t)] <2 |az(t)e "t—|—< e /2
a1 (r,?)] l 1(t) Rhapac,

rel0,Rq] Rl

+ max |ad(r)]exp (-lelt), (27)

where & =~ 2.4048 is the first roots of equation Jy(§) = 0 [2]. So there is

Lemma 2.1. If the functions a(7), /(1) satisfy conditions (23)—(25), then for the solutions of
the initial-boundary value problems (8)—-(11) a;(r,t) the following estimates are valid: (26), (27),
from which it follows that these functions tend exponentially to zero with increasing time.

The priori estimates for functions v;(r,¢) and f;(¢) have form [1]

- 1/4
a1 < 2o, ) 1Pt I+ = (Zmoen) . e

1 S || \hQ\
< 1 2 2
()] < 201 (7R1+Z|hn|> + 20 Z( G tE )| mex e+
R3 — R?
i P 29
o 2 e (0] o, (P30 + (29
5 9 1/4
+ 4/ = max Hs(t)EA(t
Ry tefo,1] <P2M2 3B >>
|v1(r,t)| < Ry max |va(Ry,t)| + 2 max _|f1(t |Z (30)
1\ X ltE[O,T} 2 1 v, tEOT 1 g |J {n
] < t ). 1
£20] < PO+ 2 ma lax(paFr, ) (31)

Here p = p1/p2, &, are the roots of the Bessel function Jy(&,)=0, ¢, are the positive roots
of equation Jo(¢) = 0 [3], hL = BL/¢, and h2 = B2/(, (where B, B2 are coefficients of
Fourier series of functions —15R;r and 3Ry (r® —4R;172/7) when they are decomposed by function
Jo(Ry*¢,r) [1]). Further we have

1

O R =)

(’1“2 — (R1 +R2)T+R1R2)(7"2 +Cl7"+02) (32)

with constants
(Ri + R2)(2R? + 2R} + R1 Ry)

(R2 — R1)(3R2+ 2Ry) ’

Cy=-— Cy=—-RiCy (33)

and

E(t) < [\/W + /0 t Hl(T)eédere—%t, (34)
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= 2%2p2 CLO 2 " T 2 r)ar
B0) = 2 af(1) /R PR (35)
Ry 1/2 N
m = |\/2 ( / erdr) b )] (30
Qa(r,t) = ii; {a%(Rl, HPA(r) — v <P4W + iP4r> as(Ry, t)} . (37)
Hy(t) = po /RR2 )Vdr + = / / rQ3(r, t)drdt + —/ a3(Ry,t)dt (38)

Below, in order to determine the behavior of vy (1, t) and f;(t) for large ¢, we need the estimate
|ag(r,t)]. It was obtained in [1], that

1
R% k2p20p2

1/4
laze(r.1)] < o/ (1) +2 ( A2<t>As<t>) , (39)

where R R
1 2
As(t) = %/ ra?,(r,t)dr + %/ ras,(r,t)dr,
2 Jo 2w

2 Ry 1 2
A20 = A2(0) = %/ r <a(i)rr + ; a(l)r> d?"+
0

R / 272
P2Cp, 1, 2x20/(0) Ry o' (0)(r — Ry)
—= — — 22— — ) - ——————| d
+ 9 /R1 |:X2 (a’er + r a2r> + (R2 — R1)2 r (RQ _ R1)2 T

a(0)(r — R1)*
(R2 — Ry)? 7

R1 1 2
A3(t) = le%/ r (a?rr + ; a?r) dr +
0

+ ko /1:2 r {XQ (aSM + ia8r> - W} dr + pgcm/ / rgs(r, t)drdt,
g3(r,t) = ﬁ [2)(2& (t) (2 - E:) —a"(t)(r — Rl)Z] .

Therefore, for As(t) we obtain inequality (21) with replacement Ay by A1g, a(7) by /(1)
and o/(7) by (7). For the function A3(t) inequality form (22) is satisfied with the replacement

Rl R1 1 2
/ r (alr) dr by Xxi / r (a(ljw + - a(l),,> dr = dy,
0 0 r

Re Ra 1 o' (0)(r — Ry)21?
r(@g,) dr b r aom,JraOT) 1} dr=d
/R1 (2) y /Rl {X2(2 -2 (Ry — Ry)? 2

and «(7) by &/(7), /(1) by " (7).
In addition to (23)—(25) we assume the convergence of the integral

a§(r) = a5(r) -

/0 | (T)]e"dT < o0, (41)
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so that there is valid
|’ (t)] = as(t)e™ ™, / ag(T)dr < oo, az(t) =0 at t— oo. (42)
0

Taking into account the above, we find from (14) that
B Ag(o00) DI\
)] <as(t)e ™ +2( oo ——L nt/2 43
() < aa(t)e 42 (FHEDZL) e, (43)

where

R oo oo
Ag(o0) = kady + kady + 222 [4X2 / o/ (7)| + (Rs — R1)? / la”(f)l‘”] ’
R R1 0 0

12 4x2 o
D, =+/A ! 7 d 44
' 10 g (Pj%) [(Rz — Ry)3/2 /0 e r)lemdr+ )

+¢mw»4mémwvmmﬂ.

We turn to inequality for |ag(r,t)| [1]. We have

/ 1 1/4
|age: (7, )] < |’ (t)] 42 <R%k2p2cp2A4(t)A5(t)> ) (45)

where

Rl R2
Ay(t) = ngpl /0 ra%ttdr + ngpz /R rd%ttdr,
1

(46)
pree [T g 2 pacps [ o 2
Ago = 9 r(ayy (r))~dr + 5 r(agy (r)) dr.
0 Ry
The initial data are found from equations (9) and replacement of (18):
1 1 1
a(l)tt(r) =X1 |:(a(1)7‘r + ; a?r) . + ; <a?7"r + ; a?r) T:| )
, A7)
1 1 1 a”(0)(r — Ry)
0 _ 0 L0 2 (0 20 _
ag(r) = X2 [(%m T a2r> . t <a2rr o a2r> r] (Rs — R1)?
Further we have
Ry Ra
As(0) = by [ r(ad)dr o [ r(aotir +
Ry
(48)

s afn [ e (o= 2) - mo

Similarly to function A(t) the function A4(t) satisfies an estimate of type (15), and hence (21)
with the replacement Ag by Ao, a(t) by o”(7) and /(1) by «’"(7).
If we require convergence of the integral

/0 | (T)|e"dr < oo, (49)

| (t)] = au(t)e™ ™, /OOO ay(T)dr < 00, (50)
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we obtain an estimate of the function As(t) (we use the formula (22)

Rl R2
vmm<m/ m@mM+@/ r(@%)?dr +
0 R1

(51)

4 t t
+ pacp, Ro {XQ/ | (7)]dT + (R2 —Rl)/ a”’(7’)|d7’} ,
Ry = Ra Jo 0
where af,,(r) are defined by formulas (24). By virtue of (41), (49) |A5(t)| < As(co) and, similarly

to estimate (21), we obtain from (45)

1/4
AS(OO)Dg) / o t/2

asu(r,t)] < « te”t+2(
asa(r, )] < st -

(52)

1 1/2 4X2 e’}
Dy =vA —_— AL " g
2=V {mﬂax <chp] )] (Ry — Ry)3/? 0/|a (7)[e""dr+

+ /Rl — 1) / |a”’(7’)|emdr].
0

We proceed to elaboration the estimates of the functions v;(r,t), f;(t), when a(7), o/(7),
o/ (1) and o"(7) satisfy conditions (23)—(25), (41), (42). In this case everywhere we replace
a1(Ry,t), a1¢(R1,t) by az(Ry,t), ast(R1,t) according to the first equation (11). We begin with
the function vy(r,t), for which inequality (28) is proved. The quantity E(t) entering the right-
hand side of this inequality has estimate (34), where H;(¢) is given by (36) than from (37) we
obtain

Ro 2
8
/ ng (r,t)dr < —82
R1 N’Q

Ra Ro 1 2

a%t(Rl,t)/R 7“P42(T‘)d7“ + V%@%(Rl, t)/R r <P4TT + - P4T> dr| =
1 1

= d3a3(Ry,t) + dsa3,(Ry,t). (53)

So the inequality is valid

() < “SlaaBo,0)] + 2 (Vlloa(Ra,0)] + v loa( o, 0)]) =

VP
e d d
— <\//71 + p22 3) lag(R1,t)| + p22 *Jagi(Ry, t)|

and estimate (34) takes the form

i p2d3 ! a 667' -
¢mm+aﬁ+w 2>A|wmm dr +

2
d t

+ \/%/ |a2t(R1,t)|e‘STdT] e 20t
0

According to estimates (26), (43) the integrals in (54) have the order e(®=™* and e(®=7/2) for
large t, therefore we obtain

BE(t) <

(54)

et §<n/2,
E(t) <v(t), where ~(t)=ds{ te 2t §=n/2, (55)
e, §>n/2,
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with positive constant ds.
Defined by equality (38) with using (53) the function Ha(t) is evaluated as follows:

2 t
r(ﬂgr)zdr + <p2d3 + 39) / a%(Rl, T)dT+
2 p1) Jo

Ra

Hy(t) < Mz/

Ry

d t
+ % a2 (Ry,7)dr < Dy = const > 0
0

by virtue of inequalities (26), (43).

So from (13), (54), (55) we find estimate

g\ 1/4
ai(t)e™ " 42 <A1(OO)D ) e Mt/2

_|_
Rikapacy,

2
va(r,t)| < — max | Py(r
o) <57 mas [P

95 1/4
2 ——D
+J(ﬁwzw@

and vo(r,t) approaches to zero uniformly over r € [Ry, Ro| with increasing time ¢.
Below we need the values f;(0). From (7) we obtain the connection between them

p1f1(0) = p2f2(0) — &~

1
The other relation follows from the second equality (3) and equation (5) (we recall that
v;(r,0)=0):

R2 — R?
f1(0) = === £2(0).
1
Now we find 2en(RE — R2)a0(Ry) 2
Xy — h)ajlin 1
0) = 0) = ——— f1(0). 57
Moreover the relations are valid
2 1
Ult(ra O) = fl (O)a 772t(ra O) = f2(0) + [le <a(1)rr7‘ + ; a?rr) P4(7”). (58)
The second initial condition follows from the equations
1 1/4
a1(Ry1,t)| = |as(R1,t)| < |a(t)| + 2 AtAt) , 59
o1 (B2, = faa s, ) < o0 +2 g A1) (59
and (37) and replacement
2 Ryt
va(r,t) = Ba(ryt) — Z2UELY by (60)
M2

We consider the following inequality that was obtained in [1]

- 1/4
|v2t(r,t)|<i—2|a1t(R1,t)| max P4(r)+\/R71( 2 Hg(t)El(t)) . (61)

r€[R1,Rx] P22

The function E;(t) on the right-hand side of inequality (61) has the form

p [T p2 [
Ei(t) = ?/ rvl,dr + ?/R ro3,dr,
0 1
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R2 Ro
By0) = P00 + 2 [0,
Ry

where f1(0) and (7, 0) are defined by the first (57) and the second (58) equality respectively.
There is the estimate form (54) for Fy(t).

® p2ds i 57
E1(0)+<T)1 5 )/0 |age(Ry, 7)[e’"dr+
[pada [t ’
+ p224/ |a2tt(R1,T)|e5TdT] e 20t (62)
0

Taking into account the obtained estimates (43), (51) from (53) we find using the constant dg
the inequality

Eq(t) <

B (t) < de(t) (63)

and the function ~(¢) from inequality (55).
For the function H3(t), from the right-hand side of inequality (61) we have the expression

R] R2
Halt) = [ r(oby e+ pa [ o)
0 Ry

p2 t Ro %2 t
—|——/ / rQ%(r,T)drdT—!——/ CL%(Rl,T)dT, (64)
2 Jo Jr, P1 Jo
where in our case

2 1
QS(T.? t) = 5 |:_V2a2t(R1a t) <P4rr + ; P4r> + a2tt(R17t)P4(7n):| )

2
U?tr(r) =0, ’Dgtr = 7a2t(R17 0)P4T7
2
1
oau1,0) = xa ol (1) + 75, ()]
It is clear that

Ro
/ rQ3(r,t)dr < dsa3,(Ry,t) + dyad, (R, 1)
Ry

with constant ds, dy from (52). By virtue of the convergence of the integrals

/ (@ (1)?dr, k=0,1,2
0

we obtain the inequality Hs(t) < H3(oo) and estimate (61) takes the form for all r € [Ry, Ro]

2 1/4
Asz(00) D7 ) etz o

2
H < = P
|vag (7, 1) max ]| 4(7)] R2kspacy,

W2 re[R1,Ry

as(t)e ™ +2 (

1/4
V3 <2d"’ Hs(OO)’v(t)) o (69)

R%VQ
The function fi(t) is the pressure gradient in the first fluid along the axis z. The function
g(t) on the right side of the inequality (29) has form

Ro

g(t) = Riva(Ry,t) + 2/ rvg(r, t)dr
Ry
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and, taking into account estimate (56), we find

. Ay(co) D>\
alte"t+2< e/
( ) R%kngcm

2x
<R max | Py(r +
9(0) 2{u2 e [Py

1/4
+\f<2d5 (%)W)) }de‘“’t, (66)

where w = min(§/2,7/4) (at § = n/2 in (66) there is te~** instead of e~** according to (54)).
Now from (29) using inequalities (65), (66) we obtain the estimate

2
|f1 (t)| < 2V1 |:Sld7€UJt + Sgd7| exp (— C;zzl t) - EWt|:| + d8€7Wt, (67)

1

1 = ¢2
=_Rt h2|, S, = hl|+ 22 |h2
PRSI S, wz s (1 ).

at that S; < oo and Sy < co. The estimate fg( ) follows from (5), inequalities (26) and (67)

o (t)e ™ 42 <W> v e"t“] . (68)

t)] < ) +2
|20 < plfr(t)] + 22 R3kapacy,

Remark 1. From inequality (30), estimates (56) and (67) it follows that the function vy (r,t)
tends exponentially to zero with increasing time.

2@ _ Aq(c0)D? Ve
vi(r,t)| < Ry max |— max |Py(r ate"t+2< e 2| 4
o1 (r, )] 1te[O,T] W re[Rl,R2]| 1)l e (®) R%kQ,OQsz
1/4 9R,
—+ \f( Dg’y( )> + —— max |2V1 [Sld7€ wt+ (69)
V1 tel0,T]

+ Sadry

Clyl ) —wt
exp | — t)—e
(%

For the function hq(t) from (12), taking into account the first relation (3) and the inequal-
ity (56) we have the estimate
R} — R} (2=
2Ry

:|+d86 wt

Z £3|J1(§n)\

[hi(t)] < max | Py(r)] [/0 ay(r)e”"dr+

Ko r€[R1,R2]

3(2](:;”’2)/ (1- ) |+ va (e (OO)>1/4 / t%“(ﬂdT} (70)

and hq(t) is limited at ¢t — oo.
Thus, it is proofed

Theorem 2.1. If the function o(r), o'(7), o"(7), " (1) satisfy conditions (23)-(25),
(41), (42), (49), then the following estimates (26), (27), (56), (67), (68), (69) are valid for
the functions a;(r,t), v;(r,t), f;(t) from which it follows that these functions tend exponentially
to zero with increasing time.

Remark 2. Remark 6. Conditions (23)—-(25), (41), (42), (49) physically mean that the thermal
effects on the solid wall surface of cylinder at r = Ry are very small and the braking of liquids
occurs at t — oo due to frictional forces.
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CBIBAIONIEH IBYXCJIOMHOE OCECUMMeTPAYeCKOoe IOJI3yIIee ABUKeHNAe BASKIUX TeIJIOIPOBOSHBIX XKUJIKOCTEH,
C POCTOM BPEMEHHU SKCIOHEHIINAJIBHO CTPEMUTCA K HYJIIO.
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Introduction

In most cases, real geophysical environments are stratified. If stratification is stable, then

it prevents the development of turbulence. Unstable stratification provokes the development

0
of turbulence. The stratification is stable at = > 0 for an incompressible fluid (the vertical

z
distribution of fluid density is determined by the function p(z), the z-axis is directed vertically

0
downwards), and the stratification is unstable at 9P < 0. A measure of sustainability of stratified

0z
gop , _ 2 . . .
9 (c™?), (g = 981 e¢m/c? is gravity acceleration).
p Oz

If N2 is positive, the medium is stable; if N? is negative, it is unstable.

fluid is the Vaisal-Brent frequency : N? =

An example of a flow where vertical turbulent exchange plays a decisive role is the flow occurs
when a turbulent liquid layer deepens in a stably stratified reservoir at the action of wind. Many
works are devoted to its study (see, for example, references in [1-8]). The classical e — e —model
of turbulence and its modifications are used to describe the process of the mixed layer deepening
in the stratified fluid.

In this paper, the Prandtl-Obukhov formula is used to determine the coefficients of vertical
turbulent exchange [9,10].

*belolip@icm.krasn.ru
fsv@icm.krasn.ru
(© Siberian Federal University. All rights reserved
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1. Problem statement

1.1. Statement of the problem without considering Coriolis force

The flow in a linearly stratified medium under constant shear stress is considered. Stratifica-
tion is due to changes in salinity.

In the study of the process of the turbulent layer deepening simplifications are made, as
a result the averaged horizontal homogeneous motion is described by a system of differential
equations [2—4]:

ou o0 | oU ;o

8t:<9z[l/8z_< w)],

oS o0 [ 0S8 , 1)
&:%[X&z_<sw>]

Here U is a horizontal component of the averaged velocity, S is the averaged salinity, strokes mark
pulsation components: (u'w’) is Reynolds shear stress, (S'w’) is the vertical vector component
of flows; v, x, are molecular viscosity and diffusion coefficients; ¢ is time, z is vertical coordinate
(directed down), t is time. In the case of a fluid linearly stratified at the initial instant of time, the
dependence of the average fluid density p on salinity is given by the relation p(S) = p*+3(S—5*).
Here p* is the initial value of the density on the water surface, S* is the initial value of the salinity
of the water on the surface, 5 = const.

The system (1) is not closed. For its closure, semi-empirical models of turbulence are used
[2-4]. In this paper, it is proposed to parameterize the ratios of vertical turbulent exchange to
use the Prandtl-Obukhov formula derived from stationary equations of balance of turbulence
energy and its dissipation rate [10].

According to Bussinesk hypothesis the values (u'w’), (S’w’) are presented in the form of:
68%, —<Slwl>=KsZ%,

K, is the coefficient of turbulent viscosity, Kg, is the turbulent diffusion coefficient.

The Prandtl-Obukhov formula takes into account the shear mixing mechanism and stratifi-

cation [9,10]:

—(u'w') = Ky,

0.05 h1)2VB + kmin, B >0,
K. — {( 1)2VB + > (2)

kminy B S 0,

9% _ 5905 5 (0UN'_ g0
p* 0z p* 0z’ 0z p* 0z’

where h; is the depth of the quasi-homogeneous (mixed) layer, determined by the first calculation
point from the surface where the condition is satisfied

(0.05 2)%/B.__,, < Funin,

kmin is the minimum value of turbulent viscosity. The deepening of the turbulent layer of liquid
in a reservoir by the wind influence was determined as follows:

AT =h" if by <A™, ATl =Ry if By > AT,

where A} = hq(t,) is the quasihomogeneous layer depth in the Prandtl-Obukhov formula |,
h™ = h(ty) is the depth of the turbulent layer.
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It is assumed that the coefficients of vertical turbulent exchange are proportional to K, :
Ky, =a,K,, Kg,=asK,, «a,=const, ag= const.

We obtained a closed system of equations for calculating U(¢, z), S(¢, z), h(t), p(t):

oUu 0 ou
E - & |:(V+KuZ)aZ] 9

3)
S 9

a8
95 _ Ke. 221 .
ot oz {% s az]
Boundary conditions for the system (3) are: on the surface (z = 0)

ou 1, 05

Kuz . — T a. = 07 4
v+ ) 0z p* 0z (4)
Tw 18 shear stress caused to wind load;
at the bottom (z = H)
a5°
U=0 S=Syg=5"+—H. 5
Initial conditions are:
U(z) =0 S(z)—S*—Fa—SOz (6)
o n 0z
L e . o 08° 1 9p°
The initial salinity distribution corresponds to a linear density distribution, 2. ) = Ba—
z z

The given relations contain empirical coefficients K,,;p, v, g determined by numerical exper-
iments.

1.2. Statement of the problem taking into account Coriolis force

Drift currents are formed in the upper layer of the reservoir under the influence of wind. The
solution of the problem of steady drift current for a deep sea of uniform density was constructed
by Ekman [11]:

U® =Uy exp(—az) cos(% —az), V=V, exp(—az) Sin(% — az),

Here U¢, V¢ are horizontal components of water flow velocity vector, f = 2 Qsin(y) is the

Coriolis parameter, {2 is angular velocity of the Earth rotation, ¢ is latitude, a@ = 4/ 2-’]; ,
_ Ty N
V2poK.a’
wind current decreases exponentially with depth. Below the horizon of z = D the flow velocity
is small, D = 71/2K, /[ is the friction depth. The main part of the kinetic energy of the drift
flow is concentrated in the friction layer from 0 to D. The influence of the parameter f can be
neglected for H < D (H is a reservoir depth). Similarly, in the problem of deepening a turbulent
layer for sufficiently large depths (H > D), the influence of the Coriolis forces is manifested.

Vo wind is directed along the coordinate y (7, = 0, 7, # 0,). The speed of the
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The averaged horizontal homogeneous motion is described by a system of differential equa-

tions: oU 5 oU
oV 0 oV
5 = p {(u +Kuz)g_ - fU, (7)
oS 0 OS]
5% 9 [(XS + KSZE_

Here U, V are horizontal components of the averaged velocity vector. The system (7) is closed
by the Prandtl-Obukhov formula:

0.05 h1)?VBi + kmin, By >0,
K. = VB ! (2a)
kmin7 Bl < 07
B (U (VN g0
7\ oz 0z p* 0z’
Boundary conditions for the system(7) are: on the surface (z = 0)
ou T, Vv T, oS
Kuziz_wz7 Kuziz_wy7 720; 8
(v + Kuz) 5~ p v+ Kuz) 5 = o (8)
Twz» Twy are the components of wind friction stress;
at the bottom (z = H)
0S°
Initial conditions are:
., 08°
U(z) =0, V(z) =0, S(z)=8"+ -5, (10)

Two mathematical models are constructed to describe the processes of vertical turbulent
exchange in a stably stratified reservoir:
— Model 1 does not consider the Coriolis force (2)—(6);
— Model 2 takes into account the Coriolis force (7)—(10).

2. Numerical modeling of turbulent mixing in the upper
layer of a linearly stratified fluid. Results of numerical

experiments

2.1. Numerical algorithm

The numerical solution of initial-boundary value problems (2)—(6), (7)—(10) are based on an
explicit scheme of the first-order accuracy.

We will show an example of the problem for velocity U(¢,z). For internal nodes (j =
—=2.3,....5j—1):
K'+1/2(Un+1 -U}) — Kj—l/Q(UJn — an_l)

Uptt = Up + At ! !
J J + (AZ)2 ’
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on the water surface (j = 1), taking into account the boundary condition, we have:

K3)o(U3 —UL') + Az 7/ p*
(Az)? ’

Uptt = U + 2At

at the bottom U;; = 0. Here U;l“ = U™, 2z;), t" T ="+ At, Az = H/(jj—1), K = v+ K.,
Kji1/2 =0.5(K; + Kj;1). For the model equation K = K¢ = const stability condition [12] is

At < (A2)?/(2K,).
Parameters of variants for numerical experiments shows in Tab. 1.

Table 1. Parameters of variants

0

Nomber oF 1 977 g/ em] | 7, [/ (em )] | H fem] |, fem/c] | No, [e7]
1 1.92-1073 0.995 30 0.9975 1.3721
2 3.84 1073 2.13 30 1.459 1.94
3 1.0-1077 1 4000 1 1.0-1072
4 1.0-1076 1 4000 1 3.13-1072
5 1.0-1078 1 4000 1 3.13-1073
6 1.0-107 1 1500 1 1.0-1072
7 1.0-1077 1 1000 1 1.0-1072
8 1.0-1077 2 1500 1.414 1.0-1072

A variant of the flow obtained by transferring the results of laboratory experiments [7] to
sea conditions with a depth of H=40 m is considered in [8]. An approximation of experimental
dependence is proposed

h=(15-7)3, (11)

where h = Noh/u* is dimensionless depth of the mixed layer, t = Nyt is dimensionless time,

~ [g 0

H = NoH/u* is dimensionless reservoir depth , u* =, /T—i} is friction speed, Ng = i%. At
P po Oz

the same time, according to the authors [8], the flow parameters took values for variant 3 from
Tab. 1.

2.2. Results of numerical experiments

Values of empirical coefficients are determined by numerical experiments for variants 1,2:
a,, = 0.638 — 0.0885 - 7, g = 0.45 for Ny ~ 1 and ag = 1.67 for Ny < 1.

The first series of numerical experiments refers to variant 2. The calculations were performed
on uniform grids with the number of nodes from 120 to 250, time steps from 0.01 to 0.03 s.
Fig. 1 illustrates the vertical distributions of the main flow parameters U/Upaz, Kuz, p(2) at the
time of 240 s. The calculation results of p(z) according to model 1 are in good agreement with
the calculations using second-order turbulence models [2]. The calculation results of U/Usaq,
K. according to model 1 are in qualitative agreement with the calculations according to the
second-order turbulence models from [2].
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Fig. 1. Vertical distributions of the main flow characteristics for variant 2 at the time 240 s:
e — e-model (dashed line), improved model from work [2] (solid line), models 1,2 (yellow lines)

The process of deepening the upper mixed layer is shown in Fig. 2, where the dynamics of the
dimensionless depth h = Noh/u* as a function of the dimensionless time t= Nyt for variant 2
presents. The proposed method gives a less intense expansion of the turbulent layer at Nyt < 360
in comparison with the experiment, and at Nyt > 360 the model 1 calculations approach the
experiment. The calculations of variant 2 for model 2 (taking into account the Coriolis force)
almost coincided with the results obtained for model 1. A more intensive expansion of the
turbulent layer in comparison with the experiment was obtained by the classical e — e-model.
The calculations for the advanced model [2] are in good agreement with the experiment.

h
40 -

0 100 200 300 400 500 ;

Fig. 2. Dynamics of the mixed layer depth for variant 2: advanced model (curve 1), e — e-model
(curve 2) from [2], model 1 (dotted line), experimental data [7] (dots)
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The second series of numerical calculations relates to variant 3. The calculations were per-
formed on uniform grids with the number of nodes from 120 to 250, time steps from 0.1 to 1.0 s.
Fig. 3 shows the calculations results of the depth of the mixed layer up to the time t = 1100,
obtained by the improved model [2] (curve 1), by model 1 (dotted line), experimental dependence
(11) (dashed line). The calculations results by model 1 at ¢ < 600 are underestimated compared
to (11), at t > 600 they approach to the experimental dependence.

h
35
30
25
20

15

10

Ly

0 200 400 600 800 1000

——1 = =2 —0— model1 —¢— model 2

Fig. 3. Dynamics of the mixed layer depth for variant 3 at large times: improved model (curve 1),
experimental data approximation (11) (dashed line) [2], model 1 (blue line), model 2 (orange
line)

The Coriolis force has a significant effect on the deepening turbulent layer in a deep body of
water (H = 40 m). The dynamics of the deepening turbulent layer by model 2 in Fig. 3 is shown
by the orange line.

Numerical experiments were performed for variants 4-8. The results of numerical experiments
on calculating the dynamics of a mixed turbulent layer deepening in a stably stratified reservoir
using the constructed mathematical models are presented in the Figs. 4-8. The main parameters
affecting the dynamics of the turbulent layer deepening in a stratified fluid are wind stress 7,

reservoir depth H, vertical density gradient a—p, the Coriolis force f. Two modes are implemented
for different combinations of these parameters. I — vertical mixing reaches the bottom, the results
of calculations on models 1 and 2 are almost the same (Fig. 7,8), therefore, we can restrict
ourselves to model 1. II — the results of calculations for models 1 and 2 differ significantly:
according to model 1, mixing reaches the bottom; according to model 2, the deepening of the
bottom does not reach. In this case, when the Coriolis force is taken into account, the reservoir
does not mix to the bottom and a quasistationary regime is realized h < H (Fig. 4,5). In variant
6 the solution of the problem according to model 1 and to model 2 one differs little (Fig. 6).

Thus, using simple models 1 and 2, it is possible to determine the effect of the Coriolis force
on the process of deepening the turbulent layer in a stratified reservoir and to specify options
when it is possible to be limited to model 1.
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Fig. 4. Dynamics of the mixed layer depth for variant 4: model 1 (blue line), model 2 (orange
line)

h
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Fig. 5. Dynamics of the mixed layer depth for variant 5: model 1 (blue line), model 2 (orange
line)

Conclusion

Numerical algorithms for describing the processes of vertical turbulent exchange in a stably
stratified reservoir under constant shear stress are considered. These algorithms are based on the
application of the Prandtl-Obukhov formula for the coefficients of vertical turbulent exchange.
The Prandtl-Obukhov formula takes into account the shear mixing mechanism and stable strat-
ification. The results of calculations of the vertical distributions of flow velocities, water density,
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Fig. 6. Dynamics of the mixed layer depth for variant 6: model 1 (blue line), model 2 (orange
line)
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Fig. 7. Dynamics of the mixed layer depth for variant 7: model 1 (blue line), model 2 (orange
line)

vertical turbulent exchange coefficients, and the dynamics of the deepening of the mixed layer
according to the proposed models are consistent with experimental data and with calculations
based on the e — € model and its modifications.

Using the constructed models of the dynamics of the turbulent layer deepening in a stably
stratified fluid, it is possible to determine problems where the Coriolis force can be ignored.
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8. Dynamics of the mixed layer depth for variant 8: model 1 (blue line), model 2 (orange
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O npumenenun popmyiibl IIpapariass-ObyxoBa B YMCJIEHHOMN’
MOJIeJ I UHAMUKU 3ar1y0JieHnsi TypOyJIEHTHOTO CJIOSI

BukTop M. Benonunenkmnii
Csetsiana H. I'enoBa

WucturyT BeraucaunreasHoro momenunposanns CO PAH

Kpacnospck, Poccuiickaa Penepariust

AnHoTaluda. BpInosiHEeHO ducIeHHOEe MOJEIUPOBAHUE 3arIyOJIeHusT TYPOYJIEHTHOTO CJIOSI B YCTOWYIUBO
CTPaTUMUIIMPOBAHHON KUIKOCTH O/, JEHCTBUEM KacaTeIbHOTO HampsizkeHus. Jls koaddurmenta Bep-
THKAJILHOIO TYPOyJIeHTHOro oOMeHa ncnosib3yercst popmyna [Ipanarias—O6yxosa. PesysnbraTs! pacieron
COIJIACYIOTCsI C U3BECTHBIMU IKCIIEPUMEHTAJILHBIMY JJAHHBIMUA M PAcdeTaMy JIPYTUX aBTOPOB.

KuroueBbie cjioBa: MaTeMaTWIeCKOe MOJEINPOBAHUE, TYPOYIEHTHOCTD, CTPATH(MUITNPOBAHHAS YKUI-

KOCTb.
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Abstract. The main result of the present paper is the construction of fundamental solutions for a class

of multidimensional elliptic equations with several singular coefficients. These fundamental solutions are
directly connected with multiple hypergeometric functions and the decomposition formula is required for
their investigation which would express the multivariable hypergeometric function in terms of products
of several simpler hypergeometric functions involving fewer variables. In this paper, such a formula is
proved instead of a previously existing recurrence formula.The order of singularity and other properties
of the fundamental solutions that are necessary for solving boundary value problems for degenerate
second-order elliptic equations are determined.
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Introduction

It is known that fundamental solutions have an essential role in studying partial differential
equations. Formulation and solving of many local and non-local boundary value problems are
based on these solutions. Moreover, fundamental solutions appear as potentials, for instance, as
simple-layer and double-layer potentials in the theory of potentials.

The explicit form of fundamental solutions gives a possibility to study the considered equa-
tion in detail. For example, in the works of Barros-Neto and Gelfand [1-3] fundamental solutions
for Tricomi operator, relative to an arbitrary point in the plane were explicitly calculated. In
this direction we would like to note the works [4, 5], where three-dimensional fundamental solu-
tions for elliptic equations were found. In the works [6-8], fundamental solutions for a class of
multidimensional degenerate elliptic equations with spectral parameter were constructed. The
found solutions can be applied to solving some boundary value problems [9-15]. We also mention
papers [16,17] which are devoted to the study of partial differential equations with the singular
coefficients and their solutions.

Let us consider the generalized Helmholtz equation with a several singular coefficients

m n
m 20
L(a)(u) = E Ug;z; + E :?julg =0 (1)
i=1 j=1

*ergashev.tukhtasin@gmail.com  https://orcid.org/0000-0003-3542-8309
© Siberian Federal University. All rights reserved
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in the domain R := {(z1,...,Zm) : 1 > 0,...,2, > 0}, where m is a dimension of the Euch-
lidean space, n is a number of the singular coefficients of equation (1); m > 2,0 <n < m; «;
are real constants and 0 < 2¢a; <1, j=1,...,n; (a) = (a1,...,0p).

Various modifications of the equation (1) in the two- and three-dimensional cases were con-
sidered in many papers [4,18-27].

Fundamental solutions for elliptic equations with singular coefficients are directly connected
with hypergeometric functions. Therefore, basic properties such as decomposition formulas,
integral representations, formulas of analytical continuation, formulas of differentiation for hy-
pergeometric functions are necessary for studying fundamental solutions.

Since the aforementioned properties of hypergeometric functions of Gauss, Appell, Kummer
were known [28], results on investigations of elliptic equations with one or two singular coeffi-
cients were successful. In the paper [4] when finding and studying the fundamental solutions of
equation (1) for m = 3, an important role was played the decomposition formula of Hasanov and
Srivastava [29,30], however, the recurrence of this formula did not allow further advancement in
the direction of increasing the number of singular coefficients.

In the present paper we construct all fundamental solutions for equation (1) in an explicit form
and we prove a new formula for the expansion of several Lauricella hypergeometric functions by
simple Gauss, with which it is possible to reveal that the found hypergeometric functions have
a singularity of order 1/r™~2 at r — 0. In the present paper, we assume that m > 2 and
0<n<m.

The plan of this paper is as follows. In Section 1 we briefly give some preliminary information,
which will be used later. We transform the recurrence decomposition formula of Hasanov and
Srivastava [29] to the form convenient for further research. Also some constructive formulas for
the operator L are given. In Section 2 we describe the method of finding fundamental solutions
for the considered equation and in Section 3 we show what order of singularity the found solutions
will have.

1. Preliminaries

Below we give definition of Pochhammer symbol and some formulas for Gauss hypergeomet-
ric functions of one and two variables, Lauricella hypergeometric functions of three and more
variables, which will be used in the next section.

A symbol (x), denotes the general Pochhammer symbol or the shified factorial, since (1), = 1!
(le NU{0}; N:={1,2,3,...}), which is defined (for x,v € C), in terms of the familiar Gamma
function, by

(k) = F(IiJrl/):{ 1 (v =0; k € C\{0}),
v k(k+1)...(k+1—-1) (w=1l€eN;re0),

it being understood conventionally that (0), := 1 and assumed tacitly that the I-quotient exists.
A function

F[ o0 x} =3 @iy o

=0 k'(c)k

is known as the Gauss hypergeometric function and an equality

a,b; | T(c)l'(c—a—0b) . L ole—a—
F[ , 1]_F(c—a)r(c—b)’ £0,—1,-2,...,Re( b) > 0 (2)
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holds [31, Ch.I1,2.1(14)]. Moreover, the following autotransformer formula [31, Ch.IT,2.1(22)]

F[a"b; 4:(1—@—@[0—@”’; x} (3)

c; z—1

is valid.
The hypergeometric function of n variables has a form [28, Ch.VII] (see also [32, Ch.1,1.4(1)])

o0
F(n) a, bl, ey bn; T1,. .. T Z (a)m1+~~+mn (bl)ml ce (bn)mn ™ xmn’ (4)
A c Cn; my!...myl(er) (cn) ! "
1y++-9Cnj; Mo =0 1o e n\C1)mqy + -+ \Cn)m,

where |x1|+ -+ |z,] <1, n € N.

For a given multi