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Abstract. We study those nonlinear partial differential equations which appear as Euler-Lagrange
equations of variational problems. On defining weak boundary values of solutions to such equations we
initiate the theory of Lagrangian boundary value problems in spaces of appropriate smoothness. We also
analyse if the concept of mapping degree of current importance applies to Lagrangian problems.
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Introduction

Distribution theory steams from weak solutions of linear differential equations and it is hardly
efficient for nonlinear equations. The use of distributions is actually difficult in linear boundary
value problems, for no canonical duality theory is available for manifolds with boundary X . The
scale of Sobolev-Slobodetskij spaces W s,p(X ) makes it possible to consider the restrictions of
functions to the boundary surface, however, these latter are defined only if s − 1/p > 0. To go
beyond this range, one applies integral equalities obtained by manipulation of the Green formula.
The study of general boundary value problems for differential equations in Sobolev-Slobodetskij
spaces of negative smoothness goes back at least as far as [22].

For a boundary value problem, the Green formula is determined uniquely up to the counter-
part of boundary data within the entire Cauchy data, see [26, 9.2.2]. This allows one to avoid
much ambiguity in the choice of formal adjoint boundary value problem and to set up duality.
As a result one is in a position to introduce weak solutions of the boundary value problem, see
for instance Section 9.3.1 ibid. and elsewhere. The Cauchy data of a weak solution to an overde-
termined elliptic system in the interior of X are proved to possess weak boundary values at ∂X
if and only if the solution is of finite order of growth near the boundary surface, see [26, 9.3.6].

When considering a boundary value problem for a nonlinear equation, one has no good guide
to an appropriate concept of weak solution. Perhaps one has to pass to the linearised problem.
In any case the definition of a weak solution is implicitly contained in the variational setting
of the boundary value problem. If the problem itself fails to be Lagrangian, it can be relaxed
to variational one. It is just the task of experienced researcher to recover the concept of weak
solution in the variational formulation, see [2].

∗ammar.alsaedy@ymail.com
†tarkhanov@math.uni-potsdam.de

c⃝ Siberian Federal University. All rights reserved
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As but one tool of this work we introduce the concept of weak boundary values for solutions
of nonlinear differential equations. We restrict the discussion to those equations which appear as
Euler-Lagrange equations for a variational problem of minimasing the discrepancy Au− f in the
problem of finding a function u in X , such that Au = f(x, u) in X and Bu = u0 at ∂X . Here,
A is an overdetermined elliptic operator of order one and B is a matrix of functions at ∂X . The
direct approach of variational calculus of [17] applies well to search for a solution in the Sobolev
spaces W 1,p(X ) with non-extreme 1 < p < ∞. However, the Euler-Lagrange equations include
the boundary condition B∗|Au− f |p−2(Au− f) = 0 at ∂X . The function |Au− f |p−2(Au− f) is
of class Lp

′
(X ), where 1/p+ 1/p′ = 1, and hence B∗|Au− f |p−2(Au− f) has no clear meaning

at the boundary. We give this expression a weak meaning using the variational setting and an
appropriate Green formula.

On specifying the spaces of weak boundary values one is in a position to consider the nonlinear
mapping of Banach spaces or, more generally, Banach manifolds corresponding to the Lagrangian
problem. The tangent mapping is a morphism of tangent (Banach) bundles and it is given by the
linearisation of the nonlinear mapping at the points of X . The nonlinear mapping is called elliptic
if its tangent mapping is elliptic at each tangent space, cf. [20]. In this sense the Lagrangian
boundary value problems are never elliptic but for p = 2, for they degenerate at each boundary
point where Au = f(x, u). By a Hodge theory for a nonlinear mapping is meant the Hodge
theory for the corresponding morphism of tangent (Banach) bundles. This bundle is Hilbert, if
p = 2, in which case the problem arises if the Hodge decompositions depend continuously on
the point of the underlying Hilbert manifold. To treat this problem of differential geometry on
Hilbert manifold we exploit the results of [27].

Any Lagrangian boundary value problem proves to be a quasilinear Fredholm mapping. To
the best of our knowledge, this class of nonlinear mappings was first introduced in [24]. The
quasilinear Fredholm mappings admit a reasonable degree theory elaborated in [9]. As but
one consequence of our results we show that the degree theory of [9] applies to the Lagrangian
boundary value problems.

1. Lagrangian boundary value problems

By Lagrangian boundary value problems are meant those arising as the Euler-Lagrange equa-
tions for functionals minimising discrepancy in overdetermined problems.

Let X be a bounded closed domain with C∞ boundary in Rn. Consider the boundary value
problem {

Au = f(x, u) in X ,
Bu = u0 at ∂X , (1.1)

where A is a (possibly, overdetermined) elliptic linear partial differential operator of the first
order near X , f a function of its numerical variables (x, u) ∈ X × Rℓ with values in Rm, and B
an (ℓ′ × ℓ) -matrix of smooth functions on the boundary of X whose rank is ℓ′ for all x ∈ ∂X .

The operator A is given by an (m× ℓ) -matrix of scalar differential operators in a neighbour-
hood U of X , and the principal symbol of A has rank ℓ for all (x, ξ) ∈ U × (Rn \ {0}). Our
standing requirement on f is that u 7→ f(x, u) be a continuous mapping of W 1,p(X ,Rℓ) into
Lp(X ,Rm).

Remark 1.1. Classical elliptic boundary value problems correspond to the case m = ℓ and
ℓ′ = ℓ/2.

The most conventional Banach space setting of this problem is W 1,p, where 1 < p < ∞.
Hence, we pick u0 in W 1−1/p,p(∂X ,Rℓ′) and look for a u ∈W 1,p(X ,Rℓ) satisfying (1.1).

– 6 –
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If the operator

A =
( A
B

)
: W 1,p(X ,Rℓ) → Lp(X ,Rm)×W 1−1/p,p(∂X ,Rℓ

′
)

has a left parametrix P = (G,P ), then on applying P to (1.1) from the left we obtain

u = Gf(·, u) + Pu0 + (PA− I)u (1.2)

in X for all u ∈W 1,p(X ,Rℓ) satisfying (1.1). (Note that A possesses a left parametrix if and only
if its null space is finite dimensional and its range is complemented, see [18]. In this case PA− I
can be thought of as projection onto the null space.) The operator u 7→ G ◦ f(·, u) is known as
the Hammerstein operator. If u 7→ f(·, u) maps W 1,p(X ,Rℓ) compactly into Lp(X ,Rm), then the
Leray-Schauder theory applies to equation (1.2). However, the solutions of the latter equation
need not satisfy (1.1).

Moreover, if A is overdetermined (i.e. m > ℓ) then there is a nonzero differential operator
A1, such that A1A = 0. Then, for the equation Au = f(·, u) to be solvable, it is necessary that
A1f(·, u) = 0 in X for some function u ∈ W 1,p(X ,Rℓ). Another obstacle to the existence of
solutions of problem (1.1) is possible overdeterminacy of boundary conditions. This is the case,
e.g., if ℓ′ = ℓ, i.e. Bu represents the whole Cauchy data of u with respect to A − f(x, ·) at
the boundary surface ∂X . This gives evidence of replacing the exact equation Au = f(·, u) in
X by minimising the discrepancy Au − f(·, u) in the norm of Lp(X ,Rm). For this purpose, we
introduce the functional

I(u) =

∫
X
|Au− f(x, u)|p dx (1.3)

whose domain is the affine subspace DI of W 1,p(X ,Rℓ) consisting of all u, such that Bu = u0 at
∂X . Obviously, every solution of (1.1) minimises (1.3). The converse assertion is not true.

Write m for the infimum of I(u) over u ∈ DI . In order that u ∈ DI may satisfy I(u) = m it
is necessary that u would fulfill the so-called Euler-Lagrange equations. We now describe these.

Lemma 1.2. Let C be an ((ℓ− ℓ′)× ℓ) -matrix C of smooth functions on ∂X , such that

rank
(
B(x)
C(x)

)
= ℓ

for all x ∈ ∂X . Then there are unique matrices B∗ and C∗ of continuous functions on ∂X with
the property that∫

∂X

(
(Bu,C∗g)x − (Cu,B∗g)x

)
ds =

∫
X

(
(Au, g)x − (u,A∗g)x

)
dx (1.4)

for all u ∈W 1,p(X ,Rℓ) and g ∈W 1,p′(X ,Rm), where ds is the surface measure on the boundary.

As usual, A∗ stands for the formal adjoint of the differential operator A in a neighbourhood
of X .

Proof. For an explicit construction of matrices B∗ and C∗ we refer the reader to [2].

Formula (1.4) is usually referred to as the Green formula. On arguing as in Section 3 of [2]
one sees that if functional (1.3) has a local extremum at a function u ∈ DI then∫

X

(
(A− f ′u)v, |Au− f |p−2(Au− f)

)
x
dx = 0 (1.5)

– 7 –
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for all v ∈ W 1,p(X ,Rℓ) such that Bv = 0 at ∂X . Here, f ′u is the Jacobi matrix of f(x, u) with
respect to u = (u1, . . . , uℓ), i.e., the (m× ℓ) -matrix whose entries are f ′i,uj

.
If g = |Au− f |p−2(Au− f) is of class W 1,p′(X ,Rm), then we can apply formula (1.4) on the

left-hand side and move A− f ′u from v to |Au− f |p−2(Au− f), thus obtaining∫
∂X

(Cv,B∗g)x ds+

∫
X
(v, (A− f ′u)

∗g)x dx = 0

for all v ∈ W 1,p(X ,Rℓ) satisfying Bv = 0 at the boundary. We first choose v to be arbitrary
with compact support in the interior of X and so we conclude by the main lemma of variational
calculus that (A − f ′u)

∗g vanishes almost everywhere in X . Hence, the boundary integral is
equal to zero for all v ∈ W 1,p(X ,Rℓ), such that Bv = 0 on ∂X . It is a simple matter to see
that the boundary integral actually vanishes for all functions v ∈ W 1,p(X ,Rℓ). Hence it follows
immediately that B∗g = 0 on ∂X .

Lemma 1.3. For the variational problem I(u) → min over u ∈ DI , Euler-Lagrange’s equations
just amount to  (A− f ′u)

∗(|Au− f |p−2(Au− f)
)

= 0 in X ,
Bu = u0 at ∂X ,

B∗(|Au− f |p−2(Au− f)
)

= 0 at ∂X .
(1.6)

Proof. If u ∈ DI and |Au − f |p−2(Au − f) is of class W 1,p′(X ,Rm) then this is precisely what
has been proved above. For general u ∈ DI equalities (1.6) are understood in the weak sense
suggested by (1.5). To wit, the differential equation is satisfied in the sense of distributions in the
interior of X . The interpretation of the second boundary condition in (1.6) is more sophisticated.
This will be discussed in detail in Section 2.

The differential equation of (1.6) represents a system of ℓ second order partial differential
equations for ℓ unknown functions. The number of boundary conditions just amounts to ℓ.

Example 1.4. The variational problem of minimising the functional

I(u) :=

∫
X

(
|du|p + |d∗u|p

)
dx

over the set of all i-forms u of class W 1,p(X ) with normal part ν(u) = u0 at the boundary leads
to the Lp -setting of the Neumann problem for the de Rham complex in X . To wit, d∗(|du|p−2du) + d(|d∗u|p−2d∗u) = 0 in X ,

ν(u) = u0 at ∂X ,
ν(|du|p−2du) = 0 at ∂X ,

cf. [16].

2. Weak boundary values

In (1.6), u is an element ofW 1,p(X ,Rℓ), and so g = |Au−f |p−2(Au−f) belongs to Lp
′
(X ,Rm),

where p′ = p/(p− 1) is the dual exponent for p. Hence, the differential equation (A− f ′u)
∗g = 0

is readily interpreted in the sense of distributions in the interior of X , just as it comes from
(1.5) into consideration. One encounters difficulties in interpreting the equality B∗g = 0 at the
boundary surface ∂X , for g is defined almost everywhere in X . To give a meaning to B∗g at ∂X ,

– 8 –
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we strongly invoke the fact that g satisfies (A− f ′u)
∗g = 0 weakly in the interior of X . Namely,

if g ∈W 1,p′(X ,Rm), then∫
∂X

(
(Bv,C∗g)x − (Cv,B∗g)x

)
ds =

∫
X

(
((A− f ′u)v, g)x − (v, (A− f ′u)

∗g)x
)
dx (2.1)

holds for all v ∈W 1,p(X ,Rℓ), which is due to Green formula (1.4). Since (A− f ′u)
∗g vanishes in

the interior of X , we may neglect the second term on the right-hand side and use (2.1) to specify
both C∗g and B∗g at the boundary in the general case g ∈ Lp

′
(X ,Rm).

Definition 2.1. Let g ∈ Lp
′
(X ,Rm) satisfy (A − f ′u)

∗g = 0 weakly in the interior of X . Then
we define ∫

∂X

(
(v0, C

∗g)x − (v1, B
∗g)x

)
ds =

∫
X

(
(A− f ′u)v, g

)
x
dx

for all v0 ∈W 1/p′,p(∂X ,Rℓ′) and v1 ∈W 1/p′,p(∂X ,Rℓ−ℓ′), where v ∈W 1,p(X ,Rℓ) is an arbitrary
function satisfying Bv = v0 and Cv = v1 at ∂X .

Note that the equalities Bv = v0 and Cv = v1 at the boundary surface just amount to

v =
( B
C

)−1( v0
v1

)
at ∂X , where the right-hand side belongs to W 1/p′,p(∂X ,Rℓ). Hence, the existence of a function
v ∈W 1,p(X ,Rℓ) with the property that Bv = v0 and Cv = v1 at ∂X and

∥v∥W 1,p(X ,Rℓ) 6 C
(
∥v0∥W 1/p′,p(∂X ,Rℓ′ ) + ∥v1∥W 1/p′,p(∂X ,Rℓ−ℓ′ )

)
(2.2)

follows from the Sobolev trace theorem.

Theorem 2.2. Definition 2.1 is correct and specifies the boundary values C∗g and B∗g in the
dual spaces W−1/p′,p′(∂X ,Rℓ′) and W−1/p′,p′(∂X ,Rℓ−ℓ′), respectively.

Proof. Suppose v and w are two functions in W 1,p(X ,Rℓ) satisfying Bv = Bw and Cv = Cw at
∂X . Set z = v − w. Then z ∈ W 1,p(X ,Rℓ) satisfies Bz = 0 and Cz = 0 at the boundary. By
the spectral synthesis theorem for Sobolev spaces, there is a sequence

zν ∈ C∞
comp(

o

X ,Rℓ)

which approximates z in the W 1,p(X ,Rℓ) -norm. Hence it follows that∫
X

(
(A− f ′u)v, g

)
x
dx =

∫
X

(
(A− f ′u)w, g

)
x
dx+

∫
X

(
(A− f ′u)z, g

)
x
dx =

=

∫
X

(
(A− f ′u)w, g

)
x
dx+ lim

ν→∞

∫
X

(
(A− f ′u)zν , g

)
x
dx,

where the last integral on the right-hand side vanishes, for g satisfies (A − f ′u)
∗g = 0 weakly in

the interior of X . We have thus proved that Definition 2.1 is correct, i.e. it does not depend on
the choice of v. Finally, combining Definition 2.1 and estimate (2.2) yields∣∣∣∫

∂X
((v0, C

∗g)x − (v1, B
∗g)x) ds

∣∣∣ 6 ∥(A− f ′u)v∥Lp(X ,Rm)∥g∥Lp′ (X ,Rm)

6 C (∥v0∥W 1/p′,p(∂X ,Rℓ′ )+∥v1∥W 1/p′,p(∂X ,Rℓ−ℓ′ ))

for all v0 ∈ W 1/p′,p(∂X ,Rℓ′) and v1 ∈ W 1/p′,p(∂X ,Rℓ−ℓ′), the constant C being independent of
v0 and v1. Hence it follows that C∗g ∈ W−1/p′,p′(∂X ,Rℓ′) and B∗g ∈ W−1/p′,p′(∂X ,Rℓ−ℓ′), as
desired.
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Thus, for each u ∈ W 1,p(X ,Rℓ) satisfying (A−f ′u)∗(|Au−f |p−2(Au−f)) = 0 weakly in the
interior of X , both C∗(|Au−f |p−2(Au−f)) and B∗(|Au−f |p−2(Au−f)) have weak values at the
boundary surface ∂X which belong to W−1/p′,p′(∂X ,Rℓ′) and W−1/p′,p′(∂X ,Rℓ−ℓ′), respectively.
This completes, in particular, the result of [23].

For a thorough treatment of weak boundary values of solutions to linear overdetermined
elliptic equations we refer the reader to [26, 9.4].

3. Variational boundary value problems after Browder
By the very nature, the function (A−f ′u)∗(|Au−f |p−2(Au−f)) appears as distribution in the

interior of X , i.e. as element of ( o
W 1,p(X ,Rℓ)

)′
.

Since
o

W 1,p(X ,Rℓ) is not dense in W 1,p(X ,Rℓ), the continuous extension of this functional
to all of W 1,p(X ,Rℓ) is not uniquely determined. In fact, any continuous extension of
(A−f ′u)∗(|Au−f |p−2(Au−f)) to a closed subspace V of W 1,p(X ,Rℓ) containing C∞ functions
of compact support in the interior of X with values in Rℓ defines a variational boundary value
problem in the sense of [7]. We confine the discussion to (1.5).

Corresponding to the representation (1.5) for the critical points of functional (1.3), we have
the nonlinear Dirichlet form a(u, v) defined for all u and v in W 1,p(X ,Rℓ) by

a(u, v) =
(
|Au− f |p−2(Au− f), (A− f ′u)v

)
,

where (g, h) stands for the natural sesquilinear pairing between g in Lp
′
(X ,Rm) and h in

Lp(X ,Rm). By assumption, a(u, v) is well defined for all u and v in W 1,p(X ,Rℓ) and

|a(u, v)| 6 c
(
∥u∥W 1,p(X ,Rℓ)

)
∥v∥W 1,p(X ,Rℓ)

by Hölder’s inequality, where c(r) is a continuous function of the real variable r depending on A
and f .

Let V be the closed subspace of W 1,p(X ,Rℓ) that consists of all v satisfying Bv = 0 at the
boundary ∂X , and V ∗ be the conjugate space of V , i.e. the space of all bounded conjugate linear
functionals on V . For w ∈ V ∗ and v ∈ V , the value of w at v is denoted by (w, v). In particular,
if w ∈ Lp

′
(X ,Rℓ), the bounded conjugate linear functional (w, v) on V yields an element of V ∗

which we may again denote by w.
We are now in a position to define the variational boundary problem corresponding to (a, V ).

Denote by F the mapping V → V ∗ given by (Fu, v) := a(u, v) for all v ∈ V . In particular, we
get

Fu = (A− f ′u)
∗ (|Au− f |p−2(Au− f)

)
(3.1)

in the sense of distributions in the interior of X . Given w ∈ V ∗, the variational boundary
problem corresponding to (a, V ) consists in finding u ∈ V such that Fu = w. Hence it follows
that Fu = w holds weakly in the interior of X and Bu = 0 at the boundary. As usual, in order
to include also inhomogeneous conditions Bu = u0 at ∂X , one solves these first in functions
u ∈W 1,p(X ,Rℓ) which need not satisfy Fu = w.

If u ∈ V satisfies Fu = w with w ∈ V ∗, then w is a relevant extension of the distribution
(A−f ′u)∗(|Au−f |p−2(Au−f)) in the interior of X to a continuous linear functional on V . Then
Definition 2.1 for the weak value of B∗g at ∂X transforms to

−
∫
∂X

(B∗g, v1)x ds =

∫
X

(
g, (A− f ′u)v

)
x
dx− (w, v) =

= a(u, v)− (w, v)
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for all v1 ∈W 1/p′,p(∂X ,Rℓ−ℓ′), where v ∈W 1,p(X ,Rℓ) is an arbitrary function satisfying Bv = 0
and Cv = v1 at ∂X . Since a(u, v) = (w, v) for all v ∈ V , it follows that B∗g = 0 at the boundary.
Thus, the study of Euler-Lagrange’s equations (1.6) can be carried out within the framework of
mapping properties of F : V → V ∗.

To formulate the hypothesis of our existence theorem, we need an additional concept. Namely,
by an admissible lower order operator is meant u→ ∆f(x, u), where ∆f is a continuous function
of its numerical arguments satisfying an inequality of the form

|∆f(x, u)| 6 c
(
∥u∥W 1,p(X ,Rℓ)

)(
|u(x)|(p−1)+Q + 1

)
where 0 6 Q <

p2

n− p
, if p 6 n, and Q = 0, if p > n.

Theorem 3.1. Suppose that there exists an admissible lower order operator ∆f and a continuous
function c(r) of the real variable r with c(r) → +∞ as r → ∞, such that

1) If ∆a(u, v) := (∆f(x, u), v) is the nonlinear Dirichlet form corresponding to ∆f , then

ℜ
(
a(u, u− v)− a(v, u− v) +∆a(u, u− v)−∆a(v, u− v)

)
> 0

for all u and v of V .
2) For all u in V ,

ℜa(u, u) > c
(
∥u∥W 1,p(X ,Rℓ)

)
∥u∥W 1,p(X ,Rℓ).

Then, for every w in V ∗, the variational boundary problem for Fu = w with null V-boundary
conditions has at least one solution u.

Proof. The proof is along the lines of Theorem 1 of [7].

Note that in the case f ≡ 0 and ∆f = 0 the condition 1) is fulfilled. Indeed, we get

ℜ
(
a(u, u− v)− a(v, u− v)

)
=

=

∫
X

(
|Au|p − |Au|p−2ℜ(Au,Av)x − |Av|p−2ℜ(Av,Au)x + |Av|p

)
dx >

>
∫
X

(
|Au|p − |Au|p−1|Av| − |Av|p−1|Au|+ |Av|p

)
dx >

>
∫
X

(
|Au|p−1 − |Av|p−1

)(
|Au| − |Av|

)
dx

which is obviously nonnegative for all u, v ∈ V . Furthermore, the condition 2) reduces to

∥Au∥pLp(X ,Rm) > c
(
∥u∥W 1,p(X ,Rℓ)

)
∥u∥W 1,p(X ,Rℓ)

for all u ∈ V .

4. Hodge theory for nonlinear mappings

Let V and W be Banach manifolds and F a differentiable mapping of V to W, i.e. we have
a short complex

0 → V F→ W → 0. (4.1)
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Given an arbitrary point v ∈ V, the tangent mapping F ′(v) : TvV → TwW is a bounded linear
mapping of tangent spaces to V and W at v and w = F (v), respectively. These mappings are
gathered together to form the Banach bundle morphism

0 → TV F ′

→ TW → 0,

see [27].

Definition 4.1. A differentiable mapping F : V → W is said to be Fredholm if the linear
mappings F ′(v) : TvV → TF (w)W are Fredholm for all v ∈ V.

By the Hodge theory for the nonlinear mapping F we mean the Hodge theory for the tangent
bundle morphism. According to the properties of Fredholm mappings, there are bounded linear
projections P (v) and Q(v) in TvV and TwW, respectively, such that

TvV = N(F ′(v)) ⊕ R(I − P (v)),
TwW = R(Q(v)) ⊕ R(F ′(v)),

(4.2)

P (v) being a projection onto the finite-dimensional null-space of F ′(v) and Q(v) being a projec-
tion onto a finite-dimensional direct complement of the range of F ′(v) in TwW.

Using the inverse mapping theorem of Banach we conclude that the restriction of F ′(v) to
R(I − P (v)) is an isomorphism of this Banach space onto R(F ′(v)). The mapping

Π (v) =
(
F ′(v) �R(I−P (v))

)−1(
I −Q(v)

)
is therefore a bounded linear operator from TwW to TvV satisfying

Π (v)F ′(v) = I − P (v),
F ′(v)Π (v) = I −Q(v),

i.e. Π (v) is a parametrix of F ′(v) for each v ∈ V. Note that if V is contractible then the
parametrix Π (v) can be chosen to depend continuously on the point v ∈ V, see [9, 27].

If V and W are Hilbert manifolds, there is a canonical way for the choice of P (v) and Q(v).
Namely, P (v) is the orthogonal projection ontoN(F ′(v)) and I−Q(v) is the orthogonal projection
onto R(F ′(v)). By the lemma on the annihilator of the kernel of operator,

R(I − P (v)) = R(F ′(v)∗),
R(Q(v)) = N(F ′(v)∗),

where F ′(v)∗ is the Hilbert space adjoint for F ′(v) : TvV → TwW. We have thus proved

Theorem 4.2. If F : V → W is a Fredholm mapping of Hilbert manifolds, then the tangent
bundles of V and W split as

TV = N(F ′) ⊕ R(F ′∗),
TW = N(F ′∗) ⊕ R(F ′).

These decompositions are scarcely useful to characterise the range of the global nonlinear
mapping (4.1).

Example 4.3. Let F be a differentiable selfmapping of Rn, such that detF ′ ≡ 1 in all of Rn.
Then the decompositions of Theorem 4.2 reduce to TRn = R(F ′∗) and TRn = R(F ′), however,
F need not be surjective in general. This is related to Jacobian problems, cf. [15].
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5. Quasilinear Fredholm mappings
Let V and W be real Banach spaces. Throughout we assume that V is compactly embedded

into another Banach space V −. When we refer to topological properties of a set U ⊂ V , we will
mean the topology induced by V , unless we explicitly refer to the topology induced by V −.

A mapping F : V →W is called quasilinear Fredholm if it can be written in the form

F (v) = L(v)v + C(v) (5.1)

for v ∈ V , where L is the restriction to V of a continuous mapping L− of V − into the subset of
L(V,W ) consisting of Fredholm operators of index zero, and C : V →W is compact. Of course,
quasilinear Fredholm mappings need not be differentiable.

Quasilinear Fredholm mappings were introduced in [24] in the study of the nonlinear Riemann-
Hilbert problem. Another typical situation in which quasilinear Fredholm mappings arise quite
naturally is the study of the Dirichlet problem for quasilinear elliptic equations. By [3], fully
nonlinear elliptic equations with general nonlinear Shapiro-Lopatinskii boundary conditions in-
duce quasilinear Fredholm mappings between appropriate function spaces, provided that the
"coefficients" are sufficiently smooth.

If F : V →W is any C1 mapping, we may write F as F (v) = L(v)v+ F (0) for v ∈ V , where
L(v) ∈ L(V,W ) is defined by

L(v) =

∫ 1

0

F ′(tv)dt,

which is a curve integral in the space of bounded linear operators from V to W . Thus, the
algebraic representation of (5.1) is not very restrictive. The crucial point is that each L(v) is a
Fredholm operator of index zero and that the family L(v) is defined and depends continuously on
v for v belonging to a larger space V − in which V is compactly embedded. The latter property
implies that v 7→ L(v) factors through a compact embedding V ↪→ V −, and so it is a compact
mapping from V to L(V,W ).

We now establish several general properties of quasilinear Fredholm mappings, following [9].
The mapping L is usually referred to as a principal part of f . Note that if L : V → L(V,W )
is continuous at v0 ∈ V then the mapping of V to W given by v 7→ L(v)(v − v0) is Fréchet
differentiable at v0 and its Fréchet derivative at v0 just amounts to L(v0).

Lemma 5.1. Two principal parts of a quasilinear Fredholm mapping F : V → W differ by
a family of compact operators.

Proof. Suppose that F : V → W is represented by F (v) = Lj(v)v + Cj(v), for j = 1, 2. Fix
v0 ∈ V and set Gj(v) = Lj(v)(v − v0) for v ∈ V . As mentioned, we get G′

j(v0) = Lj(v0), for
j = 1, 2. From the equality of both representations it follows that the difference

G1(v)−G2(v) = −
(
C1(v)− C2(v)

)
−
(
L1(v)− L2(v)

)
v0

is a compact mapping of V to W . But the Fréchet derivative of a compact mapping is compact,
so that G′

1(v0)−G′
2(v0) = L1(v0)− L2(v0) is compact.

Lemma 5.2. Let F : V →W be quasilinear Fredholm and be represented by F (v) = L(v)v+C(v)
for v ∈ V . If F : V →W is Fréchet differentiable at v0 ∈ V , then F ′(v0)− L(v0) is compact.

Proof. Write
R(v) = F (v)− L(v)(v − v0)

for v ∈ V . The differentiability of F at v0 implies that R′(v0) = F ′(v0)−L(v0). Since R : V →W
is compact, it follows that F ′(v0)− L(v0) is compact, too, as desired.

– 13 –



Ammar Alsaedy, Nikolai Tarkhanov A Degree Theory for Lagrangian Boundary Value Problems . . .

So far we have not used the property of L : V → L(V,W ) to take on its values in Fredholm
operators of index zero. Our next lemma makes use of this property. The Fredholm operators
of index zero possess parametrices which are invertible mappings of W onto V . We confine
ourselves to formulation of this result, referring the reader to [27] and [9] for a proof. Recall that
an operator A ∈ L(V,W ) is Fredholm of index zero if and only if there exists P ∈ GL(W,V )
with PA − I ∈ K(V ). Let A(λ) be a family of Fredholm operators of index zero acting from
V to W and continuously depending on a parameter λ ∈ Λ, Λ being a topological space. By
a strong parametrix for A(λ) is meant any continuous family P : Λ → GL(W,V ) satisfying
P (λ)A(λ) − I ∈ K(V ) for all λ ∈ Λ. In general, a family A(λ) has no strong parametrix.
For instance, when Λ is the unit circle in the plane, the non-existence of strong parametrices
for certain continuous families A(λ) of Fredholm operators of index zero just amounts to the
nontriviality of the Poincaré group of the Fredholm operators of index zero in L(V,W ). However,
if Λ is a contractible paracompact Hausdorff space, then any continuous family A(λ) of λ ∈ Λ
with values in Fredholm operators of index zero in L(V,W ) possesses a strong parametrix, see
Theorem 2.1 of [9] which is referred to as a fundamental result.

Lemma 5.3. Suppose F : V → W is a quasilinear Fredholm mapping represented by
F (v) = L(v)v + C(v) for v ∈ V . Let Π− : V − → GL(W,V ) be a continuous mapping with

the property that Π−(v)L−(v)− I ∈ K(V ) for all v ∈ V −. Then Π−(v)F (v) = v −K(v) holds
valid for all v ∈ V , where K : V → V is a compact mapping.

Proof. We get Π−(v)L−(v) = I − R−(v) for v ∈ V −, where R− : V − → K(V ) is continuous.
Hence,

Π−(v)F (v) = Π−(v) (L(v)v + C(v)) =

=
(
I −R−(v)

)
v +Π−(v)C(v) =

= v −K(v)

for all v ∈ V , where K(v) = R−(v)v−Π−(v)C(v). Since V is compactly embedded into V − and
both

R− : V − → L(V,W ),
Π− : V − → L(V,W )

are continuous, the compactness of K : V → V follows from the compactness of C : V →W and
of each R−(v) for v ∈ V −.

Theorem 5.4. Let F : V →W be a quasilinear Fredholm mapping. Then F can be represented
as

F (v) = T−(v) (v −K(v)) (5.2)

for v ∈ V , where T− : V − → GL(V,W ) is a continuous family of isomorphisms and K is a
compact mapping of V .

Proof. Write F in the form F (v) = L(v)v + C(v) for v ∈ V . On applying Theorem 2.1 of [9] we
choose Π− : V −→ GL(W,V ) to be any strong parametrix for the family L−. Set

T−(v) :=
(
Π−(v)

)−1

for v ∈ V − and use Lemma 5.3 to get (5.2), as desired.

If A ∈ L(V,W ) is a Fredholm operator of index zero, then the restriction of A to any bounded
closed subset of V is proper. The following lemma is a generalisation of this assertion to nonlinear
mappings, which is of independent interest as a quite general criterion for establishing properness.
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Lemma 5.5. Assume that F : V → W is a quasilinear Fredholm mapping. If Σ ⊂ V is closed
and bounded, then F : Σ →W is proper.

Proof. Let F : V → W be represented by (5.1). Then the properness of F : Σ → W follows
from the compactness of the embedding of V into V −, the compactness of C : V → W and the
continuity of L− : V − → L(V,W ), together with the properness of L−(v) : Σ → W for each
v ∈ V −.

We now turn to the boundary value problem composed in Lemma 1.3. The advantage of
using quasilinear Fredholm mappings lies in the fact that they require no linearisation of the
problem, which may be cumbersome. To illustrate the results explicitly, we restrict our attention
to the case p = 2, for the theory for p ̸= 2 does not fit immediately the framework of quasilinear
Fredholm operators. If p = 2 then (1.6) transforms to

(A− f ′u)
∗(Au− f) = 0 in

◦
X ,

Bu = u0 at ∂X ,
B∗(A− f) = 0 at ∂X ,

(5.3)

cf. [2]. The differential equation of (5.3) is understood in the sense of distributions in the
interior of X . While the direct methods of variational calculus apply to look for a solution
u ∈ H1(X ,Rℓ), direct constructions along more classical lines deal with solutions in H2+s(X ,Rℓ),
where s = 0, 1, . . .. Under obvious assumption on f , the problem corresponds to

F : Hs+2(X ,Rℓ) →

Hs(X ,Rℓ)
⊕

Hs+3/2(∂X ,Rℓ′)
⊕

Hs+1/2(∂X ,Rℓ−ℓ′)

given by F (u) = L(u)u+ C(u), where

L(v)u =

 A∗Au
Bu
B∗Au

 , C(u) =

 −A∗f − (f ′u)
∗(Au− f)

0
−B∗f


for v ∈ H1(X ,Rℓ).

Denote by Hs+2
B,B∗A(X ,Rℓ) the subspace of Hs+2(X ,Rℓ) that consists of all functions

u ∈ Hs+2(X ,Rℓ) satisfying Bu = 0 and B∗(Au) = 0 at ∂X . Applying Theorem 5 of [1] we con-
clude that the boundary value problem L(v) is formally selfadjoint relative to the Green formula
for the Laplacian ∆ := A∗A. Hence it follows that the operator ∆ : Hs+2

B,B∗A(X ,Rℓ) → Hs(X ,Rℓ)
has index zero. We may select a compact operator K : Hs+2

B,B∗A(X ,Rℓ) → Hs(X ,Rℓ) such that
∆+K : Hs+2

B,B∗A(X ,Rℓ) → Hs(X ,Rℓ) is a bijection. The surjectivity of the boundary operators
{B,B∗A} then implies that the perturbation of L(v) by {KP, 0, 0} is bijective, where P is the
projection of Hs+2(X ,Rℓ) onto the kernel of {B,B∗A}. Since the Fredholm index is invariant
under compact perturbation, we deduce that L(v) is Fredholm of index zero, cf. Lemma 10.11
of [9]. Hence, F is a quasilinear Fredholm mapping.

6. Mapping degree of Lagrangian problems
In [9], an additive integer-valued degree theory for quasilinear Fredholm mappings is con-

structed. The theory is based upon a modification of the well-known techniques of [14] for
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formulating the solutions of the Dirichlet problem for a quasilinear second order elliptic equation
as the zeroes of a compact perturbation of the identity, i.e., fixed points of a compact mapping.
Following an idea of [3], it is shown in [9] that general elliptic boundary value problems with
sufficiently smooth "coefficients", induce quasilinear Fredholm mappings both in Sobolev and
Hölder spaces.

The definition of degree in [9] turns upon first assigning a degree to each linear isomorphism
and then extending the degree to general quasilinear Fredholm mappings.

If V and W are finite dimensional of the same dimension, the choice of orientation of V and
W defines the determinant detT for all T ∈ GL(V,W ). Then ε : GL(V,W ) → {±1}, defined by
ε(T ) = sgn detT , distinguishes the two connected components of GL(V,W ). Of course, ε(T ) is
the Brower degree of T with respect to the choice of orientations.

If V = W is infinite dimensional, then the group of compact perturbations of the identity
in GL(V, V ) also has two components, which are distinguished by the function ε(T ) = (−1)N

whereN is the number of the negative eigenvalues of T counted with their algebraic multiplicities.
Obviously, ε(T ) just amounts to the Leray-Schauder degree of T .

For general spaces V and W the “group” GL(V,W ) may be connected. If we divide GL(V,W )
into equivalence classes under the Calkin equivalence relation, to wit T ∼ S if T − S is com-
pact, then each equivalence class has two connected components. In fact, if T − S = K then
I − T−1S = T−1K, and so T−1S is a compact perturbation of the identity. The Leray-Schauder
degree of T−1S distinguishes two connected components of the equivalence class indeed. It is
reasonable to define the degree so that it would distinguish the components of each Calkin equiv-
alence class. If T and S in GL(V,W ) are equivalent, then they lie in the same component of
their equivalence class if and only if the Leray-Schauder degree of T−1S is equal to 1. Accord-
ingly, [9] defines a function ε : GL(V,W ) → {±1} to be an orientation provided that ε(T )ε(S)
just amounts to the Leray-Schauder degree of T−1S, if T, S ∈ GL(V,W ) are equivalent. An
orientation of GL(V, V ) is always required to assign 1 to the identity.

Once an orientation ε is chosen, the degree of F on an open set U ⊂ V is defined by

deg(F,U) = ε(T−(0)) deg(I −K,U, 0), (6.1)

where T− and K are as in (5.2) and deg(I −K,U, 0) is the Leray-Schauder degree of I −K in U
with respect to the value 0. The right-hand side of (6.1) is independent of representation (5.2).

The degree defined by (6.1) has the usual additivity, existence and Borsuk-Ulam properties,
see [9]. If V =W and GL(V, V ) is connected, then any integer-valued degree theory on a class of
mappings which includes all linear isomorphisms and which coincides with the Leray-Schauder
degree on the class of compact perturbation of the identity can neither be homotopy invariant
nor can the classical regular value formula hold.

In [10] a rather different construction of mapping degree is given which uses a stronger notion
of orientation than the one used in [9]. If F : V → W is a C2 quasilinear Fredholm map which
has 0 as a regular point, then the function o defined by o(x) = ε(F ′(x))σ(F ′ ◦ γ), where γ is
any path between 0 and the regular point x and σ(F ′ ◦ γ) the parity of the family F ′ along γ, is
an orientation of the map F in the sense of [10]. Moreover, for any admissible set U in V , the
degree of F with respect to o is

dego(F,U,w) :=
∑

x∈F−1(w)∩U

o(x)

provided that w ̸∈ F (∂U) is a regular value of F : U → W . We write it dego(F,U) for short, if
w = 0.

A major breakthrough came with the paper [11] which remedied the shortcomings of [10].
Indeed, the theory of [10] has required C2 mappings whereas C1 mappings would be more natural.
The paper [4] is inspired by the approach of [10] though the details are different. The authors
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define the orientation of a linear Fredholm operator T : V → W of index zero between Banach
spaces as the choice of either of the connected components of the set of all finite rank operators
K such that T + K is invertible. They succeed in defining the degree deg(F,U,w) whenever
F : U →W is a C1 oriented Fredholm map of index zero between Banach manifolds and f−1(w)
is compact, and this degree satisfies the expected properties including invariance under oriented
homotopies. For a further progress we refer the reader to [5, 6].

We now turn to the Euler-Lagrange equations of Lemma 1.3. In the initial setting the operator

u 7→ (A−f ′u)∗(|Au−f |p−2(Au−f))

is given the domain W 1,p(X ,Rℓ) and maps it to (
o

W 1,p(X ,Rℓ))′. Our objective is to single out
the principal part of the operator containing all second order derivatives of u. For this reason
our computations will be modulo terms which include the derivatives up to the first order of u.
Under obvious conditions on f they can be comprehended as nonlinear compact operators in the
relevant Banach spaces. We first write

Au =

n∑
j=1

Aj ∂ju+A0u,

where Aj and A0 are (m× ℓ) -matrices of smooth functions on X . On using this formula we get

(A−f ′u)∗
(
|Au−f |p−2(Au−f)

)
=

= |Au−f |p−2A∗Au−
n∑
j=1

Aj∗ (Au−f) ∂j |Au−f |p−2 (6.2)

modulo first order terms. The function Au takes on its values in Rm, and we think of Au as an
m -column with entries A1u, . . . , Amu. By the definition, each Ak is an ℓ -row of scalar partial
differential operators of the first order on X . More precisely, we obtain

Aku =
n∑
i=1

Aik ∂iu+A0
ku

for k = 1, . . . ,m, where Aik and A0
k are the k th rows of the matrices Ai and A0, respectively.

Now a trivial verification shows that

∂j |Au−f |p−2 = ∂j

( m∑
k=1

(Aku−fk)2
) p−2

2

=

=
p−2

2
|Au−f |p−4

( m∑
k=1

2 (Aku−fk) ∂j(Aku−fk)
)
=

= (p−2) |Au−f |p−4
( m∑
k=1

(Aku−fk)
n∑
i=1

Aik∂j∂iu
)

modulo nonlinear terms which include the derivatives of u of order not exceeding one. On the
other hand, we have

Aj∗ =
(
Aj1

∗ . . . Ajm
∗
)

for all j = 1, . . . , n, whence

Aj∗ (Au−f) =
m∑
l=1

Ajl
∗ (Alu−fl).
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Substituting these equalities into (6.2) yields

(A−f ′u)∗
(
|Au−f |p−2(Au−f)

)
=

= |Au−f |p−2
(
A∗Au− (p−2)

m∑
k,l=1

Alu−fl
|Au−f |

Aku−fk
|Au−f |

n∑
i,j=1

Ajl
∗Aik∂j∂iu

)
modulo nonlinear terms containing the derivatives of u of order 6 1. It is easily seen that

−
n∑

i,j=1

Ajl
∗Aik∂j∂iu = A∗

lAku

up to terms containing the derivatives of u of order at most one. This gives the final formula

(A−f ′u)∗
(
|Au−f |p−2(Au−f)

)
=

= |Au−f |p−2
(
A∗Au+ (p−2)

m∑
k,l=1

Alu−fl
|Au−f |

Aku−fk
|Au−f |

A∗
lAku

)
(6.3)

up to terms containing the derivatives of u of order 6 1. Formula (6.3) gains in interest if we
observe that

A∗A =
n∑
k=1

A∗
kAk.

Remark 6.1. For the classical p -Laplace operator in Rn equality (6.3) takes the form

∆pu = |∇u|p−2
(
−∆u− (p−2)

n∑
k,l=1

∂lu

|∇u|
∂ku

|∇u|
∂l∂ku

)
modulo terms containing the derivatives of u up to order one.

Summarising we conclude that the operator corresponding to the Euler-Lagrange equa-
tions (1.6)

F : W 1,p(X ,Rℓ) →

W−1,p′(X ,Rℓ)
⊕

W 1/p′,p(∂X ,Rℓ′)
⊕

W−1/p′,p′(∂X ,Rℓ−ℓ′)

can be written in the form F (u) = L(u)u+ C(u), where

L(v)u =


|Av−f |p−2

(
A∗Au+ (p−2)

m∑
k,l=1

Alv−fl
|Av−f |

Akv−fk
|Av−f |

A∗
lAku

)
Bu

|Av−f |p−2B∗Au


for v ∈W 1,p(X ,Rℓ), and C is a nonlinear compact operator. One sees readily that, if Av−f(·, v)
vanishes at some point of X , then the boundary value problem L(v) is degenerate.

Theorem 6.2. Let Av(x)− f(x, v) ̸= 0 for all x ∈ X . Then the differential equation of L(v) is
elliptic in X .
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Proof. The theorem just amounts to saying that the second order partial differential operator

L = A∗A+ (p−2)
m∑

k,l=1

ālak A
∗
lAk

is elliptic in X , where ak =
Akv−fk
|Av−f |

for k = 1, . . . ,m.

Fix x ∈ X and denote by σ(L) = σ2(L)(x, ξ) the principal symbol of L at a point (x, ξ) ∈ T ∗X ,
where ξ ∈ T ∗

xX is different from zero. An easy computation shows that

σ(L) =
m∑
k=1

(σ(Ak))
∗σ(Ak) + (p− 2)

( m∑
l=1

al σ(Al)
)∗( m∑

k=1

ak σ(Ak)
)
,

where σ(Ak) = σ1(Ak)(x, ξ) is the principal symbol of Ak at (x, ξ). The invertibility of σ(L) :
Rℓ → Rℓ will be established once we prove that (σ(L)u, u) > 0 for each nonzero vector u ∈ Rℓ.

We get

(σ(L)u, u) =

m∑
k=1

|σ(Ak)u|2 + (p− 2)
∣∣∣ m∑
k=1

ak σ(Ak)u
∣∣∣2,

which is obviously nonnegative if p > 2. Furthermore, if 1 < p < 2, then using the Cauchy
inequality yields

(σ(L)u, u) >
m∑
k=1

|σ(Ak)u|2 + (p− 2)

m∑
k=1

|σ(Ak)u|2 >

> 0, (6.4)

for 1 + (p− 2) > 0.
It remains to show that (σ(L)u, u) = 0 for u ∈ Rℓ implies u = 0. If p > 2, then from

(σ(L)u, u) = 0 it follows that σ(Ak)u = 0 for all k = 1, . . . ,m. Since the principal symbol
mapping of A is injective, we conclude that u = 0, as desired. The same proof remains valid for
1 < p < 2, for if σ(A)u ̸= 0, then (σ(L)u, u) > 0, which is due to (6.4).

Thus, if the system of boundary operators {B,B∗A} satisfies the Shapiro-Lopatinskii con-
dition, then L(v) is actually an elliptic boundary value problem. To get rid of degeneracy it
suffices to cancel the scalar factor |Av − f |p−2, thus obtaining a problem essentially selfadjoint
with respect to the Green formula, see Theorem 5 of [1]. Therefore, the theory of [4, 11] still
applies to Lagrangian boundary value problems.

7. Perturbed Dirichlet problem

In this section we consider the Dirichlet problem for the perturbed Laplace equation and
prove criteria which are needed to apply the degree.

Let X be a bounded closed domain with smooth boundary in Rn. Consider the problem{
∆u = f(x, u, u′) in X ,
u = 0 at ∂X , (7.1)

where f is a nonlinear C1 function of its numerical arguments (x, u, p) ∈ X × R× Rn satisfying

|f | 6 C ⟨p⟩γ , |f ′u| 6 C ⟨p⟩γ , |f ′p| 6 C, (7.2)
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with γ < 1 and C a constant independent of x, u and p. Here, we use the designation
⟨p⟩ = (1 + |p|r)1/r with r = 2 or with any other r > 0, for all the expressions are equivalent.

Choose V :=
o

H1(X ) and W := H−1(X ) with norms

∥u∥V =
(∫

X
|u′|2dx

)1/2
,

∥f∥W = sup
∥u∥V =1

∣∣∣ ∫
X
fū dx

∣∣∣.
Then, F (u) := ∆u− f(x, u, u′) maps V continuously into W and it is an elliptic operator.

Lemma 7.1. The Laplace operator ∆ : V → W is an isomorphism and C1, and so a C1

Fredholm operator of index 0.

Proof. To show that ∆ : V →W is an isomorphism, note that if u ∈ V and ∆u = 0 then u = 0,
for u is a harmonic function vanishing at the boundary. Thus, ∆ : V → W is one to one. We
now assume that f ∈ H−1(X ). The equation ∆u = f for u ∈ V is understood in the weak sense,
i.e., a(u, v) = f(v̄) for every v ∈ V , where

a(u, v) =

∫
X
(u′, v′)xdx

stands for the inner product in V . By the Riesz representation theorem there is a unique u ∈ V
satisfying a(u, v) = f(v̄) for all v ∈ V . Hence it follows that ∆ : V →W is onto. Moreover, ∆ is
a linear operator and hence C1. Thus, ∆ : V →W is a C1 isomorphism.

Lemma 7.2. Under assumptions (7.2) the Nemytskii map u 7→ f(x, u, u′) is a C1 compact
operator.

Proof. We first observe that, for a fixed u ∈ V , the function x 7→ f(x, u(x), u′(x)) belongs to
Lp(X ) with any p > 1. Consider the map

o

H1(X ) → L2(X )× L2(X )n
Nf→ L2(X ) ↪→ H−1(X ), (7.3)

where by the first arrow is meant the map u 7→ (u, u′) and by the second arrow the map
(u, u′) 7→ f(x, u, u′). The first map is linear and bounded, hence it is continuous and C1. On
the other hand, from Theorem 10.58 of [21] and the first inequality of (7.2) it follows that Nf
is a continuous map from L2(X )× L2(X )n to L2(X ). And finally the embedding of L2(X ) into
H−1(X ) is also continuous and C1. Therefore, (7.3) is a composition of continuous maps and
thus is continuous. Moreover, since the last embedding is compact, (7.3) is a compact map from
V to W . On the other hand, the remaining estimates of (7.2) together with Theorem 10.58
of [21] imply that Nf is C1, and so (7.3) is C1 as composition of C1 maps.

We conclude that the map F : V → W is of the form L + C, where Lu := ∆u is a linear
Fredholm operator of index zero and Cu := −f(x, u, u′) is a compact operator. If u is a smooth
function with compact support in the interior of the closed domain X , then

∥∆u∥W = sup
∥v∥V =1

∫
X
∆u v̄dx.

On integrating by parts we get

∥∆u∥W = sup
∥v∥V =1

∣∣∣ ∫
X
(u′, v′)xdx

∣∣∣ = sup
∥v∥V =1

∣∣(u, v)V ∣∣
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and choosing

v =
u

∥u∥V

yields ∥∆u∥W > ∥u∥V . On the other hand, ∥∆u∥W 6 ∥u∥V , which is clear from the Cauchy-
Schwarz inequality. Thus,

∥∆u∥W = ∥u∥V

which extends by continuity to all functions u ∈
o

H1(X ).
If u ∈ V is a solution of (7.1) then ∆u = f(x, u, u′), hence

∥u∥V = ∥f(x, u, u′)∥W 6
6 c ∥f(x, u, u′)∥L2(X )

with c a constant independent of u. Furthermore, applying the first estimate of (7.2) on f we
get

∥f(x, u, u′)∥2L2(X ) 6 C2

∫
X
⟨u′⟩2γ dx 6

6 C2
(∫

X
dx
)1−γ(∫

X
⟨u′⟩2dx

)γ
6

6 C
(
1 + ∥u∥2V

)γ
,

where C is a constant independent of u which may be different in diverse applications. Thus,

∥u∥V 6 C
(
1 + ∥u∥2V

)γ/2
for all u ∈ V satisfying (7.1). Since the right hand side is a sublinear function of ∥u∥V , such
an a priori estimate occurs only if ∥u∥V is bounded, i.e. ∥u∥V 6 R for some constant R > 0
independent of u.

We may now appeal to the concept of mapping degree to show the existence of a solution to
problem (7.1). The specific concept we use here is that of regular point degree clarified in [11, 7.1].

Let U be the ball of radius 2R with centre at the origin in V . By Lemmata 7.1 and 7.2, F is
a C1 map from U to W . By the above a priori estimate, F−1(0) belongs to the ball U/2, and
hence F does not vanish at ∂U . It follows that the mapping degree deg (F,U) is well defined.
To compute this degree, we consider the homotopy

Ft(u) = ∆u− t f(x, u, u′)

for t ∈ [0, 1]. Obviously, Ft is a C1 map, for each t ∈ [0, 1], and the same a priori estimate shows
that F−1

t (0) ⊂ U/2. Therefore, Ft does not vanish at ∂U for all t ∈ [0, 1]. Then, the homotopy
invariance of the mapping degree implies that deg (F,U) = deg (∆, U).

By Lemma 7.1, ∆ : V →W is a (linear) isomorphism, and so the mapping degree deg (∆, U)
is different from zero. This implies immediately that deg (F,U) ̸= 0. On using the normalisation
property of mapping degree [11] we conclude that the set F−1(0) is nonempty, i.e., problem (7.1)
has at least one solution u ∈ V , as desired.

This result extends in an obvious way to the Dirichlet problem for perturbations of the
Laplace operator ∆ = A∗A, where A is a first order overdetermined elliptic differential operator
satisfying the uniqueness condition for the local Cauchy problem (U)s, see [26].
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8. The Dirichlet problem for the p -Laplace equation
In this section we consider the Dirichlet problem for the perturbed p -Laplace equation. Let

X be a bounded closed domain with smooth boundary in Rn. Consider the problem{
∆pu = f(x, u, u′) in X ,
u = 0 at ∂X , (8.1)

where ∆pu := ∇∗(|∇u|p−2∇u). The right hand side f is assumed to be a nonlinear C1 function of
its numerical arguments (x, u, p) ∈ X ×R×Rn satisfying inequalities (7.2) with some γ < p− 1.

Choose V :=
o

W 1,p(X ) and W :=W−1,p′(X ) with norms

∥u∥V =
(∫

X
|u′|pdx

)1/2
,

∥f∥W = sup
∥u∥V =1

∣∣∣ ∫
X
fū dx

∣∣∣,
where 1/p+ 1/p′ = 1. Then, F (u) := ∆pu− f(x, u, u′) maps V continuously into W and it is a
degenerate elliptic operator.

Lemma 8.1. The map F : V → W is C1 and it admits a regular point u0 in V , i.e., F ′(u0) ∈
GL(V,W ).

Proof. Using the chain rule we see that the Fréchet derivative of the p -Laplace operator at a
point u0 ∈ V is given by

∆′
p(u0)u = ∇∗

(
|∇u0|p−2

(
En + (p− 2)

∇u0
|∇u0|

( ∇u0
|∇u0|

)∗)
∇u
)

=

= ∇∗ (a(x)∇u)

for u ∈ V . Note that a(x) is a symmetric (n × n) -matrix with entries in L
p
p−2 (X ). By Theo-

rem 6.2, ∆′
p(u0) is a second order elliptic operator away from the critical points of u0 in X .

On the other hand, the Fréchet derivative of the map f̂ : V →W given by u 7→ f(x, u, u′) is

f̂ ′(u0)u = f ′u(x, u0,∇u0)u+ f ′p(x, u0,∇u0)∇u

for u ∈ V . The inhomogeneous equation F ′(u0)u = w with w ∈ W just amounts to finding a
u ∈ V which satisfies

∇∗(a(x)∇u)− f ′u(x, u0,∇u0)u− f ′p(x, u0,∇u0)∇u = w

weakly in X .
We now refer to [12] to see that in any ball around the origin in V there is a function u0,

such that F ′(u0)u = w has a unique solution u ∈ V for each right hand side w ∈ W . In other
words, F ′(u0) ∈ GL(V,W ), i.e., u0 is a regular point of F , as desired.

If u is a smooth function with compact support in the interior of the closed domain X , then

∥∆pu∥W = sup
∥v∥V =1

∫
X
∆pu v̄dx.

On integrating by parts we get

∥∆pu∥W = sup
∥v∥V =1

∣∣∣ ∫
X
(∆pu, v)xdx

∣∣∣ = sup
∥v∥V =1

∣∣∣ ∫
X
|∇u|p−2 (∇u,∇v)xdx

∣∣∣.
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Let
v =

u

∥u∥V
,

then ∫
X
|∇u|p−2 (∇u,∇v)xdx =

1

∥u∥V

∫
X
|∇u|p−2 (∇u,∇u)xdx =

=
1

∥u∥V

∫
X
|∇u|p dx =

= ∥u∥p−1
V

whence ∥∆pu∥W > ∥u∥p−1
V . On the other hand, if v ∈

o

W 1,p(X ) and ∥v∥V = 1, then

∣∣ ∫
X
|∇u|p−2 (∇u,∇v)xdx

∣∣ 6 ∥∇v∥Lp(X )

(∫
X
|∇u|(p−1)p′ (∇u,∇v)xdx

)1/p′
=

= ∥u∥p−1
V ,

the first estimate being due to the Hölder inequality. Thus,

∥∆pu∥W = ∥u∥p−1
V

which extends by continuity to all functions u ∈
o

W 1,p(X ).
If u ∈ V is a solution of (8.1) then ∆pu = f(x, u, u′), hence

∥u∥p−1
V = ∥f(x, u, u′)∥W 6

6 c ∥f(x, u, u′)∥Lp(X )

with c a constant independent of u. Furthermore, on applying the first estimate of (7.2) on f we
obtain

∥f(x, u, u′)∥pLp(X ) 6 Cp
∫
X
⟨u′⟩pγ dx 6

6 C
(∫

X
⟨u′⟩pdx

)γ
6

6 C (1 + ∥u∥pV )
γ ,

where C is a constant independent of u which may be different in diverse applications. Thus,

∥u∥V 6 C (1 + ∥u∥pV )
γ/p(p−1)

for all u ∈ V satisfying (8.1). Since γ < p−1, the right hand side of this inequality is a sublinear
function of ∥u∥V . On arguing as in Section 7. we see that there is a constant R > 0 with the
property that ∥u∥V 6 R is fulfilled for all u ∈ V satisfying (8.1).

Let U be the ball of radius 2R with centre at the origin in V . By Lemma 8.1, F is a C1

map from U to W and it has a regular point u0 ∈ U . By the above a priori estimate, F−1(0)
belongs to the ball U/2, and hence F (u) ̸= 0 for all u ∈ ∂U . It follows that the mapping degree
degu0

(F,U) is well defined, see [11, 7.1]. To compute this degree, we consider the homotopy

Ft(u) = ∆pu− t f(x, u, u′)

for t ∈ [0, 1]. Obviously, Ft is a C1 map, for each t ∈ [0, 1], and the same a priori estimate shows
that F−1

t (0) ⊂ U/2. Therefore, Ft does not vanish at ∂U for all t ∈ [0, 1]. Then, the homotopy
invariance of the mapping degree implies that deg (F,U) = deg (∆p, U).
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The mapping ∆p : V → W is well known to be an isomorphism, see for instance [23] and
elsewhere. This allows one to conclude that the mapping degree deg (∆p, U) is different from zero.
Hence it follows that deg (F,U) ̸= 0, which implies immediately that F−1(0) ̸= ∅. Therefore,
problem (8.1) has at least one solution u ∈ V , as desired.

For a deeper discussion of the Dirichlet problem for compact perturbations of the p -Laplace
equation along more classical lines with f : X × R → R a Carathéodory function we refer the
reader to [8].

No attempt has been made here to generalise this result to the Dirichlet problem for the
p-Laplace operator u 7→ A∗(|Au|p−2Au) related to a first order overdetermined elliptic differential
operator A satisfying the uniqueness condition for the local Cauchy problem (U)s.

Conclusion
As a byproduct of our study of Lagrangian boundary value problems in X we derived a

linearisation of the nonlinear Laplace operator in general outline up to first order terms. It looks
like

∆(v)u = A∗Au+ λ
m∑

k,l=1

Alv−fl(·, v)
|Av−f(·, v)|

Akv−fk(·, v)
|Av−f(·, v)|

A∗
lAku,

where A is an (m × ℓ) -matrix of first order partial differential operators on X and A1, . . . , Am
the rows of A. If the principal symbol mapping of A is injective away from the zero section of
T ∗X and λ > −1, then ∆(v) is elliptic. This operator is supplied with two boundary operators
B and B∗A and the problem of solvability of the corresponding boundary value problem in X is
of central interest in the present paper.
Remark 8.2. The operator ∆(v) is elliptic for all real λ > −1 and it coincides with A∗A for
λ = 0. Hence, the index of the boundary value problem {∆(v), B,B∗A} amounts to that of
{A∗A,B,B∗A} if the boundary operators satisfy the Shapiro-Lopatinskii condition.

The first author gratefully acknowledges the financial support of the Deutscher Akademischer
Austauschdienst.
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Теория степени для лагранжевых краевых задач
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Аннотация. Мы изучаем те нелинейные уравнения с частными производными, которые возника-
ют как уравнения Эйлера-Лагранжа вариационных задач. Определяя слабые граничные значения
решений таких уравнений, мы инициируем теорию лагранжевых краевых задач в функциональ-
ных пространствах подходящей гладкости. Мы также анализируем, применяется ли современная
концепция степени отображения к лагранжевым проблемам.

Ключевые слова: нелинейные уравнения, лагранжева система, слабые граничные значения, ква-
зилинейные операторы Фредхольма, степень отображения.
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1. Introduction and preliminaries

In work [1], the linear conjugate inverse initial boundary value problem describing a two-
layer creeping motion of viscous heat-conducting fluids in a cylinder with a solid side surface
r = R2 = const and interface r = h(t), 0 < h(t) < R2 was considered

v1t = ν1

(
v1rr +

1

r
v1r

)
+ f1(t), 0 < r < R1, (1)

v2t = ν2

(
v2rr +

1

r
v2r

)
+ f2(t), R1 < r < R2, (2)

v1(R1, t) = v2(R1, t),

∫ R1

0

rv1(r, t)dr +

∫ R2

R1

rv2(r, t)dr = 0, (3)

µ1v1r(R1, t)− µ2v2r(R1, t) = −2æa1(R1, t), (4)

|v1(0, t)| <∞, v2(R2, t) = 0, (5)

v1(r, 0) = 0, v2(r, 0) = 0, (6)

ρ1f1(t) = ρ2f2(t)−
2æa1(R1, t)

R1
(7)
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and the closed conjugate problem for functions aj(r, t) is described the following equations:

ajt = χj

(
ajrr +

1

r
ajr

)
, (8)

aj(r, 0) = a0j (r), |a1(0, t)| <∞, (9)

a2(R2, t) = α(t), (10)

a1(R1, t) = a2(R1, t), k1a1r(R1, t) = k2a2r(R2, t). (11)

The interface is described by the formula

h(t) = R1[1 +Mh1(t)], h1(t) = − 1

R1

∫ t

0

rv1(R1, t)dt. (12)

Here M = æa1R3
1/µ1χ1 is Marangoni number, a1 = max

t∈[0,T ]
|α(t)|. Note that M → 0 since the

creeping motion considers in this paper.
In paper [1] the priori estimates were obtained for the functions vj(r, t), aj(r, t), fj(t). In

this paper, it will be proved that under certain conditions which set for the temperature on the
cylinder surface, the solution of the problem (1)–(11) tends to zero exponentially with increasing
time.

2. The behavior of the solution under t → ∞
A priori estimates for the function aj(r, t) satisfying the problem (8)–(11) have form [1]

|a1(r, t)| 6 2

[
max
t∈[0,T ]

|α(t)|+ 1

(R2
1k2ρ2cρ2)

1/4
max
t∈[0,T ]

(A(t)A1(t))
1/4

]
+ max
r∈[0,R1]

|a01(r)|, (13)

|a2(r, t)| 6 |α(t)|+ 2

(
1

R2
1k2ρ2cρ2

A(t)A1(t)

)1/4

, (14)

where

A(t) 6
(√

A0 +
1

2

∫ t

0

G(τ)eητdτ

)2

e−2ηt, (15)

A1(t) = k1

∫ R1

0

r(a01r)
2 dr + k2

∫ R2

R1

r(ā02r)
2 dr + ρ2cp2

∫ t

0

∫ R2

R1

rg2(r, t) dr dt. (16)

Here A0 is value of function A(t) at t = 0 and

G(t) = max
j

(
2

ρjcpj

)1/2(∫ R2

R1

rg22 dr

)1/2

, (17)

ā2(r, t) = a2(r, t)−
α(t)(r −R1)

2

(R2 −R1)2
, (18)

g2(r, t) =
2χ2α(t)

(R2 −R1)2

(
2− R1

r

)
− α′(r −R1)

2

(R2 −R1)2
. (19)
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If the function α(t) and its derivatives α′(t), α′′(t), α′′′(t) are defined for all t > 0, there is a
question about the behavior of the problems solutions (1)–(11) at t → ∞. From the definition
of (19) the inequality is valid for the functions g2(r, t)∫ R2

R1

rg22dr 6
2

(R2 −R1)4

∫ R2

R1

[
4χ2

2

(
2− R1

r

)2

α2(t) +

+ (r −R1)
4(α′(t))2

]
rdr 6 2R2(R2 −R1)(α

′(t))2 +
32χ2

2α
2(t)

(R2 −R1)3

(for integrals over r, an upper estimate is given but not their exact value, which can be quite
cumbersome), so from (17) we have

G(t) 6
[
max
j

(
2

ρjcρj

)]1/2 [
2R2(R2 −R1)(α

′(t))2 +
32χ2

2α
2(t)

(R2 −R1)3

]1/2
6

6 2

[
max
j

(
1

ρjcρj

)]1/2 [
4χ2

(R2 −R1)3/2
|α(t)|+

√
R2(R2 −R1)|α′(t)|

]
. (20)

So from (15) we obtain

A(t) 6
{
√
A0 +

[
max
j

(
1

ρjcρj

)]1/2 [
4χ2

(R2 −R1)3/2

∫ t

0

|α(τ)|eητdτ +

+
√
R2(R2 −R1)

∫ t

0

|α′(τ)|eητdτ
]}2

e−2ηt. (21)

From (16) and (19) the estimate is valid

|A1(t)| 6 k1

∫ R1

0

r(a01r)
2dr + k2

∫ R2

R1

r(ā02r)
2dr+

+ ρ2cρ2R2

[
4χ2

R2 −R1

∫ t

0

|α(τ)|dτ + (R2 −R1)

∫ t

0

|α′(τ)|dτ
]
. (22)

We suppose that the following integrals converge∫ ∞

0

|α(τ)|eητdτ,
∫ ∞

0

|α′(τ)|eητdτ, (23)

then the expression for function modules |α(τ)| and |α′(τ)| have the form

|α(τ)| = α1(t)e
−ητ , |α′(τ)| = α2(t)e

−ητ (24)

with non-negative functions α1(t), α2(t), at that α1(t) → 0, α2(t) → 0 at t → ∞ and the
following estimate is valid ∫ ∞

0

αk(τ)dτ <∞, k = 1, 2. (25)

The convergence of integrals ∫ ∞

0

|α(τ)|dτ,
∫ ∞

0

|α′(τ)|dτ,
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follows from (24), (25), so from (14), (21), (22) we obtain exponential convergence to zero of the
function a2(r, t) ∀r ∈ [R1, R2]:

|a2(r, t)| 6 α1(t)e
−ηt + 2

(
A1(∞)D2

R2
1k2ρ2cρ2

)1/4

e−ηt/2, (26)

where in the quality D we have designed the value of the expression in curly brackets (21) at
t = ∞.

For a1(r, t) from the estimate (13)we find

|a1(r, t)| 6 2

[
α1(t)e

−ηt +

(
A1(∞)D2

R2
1k2ρ2cρ2

)1/4

e−ηt/2

]
+ max
r∈[0,R1]

|a01(r)| exp
(
−χ1ξ1t

R1

)
, (27)

where ξ1 ≈ 2.4048 is the first roots of equation J0(ξ) = 0 [2]. So there is

Lemma 2.1. If the functions α(τ), α′(τ) satisfy conditions (23)–(25), then for the solutions of
the initial-boundary value problems (8)–(11) aj(r, t) the following estimates are valid: (26), (27),
from which it follows that these functions tend exponentially to zero with increasing time.

The priori estimates for functions vj(r, t) and fj(t) have form [1]

|v2(r, t)| 6
2æ

µ2
|a1(R1, t)| max

r∈[R1,R2]
|P4(r)|+

√
2

R1

(
2

ρ2µ2
H2(t)E(t)

)1/4

. (28)

|f1(t)| 6 2ν1

[(
1

7
R4

1 +

∞∑
n=1

|h2n|

)
+ 2R2

1

∞∑
n=1

(
|h1n|
ζ2n

+
|h2n|
R2

1

)]
max
t∈[0,T ]

|g(t)|+

+
R2

2 −R2
1

R2
1

[
2æ

µ2
max
t∈[0,T ]

|a1t(R1, t)| max
r∈[R1,R2]

|P4(r)|+

+

√
2

R1
max
t∈[0,T ]

(
2

ρ2µ2
H3(t)E1(t)

)1/4
]
.

(29)

|v1(r, t)| 6 R1 max
t∈[0,T ]

|v2(R1, t)|+
2R1

ν1
max
t∈[0,T ]

|f1(t)|
∞∑
n=1

1

ξ3n|J1(ξn)|
, (30)

|f2(t)| 6 ρ|f1(t)|+
2æ

ρ2R1
max
t∈[0,T ]

|a1(ρ2R1, t)|. (31)

Here ρ = ρ1/ρ2, ξn are the roots of the Bessel function J0(ξn)=0, ζn are the positive roots
of equation J2(ζ) = 0 [3], h1n = β1

n/ζn and h2n = β2
n/ζn (where β1

n, β2
n are coefficients of

Fourier series of functions −15R1r and 3R1(r
3−4R1r

2/7) when they are decomposed by function
J2(R

−1
1 ζnr) [1]). Further we have

P4(r) =
1

R2
1(R1 −R2)

(r2 − (R1 +R2)r +R1R2)(r
2 + C1r + C2) (32)

with constants

C1 = − (R1 +R2)(2R
2
1 + 2R2

2 +R1R2)

(R2 −R1)(3R2 + 2R1)
, C2 = −R1C1 (33)

and

E(t) 6
[√

E(0) +

∫ t

0

H1(τ)e
δτdτ

]2
e−2δt, (34)
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E(0) =
2æ2ρ2
µ2
2

(a01(R1))
2

∫ R2

R1

rP 2
4 (r)dr. (35)

H1(t) =

√ρ2
2

(∫ R2

R1

rQ2
2dr

)1/2

+
æ

√
ρ1

|a1(R1, t)|

 , (36)

Q2(r, t) =
2æ

µ2

[
a2t(R1, t)P4(r)− ν2

(
P4rr +

1

r
P4r

)
a2(R1, t)

]
. (37)

H2(t) = µ2

∫ R2

R1

r(v̄02r)
2dr +

ρ2
2

∫ t

0

∫ R2

R1

rQ2
2(r, t)drdt+

æ2

ρ1

∫ t

0

a21(R1, t)dt, (38)

Below, in order to determine the behavior of v1(r, t) and fj(t) for large t, we need the estimate
|a2t(r, t)|. It was obtained in [1], that

|a2t(r, t)| 6 |α′(t)|+ 2

(
1

R2
1k2ρ2cρ2

A2(t)A3(t)

)1/4

, (39)

where

A2(t) =
ρ1cρ1
2

∫ R1

0

ra21t(r, t)dr +
ρ2cρ2
2

∫ R2

R1

rā22t(r, t)dr,

A20 = A2(0) =
χ2
1ρ1cρ1
2

∫ R1

0

r

(
a01rr +

1

r
a01r

)2

dr+

+
ρ2cρ2
2

∫ R2

R1

r

[
χ2

(
ā02rr +

1

r
ā02r

)
+

2χ2α(0)

(R2 −R1)2

(
2− R1

r

)
− α′(0)(r −R1)

2

(R2 −R1)2

]2
dr,

ā02(r) = a02(r)−
α(0)(r −R1)

2

(R2 −R1)2
;

A3(t) = k1χ
2
1

∫ R1

0

r

(
a01rr +

1

r
a01r

)2

dr+

+ k2

∫ R2

R1

r

[
χ2

(
a02rr +

1

r
a02r

)
− α′(0)(r −R1)

2

(R2 −R1)2

]2
dr + ρ2cρ2

∫ t

0

∫ R2

R1

rg3(r, t)drdt,

(40)

g3(r, t) =
1

(R2 −R1)2

[
2χ2α

′(t)

(
2− R1

r

)
− α′′(t)(r −R1)

2

]
.

Therefore, for A2(t) we obtain inequality (21) with replacement A0 by A10, α(τ) by α′(τ)

and α′(τ) by α′′(τ). For the function A3(t) inequality form (22) is satisfied with the replacement∫ R1

0

r
(
a01r
)2
dr by χ2

1

∫ R1

0

r

(
a01rr +

1

r
a01r

)2

dr ≡ d1,∫ R2

R1

r
(
ā02r
)2
dr by

∫ R2

R1

r

[
χ2

(
a02rr +

1

r
a02r

)
− α′(0)(r −R1)

2

(R2 −R1)2

]2
dr ≡ d2

and α(τ) by α′(τ), α′(τ) by α′′(τ).
In addition to (23)–(25) we assume the convergence of the integral∫ ∞

0

|α′′(τ)|eητdτ <∞, (41)
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so that there is valid

|α′′(t)| = α3(t)e
−ηt,

∫ ∞

0

α3(τ)dτ <∞, α3(t) → 0 at t→ ∞. (42)

Taking into account the above, we find from (14) that

|a2t(r, t)| 6 α2(t)e
−ηt + 2

(
A3(∞)D2

1

R2
1k2ρ2cρ2

)1/4

e−ηt/2, (43)

where

A3(∞) = k1d1 + k2d2 +
R2ρ2cp2
R2 −R1

[
4χ2

∫ ∞

0

|α′(τ)|+ (R2 −R1)
2

∫ ∞

0

|α′′(τ)|dτ
]
,

D1 =
√
A10 +max

j

(
1

ρjcpj

)1/2 [
4χ2

(R2 −R1)3/2

∫ ∞

0

|α′(τ)|eητdτ+

+
√
R2(R2 −R1)

∫ ∞

0

|α′′(τ)|eητdτ
]
.

(44)

We turn to inequality for |a2tt(r, t)| [1]. We have

|a2tt(r, t)| 6 |α′′(t)|+ 2

(
1

R2
1k2ρ2cρ2

A4(t)A5(t)

)1/4

, (45)

where

A4(t) =
ρ1cp1
2

∫ R1

0

ra21ttdr +
ρ2cp2
2

∫ R2

R1

rā22ttdr,

A40 =
ρ1cp1
2

∫ R1

0

r(a01tt(r))
2dr +

ρ2cp2
2

∫ R2

R1

r(ā02tt(r))
2dr.

(46)

The initial data are found from equations (9) and replacement of (18):

a01tt(r) = χ1

[(
a01rr +

1

r
a01r

)
rr

+
1

r

(
a01rr +

1

r
a01r

)
r

]
,

ā02tt(r) = χ2

[(
a02rr +

1

r
a02r

)
rr

+
1

r

(
a02rr +

1

r
a02r

)
r

]
− α′′(0)(r −R1)

2

(R2 −R1)2
.

(47)

Further we have

A5(t) = k1

∫ R1

0

r(a01tt)
2dr + k2

∫ R2

R1

r(ā02tt)
2dr +

+
ρ2cρ2

(R2 −R1)
2

∫ t

0

∫ R2

R1

r

[
2χ2α

′′(τ)

(
2− R1

r

)
− α′′′(τ) (r −R1)

2

]
dr.

(48)

Similarly to function A(t) the function A4(t) satisfies an estimate of type (15), and hence (21)
with the replacement A0 by A40, α(t) by α′′(τ) and α′(τ) by α′′′(τ).

If we require convergence of the integral∫ ∞

0

|α′′′(τ)|eηtdτ <∞, (49)

|α′′′(t)| = α4(t)e
−ηt,

∫ ∞

0

α4(τ)dτ <∞, (50)

– 31 –



Victor K. Andreev, Evgeniy P.Magdenko On the Asymptotic Behavior of the Conjugate Problem . . .

we obtain an estimate of the function A5(t) (we use the formula (22)

|A5(t)| 6 k1

∫ R1

0

r(a01tt)
2dr + k2

∫ R2

R1

r(ā02tt)
2dr +

+ ρ2cρ2R2

[
4χ2

R2 −R1

∫ t

0

|α′′(τ)|dτ + (R2 −R1)

∫ t

0

|α′′′(τ)|dτ
]
,

(51)

where a0jtt(r) are defined by formulas (24). By virtue of (41), (49) |A5(t)| 6 A5(∞) and, similarly
to estimate (21), we obtain from (45)

|a2tt(r, t)| 6 α4(t)e
−ηt + 2

(
A5(∞)D2

2

R2
1k2ρ2cρ2

)1/4

e−ηt/2, (52)

D2 =
√
A40 +

[
max
j

(
1

ρjcρj

)]1/2  4χ2

(R2 −R1)3/2

∞∫
0

|α′′(τ)|eητdτ+

+
√
R2(R2 −R1)

∫ ∞

0

|α′′′(τ)|eητdτ
]
.

We proceed to elaboration the estimates of the functions vj(r, t), fj(t), when α(τ), α′(τ),
α′′(τ) and α′′′(τ) satisfy conditions (23)–(25), (41), (42). In this case everywhere we replace
a1(R1, t), a1t(R1, t) by a2(R1, t), a2t(R1, t) according to the first equation (11). We begin with
the function v2(r, t), for which inequality (28) is proved. The quantity E(t) entering the right-
hand side of this inequality has estimate (34), where H1(t) is given by (36) than from (37) we
obtain∫ R2

R1

rQ2
2(r, t)dr 6

8æ2

µ2
2

[
a22t(R1, t)

∫ R2

R1

rP 2
4 (r)dr + ν21a

2
2(R1, t)

∫ R2

R1

r

(
P4rr +

1

r
P4r

)2

dr

]
≡

≡ d3a
2
2(R1, t) + d4a

2
2t(R1, t). (53)

So the inequality is valid

H1(t) 6
æ

√
ρ1

|a2(R1, t)|+
√
ρ2
2

(√
d3|a2(R1, t)|+

√
d4|a2t(R1, t)|

)
=

=

(
æ

√
ρ1

+

√
ρ2d3
2

)
|a2(R1, t)|+

√
ρ2d4
2

|a2t(R1, t)|

and estimate (34) takes the form

E(t) 6
[√

E(0) +

(
æ

√
ρ1

+

√
ρ2d3
2

)∫ t

0

|a2(R1, t)|eδτdτ +

+

√
ρ2d4
2

∫ t

0

|a2t(R1, t)|eδτdτ

]2
e−2δt.

(54)

According to estimates (26), (43) the integrals in (54) have the order e(δ−η)t and e(δ−η/2)t for
large t, therefore we obtain

E(t) 6 γ(t), where γ(t) ≡ d5


e−2δt, δ < η/2,

te−2δt, δ = η/2,

e−ηt, δ > η/2,

(55)
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with positive constant d5.
Defined by equality (38) with using (53) the function H2(t) is evaluated as follows:

H2(t) 6 µ2

∫ R2

R1

r(v̄02r)
2dr +

(
ρ2d3
2

+
æ2

ρ1

)∫ t

0

a22(R1, τ)dτ+

+
ρ2d4
2

∫ t

0

a22τ (R1, τ)dτ 6 D2 = const > 0

by virtue of inequalities (26), (43).
So from (13), (54), (55) we find estimate

|v2(r, t)| 6
2æ

µ2
max

r∈[R1,R2]
|P4(r)|

[
α1(t)e

−ηt + 2

(
A1(∞)D2

R2
1k2ρ2cρ2

)1/4

e−ηt/2

]
+

+
√
2

(
2d5
R2

1ν2
D2γ(t)

)1/4
(56)

and v2(r, t) approaches to zero uniformly over r ∈ [R1, R2] with increasing time t.
Below we need the values fj(0). From (7) we obtain the connection between them

ρ1f1(0) = ρ2f2(0)−
2æ

R1
a01(R1).

The other relation follows from the second equality (3) and equation (5) (we recall that
vj(r, 0)=0):

f1(0) = −R
2
2 −R2

1

R2
1

f2(0).

Now we find

f1(0) =
2æ(R2

2 −R2
1)a

0
1(R1)

R2
1 + ρ(R2

2 −R2
1)

, f2(0) =
R2

1

R2
2 −R2

1

f1(0). (57)

Moreover the relations are valid

v1t(r, 0) = f1(0), v̄2t(r, 0) = f2(0) +
2æχ1

µ2

(
a01rrr +

1

r
a01rr

)
P4(r). (58)

The second initial condition follows from the equations

|a1(R1, t)| = |a2(R1, t)| 6 |α(t)|+ 2

(
1

R2
1k2ρ2cρ2

A(t)A1(t)

)1/4

, (59)

and (37) and replacement

v2(r, t) = v̄2(r, t)−
2æa1(R1, t)

µ2
P4(r). (60)

We consider the following inequality that was obtained in [1]

|v2t(r, t)| 6
2æ

µ2
|a1t(R1, t)| max

r∈[R1,R2]
|P4(r)|+

√
2

R1

(
2

ρ2µ2
H3(t)E1(t)

)1/4

. (61)

The function E1(t) on the right-hand side of inequality (61) has the form

E1(t) =
ρ1
2

∫ R1

0

rv21tdr +
ρ2
2

∫ R2

R1

rv̄22tdr,
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E1(0) =
ρ1R

2
1

4
f21 (0) +

ρ2
2

∫ R2

R1

rv̄22t(r, 0)dr,

where f1(0) and v̄2t(r, 0) are defined by the first (57) and the second (58) equality respectively.
There is the estimate form (54) for E1(t).

E1(t) 6
[√

E1(0) +

(
æ

√
ρ1

+

√
ρ2d3
2

)∫ t

0

|a2t(R1, τ)|eδτdτ+

+

√
ρ2d4
2

∫ t

0

|a2tt(R1, τ)|eδτdτ

]2
e−2δt. (62)

Taking into account the obtained estimates (43), (51) from (53) we find using the constant d6
the inequality

E1(t) 6 d6γ(t) (63)

and the function γ(t) from inequality (55).
For the function H3(t), from the right-hand side of inequality (61) we have the expression

H3(t) = µ1

∫ R1

0

r(v01tr)
2dr + µ2

∫ R2

R1

r(v̄02tr)
2dr+

+
ρ2
2

∫ t

0

∫ R2

R1

rQ2
3(r, τ)drdτ +

æ2

ρ1

∫ t

0

a22(R1, τ)dτ, (64)

where in our case

Q3(r, t) =
2æ

µ2

[
−ν2a2t(R1, t)

(
P4rr +

1

r
P4r

)
+ a2tt(R1, t)P4(r)

]
,

v01tr(r) = 0, v̄02tr =
2æ

µ2
a2t(R1, 0)P4r,

a2t(R1, 0) = χ2

[
a02rr(R1) +

1

R1
a02r(R1)

]
.

It is clear that ∫ R2

R1

rQ2
3(r, t)dr 6 d3a

2
2t(R1, t) + d4a

2
2tt(R1, t)

with constant d3, d4 from (52). By virtue of the convergence of the integrals∫ ∞

0

(a
(k)
2 (τ))2dτ, k = 0, 1, 2

we obtain the inequality H3(t) 6 H3(∞) and estimate (61) takes the form for all r ∈ [R1, R2]

|v2t(r, t)| 6
2æ

µ2
max

r∈[R1,R2]
|P4(r)|

[
α2(t)e

−ηt + 2

(
A3(∞)D2

1

R2
1k2ρ2cρ2

)1/4

e−ηt/2

]
+

+
√
2

(
2d6
R2

1ν2
H3(∞)γ(t)

)1/4

. (65)

The function f1(t) is the pressure gradient in the first fluid along the axis z. The function
g(t) on the right side of the inequality (29) has form

g(t) = R2
1v2(R1, t) + 2

∫ R2

R1

rv2(r, t)dr
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and, taking into account estimate (56), we find

|g(t)| 6 R2
2

{
2æ

µ2
max

r∈[R1,R2]
|P4(r)|

[
α1(t)e

−ηt + 2

(
A1(∞)D2

R2
1k2ρ2cρ2

)1/4

e−ηt/2

]
+

+
√
2

(
2d5
R2

1ν2
H2(∞)γ(t)

)1/4
}

6 d7e
−ωt, (66)

where ω = min(δ/2, η/4) (at δ = η/2 in (66) there is te−ωt instead of e−ωt according to (54)).
Now from (29) using inequalities (65), (66) we obtain the estimate

|f1(t)| 6 2ν1

[
S1d7e

−ωt + S2d7| exp
(
−ζ

2
1ν1
R2

1

t

)
− e−ωt|

]
+ d8e

−ωt, (67)

S1 =
1

7
R4

1 +
∞∑
n=1

|h2n|, S2 = ν1

∞∑
n=1

1

ν1R
−2
1 ζ2n − ω

(
|h1n|+

ζ2n
R2

1

|h2n|
)
,

at that S1 <∞ and S2 <∞. The estimate f2(t) follows from (5), inequalities (26) and (67)

|f2(t)| 6 ρ|f1(t)|+ 2æ

[
α1(t)e

−ηt + 2

(
A1(∞)D2

R2
1k2ρ2cρ2

)1/4

e−ηt/2

]
. (68)

Remark 1. From inequality (30), estimates (56) and (67) it follows that the function v1(r, t)
tends exponentially to zero with increasing time.

|v1(r, t)| 6 R1 max
t∈[0,T ]

∣∣∣∣∣2æµ2
max

r∈[R1,R2]
|P4(r)|

[
α1(t)e

−ηt + 2

(
A1(∞)D2

R2
1k2ρ2cρ2

)1/4

e−ηt/2

]
+

+
√
2

(
2d5
R2

1ν2
D2γ(t)

)1/4
∣∣∣∣∣+ 2R1

ν1
max
t∈[0,T ]

∣∣2ν1 [S1d7e
−ωt+

+ S2d7

∣∣∣∣exp(−ζ21ν1R2
1

t

)
− e−ωt

∣∣∣∣]+ d8e
−ωt
∣∣∣∣ ∞∑
n=1

1

ξ3n|J1(ξn)|
.

(69)

For the function h1(t) from (12), taking into account the first relation (3) and the inequal-
ity (56) we have the estimate

|h1(t)| 6
R2

2 −R2
1

2R1

{
2æ

µ2
max

r∈[R1,R2]
|P4(r)|

[∫ t

0

α1(τ)e
−ητdτ+

+
4

η

(
A1(∞)D2

R2
1k2ρ2cρ2

)1/4 (
1− e−ηt/2

)]
+
√
2

(
2d5
R2

1ν2
H2(∞)

)1/4 ∫ t

0

γ1/4(τ)dτ

}
(70)

and h1(t) is limited at t→ ∞.
Thus, it is proofed

Theorem 2.1. If the function α(τ), α′(τ), α′′(τ), α′′′(τ) satisfy conditions (23)–(25),
(41), (42), (49), then the following estimates (26), (27), (56), (67), (68), (69) are valid for
the functions aj(r, t), vj(r, t), fj(t) from which it follows that these functions tend exponentially
to zero with increasing time.

Remark 2. Remark 6. Conditions (23)–(25), (41), (42), (49) physically mean that the thermal
effects on the solid wall surface of cylinder at r = R2 are very small and the braking of liquids
occurs at t→ ∞ due to frictional forces.
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Об асимптотическом поведении сопряженной задачи,
описывающей ползущее осесимметричное
термокапиллярное движение

Виктор К. Андреев
Евгений П.Магденко

Институт вычислительного моделирования СО РАН
Красноярск, Российская Федерация

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. В работе указаны условия для закона поведения температуры на твердой стенке
цилиндра, при которых решение линейной сопряженной обратной начально-краевой задачи, опи-
сывающей двухслойное осесимметрическое ползущее движение вязких теплопроводных жидкостей,
с ростом времени экспоненциально стремится к нулю.

Ключевые слова: сопряженная нелинейная обратная задача, поверхность раздела, ползущее дви-
жение.
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Abstract. A numerical simulation of the penetration of the turbulent layer in a stably stratified fluid
under the action of tangential stress was performed. For the coefficient of vertical turbulent exchange, the
Prandtl–Obukhov formula is used. The results of the calculations are consistent with known experimental
data and calculations by other authors.
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Introduction

In most cases, real geophysical environments are stratified. If stratification is stable, then
it prevents the development of turbulence. Unstable stratification provokes the development

of turbulence. The stratification is stable at
∂ρ

∂z
> 0 for an incompressible fluid (the vertical

distribution of fluid density is determined by the function ρ(z), the z-axis is directed vertically

downwards), and the stratification is unstable at
∂ρ

∂z
< 0. A measure of sustainability of stratified

fluid is the Vaisal-Brent frequency : N2 =
g

ρ

∂ρ

∂z
(c−2), (g = 981 cm/c2 is gravity acceleration).

If N2 is positive, the medium is stable; if N2 is negative, it is unstable.
An example of a flow where vertical turbulent exchange plays a decisive role is the flow occurs

when a turbulent liquid layer deepens in a stably stratified reservoir at the action of wind. Many
works are devoted to its study (see, for example, references in [1–8]). The classical e− ε –model
of turbulence and its modifications are used to describe the process of the mixed layer deepening
in the stratified fluid.

In this paper, the Prandtl-Obukhov formula is used to determine the coefficients of vertical
turbulent exchange [9, 10].
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c⃝ Siberian Federal University. All rights reserved
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1. Problem statement

1.1. Statement of the problem without considering Coriolis force

The flow in a linearly stratified medium under constant shear stress is considered. Stratifica-
tion is due to changes in salinity.

In the study of the process of the turbulent layer deepening simplifications are made, as
a result the averaged horizontal homogeneous motion is described by a system of differential
equations [2–4]:

∂U

∂t
=

∂

∂z

[
ν
∂U

∂z
− ⟨u′w′⟩

]
,

∂S

∂t
=

∂

∂z

[
χ
∂S

∂z
− ⟨S′w′⟩

]
.

(1)

Here U is a horizontal component of the averaged velocity, S is the averaged salinity, strokes mark
pulsation components: ⟨u′w′⟩ is Reynolds shear stress, ⟨S′w′⟩ is the vertical vector component
of flows; ν, χρ are molecular viscosity and diffusion coefficients; t is time, z is vertical coordinate
(directed down), t is time. In the case of a fluid linearly stratified at the initial instant of time, the
dependence of the average fluid density ρ on salinity is given by the relation ρ(S) = ρ∗+β(S−S∗).

Here ρ∗ is the initial value of the density on the water surface, S∗ is the initial value of the salinity
of the water on the surface, β = const.

The system (1) is not closed. For its closure, semi-empirical models of turbulence are used
[2–4]. In this paper, it is proposed to parameterize the ratios of vertical turbulent exchange to
use the Prandtl-Obukhov formula derived from stationary equations of balance of turbulence
energy and its dissipation rate [10].

According to Bussinesk hypothesis the values ⟨u′w′⟩, ⟨S′w′⟩ are presented in the form of:

−⟨u′w′⟩ = Kuz
∂U

∂z
, −⟨S′w′⟩ = KSz

∂S

∂z
,

Kuz is the coefficient of turbulent viscosity, KSz is the turbulent diffusion coefficient.
The Prandtl-Obukhov formula takes into account the shear mixing mechanism and stratifi-

cation [9, 10]:

Kz =

{
(0.05 h1)

2
√
B + kmin, B > 0,

kmin, B 6 0,
(2)

g

ρ∗
∂ρ

∂z
= β

g

ρ∗
∂S

∂z
, B =

(
∂U

∂z

)2

− g

ρ∗
∂ρ

∂z
,

where h1 is the depth of the quasi-homogeneous (mixed) layer, determined by the first calculation
point from the surface where the condition is satisfied

(0.05 zk)
2
√
B|z=zk

< kmin,

kmin is the minimum value of turbulent viscosity. The deepening of the turbulent layer of liquid
in a reservoir by the wind influence was determined as follows:

hn+1 = hn if h1 < hn; hn+1 = h1 if h1 > hn,

where hn1 = h1(tn) is the quasihomogeneous layer depth in the Prandtl-Obukhov formula ,
hn = h(tn) is the depth of the turbulent layer.
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It is assumed that the coefficients of vertical turbulent exchange are proportional to Kz:

Kuz = αuKz, KSz = αSKz, αu = const, αS = const.

We obtained a closed system of equations for calculating U(t, z), S(t, z), h(t), ρ(t):

∂U

∂t
=

∂

∂z

[
(ν +Kuz)

∂U

∂z

]
,

∂S

∂t
=

∂

∂z

[
(χρ +KSz

∂S

∂z

]
.

(3)

Boundary conditions for the system (3) are: on the surface (z = 0)

(ν +Kuz)
∂U

∂z
= −τw

ρ∗
,

∂S

∂z
= 0, (4)

τw is shear stress caused to wind load;
at the bottom (z = H)

U = 0, S = SH = S∗ +
∂S0

∂z
H. (5)

Initial conditions are:

U(z) = 0, S(z) = S∗ +
∂S0

∂z
z. (6)

The initial salinity distribution corresponds to a linear density distribution,
(
∂S0

∂z

)
=

1

β

∂ρ0

∂z
.

The given relations contain empirical coefficients Kmin, αu, αS determined by numerical exper-
iments.

1.2. Statement of the problem taking into account Coriolis force

Drift currents are formed in the upper layer of the reservoir under the influence of wind. The
solution of the problem of steady drift current for a deep sea of uniform density was constructed
by Ekman [11]:

Ue = U0 exp(−αz) cos(
π

4
− αz), V e = V0 exp(−αz) sin(

π

4
− αz),

Here Ue, V e are horizontal components of water flow velocity vector, f = 2 Ω sin(φ) is the

Coriolis parameter, Ω is angular velocity of the Earth rotation, φ is latitude, α =

√
f

2Kz
,

V0 =
τy√

2ρ0Kzα
, wind is directed along the coordinate y (τx = 0, τy ̸= 0,). The speed of the

wind current decreases exponentially with depth. Below the horizon of z = D the flow velocity
is small, D = π

√
2Kz/f is the friction depth. The main part of the kinetic energy of the drift

flow is concentrated in the friction layer from 0 to D. The influence of the parameter f can be
neglected for H < D (H is a reservoir depth). Similarly, in the problem of deepening a turbulent
layer for sufficiently large depths (H > D), the influence of the Coriolis forces is manifested.
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The averaged horizontal homogeneous motion is described by a system of differential equa-
tions:

∂U

∂t
=

∂

∂z

[
(ν +Kuz)

∂U

∂z

]
+ fV,

∂V

∂t
=

∂

∂z

[
(ν +Kuz)

∂V

∂z

]
− fU,

∂S

∂t
=

∂

∂z

[
(χS +KSz

∂S

∂z

]
.

(7)

Here U , V are horizontal components of the averaged velocity vector. The system (7) is closed
by the Prandtl-Obukhov formula:

Kz =

{
(0.05 h1)

2
√
B1 + kmin, B1 > 0,

kmin, B1 6 0,
(2a)

B1 =

(
∂U

∂z

)2

+

(
∂V

∂z

)2

− g

ρ∗
∂ρ

∂z
.

Boundary conditions for the system(7) are: on the surface (z = 0)

(ν +Kuz)
∂U

∂z
= −τwx

ρ∗
, (ν +Kuz)

∂V

∂z
= −τwy

ρ∗
,

∂S

∂z
= 0, (8)

τwx, τwy are the components of wind friction stress;
at the bottom (z = H)

U = 0, V = 0, S = SH = S∗ +
∂S0

∂z
H. (9)

Initial conditions are:

U(z) = 0, V (z) = 0, S(z) = S∗ +
∂S0

∂z
z. (10)

Two mathematical models are constructed to describe the processes of vertical turbulent
exchange in a stably stratified reservoir:
– Model 1 does not consider the Coriolis force (2)–(6);
– Model 2 takes into account the Coriolis force (7)–(10).

2. Numerical modeling of turbulent mixing in the upper
layer of a linearly stratified fluid. Results of numerical
experiments

2.1. Numerical algorithm

The numerical solution of initial-boundary value problems (2)–(6), (7)–(10) are based on an
explicit scheme of the first-order accuracy.

We will show an example of the problem for velocity U(t, z). For internal nodes (j =

= 2, 3, . . . , jj − 1):

Un+1
j = Unj +∆t

Kj+1/2(U
n
j+1 − Unj )−Kj−1/2(U

n
j − Unj−1)

(∆z)2
,
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on the water surface (j = 1), taking into account the boundary condition, we have:

Un+1
1 = Un1 + 2∆t

K3/2(U
n
2 − Un1 ) + ∆z τw/ρ

∗

(∆z)2
,

at the bottom Ujj = 0. Here Un+1
j = U(tn+1, zj), tn+1 = tn+∆t, ∆z = H/(jj−1), K = ν+Kuz,

Kj+1/2 = 0.5(Kj +Kj+1). For the model equation K = K0 = const stability condition [12] is

∆t 6 (∆z)2/(2K0).

Parameters of variants for numerical experiments shows in Tab. 1.

Table 1. Parameters of variants

Nomber of
variant

∂ρ0

∂z
, [g/ cm4] τw, [g/(cm c2)] H, [cm] u∗, [cm/c] N0, [c−1]

1 1.92 · 10−3 0.995 30 0.9975 1.3721

2 3.84 · 10−3 2.13 30 1.459 1.94

3 1.0 · 10−7 1 4000 1 1.0 · 10−2

4 1.0 · 10−6 1 4000 1 3.13 · 10−2

5 1.0 · 10−8 1 4000 1 3.13 · 10−3

6 1.0 · 10−7 1 1500 1 1.0 · 10−2

7 1.0 · 10−7 1 1000 1 1.0 · 10−2

8 1.0 · 10−7 2 1500 1.414 1.0 · 10−2

A variant of the flow obtained by transferring the results of laboratory experiments [7] to
sea conditions with a depth of H=40 m is considered in [8]. An approximation of experimental
dependence is proposed

ĥ = (15 · t̂ )1/3, (11)

where ĥ = N0h/u
∗ is dimensionless depth of the mixed layer, t̂ = N0t is dimensionless time,

Ĥ = N0H/u
∗ is dimensionless reservoir depth , u∗ =

√
τw
ρ∗

is friction speed, N0 =

√
g

ρ0

∂ρ0
∂z

. At

the same time, according to the authors [8], the flow parameters took values for variant 3 from
Tab. 1.

2.2. Results of numerical experiments

Values of empirical coefficients are determined by numerical experiments for variants 1, 2:
αu = 0.638− 0.0885 · τw, αS = 0.45 for N0 ∼ 1 and αS = 1.67 for N0 ≪ 1.

The first series of numerical experiments refers to variant 2. The calculations were performed
on uniform grids with the number of nodes from 120 to 250, time steps from 0.01 to 0.03 s.
Fig. 1 illustrates the vertical distributions of the main flow parameters U/Umax, Kuz, ρ(z) at the
time of 240 s. The calculation results of ρ(z) according to model 1 are in good agreement with
the calculations using second-order turbulence models [2]. The calculation results of U/Umax,
Kuz according to model 1 are in qualitative agreement with the calculations according to the
second-order turbulence models from [2].
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Fig. 1. Vertical distributions of the main flow characteristics for variant 2 at the time 240 s:
e− ε-model (dashed line), improved model from work [2] (solid line), models 1,2 (yellow lines)

The process of deepening the upper mixed layer is shown in Fig. 2, where the dynamics of the
dimensionless depth ĥ = N0h/u

∗ as a function of the dimensionless time t̂ = N0t for variant 2
presents. The proposed method gives a less intense expansion of the turbulent layer at N0t < 360

in comparison with the experiment, and at N0t > 360 the model 1 calculations approach the
experiment. The calculations of variant 2 for model 2 (taking into account the Coriolis force)
almost coincided with the results obtained for model 1. A more intensive expansion of the
turbulent layer in comparison with the experiment was obtained by the classical e − ε-model.
The calculations for the advanced model [2] are in good agreement with the experiment.

Fig. 2. Dynamics of the mixed layer depth for variant 2: advanced model (curve 1), e− ε-model
(curve 2) from [2], model 1 (dotted line), experimental data [7] (dots)
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The second series of numerical calculations relates to variant 3. The calculations were per-
formed on uniform grids with the number of nodes from 120 to 250, time steps from 0.1 to 1.0 s.
Fig. 3 shows the calculations results of the depth of the mixed layer up to the time t̂ = 1100,
obtained by the improved model [2] (curve 1), by model 1 (dotted line), experimental dependence
(11) (dashed line). The calculations results by model 1 at t̂ < 600 are underestimated compared
to (11), at t̂ > 600 they approach to the experimental dependence.

Fig. 3. Dynamics of the mixed layer depth for variant 3 at large times: improved model (curve 1),
experimental data approximation (11) (dashed line) [2], model 1 (blue line), model 2 (orange
line)

The Coriolis force has a significant effect on the deepening turbulent layer in a deep body of
water (H = 40 m). The dynamics of the deepening turbulent layer by model 2 in Fig. 3 is shown
by the orange line.

Numerical experiments were performed for variants 4–8. The results of numerical experiments
on calculating the dynamics of a mixed turbulent layer deepening in a stably stratified reservoir
using the constructed mathematical models are presented in the Figs. 4–8. The main parameters
affecting the dynamics of the turbulent layer deepening in a stratified fluid are wind stress τw,

reservoir depth H, vertical density gradient
∂ρ

∂z
, the Coriolis force f . Two modes are implemented

for different combinations of these parameters. I — vertical mixing reaches the bottom, the results
of calculations on models 1 and 2 are almost the same (Fig. 7, 8), therefore, we can restrict
ourselves to model 1. II — the results of calculations for models 1 and 2 differ significantly:
according to model 1, mixing reaches the bottom; according to model 2, the deepening of the
bottom does not reach. In this case, when the Coriolis force is taken into account, the reservoir
does not mix to the bottom and a quasistationary regime is realized h < H (Fig. 4, 5). In variant
6 the solution of the problem according to model 1 and to model 2 one differs little (Fig. 6).

Thus, using simple models 1 and 2, it is possible to determine the effect of the Coriolis force
on the process of deepening the turbulent layer in a stratified reservoir and to specify options
when it is possible to be limited to model 1.
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Fig. 4. Dynamics of the mixed layer depth for variant 4: model 1 (blue line), model 2 (orange
line)

Fig. 5. Dynamics of the mixed layer depth for variant 5: model 1 (blue line), model 2 (orange
line)

Conclusion

Numerical algorithms for describing the processes of vertical turbulent exchange in a stably
stratified reservoir under constant shear stress are considered. These algorithms are based on the
application of the Prandtl-Obukhov formula for the coefficients of vertical turbulent exchange.
The Prandtl-Obukhov formula takes into account the shear mixing mechanism and stable strat-
ification. The results of calculations of the vertical distributions of flow velocities, water density,
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Fig. 6. Dynamics of the mixed layer depth for variant 6: model 1 (blue line), model 2 (orange
line)

Fig. 7. Dynamics of the mixed layer depth for variant 7: model 1 (blue line), model 2 (orange
line)

vertical turbulent exchange coefficients, and the dynamics of the deepening of the mixed layer
according to the proposed models are consistent with experimental data and with calculations
based on the e− ε model and its modifications.

Using the constructed models of the dynamics of the turbulent layer deepening in a stably
stratified fluid, it is possible to determine problems where the Coriolis force can be ignored.
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Fig. 8. Dynamics of the mixed layer depth for variant 8: model 1 (blue line), model 2 (orange
line)
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О применении формулы Прандтля-Обухова в численной
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Аннотация. Выполнено численное моделирование заглубления турбулентного слоя в устойчиво
стратифицированной жидкости под действием касательного напряжения. Для коэффициента вер-
тикального турбулентного обмена используется формула Прандтля–Обухова. Результаты расчетов
согласуются с известными экспериментальными данными и расчетами других авторов.

Ключевые слова: математическое моделирование, турбулентность, стратифицированная жид-
кость.
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Introduction

It is known that fundamental solutions have an essential role in studying partial differential
equations. Formulation and solving of many local and non-local boundary value problems are
based on these solutions. Moreover, fundamental solutions appear as potentials, for instance, as
simple-layer and double-layer potentials in the theory of potentials.

The explicit form of fundamental solutions gives a possibility to study the considered equa-
tion in detail. For example, in the works of Barros-Neto and Gelfand [1–3] fundamental solutions
for Tricomi operator, relative to an arbitrary point in the plane were explicitly calculated. In
this direction we would like to note the works [4, 5], where three-dimensional fundamental solu-
tions for elliptic equations were found. In the works [6–8] , fundamental solutions for a class of
multidimensional degenerate elliptic equations with spectral parameter were constructed. The
found solutions can be applied to solving some boundary value problems [9–15]. We also mention
papers [16, 17] which are devoted to the study of partial differential equations with the singular
coefficients and their solutions.

Let us consider the generalized Helmholtz equation with a several singular coefficients

Lm(α)(u) :=
m∑
i=1

uxixi +
n∑
j=1

2αj
xj

uxj = 0 (1)
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in the domain Rn+m := {(x1, . . . , xm) : x1 > 0, . . . , xn > 0} , where m is a dimension of the Euch-
lidean space, n is a number of the singular coefficients of equation (1); m > 2, 0 < n 6 m; αj
are real constants and 0 < 2αj < 1, j = 1, . . . , n; (α) = (α1, . . . , αn).

Various modifications of the equation (1) in the two- and three-dimensional cases were con-
sidered in many papers [4, 18–27].

Fundamental solutions for elliptic equations with singular coefficients are directly connected
with hypergeometric functions. Therefore, basic properties such as decomposition formulas,
integral representations, formulas of analytical continuation, formulas of differentiation for hy-
pergeometric functions are necessary for studying fundamental solutions.

Since the aforementioned properties of hypergeometric functions of Gauss, Appell, Kummer
were known [28], results on investigations of elliptic equations with one or two singular coeffi-
cients were successful. In the paper [4] when finding and studying the fundamental solutions of
equation (1) for m = 3, an important role was played the decomposition formula of Hasanov and
Srivastava [29,30], however, the recurrence of this formula did not allow further advancement in
the direction of increasing the number of singular coefficients.

In the present paper we construct all fundamental solutions for equation (1) in an explicit form
and we prove a new formula for the expansion of several Lauricella hypergeometric functions by
simple Gauss, with which it is possible to reveal that the found hypergeometric functions have
a singularity of order 1/rm−2 at r → 0. In the present paper, we assume that m > 2 and
0 < n 6 m.

The plan of this paper is as follows. In Section 1 we briefly give some preliminary information,
which will be used later. We transform the recurrence decomposition formula of Hasanov and
Srivastava [29] to the form convenient for further research. Also some constructive formulas for
the operator L are given. In Section 2 we describe the method of finding fundamental solutions
for the considered equation and in Section 3 we show what order of singularity the found solutions
will have.

1. Preliminaries

Below we give definition of Pochhammer symbol and some formulas for Gauss hypergeomet-
ric functions of one and two variables, Lauricella hypergeometric functions of three and more
variables, which will be used in the next section.

A symbol (κ)ν denotes the general Pochhammer symbol or the shified factorial, since (1)l = l!

(l ∈ N ∪ {0}; N := {1, 2, 3, . . . }) , which is defined (for κ, ν ∈ C), in terms of the familiar Gamma
function, by

(κ)ν :=
Γ(κ+ ν)

Γ(κ)
=

{
1 (ν = 0; κ ∈ C\{0}),
κ(κ+ 1) . . . (κ+ l − 1) (ν = l ∈ N ; κ ∈ C),

it being understood conventionally that (0)0 := 1 and assumed tacitly that the Γ-quotient exists.
A function

F

[
a, b;

c;
x

]
=

∞∑
k=0

(a)k(b)k
k!(c)k

xk, |x| < 1

is known as the Gauss hypergeometric function and an equality

F

[
a, b;

c;
1

]
=

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, c ̸= 0,−1,−2, . . . ,Re(c− a− b) > 0 (2)
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holds [31, Ch.II,2.1(14)]. Moreover, the following autotransformer formula [31, Ch.II,2.1(22)]

F

[
a, b;

c;
x

]
= (1− x)−bF

[
c− a, b;

c;

x

x− 1

]
(3)

is valid.
The hypergeometric function of n variables has a form [28, Ch.VII] (see also [32, Ch.1,1.4(1)])

F
(n)
A

[
a, b1, . . . , bn;

c1, . . . , cn;
x1, . . . , xn

]
=

∞∑
m1,...,mn=0

(a)m1+···+mn(b1)m1 . . . (bn)mn

m1! . . .mn!(c1)m1 . . . (cn)mn

xm1
1 . . . xmn

n , (4)

where |x1|+ · · ·+ |xn| < 1, n ∈ N.
For a given multivariable function, it is useful to fund a decomposition formula which would

express the multivariable hypergeometric function in terms of products of several simpler hyper-
geometric functions involving fewer variables.

In the case of two variables for the function

F2

[
a, b1, b2;

c1, c2;
x, y

]
=

∞∑
i,j=0

(a)i+j(b1)i(b2)j
i!j!(c1)i(c2)j

xiyj

was known expansion formula [33]

F2

[
a, b1, b2;

c1, c2;
x, y

]
=

∞∑
k=0

(a)k(b1)k(b2)k
k!(c1)k(c2)k

xkykF

[
a+ k, b1 + k;

c1 + k;
x

]
F

[
a+ k, b2 + k;

c2 + k;
y

]
. (5)

Following the works [33, 34] Hasanov and Srivastava [29] found following decomposition for-
mula for the Lauricella function of three variables

F
(3)
A

[
a, b1, b2, b3;

c1, c2, c3;
x, y, z

]
=

∞∑
i,j,k=0

(a)i+j+k(b1)j+k(b2)i+k(b3)i+j
i!j!k!(c1)j+k(c2)i+k(c3)i+j

×

× xj+kyi+kzi+jF

[
a+ j + k, b1 + j + k;

c1 + j + k;
x

]
×

× F

[
a+ i+ j + k, b2 + i+ k;

c2 + i+ k;
y

]
F

[
a+ i+ j + k, b3 + i+ j;

c3 + i+ j;
z

] (6)

and they proved that for all n ∈ N\{1} is true the recurrence formula [29]

F
(n)
A

[
a, b1, . . . , bn;

c1, . . . , cn;
x1, . . . , xn

]
=

∞∑
m2,...,mn=0

(a)m2+···+mn
(b1)m2+···+mn

(b2)m2
. . . (bn)mn

m2! . . .mn!(c1)m2+···+mn(c2)m2 . . . (cn)mn

×

× xm2+···+mn
1 xm2

2 . . . xmn
n F

[
a+m2 + · · ·+mn, b1 +m2 + · · ·+mn;

c1 +m2 + · · ·+mn;
x1

]
×

× F
(n−1)
A

[
a+m2 + · · ·+mn, b2 +m2, . . . , bn +mn;

c2 +m2, . . . , cn +mn;
x2, . . . , xn

]
.

(7)

Further study of the properties of the Lauricella function (4) showed that the formula (7) can
be reduced to a more convenient form.

– 50 –



Tuhtasin G. Ergashev Fundamental Solutions for a Class of Multidimensional Elliptic Equations . . .

Lemma 1. The following formula holds true at n ∈ N

F
(n)
A

[
a, b1, . . . , bn;
c1, . . . , cn;

x1, . . . , xn

]
=

∞∑
mi,j=0

(26i6j6n)

(a)N2(n,n)

m2,2!m2,3! . . .mi,j ! . . .mn,n!
(26i6j6n)

×

×
n∏
k=1

(bk)M2(k,n)

(ck)M2(k,n)
x
M2(k,n)
k F

[
a+N2(k, n), bk +M2(k, n);

ck +M2(k, n);
xk

]
,

(8)

where

Ml(k, n) =

k∑
i=l

mi,k+

n∑
i=k+1

mk+1,i, Nl(k, n) =

k+1∑
i=l

n∑
j=i

mi,j , l ∈ N.

Proof. We carry out the proof by the method mathematical induction.
The equality (8) in the case n = 1 is obvious.
Let n = 2. Since M2(1, 2) = M2(2, 2) = N2(1, 2) = N2(2, 2) = m2,2, we obtain the for-

mula (5).
For the sake of interest, we will check the formula (8) in yet another value of n.
Let n = 3. In this case

M2(1, 3) = m2,2 +m2,3, M2(2, 3) = m2,2 +m3,3, M2(3, 3) = m2,3 +m3,3,

N2(1, 3) = m2,2 +m2,3, N2(2, 3) = N2(3, 3) = m2,2 +m2,3 +m3,3.

For brevity, making the substitutions m2,2 := i, m2,3 := j, m3,3 := k, we obtain the formula (6).
So the formula (8) works for n = 1, n = 2 and n = 3.
Now we assume that for n = s equality (8) holds; that is, that

F
(s)
A

[
a, b1, . . . , bs;

c1, . . . , cs;
x1, . . . , xs

]
=

∞∑
mi,j=0

(26i6j6s)

(a)N2(s,s)

m2,2!m2,3! . . .mi,j ! . . .ms,s!
(26i6j6s)

×

×
s∏

k=1

(bk)M2(k,s)

(ck)M2(k,s)
x
M2(k,s)
k F

[
a+N2(k, s), bk +M2(k, s);

ck +M2(k, s);
xk

]
.

(9)

Let n = s+ 1. We prove that following formula

F
(s+1)
A

[
a, b1, . . . , bs+1;

c1, . . . , cs+1;
x1, . . . , xs+1

]
=

∞∑
mi,j=0

(26i6j6s+1)

(a)N2(s+1,s+1)

m2,2!m2,3! . . .mi,j ! . . .ms+1,s+1!
(26i6j6s+1)

×

×
s+1∏
k=1

(bk)M2(k,s+1)

(ck)M2(k,s+1)
x
M2(k,s+1)
k F

[
a+N2(k, s+ 1), bk +M2(k, s+ 1);

ck +M2(k, s+ 1);
xk

] (10)

is valid.
We write the Hasanov-Srivastava’s formula (7) in the form

F
(s+1)
A

[
a, b1, . . . , bs+1;

c1, . . . , cs+1;
x1, . . . , xs+1

]
=

=
∞∑

m2,2,...,m2,s+1=0

(a)N2(1,s+1)(b1)M2(1,s+1)(b2)m2,2 . . . (bs+1)m2,s+1

m2,2! . . .m2,s+1!(c1)M2(1,s+1)(c2)m2,2 . . . (cs+1)m2,s+1

×

× x
M2(1,s+1)
1 x

m2,2

2 . . . x
m2,s+1

s+1 F

[
a+N2(1, s+ 1), b1 +M2(1, s+ 1);

c1 +M2(1, s+ 1);
x1

]
×

× F
(s)
A

[
a+N2(1, s+ 1), b2 +m2,2, . . . , bs+1 +m2,s+1;

c2 +m2,2, . . . , cs+1 +m2,s+1;
x2, . . . , xs+1

]
.

(11)
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By virtue of the formula (9) we have

F
(s)
A

[
a+N2(1, s+ 1), b2 +m2,2, . . . , bs+1 +m2,s+1;

c2 +m2,2, . . . , cs+1 +m2,s+1;
x2, . . . , xs+1

]
=

=
∞∑

mi,j=0
(36i6j6s+1)

(a+N2(1, s+ 1))N3(s+1,s+1)

m3,3!m3,4! . . .mi,j ! . . .ms+1,s+1!
(36i6j6s+1)

s+1∏
k=2

(bk +m2,k)M3(k,s+1)

(ck +m2,k)M3(k,s+1)
x
M3(k,s+1)
k ×

× F

[
a+N2(1, s+ 1) +N3(k, s+ 1), bk +m2,k +M3(k, s+ 1);

ck +m2,k +M3(k, s+ 1);
xk

]
.

(12)

Substituting from (12) into (11) we obtain

F
(s+1)
A [a, b1, . . . , bs+1; c1, . . . , cs+1;x1, . . . , xs+1] =

=
∞∑

mi,j=0
(26i6j6s+1)

(a)N2(1,s+1)+N3(s+1,s+1)

m2,2!m2,3! . . .mi,j ! . . .ms+1,s+1!
(26i6j6s+1)

s+1∏
k=1

(bk)m2,k+M3(k,s+1)

(ck)m2,k+M3(k,s+1)
x
m2,k+M3(k,s+1)
k ×

× F

[
a+N2(1, s+ 1) +N3(k, s+ 1),bk +m2,k +M3(k, s+ 1);

ck +m2,k +M3(k, s+ 1);
xk

]
.

Further, by virtue of the following obvious equalities

N2(1, s+ 1) +N3(k, s+ 1) = N2(k, s+ 1), 1 6 k 6 s+ 1, s ∈ N,

m2,k +M3(k, s+ 1) =M2(k, s+ 1), 1 6 k 6 s+ 1, s ∈ N,

we finally find the equality (10). The lemma is proved. 2

2. Fundamental solutions

Consider equation (1) in Rn+m . Let x := (x1, . . . , xm) be any point and ξ := (ξ1, . . . , ξm) be
any fixed point of Rn+m . We search for a solution of (1) as follows:

u(x, ξ) = P (r)w(σ), (13)

where
σ = (σ1, . . . , σn) , α̃0 = α1 + · · ·+ αn − 1 +

m

2
,

P (r) =
(
r2
)−α̃0

, r2 =
m∑
i=1

(xi − ξi)
2,

r2k = (xk + ξk)
2 +

m∑
i=1,i̸=k

(xi − ξi)
2, σk =

r2 − r2k
r2

, k = 1, 2, . . . , n.

We calculate all necessary derivatives and substitute them into equation (1) :

n∑
k=1

Akωσkσk
+

n∑
k=1

n∑
l=k+1

Bk,lωσkσl
+

n∑
k=1

Ckωσk
+Dω = 0, (14)
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where

Ak = P
m∑
i=1

(
∂σk
∂xi

)2

, Bk,l = 2P
m∑
i=1

∂σk
∂xi

∂σl
∂xi

, k ̸= l, k = 1, . . . , n,

Ck = P
m∑
i=1

∂2σk
∂x2i

+ 2
m∑
i=1

∂P

∂xi

∂σk
∂xi

+ 2P
n∑
j=1

αj
xj

∂σk
∂xj

,

D =
m∑
i=1

∂2P

∂x2i
+ 2P

n∑
j=1

αj
xj

∂P

∂xj
.

After several evaluations we find

Ak = −4P (r)

r2
xk
ξk
σk(1− σk), (15)

Bk,l =
4P (r)

r2

(
ξk
xk

+
ξl
xl

)
σkσl, k ̸= l, l = 1, . . . , n, (16)

Ck = −4P (r)

r2

−σk
n∑
j=1

ξj
xj
αj +

ξk
xk

[2αk − α̃0σk]

, (17)

D =
4α̃0P (r)

r2

n∑
j=1

ξj
xj
αj . (18)

Substituting equalities (15)–(18) into (14) we obtain the following system of hypergeometric
equations of Lauricella [28], which has 2n linearly-independent solutions. Considering those
solutions, from (13) we obtain 2n fundamental solutions of equation (1):

1{F (n)
A

[
a, b1, . . . , bn;

c1, . . . , cn;
σ

]
, (19)

C1
n


(x1ξ1)

1−c1F
(n)
A

[
a+ 1− c1, b1 + 1− c1, b2, . . . , bn;

2− c1, c2, . . . , cn;
σ

]
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(xnξn)
1−cnF

(n)
A

[
a+ 1− cn, b1, . . . , bn−1, bn + 1− cn;

c1, . . . , cn−1, 2− cn;
σ

]
,

(20)

C2
n



(x1ξ1)
1−c1(x2ξ2)

1−c2F
(n)
A

[
a+ 2− c1 − c2, b1 + 1− c1, b2 + 1− c2, b3, ..., bn;

2− c1, 2− c2, c3, . . . , cn;
σ

]
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(x1ξ1)
1−c1(xnξn)

1−cnF
(n)
A

[
a+ 2− c1 − cn, b1 + 1− c1, b2, . . . , bn−1, bn + 1− cn;

2− c1, c2, . . . , cn−1, 2− cn;
σ

]
,

(x2ξ2)
1−c2(x3ξ3)

1−c3F
(n)
A

[
a+ 2− c2 − c3, b1, b2 + 1− c2, b3 + 1− c3, b4, . . . , bn;

c1, 2− c2, 2− c3, c4, . . . , cn;
σ

]
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(xn−1ξn−1)
1−cn−1

(xnξn)cn−1
F

(n)
A

[
a+ 2−cn−1−cn, b1, . . . , bn−2, bn−1+ 1−cn−1, bn+1−cn;

c1, . . . , cn−2, 2− cn−1, 2− cn;
σ

]
,

(21)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1

{
(x1ξ1)

1−c1 · · · · · (xnξn)1−cnF (n)
A

[
a+ n− c1 − · · · − cn, b1 + 1− c1, . . . , bn + 1− cn;

2− c1, . . . , 2− cn;
σ

]
,

where
a = α̃0, bi = αi, ci = 2αi, 1 6 i 6 n; Ckn =

n!

k!(n− k)!
, 0 6 k 6 n.

It is easy to see that in (19) there is one function, in (20) there are C1
n = n functions, in (21)

there are C2
n = n(n− 1)/2 functions and so on, and therefore

1 + C1
n + C2

n + · · ·+ Cn−1
n + 1 = 2n.

Taking into account the symmetry property of the Lauricella function F
(n)
A with respect to

the parameters b1, . . . , bn, c1, . . . , cn, we can reduced the quantity of the fundamental solutions
that are necessary in the study of boundary value problems: from each of the systems (19), (20),
(21) and so on we take only one fundamental solution. Consequently, all n+ 1 (non-symmetric)
fundamental solutions of equation (1) can be written in the form which is a convenient for further
investigation:

q0 (x, ξ) = γ0r
−2α̃0F

(n)
A

[
α̃0, α1, . . . , αn;

2α1, . . . , 2αn;
σ

]
, (22)

qk (x, ξ)= γk

k∏
i=1

(xiξi)
1−2αi ·r−2α̃kF

(n)
A

[
α̃k, 1− α1, . . . , 1− αk, αk+1, . . . , αn;

2− 2α1, . . . , 2− 2αk, 2αk+1, . . . , 2αn;
σ

]
, k = 1, n, (23)

where
α̃k =

m

2
+ k − 1− α1 − · · · − αk + αk+1 + · · ·+ αn, k = 1, n,

γk = 22α̃k−mΓ (α̃k)

πm/2

n∏
i=k+1

Γ (αi)

Γ (2αi)

k∏
j=1

Γ (1− αj)

Γ (2− 2αj)
, k = 0, n.

3. Singularity properties of fundamental solutions

Let us show that the fundamental solutions (22) and (23) have a singularity at r = 0.
We choose a solution q0(x, ξ) and we use the expansion for the hypergeometric function of

Lauricella (8). As a result, a solution defined by (22) can be written as follows

q0(x, ξ) = γ0r
−2α̃0

∞∑
mi,j=0

(26i6j6n)

(α̃0)N2(n,n)

m2,2!m2,3! . . .mi,j ! . . .mn,n!
(26i6j6n)

×

×
n∏
k=1

(αk)M2(k,n)

(2αk)M2(k,n)

(
1− r2k

r2

)M2(k,n)

F

[
α̃0 +N2(k, n), αk +M2(k, n);

2αk +M2(k, n);
1− r2k

r2

]
.

(24)

By virtue of formula (3) we rewrite (24) as

q0(x, ξ) =
γ0
rm−2

n∏
k=1

r−2αk

k · f0
(
r2, r21, . . . , r

2
n

)
,

where
f0
(
r2, r21, . . . , r

2
n

)
=

∞∑
mi,j=0

(26i6j6n)

(α̃0)N2(n,n)

m2,2!m2,3! · · ·mi,j ! · · ·mn,n!
(26i6j6n)

×
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×
n∏
k=1

(αk)M2(k,n)

(2αk)M2(k,n)

(
r2

r2k
− 1

)M2(k,n)

F

[
2αk − α̃0 +M2(k, n)−N2(k, n), αk +M2(k, n);

2αk +M2(k, n);
1− r2

r2k

]
.

Below we show that f0
(
r2, r21, . . . , r

2
n

)
will be constant at r → 0.

For this aim we use an equality (2) and following inequality

N2(k, n)−M2(k, n) :=
k∑
i=2

 n∑
j=i

mi,j −mi,k

 > 0, 1 6 k 6 n 6 m.

Then we get

lim
r→0

f0
(
r2, r21, . . . , r

2
n

)
=

1

Γn(α̃0)

n∏
k=1

Γ (2αk) Γ (α̃0 − αk)

Γ (αk)
. (25)

Expressions (24) and (25) give us the possibility to conclude that the solution q0(x, ξ) reduces
to infinity of the order r2−m at r → 0. Similarly it is possible to be convinced that solutions
qk(x; ξ), k = 1, 2, . . . , n also reduce to infinity of the order r2−m when r → 0.

It can be directly checked that constructed functions (22) and (23) possess following properties(
x
2αj

j

∂q0 (x, ξ)

∂xj

)∣∣∣∣
xj=0

= 0, qn (x, ξ)|xj=0 = 0, 1 6 j 6 n,

qk (x, ξ)|xj=0 = 0, 1 6 j 6 k,

(
x
2αj

j

∂qk (x, ξ)

∂xj

)∣∣∣∣
xj=0

= 0, k + 1 6 j 6 n, 1 6 k 6 n− 1.
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Фундаментальные решения многомерного эллиптического
уравнения с несколькими сингулярными коэффициентами

Тухтасин Г.Эргашев
Институт математики Академии наук Узбекистана

Ташкент, Узбекистан

Аннотация. Основным результатом настоящей работы является построение фундаментальных
решений для одного класса эллиптических уравнений с несколькими сингулярными коэффициен-
тами. Поскольку эти решения напрямую связаны с гипергеометрическими функциями многих пе-
ременных Лауричелла, то для изучения свойств найденных фундаментальных решений требуется
найти формулу разложения, которая выражала бы многомерную гипергеометрическую функцию
в виде суммы произведений нескольких более простых гипергеометрических функций с меньшим
числом переменных. В этой работе такая формула доказана вместо ранее существовавшей рекур-
рентной формулы и определен порядок особенности фундаментальных решений.

Ключевые слова: многомерное эллиптическое уравнение с несколькими сингулярными коэффи-
циентами, фундаментальные решения, формула разложения.
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Abstract. The purpose of this paper is the description of Berry’s phase, in the Euclidean Path Integral
formalism, for 2D quadratic system: two time dependent coupled harmonic oscillators. This treatment
is achieved by using the adiabatic approximation in the commutative and noncommutative phase space.
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1. Introduction and preliminaries

The classical geometry is based on the duality between the geometry and the commutative
algebra. In commutative algebra, the product of two algebraic quantities is independent from
the order. In Quantum Mechanics, following Heisenberg’s viewpoint, the geometry of the states
space describing a microscopic system, an atom for example, has a new property such as the
momentum and the position are non-commuting operators [1–7]:

[xi, xj ] = iθij , [pi, pj ] = iσij , [xi, pj ] = iδij . (1)

The purpose of noncommutative geometry is to generalize the duality of space geometry [8–10]
and algebra to the more general situation where the algebra is not commutative. This leads to
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change two fundamental concepts of mathematics, those of space and symmetry and adjusts all
the mathematical tools in these new paradigms.

The prime interest of the theory comes entirely from new and unexpected phenomena that
have no counterpart in the case of commutative geometry. The commutative Riemannian geom-
etry which provides a framework of general relativity was generalized by Einstein to "quantum"
version.

The passage of the Riemann geometry to the noncommutative geometry [11] is the transition
from the measurement of distances to the use of operators algebra. This gives a notion of a
spectral nature of geometric space which is more flexible.

The noncommutative geometry treats both the noninteger dimension space [12,13], an infinite
dimension space, especially "quantum" space and finally the space-time itself. If we take into
account, not only the electromagnetic strength (which led to Poincaré, Einstein and Minkowski
model of spacetime), but also the weak and strong forces, the use of the noncommutative space-
time properties becomes necessary.

Furthermore, Feynman paths integrals method encounters substantial difficulties when used
in a noncommutative space because it is basically meaningless to talk about path in a noncom-
mutative spacetime. Therefore the formulation of path integrals must done not in the space
of noncommutative coordinates itself but in the space of noncommutative phase space (mixed
space). This is required by the spirit of the Feynman path integrals construction.

Indeed, we consider a space-time (2 + 1)-dimensions, which can be easily generalized to
higher dimensions. So, to conciliate our work in the canonical formalism, we used a full basis of
commuting operators. We shall take as space, the configuration space (x1, p2) built on commuting
operators such that we avoid the noncommutativity.

In this paper we are mainly concerned with two coupled harmonic oscillators with arbitrary
time dependent frequencies and masses leading to use some time-dependent transformations. The
originality of this work, is the description of the system in the noncommutative mixed phase space
by using the path integral techniques to extract the "Berry’s phase". We recall that Berry’s phase
has attracted the attention of many physicists, it was first discovered in 1956, and rediscovered in
1984 by Berry who has published a paper [14] which has until now deeply influenced the physical
community. Therein he considers cyclic evolutions of systems under special conditions, namely
adiabatic ones. He finds that an additional phase factor occurs in contrast to the well known
dynamical phase factor. This phenomenon can be described by "global change without local
change". Berry points out the geometrical character of this phase which is not negligible because
of its non integrable character [15]. This was not the first time such a phase factor appears,
for instance, considerations of the Born-Oppenheimer approximation done by Mead and Truhlar
in 1979 revealed also this additional phase factor but it had been neglected [16]. Berry showed
that this was not correct because the phase is a gauge invariant and therefore can not be gauged
away.

A brief outline of the present paper is as follows: in the next section, we give the construc-
tion of the path integral in the noncommutative phase space. In Section 3, we present two
applications, the first one is the time dependent coupled harmonic oscillators in commutative
phase space, the second application deals with the time-dependent coupled harmonic oscillators
in noncommutative phase space. In each case, Berry’s phase (geometric phase) was derived as
well as the dynamic phase. A conclusion is provided in the last section.

2. Path integral in noncommutative phase space

In this section we must be concerned with Feynman’s path integral formalism, which is
described by a Hamiltonian H (x, p) made up the cartesian coordinates xi, and their canonically
conjugate momenta pj . Nevertheless, unlike the usual case, "coordinates and momenta" are
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assumed to obey the noncommutative rules.

[xi, xj ] = iθij , [pi, pj ] = iΣij , [xi, pj ] = iδij , (2)

where Θ and Σ are two-antisymmetric matrix such as Θ12 = θ and Σ12 = σ. To these com-
mutation relations correspond the deformed Poisson brackets in classical phase space defined
as

{xi, xj} = θij , {pi, pj} = Σij , {xi, pj} = δij , (3)

where Θ and Σ are noncommutative parameters.
Acting on the Heisenberg algebra (2), it is easy to found the Path integral in noncommutative

phase space. But in this work, we propose to build the path integral while maintaining the spirit
of Feynman’s construction. On this basis, we choose the mixed phase space i.e. QT = (x1, p2)
and PT = (x2, p1).

A path integral formalism in noncommutative mixed coordinates is

Kθσ(Q
i, Qf , T ) =

∫
DQDP exp

[
i

∫ [
PJ−1

θσ Q̇−H (Q,P )
]
dt

]
, (4)

where QT = (x1, p2), PT = (x2, p1) and (Jθ,σ)ij =

(
θ 1
−1 −σ

)
is the symplectic form. For

simplicity, the propagator (4), using linear canonical transformation which known as Bopp-shift
in form matrix, may be written as

Kθσ(Q
i, Qf , T ) =

∫
DQDP exp

[
i

∫ [
PJ−1

0,0 Q̇−Hθσ

(
Q, ĀP

)]
dt

]
, (5)

where
J0,0 =

(
0 1
−1 0

)
, Ā =

(
1 θ
σ 1

)
.

As θ and σ are very small parameters, we set Ā = 1 + β, with β =

(
0 θ
σ 0

)
, then

Hθσ

(
Q, ĀP

)
= H(Q,P ) +Hβ(Q,P ), (6)

with Hβ(Q,P ) is now a small perturbation added to the Hamiltonian such that we can use
Taylor’s expansion of the Hamiltonian

Hβ(Q,P ) ≃ (βP )
T ∂H(Q,P )

∂P
+
∑
ij

1

2!
(βP )

T
i (βP )j

∂2H(Q,P )

∂Pi∂Pj
. (7)

The Feynman’s formalism for a general potential in noncommutative phase space is given by

Kθσ(Q
i, Qf , T ) =

∫
DQDP exp

[
i

∫
dt
(
PJ−1Q̇−H(Q,P )−Hβ(Q,P )

)]
. (8)

The main goal of this paper is to find Berry phase of the 2-dimensional coupled harmonic oscilla-
tors in two cases the first one in commutative phase space, and the second case in noncommuta-
tive phase space, under the Euclidean path integral formalism. The original premise for Berry’s
phase is the adiabatic theorem of quantum mechanics [17], which deals with a system coupled
to a slowly changing environment: the Hamiltonian system H (t) varies adiabatically.

To extract the Berry’s phase from the propagator (8) , we follow the method used by Kashiwa
to obtain the Berry’s phase for one dimension harmonic oscillator , in which it summarizes as
follows [18].

– 60 –



Leila Khiari, Tahar Boudjedaa . . . Berry Phase for Time-Dependent Coupled Harmonic Oscillators . . .

1. Consider the Euclidean kernel for the given Hamiltonian: ( t → −it) while keeping the
external variables unchanged.

2. Examine the large T limit of the kernel.

3. Find the imaginary part of O(T ) from the exponent of the kernel.

So, In the Euclidean space ( t→ −it) and for adiabatic approximation, we set s =
t

T
with T

very large, the(8) is given by:

Kθσ(Q
i, Qf , T ) =

∫
DQDP exp

[
T

∫
ds

(
i

T
PJ−1Q̇−H(Q,P )−Hβ(Q,P )

)]
, (9)

this latter is the Feynman’s formalism in non-commutative phase space. where, we put θ, σ → 0,
will return (9) to the commutative phase space (the usual phase space ) ,i.e, the (9) is given

K(Qi, Qf , T ) =

∫
DQDP exp

[
T

∫
ds

(
i

T
PJ−1Q̇−H(Q,P )

)]
. (10)

2.1. Time-dependent coupled harmonic oscillators in commutative
phase space

Consider a pair of coupled general time-dependent oscillators with same frequencies and
masses whose Hamiltonian in commutative phase space takes the form [21].

The quantum mechanical evolution of the system can be described by the Feynman propaga-
tor, in the mixed phase space QT = (x1, p2) and PT = (x2, p1) (formulation of Feynman’s path
integral), which is defined formally by

K(Qf , Qi; t) =

∫
DQDP =

= exp
[ ∫ (

(PJ−1
0,0 Q̇− 1

2
PM (t)P − 1

2
QW (t)Q− Pλ (t)Q

)
dt
]
. (11)

The matrices M(t), W (t) and λ(t) are time dependent functions given respectively by(
µ1 (t) 0
0 µ2 (t)

)
,

(
ω2
1 (t) 0
0 ω2

2 (t)

)
,

(
0 λ2 (t)

λ1 (t) 0

)
, (12)

where

µ1 (t) = m (t)ω2 (t) , µ2 (t) =
1

m (t)
, (13)

ω1 (t) = ω (t)
√
m (t), ω2 (t) =

1√
m (t)

. (14)

Now, we follow the steps [18] that we have mentioned previously, we take t → −it, and in

order to specify the adiabatic parameter
1

T
, we introduce a scaled times s = t/T in (11), and

after using change the variable P → JP on a level of Lagrange in (11), we get

K(Qi, Qf , T ) =

∫
DQDP =

= exp
[
T

∫ (
i

T
PQ̇− 1

2
P
(
J0,0MJ−1

0,0

)
P − 1

2
QW (s)Q− P (Jλ (s))Q

)
ds
]
. (15)
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If we want to transform a Hamiltonton into a simpler and more convenient one, this is
possible by using time-dependent canonical conversion, as the latter is very useful and effective
in researching the properties of dynamical systems described by a time-dependent Hamiltonian.
To simplify the Action given in (15), Let us introduce the canonical transformations which define
the new phase space (Q,P ) → (X,Π) [22–24] given by,(

P1

P2

)
=

 1√
µ2(s)

0

0 1√
µ1(s)

[( Π1

Π2

)
−
(
β1 (s) 0
0 β2 (s)

)(
X1

X2

)]
,

(
Q1

Q2

)
=

( √
µ2 (s) 0

0
√
µ1 (s)

)(
X1

X2

)
, (16)

where the functions β (s) can be conveniently chosen to make separation of variables straightfor-
ward possible. As a result of the transformation, and after using the gaussian integration over
Π, one may write (15) as

K(Qfj , Q
i
j ;T ) =

∫
DX exp

i [X (β (s))X]
T
0

2
=

= exp

{
T

∫ (
− 1

2T 2

·
X

·
X − 1

2
(Ωc1)

2
(s)X2

1 − 1

2
(Ωc2)

2
(s)X2

2

)
ds

}
, (17)

where (
Ωc(1,2) (s)

)2
= µ(2,1)ω

2
(1,2) − β2

(1,2) +
i

T
µ(2,1)

d

ds

(
β(1,2)

µ(2,1)

)
(18)

with

β1 (s) = λ1 (s)−
i

2T

µ̇2 (s)

µ2 (s)
, (19)

β2 (s) = −λ2 (s)−
i

2T

µ̇2 (s)

µ2 (s)
. (20)

Therefore, the propagator K(Qfj , Q
i
j ;T ) in (17) is now reduced to the sum of the propagators

for two uncoupled general time-dependent oscillators of frequencies Ωc(1,2)(s), and same masses
m(1,2) (s) = 1.

We know that the WKB-approximation, ~-expansion with ~ → 0 is almost equivalent to the
adiabatic approximation, 1

T -expansion with T → ∞, It is known as well as that the easiest way to
do the WKB approximation is the path integral, this is confirmed by Kashiwa in his article [18],
for this reason we see that the most appropriate way to perform an addiabatic approximation is
the path integral.

It is clear that we can see that the adiabatic approximation in (15), so it is very easy to treat
this latter directly by the semi-classical methods, in which case we resort to the Van Vleck-Pauli
formula [18].

Hence, we have the Van Vleck-Pauli formula

K(Qf , Qi;T ) =

√
det

(
i

2π

∂2S

∂Xf∂Xi

)
exp

(
−S

(
Xf , Xi;T

))
, (21)

where, S
(
Xf , Xi;T

)
is the classical action defined by

S
(
Xf , Xi;T

)
=
i [X (β (s))X]

T
0

2
+

∫ T

0

L
(
Xf , Xi;T

)
dt, (22)
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with
L =

−1

2T 2

(
dXj

ds

)(
dXj

ds

)
− 1

2

(
Ωcj(s)

)2
(Xj)

2
, j = 1, 2 (23)

Now, that we have done all the steps described in APPENDIX , we get the propagator that
accompanies this latter (23),

K(Qf , Qi;T ) =
2∏
j=1

K(Qf

j , Q
i
j ;T ), (24)

with

K(Qf

j , Q
i
j ;T ) =

{ 2

Π
j=1

(
wc
j(T )w

c
j(0)

) 1
2

2 sinhΘj(T )

}
exp

−

√
wc
j(T )w

c
j(0)

2 sinhΘj(T )
=

=

{(√
wc
j(T )

wc
j(0)

(
Xf
j

)2
+

√
wc
j(0)

wc
j(T )

(
Xi
j

)2)
coshΘj(s)− 2Xf

j X
i
j

}
=

= − exp
i [Xβ (s)X]

T
0

2

)
(25)

and where X1 and X2 are given by (16).
As it is known, informations on the ground state can be derived by setting T → ∞ in (25) .

In fact, when we take this limit we obtain:

K(Qf , Qi;T ) ∼
T→∞

(
2

Π
j=1

(
wc
j(T )w

c
j(0)

) 1
4

)
e−

1
2Σ

2
j=1Θj(T )×

×
2

Π
j=1

exp

{((
wc
j(T ) + iβ (T )

) (
Xf
j

)2
+
(
wc
j(0)− iβ (0)

) (
Xi
j

)2)}
. (26)

In this formula, the imaginary part of Θ1(T ) and Θ2(T ) given by (63), corresponds to the Berry
phase,

γ(1,2)(T ) =
1

4

∫
dt

(
µ(2,1) (t)

w(1,2)(t)

d

dt

(
λ(1,2) (t)

µ(2,1) (t)

))
(27)

or

γ1(T ) =
1

4

∫ T

0

dt

(
1

m (t)
√
ω2 (t)− λ21 (t)

d

dt
(m (t)λ1 (t))

)
, (28)

γ2(T ) =
1

4

∫ T

0

dt

(
m (t)ω2 (t)√
ω2 (t)− λ22 (t)

d

dt

(
λ2 (t)

m (t)ω2 (t)

))
. (29)

whereas the real parts of Θ1(T ) and Θ2(T ), correspond to the dynamical phase.

2.2. Time-dependent coupled harmonic oscillator in noncommutative
phase space

To specify a particular system in the context of non-commutative quantum mechanics it is
necessary to define the Hamiltonian Hθσ = Hnc. The latter must be chosen so that it is reduced
to standard Hamiltonian. We consider a system of two coupled harmonic oscillators where the
hamiltonian H (t) is an explicit function of time, via the frequency ω (t) and the mass m (t) which
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are functions of time. In the case of noncommutative phase space, this system is described by
the following hamiltonian:

Hθσ (x1, x2; p1, p2) ≃
(

1

2m (t)
+
m (t) θ2ω2 (t)

2

)
p21 +

p22
2m(t)

+
1

2
m(t)ω2(t)x21 +

+

(
m (t)ω2 (t)

2
+

σ2

2m (t)

)
x22 + λ1 (t)σx1x2 + λ2θp1p2 +

+

(
σ

m (t)
+ θm (t)ω2 (t)

)
p1x2 + λ1 (t) p1x1 + λ2 (t) p2x2, (30)

where θ and σ are the deformed parameters defined above in Section 2.
We rewrite (30) using mixed coordinates Q = (Q1, Q2) = (x1, p2) and P = (P1, P2) = (x2, p1).

Therefore the compact form of the above Hamiltonian is:

Hθσ(Q,P ) =
1

2
PM(t)P +

1

2
QW (t)Q+ Pλ(t)Q, (31)

where

M(t) =

(
µ1(t) b (t)
b (t) µ2(t)

)
, W (t) =

(
ω2
1 (t) 0
0 ω2

2 (t)

)
, λ (t) =

(
λ1 (t)σ λ2 (t)
λ1 (t) λ2 (t) θ

)
(32)

with

µ1(t) =

(
m (t)ω2 (t) +

σ2

m (t)

)
, µ2(t) =

(
1

m (t)
+m (t) θ2ω2 (t)

)
, (33)

b (t) =

(
σ

m (t)
+ θm (t)ω2 (t)

)
, (34)

ω1 (t) =
√
m (t)ω (t) , ω2 (t) =

1√
m (t)

. (35)

We suggested setting θ = −σ and m2 (t)ω2 (t) = 1 to facilitate calculations, avoid repetition
and reduce steps.

After this simplification, the matrix becomes as follows:

M(t) =

 µ1(t) =
1

m (t)

(
1 + σ2

)
0

0 µ2(t) =
1

m (t)

(
1 + σ2

)
 . (36)

The quantum mechanical evolution of the hamiltonian (30) can be described by the prop-
agator, in the non-commutative phase space formulation of Feynman’s path integral, which is
defined by:

Kθσ(Q
f , Qi;T ) =

∫
DQDP =

= exp
[
T

∫ (( i
T
PQ̇− 1

2

(
P
(
J−1M(s)J

)
P +QW (s)Q+ 2P

(
J−1λ(s)

)
Q
) ))

ds
]
. (37)

In this subsection, we are mainly interested to find the Berry’s phase in the Euclidean path
integral formalism in non-commutative phase space.

And to find the Berry phase in non-commutative phase space, we will follow the same steps
we took in the case of the commutative phase space of two coupled harmonic oscillators, then
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we compare between the both applications in order to highlight the impact of the deformation
parameters (θ, σ) on the hamiltonian.

We can see the path integral (37) is not trivial but can be important. In the case of mak-
ing this equation (37) to a more easily form, it is useful to use the time-dependent canonical
transformation. This transformation leads to an effective diagonal Hamiltonian in terms of non-
commutative coordinates.

In order to remove the matrix
(
J−1M(s)J

)
and

(
J−1λ(s)

)
, we can use the time-dependent

canonical transformation (P,Q) → (Π, X) similar to that provided in [23] and [24]:

(
P1

P2

)
=


1
√
µ

0

0
1
√
µ

(( Π1

Π2

)
−
(
β11 (s) β12 (s)
β21 (s) β22 (s)

)(
X1

X2

))
, (38)

(
Q1

Q2

)
=

( √
µ 0
0

√
µ

)(
X1

X2

)
. (39)

Hence, the new propagator for the system becomes

Kθσ(Q
f , Qi;T ) =

∫
DXDΠexp

[
i (X (β (s) + βt (s))X)

2

]T
0

×

× exp (T )

∫
ds

(
i

T
ΠẊ − 1

2
ΠΠ− 1

2
XΩnc(s)X

)
, (40)

where

(Ωnc1 )
2

= µω2
1 (t) + λ21 − σ2

(
λ1λ2 −

1

2
λ22

)
− i

T
µ
d

ds

(
β11
µ

)
, (41)

(Ωnc2 )
2

= µω2
2 (t) + λ22 − σ2

(
λ1λ2 −

1

2
λ21

)
− i

T
µ
d

ds

(
β22
µ

)
, (42)

Ωnc3 = − i

T
µ
d

ds

(
β12
µ

)
− i

T
µ
d

ds

(
β21
µ

)
(43)

and the matrices elements of β (s) are

β(11) (s) = λ(1,2) −
i

2T

µ̇

µ
, (44)

β(22) (s) = −λ(1,2) −
i

2T

µ̇

µ
, (45)

β(12,21) (s) = −σλ(2,1) (46)

in this case we took σ̇ = 0, and in put λ1 = −λ2 = λ the relations (41), (42) and (43) becomes:(
Ωnc(1,2)

)2
(s) =

(
wnc

(1,2)

)2
(s)− 1

T
ω̃nc(1,2)(s), (47)

where (
wnc

(1,2)

)2
(s) =

(
wc

(1,2)

)2
(s)− 3σ2

2
λ2(s) (48)

and
ω̃nc(1,2)(s) = −iµ d

ds

(
λ(s)

µ

)
, (49)
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where Ωc and Ωnc are commutative and noncommutative frecuency.
The Π-integration in (40) is easily performed to give the new propagator:

Kθσ(Q
f , Qi;T ) =

√
2π

∫
DX exp

[
i (X (β (s) + βt (s))X)

2

]T
0

=

= exp

[
T

∫
ds

( ∑
j=1,2

(
−1

2T 2

(
Ẋ2 − Ω2

j (s)X
2
j

)))]
(50)

The final expression of the propagator, for the system of two coupled harmonic oscillators in
non-commutative phase space governed by the Hamiltonian (30), is given by

K(Qf

j , Q
i
j ;T ) =

{
2

Π
j=1

(
wnc
j (T )wnc

j (0)
) 1

2

2 sinhΘj(T )

}
exp

−

√
wnc
j (T )wnc

j (0)

2 sinhΘj(T )
×

×

{(√
wnc
j (T )

wnc
j (0)

(
Xf
j

)2
+

√
wnc
j (0)

wnc
j (T )

(
Xi
j

)2)
coshΘj(s)− 2Xf

j X
i
j

}
−

− exp

[
i (X (β (s) + βt (s))X)

2

]T
0

)
, (51)

with

Θ(1,2)(s) = T

∫ s

0

dτ

(
wnc

(1,2)(τ)−
i

2T

µ(τ)

wnc
(1,2)(s)

d

dτ

(
λ(τ)

µ(τ)

))
. (52)

When we put T → ∞ we have a real and imaginary part. This last corresponds to the Berry’s
phase which are as follows

γ
(1,2)
θσ (s) =

T

4

∫
dτ

 µ(τ) ddτ

(
λ(τ)
µ(τ)

)
√(

wc
(1,2)

)2
(s)− 3σ2

2 λ2(s)

 . (53)

Finally, we have found the Berry phase in the non-commutative state where depends this latter
to the deformed parameters θ and σ, after we used a method of adiabatical approximation. In
the case of θ = σ = 0, we can obtain exactly Berry’s phase in the commutative phase space case.

Conclusion
In this paper we applied the path integral construction [1] in the noncommutative phase

space, in which the structure of the phase space is deformed by introducing two deformation
parameters θ and σ. We present an alternative treatment (via path integral formalism) for the
problem of the coupled harmonic oscillators in two dimensions with time-dependent mass and
frequency. We study two cases: the first one in commutative phase space and the second in
noncommutative phase space. The treatment is based on the use of time-dependent canonical
transformation and auxiliary time-dependent transformation by path integral techniques. To
each canonical transformation correspond a new mass and a new frequency.

We know that the Berry phase is limited to the adiabatic approximation. We have calculated
Berry phase in each case following the semi-classical solution via path integral. The result are
two functions γ(1) (t) and γ(2) (t) in terms of the system parameters are m (t) , ω (t), λ1 (t) and
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λ2 (t) in the commutative case, but, in the case of the non-commutative phase space, the result
are two functions also γ

(1)
θσ (t) and γ

(2)
θσ (t) in the terms of the system parameters m (t) , ω (t),

λ1 (t) and λ2 (t) , in addition to the deformations parameters θ and σ, It is easy to see that we
find the result of the Berry phase in commutative case in the limit θ, σ → 0.
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Appendix
Rewrite equation (18) as follows(

Ωcj (s)
)2

=
(
wc
j (s)

)2 − 1

T
w̃j (s) , j = 1, 2, (54)

where

wc
(1,2) (s) =

(
µ(2,1)ω

2
(1,2) − λ2(1,2) (s)

) 1
2

(55)

and
w̃(1,2) (s) = −iµ(2,1)

d

ds

(
β(1,2)

µ(2,1)

)
. (56)

From the Lagrangian (23) we extract the motion equations(
d2X(1,2)

ds2

)
− T 2Ω2

(1,2)(s)X(1,2) = 0. (57)

The boundary conditions are

X(j)(0) =
Qi(1,2)√
µ(2,1) (0)

, X(j)(T ) =
Qf(1,2)√
µ(2,1) (T )

, j = 1, 2. (58)

Now the only task needed here is to find a classical solution Xc
(j) of Equation (57), we consider

for this the two Ansatz

X(1,2) = eT
∫ s
0
dσρ(1,2)(σ)a(1,2); ρ(1,2)(s) =

∞∑
n=0

ρ(1,2)n (0)

(
1

T

)n
, (59)

where a(1,2) is a given constant. Substituting equation (59) into (57), and using (54), lead to

T 2
(
ρ
(1,2)
0

)2
+ T ρ̇

(1,2)
0 +

(
ρ
(1,2)
1

)2
− T 2

(
wc

(1,2) (s)
)2

− Tw̃(1,2) (s) = 0. (60)
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By identification of coefficients with respect to T, and by restricting to O(T 2) and O(T ), we
obtain 

ρ
(1,2)
0 = ±wc

(1,2)(s) O(T 2)

ρ
(1,2)
1 =

−ρ̇(1,2)0 + w̃(1,2)(s)

2ρ
(1,2)
0

O(T ).
(61)

Finally, by taking into account the boundary condition (58), we get

X(1,2)(s) =
1√

wc
(1,2)(s) sinhΘ(1,2)(T )


√

wc
(1,2)(T )

µ(1,2) (T )
Qf(1,2) sinhΘ12(s) +

+

√
wc

(1,2)(0)

µ(1,2) (0)
Qi(1,2) sinh Θ̄(1,2)(s)

×
{
1 +O

(
1

T

)}
, (62)

where

Θ(1,2)(s) = T

∫ s

0

dτ

(
wc

(1,2)(τ)−
i

2T

µ(2,1)(τ)

wc
(1,2)(τ)

d

dτ

(
λ(1,2)(τ)

µ(2,1)(τ)

))
(63)

and Θ̄j(s) = Θj(T ) − Θj(s). The action S
(
Xf , Xi;T

)
could be computed using the last solu-

tion. Indeed, integration by parts in the kinetic term of the action and the use of the motion
equation (57) give

S
(
Xf , Xi;T

)
=
i [Xβ (s)X]

T
0

2
+

∫ T

0

(
−1

2T 2

(
dXj

ds

)(
dXj

ds

)
− 1

2
Ω2
j (s)X

2
j

)
ds =

=
i [Xβ (s)X]

T
0

2
+

1

2T

[
X(1,2)

dX(1,2)

ds

]T
0

≃ S1 + S2. (64)

Straightforward calculation provides

S2 =

√
wc

(1,2)(T )w
c
(1,2)(0)

2 sinhΘ(1,2)(T )
×

×



√√√√wc

(1,2)(T )

wc
(1,2)(0)

(
Xf

(1,2)

)2
+

√√√√wc
(1,2)(0)

wc
(1,2)(T )

(
Xi

(1,2)

)2 cothΘ(1,2)(T )− 2Xf
(1,2)X

i
(1,2)

 , (65)

yielding the determinant to√√√√det

(
i

2π

∂2S

∂Xf
(1,2)∂X

i
(1,2)

)
=

√
wc

(1,2)(T )w
c
(1,2)(0)

2 sinhΘ(1,2)(T )
.

√
wc

(1,2)(T )w
c
(1,2)(0)

µ(1,2)(0)µ(1,2)(T )
(66)

– 69 –



Leila Khiari, Tahar Boudjedaa . . . Berry Phase for Time-Dependent Coupled Harmonic Oscillators . . .

Фаза Берри для нестационарных связанных
гармонических осцилляторов в некоммутативном
фазовом пространстве с помощью методов интеграла
по траектории
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Аннотация. Целью данной работы является описание фазы Берри в формализме евклидова инте-
грала по путям для двумерной квадратичной системы: двух связанных во времени гармонических
осцилляторов. Эта обработка достигается с помощью адиабатического приближения в коммута-
тивном и некоммутативном фазовом пространстве.

Ключевые слова: фаза Берри, некоммутативное фазовое пространство, связанные осциллято-
ры.
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Abstract. The article discusses theoretical aspects of seismic wave excitation of in the aquatic environ-
ment, addresses the problems of instrumental implementation of a fundamentally new source of seismic
vibrations that can work: in the water area, in tidal and coastal zones. The scientific substantiation of
the developed seismic source (SS) design is given.

The results of the seismic influence simulation of hydrodynamic resistance on the media, as well as the
formation of the “added mass” are given. The results were obtained using the developed mathematical
model of the motion of the radiating surface. Based on the experimental work, a comparative analysis
of the energy efficiency of the developed seismic source model and the serial sample of the VEM-50
"Yenisei" water seismic source was made. Experimental results were obtained at the geophysical well of
the test and training area.
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1. Rationale of aqueous seismic source structure

To conduct investigational studies of effective excitation of seismic vibrations in an aqueous
medium. The experimental model of electromagnetic seismic source (EMSS) was created. There
is the short-stroke electromagnetic drive inside the outrigger float is loaded on the reaction mass
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of the outrigger float M and forces on outrigger buttom, which is radiator seismic vibrations.
The 3D model of EMSS is shown in Fig. 1.

Fig. 1. The EMSS model for water areas: a — 3D model; b — physical configuration of experi-
mental model and outrigger float

The initial data are set based on the required characteristics of the EMSS. Let us conduct an
estimated calculation of the design parameters of the seismic source:

— electromagnetic traction force, FEM=25000 N;

— the magnetic gap between the anchor and inductor, δ=4 mm;

— current impulse time, τ=3 ms;

— power-supply voltage of energizing coil, U=1200 V.

The magnetic core is made of electrical steel, which provides maximum value of induction
B=2 T, then the magnetic force in the core Hst=150 A/m. The steel grade selection is based on
need for ensure maximum value of induction of a magnetic field B when the magnetizing force is
the least [3]. The required cross section of the magnet core is determined by the electromagnet
traction force FEM=25 kN:

SMC =
FEM · µ
B2

= 78.5 · 10−4m2. (1)

We use a square magnetic core for the inductor with dimensions of 9×9=0.81 m2. The field
line length of the magnet core l=0.6 m. The required magnetization current is determined by
the formula [1]:

I = IMC + Iδ = Hst · l +B
2δ

µ0
= 12890A, (2)

where IMC is magnetization current of magnetic core; Iδ is magnetization current of the magnetic
gap.

The voltage of the magnetizing coil is determined by the formula [1]:

UL = B · n · SMC/τCP , (3)

where n is number of turns in the magnetizing coil; τCP is magnetization current pulse duration.
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The limit numbers of turns n for the area of magnetic core in case of SMC=0.0081 m2 and
τCP=1 ms is determined by setting a maximum allowable voltage UL=1200 V. It is determined
from the formula (3).

n =
UL · τCP
B · SMC

= 74.

The inductance of the inductor magnetizing coil L is determined by the formula:

L =
1, 26 · 10−6 · n2 · SMC

δ
= 6, 5 mH. (4)

The active resistance r of the inductor magneting coil, wen an average length of the turn
l=0.5 m, and in case of a copper ribbon of coil has a specific resistance ρW=0.018 (Ω ·m)/mm2

and cross-sectional area SW = 40× 0.5 = 20 mm2 is:

r =
lc · n · ρW

SW
= 0.032 Ω.

The actual induction in the magnetic gap will be by 20% less due to dispersion [1], therefore,
the gap induction will be B= 1.5 T. Then an actual electromagnetic traction force FEM will be:

FEM =
B2 · SMC

2µ0
= 16580N. (5)

2. The experimental technique and the results of
comparison tests

The experiments were carried out at a 100 m deep well with a known structure of a geological
cross-section in the water basin of a test-and-training geophysical range (Minusinsk, Krasnoyarsk
Territory). The MSK SGD-SLM "Gnome" seismic station was used with the SGD-SLM/G3
measuring acoustic to record the seismic signal level in the well. The acoustic probe consistently
lowered to a depth of 50 m and 100 m. The VEM-50 "Yenisei" water seismic source with a peak
force of 500 kN was used as a comparative sample. A series of 10 impacts was made for both
seismic sources and for each position of the acoustic probe in the well.

An experimental verification of the calculated characteristics of the seismic source was carried
out by recording the parameters of the force and pressure in water using by accelerometer and
hydrophone. The accelerometer was located on the impact plate. The hydrophone was placed
in water to a depth h=1 m under the emitter plate (Fig. 2).

The measured acceleration magnitude of the emitter is a=450 m/s2. Then a total mass of
the emitter (anchor + float) is 38 kg and the dimension of the dispersion plate is 60×60 cm, a
scalar electromagnetic traction force FEM applied to the emitter is:

FEM = m · a = 17100N.

Moreover, a pressure applied by the base plate at the interface is:

PEM =
FEM
S

= 0.475 kg/cm2.

The estimated values are in good agreement with a theoretical values of the force
obtained according to the formula (5). A pressure value satisfies a limiting condition
PEM <Pmax = 1 kg/cm2, causing parasitic cavitation processes in the emitter zone.
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Fig. 2. EMSS model lowered in a test water tank

The impulse action is bipolar, as shown in the Fig. 3. On this basis it can be concluded
that the choice of EMSS design was correct. The peak voltage of the positive half-wave on the
hydrophone (the radiating plate moves upward), with a shock force of FEM=1 kN, is Ug=700 mV.
When a hydrophone sensitivity is γ=39 µV/Pa, the pressure Pg at a depth of 1 m will be:

Pg =
Ug
γ

≈ 18 kPa = 0.018 kg/cm2.

Fig. 3. The signal level recorded hydrophone

In Fig. 3 the residual oscillation is a multiplere reflection of the signal from the bottom and
walls of the test water tank.

3. Investigation of the seismic activity of EMSS during
bipolar excitation of the medium

The level of signals recorded in the well at a depth of h=100 m from the VEM-50 and EMSS
seismic sources located in the test water tank are chown in Figs. 4 a, b. The results of the
comparative tests are presented in the Tab. 1. There are levels of the recorded signals from the
samples at different depths.
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Table 1. The voltage at the geophone output when testing VEM and EMSS

VEM amplitude signal, mV EMSS amplitude signal, mVNumber of observations
Umax1 Umax2 Umax1 Umax2

1 0.0939 0.1085 0.0091 0.0140
2 0.0948 0.1068 0.0083 0.0143
3 0.0956 0.1060 0.0090 0.0143
4 0.0946 0.1079 0.0099 0.0147
5 0.0951 0.1093 0.0097 0.0150
6 0.0939 0.1095 0.0083 0.0143
7 0.0951 0.1092 0.0095 0.0123
8 0.0920 0.1113 0.0097 0.0153
9 0.0946 0.1119 0.0087 0.0130
10 0.0937 0.1095 0.0095 0.0143

An analysis of the signals received at a depth of 50 meters and 100 meters from the EMSS
showed that the period of a bipolar pulse at both recording points has an identical pulse duration
τ=16 ms. Thus, the pulse duration does not change with increasing signal propagation depth.
This indicates the effectiveness of using a bipolar seismic source. This effect may be due to a
fact that in the VEM-50 source a "negative" half-wave is not emitted, and an impact energy is
spent on a movement of the reactive mass. A negative half-wave was recorded by a seismic probe
in the well and an accelerometer, which is fixed to the emitting surface. It is expected that it is
formed in the medium due to the resonance properties of the source. Pulse duration is constant
in EMSS, because the oscillation period is formed by a bipolar excitation signal. Theoretically,
the advantages of bipolar excitation were investigated using an electric model of the geological
medium. This medium is presented as a resonant oscillatory system [4].

Fig. 4. The seismic signal recorded by the well acoustic sonde: a — from the VEM-50 seismic
source; b — from the experimental model of the EMSS
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The amplitude values of signals at depths of 100 and 50 m are presented in the Tab. 1 in order
to evaluate energy potential VEM-50 seismic source and EMSS as well their seismic efficiency.
We have defined the concept of seismic efficiency of a seismic sources as the ratio of an acoustic
pressure amplitude value at a specified space point to the action force of the emitter on a medium:

ξ =
P0

FEM
, (6)

where P0 is acoustical pressure at a specified point in the geological environment. The pressure
P0 can be calculated by forming [5]:

P0 = ρ · c · ϑ0, (7)
where

c is compressional velocity of elastic P-waves;
ρ is density;
ϑ0 is vibrational particle velocity.
The estimated ratio for seismic efficiency can be obtained by calculating ϑ0 through the

measured signal value at the well seismic probe:

ξ =
ρ · c · Uav
FEM · γS

, (8)

where γS is acoustic sonde sensitivity
[
V · c
m

]
; Uav is the average value of the signal level at

the seismic station input circuit [V]. We determine the efficiency of EMSS in comparison with
VEM-50 bu the formula:

ξEMSS

ξV EM
=
FV EMEM · UEMSS

av

FEMSS
EM · UV EMav

≈ 3.5. (9)

Thus, the seismic efficiency of the EMSS is 3.5 times higher than the seismic efficiency of the
VEM-50. Therefore, expected signal level for the VEM-50 will be provided when the force is:

FEMSS
EM =

FV EMEM

3.5
= 142 kN,

During synchronous operation of N EMSS emitters will be:

N > 142 kN

17.1 kN
= 9.

Thus, a system configuration of the antenna array of synchronously operating emitters 9
(3 × 3) mounted on a floating platform will be equvalent of VEM-50 . At the same time, the
mass of the VEM-50 seismic source is approximately equal to MV EM ≈ 5700 kg, and the mass of
one EMSS module complete with a reference float does not exceed m=180 kg. The experiment
showed that the variant of a seismic source with an electromagnetic drive and bipolar excitation
has higher energy efficiency and allows you to generate a signal with an identical amplitude to
the VEM-50 source when the force acts on the medium 3 times less. In addition, EMSS has a
higher probe pulse frequency.

According to the results of a series of 10 impacts, their amplitude identity is ±5%, which
is sufficient reason to create a seismic source with good repeatability of the characteristics of
seismic probe pulses. This parameter will ensure coherent integration mode in order to increase
the signal-to-noise ratio without increasing the peak power of the seismic source. This will make
it possible to reduce the negative acoustic effect on the environment when working in water areas
and transition zone. Along with passive hydrocarbon search methods, similar studies have been
actively conducted around the world in the last decade [6–9].
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Conclusion
Analysis of the problem in the field of water seismic exploration works has revealed the ad-

vantage of EM sources over air-guns sources and explosions in terms of environmental friendliness
and has made it possible to determine the disadvantages of pulsed EM seismic sources. Theoreti-
cal justification of effectiveness of using EMSS with bipolar excitation in comparison with seismic
sources with an electromagnetic drive of the VEM-50 "Yenisei" series (SS VEM) is presented in
article.

Investigational studies and comparative field tests of experimental models of EMSS and VEM-
50 seismic source represent essential scientific results. These results have confirmed that the
choice of the proposed theoretical and mathematical models of sources functioning in the aquatic
environment, their design, as well as the effectiveness of using bipolar excitation to ensure en-
vironmentally friendly and high-resolution seismic exploration works was made correctly works
was made correctly. In particular, the development of a mathematical model of the source in
an aquatic environment is issentional result in terms of particle. It describes the dependence of
the movement of the base plate-emitter in a liquid under the action of an external driving force.
The obtained results will be the basis for further research in the field of seismic signals based on
a large database of B > 1 (orthonormal or noise-like signals).

The further studies include the completion of EMSS model of array configuration and com-
parative field tests at a geophysical training range and field of known geological section structure
and comparative field test are carried out in comparison with pseudonoise signal seismic explo-
ration and classical pulsed technology. Also research in the are of the propagation of unipolar,
bipolar and M-sequence long pulses will be conducted.

Additionally, we plan to clarify the concept of added mass of water (medium), using a system
of sensors based on accelerometers and hydrophones. The research of the ratios between the
parameters of the added mass and the hydrodynamic indicators of water will allow us to choose
the optimal size of the EMSS emitter.

The reported study was funded by RFBR and the government of Krasnoyarsk region according
to the research project no. 18-45-242003. "Research and development of methods for distance
increasing of the geological sounding by seismoacoustic pseudonoise orthonormal sequences sig-
nals". The authors also thank the Siberian Federal University and "Evenkiyageofizika" OJSC for
their help in organizing field studies at the geophysical training and testing ground.
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Физические основы формирования энергетически
квазиоптимального импульсного сейсмоакустического
воздействия для геофизических исследований в условиях
мелководья и транзитных зон. Часть 2. Конструкция
водного источника и результаты экспериментов

Данил С. Кудинов
Олег А. Майков
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Красноярск, Российская Федерация
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Тюмень, Российская Федерация

Аннотация. В статье дается научное обоснование разработанной конструкции сейсмоисточника
(СИ). Оценивается эффективность двухполярного возбуждения водной среды СИ в сравнении с из-
вестными водными импульсными источниками серии «Енисей». Приводятся результаты моделиро-
вания влияния гидродинамического сопротивления среды СА воздействию, а также формирования
«присоединенной массы». Результаты получены на основе разработанной математической модели
движения излучающей поверхности. На основе проведенных опытных работ сделан сравнительный
анализ энергетической эффективности работы макета СИ и серийного образца водного СИ ВЭМ-50
модельного ряда «Енисей». Экспериментальные результаты получены на геофизической скважине
учебно-испытательного полигона Сибирского федерального университета.

Ключевые слова: сейсмоисточник, сейсмоакустика, псевдослучайная последовательность, мел-
ководье, транзитная зона.
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Introduction

Turbulent swirling wakes are usually generated during flow past around a body. Swirls are
inserted into the flow by propulsors and they can be formed in various technological devices.
An overview of papers devoted to experimental and numerical investigations of the swirling
turbulent wakes is presented in [1, 2]. The similarity laws of the swirling turbulent flow decay
are investigated [3]. Asymptotic and numerical analysis of the swirling turbulent wakes was
performed [4–6]. The classical k− ε model of turbulence was used in these studies. It was shown
that even if the tangential component of the mean velocity is small it significantly affects the
flow pattern in the turbulent wake and this influence can be traced at sufficiently large distances
behind a body.

The streamwise component of the excess momentum J and angular momentum M are impor-
tant integral characteristics of the swirling turbulent wake. The case J = 0, M = 0 corresponds
to the swirling turbulent wake behind a self–propelled body. This configuration can be imple-
mented in a wake behind the self–propelled body of revolution (the thrust of a body propulsor
compensates the hydrodynamic drag force) with compensation of the swirl introduced by a
propulsor.

Numerical modelling of the swirling momentumless turbulent wake (J = 0) with nonzero
angular momentum was carried out on the basis of the second–order semi–empirical models of
turbulence [7–9]. Furthermore, a comparison with experimental data [7] obtained in a wind
tunnel in the wake past an ellipsoid of revolution was performed. The drag was compensated by
momentum of a swirling jet exhausted from its trailing part and the swirl introduced by the jet
was balanced out by the rotation of the body part in the opposite direction.

Experimental results on the swirling turbulent wake for M ̸= 0 were presented [10–14].
It should be noted that there is a discrepancy in the results obtained by different authors.

∗schmidt@icm.krasn.ru
c⃝ Siberian Federal University. All rights reserved
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Experimental data on the swirling turbulent wakes with various total excess momentum and
angular momentum were presented [11].

The swirling momentumless turbulent wake with nonzero angular momentum was numerically
simulated [15–20]. Simulations were based on simplified e − ε model of turbulence [15, 16] and
on the hierarchy of improved semi–empirical second–order models of turbulence [18–20]. Good
agreement with experimental data was obtained [11]. Numerical analysis of decay of a swirling
turbulent wake corresponding to the case J = 0 and M ̸= 0 was carried out [20]. It was shown
that at distances of about 1000 diameters behind the body the flow becomes substantially self–
similar. Simplified mathematical models of a far momentumless swirling turbulent wake were
constructed and their applicability in the case of large distances from the body was proved.

Self–similar solutions of certain semi–empirical models of free turbulent shear flows were
constructed on the basis of group–theoretic analysis and modified shooting method [21–24]. The
obtained results are in agreement with the experimental data. In addition to that, a comparison
of obtained self–similar solutions of the three–dimensional far momentumless turbulent wake
model in a passive stratified medium with results of direct numerical solutions of the complete
model was conducted [22]. Moreover, it was found that solutions obtained by the shooting
method play the role of an attracting set for solutions obtained by direct numerical calculations
of the complete model.

The purpose of this study is to construct self–similar solutions of the simplified model of the
far swirling momentumless turbulent wake (J = 0, M ̸= 0) [20] on the basis of the previously
developed approach [21–24].

1. Problem statement

In order to demonstrate the flow pattern, a scheme of the experimental set-up (Fig. 1) adapted
from [11] is presented. In Fig. 1, the wake develops along x axis, r is the radius, U0 is the

Fig. 1. Scheme of the experimental setup (1 is the sphere, 2 is the tube which delivers the air to
form a swirling jet that flows from the rear of the sphere, 3 are tension members, 4 is the throat
of the wind tunnel)

undisturbed flow velocity. A special nozzle for a tangential air flow exhausting was built into the
trailing edge of the sphere to provide swirling stream behind the sphere.

The following semi–empirical model of turbulence [20] is used to describe the flow in a far
momentumless swirling turbulent wake:

U0
∂U1

∂x
=

1

r

∂

∂r

(
Cur

e2

ε

∂U1

∂r

)
+

∂

∂x

∫ ∞

r

W 2

r′
dr′, (1)
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U0
∂W

∂x
=

1

r2
∂

∂r

(
Cwr

3 e
2

ε

∂(W/r)

∂r

)
, (2)

U0
∂e

∂x
=

1

r

∂

∂r

(
Cer

e2

ε

∂e

∂r

)
+ Cur

2 e
2

ε

(
∂(W/r)

∂r

)2

− ε, (3)

U0
∂ε

∂x
=

1

r

∂

∂r

(
Cεr

e2

ε

∂ε

∂r

)
+ Cε1Cur

2e

(
∂(W/r)

∂r

)2

− Cε2
ε2

e
. (4)

Here U1 = U − U0 is the deficit of the mean longitudinal velocity component, W is the mean
tangential velocity component, k is the kinetic energy of turbulence, and ε is the kinetic energy
dissipation. It is assumed that the fluid is incompressible and the flow is steady. Moreover, in
what follows the undisturbed flow velocity U0 is taken to be unity. The empirical constants are
as follows [20]:

Cu = Cw = 0.25, Ce = 0.147, Cε = 0.113, Cε1 = 1.44, Cε2 = 1.92.

Model (1)–(4) is a simplification of more complicated mathematical model that includes a
system of averaged equations of motion, continuity, transport of normal Reynolds stresses and
turbulence energy dissipation rate in a rotationally–symmetrical flow in the approximation of
a thin shear layer [9, 18, 19, 25]. Moreover, turbulent tangential stresses are determined from
nonequilibrium algebraic relations [9, 19, 26]. The simplification introduced in [20] is based on the
fact that absolute axial value of the longitudinal velocity component decreases much faster than
the maximum absolute value of the tangential velocity component. Therefore, at large distances
from the body one can neglect the contribution of this quantity to the term that describes
production of turbulence energy . Simplification is based on the far wake approximation and
on the replacement of equations for the transfer of normal stresses by a single equation for the
turbulence energy balance. In addition, the ratio of the turbulence energy production term to
the kinetic energy dissipation is set equal to zero in expressions for turbulent viscosity coefficients
(this ratio does not exceed 0.1 in the far wake).

Conservation of total excess momentum and angular momentum follow from equations (1)–(4)
and initial and boundary conditions for the considered flow:

J = 2πρ

∫ ∞

0

(
U0U1 −

∫ ∞

r

W 2

r′
dr′
)
rdr = 0, (5)

M = 2πρ

∫ ∞

0

r2U0Wdr =M0 ̸= 0, (6)

here ρ is the fluid density.
It was shown that at large distances behind the body a flow becomes close to self–similar

[20]. Therefore, it is natural to seek the self–similar reductions of model (1)–(4).

2. Self–similar reduction

A group analysis is used to construct self-similar solutions [27]. The Lie algebra basis of
equations (1)–(4) consists of the following infinitesimal generators:

X1 =
∂

∂x
, X2 =

∂

∂U1
, X3 = x

∂

∂x
− 2U1

∂

∂U1
−W

∂

∂W
− 2e

∂

∂e
− 3ε

∂

∂ε
,
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X4 = r
∂

∂r
+ 2U1

∂

∂U1
+W

∂

∂W
+ 2e

∂

∂e
+ 2ε

∂

∂ε
.

Using the linear combination of operators X3 and X4 it is not difficult to obtain the following
representation for a solution of the initial model (1)–(4):

U1 = x2α−2U2(t), W = xα−1W1(t), e = x2α−2K(t), ε = x2α−3E(t), t = r/xα, (7)

here t is a self–similar variable, α is an arbitrary constant appearing in the linear combination
of operators X3 and X4.

Using the law of conservation (6) and representation (7) for W , it is not difficult to show that
α should be equal to 0.25. Let us remark that decay laws (7) of required functions are in an
agreement with the results of numerical calculations of the initial model [20]. They are presented
in Fig. 2. In this figure, D is the diameter of a body; L1/2 ∼ xα is the characteristic scale of the
wake width; |U10| is the absolute axial value of the defect of longitudinal velocity component;
|Wm| is the maximum absolute value of the tangential velocity component; e0 is the axial value
of kinetic energy of turbulent disturbances; ε0 is the axial value of kinetic energy dissipation.
Markers correspond to experimental data. It can be noted that the decay law of an axial value of
the defect of longitudinal velocity component changes at about 1000 diameters behind the body.
This is apparently due to the fact that swirl term in equation (1) is negligible at large distances
from the body (see, [11]).

Fig. 2. Variation of dimensionless scale turbulence characteristics in the swirling momentumless
wake versus distance from the body

In this case the Lie algebra basis of equations (1)–(4) consists of the following infinitesimal
generators:

X1 =
∂

∂x
, X2 =

∂

∂U1
, X3 = r

∂

∂W
, X4 = x

∂

∂x
−W

∂

∂W
− 2e

∂

∂e
− 3ε

∂

∂ε
,

X5 = U1
∂

∂U1
, X6 = r

∂

∂r
+W

∂

∂W
+ 2e

∂

∂e
+ 2ε

∂

∂ε
.
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Corresponding self–similar representation of solution has the form

U1 = xβU2(t), W = xα−1W1(t), e = x2α−2K(t), ε = x2α−3E(t), t = r/xα. (8)

Here β is an arbitrary constant. Let us remark that in the self–propulsion mode (J = 0, M = 0)
the mean tangential velocity component decreases much faster (see, [9]).

Using representation (7), we obtain a reduction of initial mathematical model (1)–(4) to the
following system of ordinary differential equations:

Cu
K2U ′′

2

E
+

(
Cu

K

E

(
2K ′− KE′

E
+
K

t

)
+ αt

)
U ′
2−2(α−1)

(
U2+

∫ ∞

t

W 2
2

t′
dt′
)
−αW 2

1 = 0, (9)
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1
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K

E

(
2K ′ − KE′

E
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K

t

)
+ αt

)
W ′

1 +

(
Cu

K

E

(
2K ′ − KE′

E
+
K

t

)
−

−α+ 1)W1 = 0, (10)
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E
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E
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E

(
E′

E
− 1

t

)
+ αt

)
K ′ + Cu

K2

E

(
W ′

1 −
W1

t

)2

+

+ 2(α− 1)K − E = 0, (11)

Cε
K2E′′

E
− Cε

K2E′2

E2
+

(
Cε
K

E

(
2K ′ +

K

t

)
+ αt

)
E′ − CuCε1K

(
W ′

1 −
W1

t

)2

− Cε2
E2

K
−

− (2α− 3)E = 0. (12)

For representation (8) the first equation of the reduced system has the following form:

Cu
K2U ′′

2

E
+

(
Cu

K

E

(
2K ′ − KE′

E
+
K

t

)
+ αt

)
U ′
2 − βU2 = 0. (13)

Reduced system (10)–(13) is solved numerically.

3. Calculation results

Solutions of reduced system (10)–(13) have to satisfy the following conditions:

U ′
2(0) =W1(0) = K ′(0) = E′(0) = 0,

U2(a) =W1(a) = K(a) = E(a) = 0.

The first group of conditions takes into account that flow is symmetric with respect to theOx axis.
The second group of conditions follows from the requirement that flow is undisturbed outside the
turbulent wake domain (all required functions have to take zero values in this domain). The value
of a related with the turbulent wake semi-width can be either set equal to unity in calculations
because equations of reduced system (10)–(13) are invariant with respect to the transformation
of extension or taken from the experimental data. It should also be noted that coefficients of
system (10)–(13) have singularities in boundary conditions.

For numerical solution of the boundary value problem the modified shooting method was
used, together with the asymptotic expansion of the solution in the vicinity of the singular point
t = a

U2= c1|t− a|α1 + o (|t− a|α1) , W1= c2|t− a|α2 + o (|t− a|α2) , K= c3|t− a|α3 + o (|t− a|α3) ,
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E= c4|t− a|α4+ o (|t− a|α4) , α3=
Cε

2Cε − Ce
, α1= α2=

Ce
Cu

α3, α4= 2α3− 1, c3=
Ceα3c

2
2

aα
.

As the result of calculations the following values were obtained:

β = −2.09, U2(0) = 0.35378, W ′
1(0) = −0.916, K(0) = 1.14357, E(0) = 1.32668.

In Fig. 3 self-similar profiles of solutions obtained by the shooting method are compared
with numerical results obtained on the basis of the full model of equations (1)–(4) [20] (1–3 are
numerical results [20], 4 are self-similar solutions obtained by the shooting method).

Fig. 3. Self-similar normalized profiles of the deficit of the mean longitudinal velocity component,
the mean tangential velocity component, and the kinetic energy of turbulence

Self-similar distributions presented in Fig. 3 are very close to numerical results [20]. Therefore,
this indicates the applicability of simplified mathematical models [20] to simulations of the far
field of swirling momentumless turbulent wake.

Self-similar profiles of turbulence energy and tangential velocity components are finite bell-
shaped functions. At the same time the self–similar profile of the defect of the velocity longitudi-
nal component has regions of negative and positive values. This is in agreement with conservation
laws (5) and (6).

The study was supported by the Russian Foundation for Basic Research (grant no. 17-01-
00332)
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Аннотация. В работе проведено построение автомодельного решения полуэмпирической модели
дальнего безымпульсного закрученного турбулентного следа.

Ключевые слова: дальний закрученный турбулентный след, автомодельное решение, метод
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Introduction

In 1921 Hj. Mellin wrote down an integral representing a solution y(x) of a reduced algebraic
equation of the form

yn + x1y
n−1 + . . .+ xn−1y − 1 = 0.

This integral has a non-empty domain of convergence, it is defined by conditions on arguments
θj = arg xj . A complete description of the convergence domain has been obtained relatively
recently in the paper by I. A.Antipova [3].

In the present paper we study the same problem in several variables. Consider a system of
algebraic equations of the form

yω
(j)

+
∑
λ∈Λ(j)

x
(j)
λ yλ − 1 = 0, j = 1, . . . , n, (1)

where Λ(j) ⊂ Zn, and ω(j) is a column vector, the matrix made of columns ω(j) we denote

by Ω. Let us also introduce the notation Λ :=
n⊔
j=1

Λ(j) for a disjunctive union of sets Λ(j), the

cardinality of Λ we denote by N . By Λ(j) we shall denote the set Λ(j) ∪ {ω(j)}, analogously

Λ =
n⊔
j=1

Λ(j).

The set of coefficients of the system (1) runs over the vector space Cλ ∼= CNx , where coordinates
of points x = (xλ) are indexed by the elements λ ∈ Λ. A group of coordinates corresponding
to indices λ ∈ Λ(i) we, as a rule, write as x(i)λ , having identified CΛ with CΛ(1)× . . . × CΛ(n)

;

sometimes for elements of CΛ(i)

we use the notation xλ, λ ∈ Λ(i). Denote also by X the diagonal
matrix with xλ on the diagonal (X = diag[x]).

∗v.r.kulikov@mail.ru https://orcid.org/0000-0002-2291-0449
c⃝ Siberian Federal University. All rights reserved
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The set Λ we will also treat as a matrix

Λ =
(
Λ(1), . . . ,Λ(n)

)
=
(
λ1, . . . , λN

)
,

whose columns are the vectors λk =
(
λk1 , . . . , λ

k
n

)
of exponents of monomials of the system (1).

Here we mean that a block Λ(i) of the matrix Λ corresponds to the ith equation of the system (1);
enumeration of columns λk in each block Λ(i) is arbitrary but fixed.

Denote by χ the characteristic matrix of the set Λ.
In this notation the system (1) can be written in a matrix form:

yΩ + yΛXχT − I = 0. (2)

We are interested in a branch of a solution y(x) = (y1(x), . . . , yn(x)) of the system (1) with
the condition y(0) = (1, . . . , 1) , which we call the principal solution. Following [2, 4], to a
monomial yµ = yµ1

1 . . . yµn
n of the principal solution y = y(x) of the system we put into the

correspondence the Mellin-Barnes integral:

yµ(x) → 1

(2πi)N

∫
γ+iRN

Γ(u)Γ(Ω−1µ− Ω−1Λu)

Γ(Ω−1µ− Ω−1Λu+ χu+ I)
Q(u)x−udu, (3)

where the vector γ is from the polyhedron

{u ∈ RN>0 : ⟨φj ,u⟩ < µj , j = 1, . . . , n},

and Q(u) is a polynomial given by the determinant

Q(u) = det
(
diag[Ω−1 · (µ− Λ · u)] + Ω−1 · Λ · diag[u]χT

)
. (4)

The integral (3) is obtained by a formal computation of the Mellin transform of yµ(x) using
linearization.

Consider the following matrices made of exponents of monomials of the system (1):
λ
(1)
1 · · · λ

(n)
1

...
. . .

...
λ
(1)
n · · · λ

(n)
n

 , (5)

where each column vector λ(j) =
(
λ
(j)
1 . . . λ

(j)
n

)T
runs over the corresponding set Λ(j).

Theorem 1. The integral (3) corresponding to a system of algebraic equations (1) has a non-
empty domain of convergence and represents the monomial function of the solution if and only
if the determinants of all matrices of the form (5) are non-zero and have the same sign.

Note that in [9] and [10] analogous results have been obtained for systems with a diagonal
matrix ω and non-negative exponents of monomials λ ∈ Λ(j). Applications of these results for
study of discriminants of systems are given in [11].
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Convergence of the Mellin-Barnes integral

In this section we prove the convergence of the Mellin-Barnes integral (3) under hypothesis
of Theorem 1.

Recall that a multiple Mellin-Barnes integral has the form

Φ(z) =
1

(2πi)m

∫
γ+iRm

Γ(A · s+ c)

Γ(B · s+ d)
z−sds, (6)

where A ∈ Rm×p, B ∈ Rm×q, c ∈ Cp, d ∈ Cq, z, s ∈ Cm, and the vector γ is chosen such that
the integration set γ + iRm does not contain poles of Γ functions of the numerator.

We shall assume that the variable z varies in a Riemannian covering of the complex algebraic
torus (C \ {0})m, consequently, the factors in the integral kernel are defined as

z
−sj
j = e−sj log zj , arg zj ∈ R.

Denote θ = Argz = (arg z1, . . . , arg zm) and introduce the function

g(v) =

p∑
j=1

|⟨Aj ,v⟩| −
q∑

k=1

|⟨Bk,v⟩| ,

where Aj and Bk are rows of matrices A and B, respectively.
The next theorem gives a description of the convergence domain of a multiple Mellin-Barnes

integral.

Theorem 2 (Nilsson, Passare, Tsikh). For an integration set γ + iRm that does not contain
singularities of the integrand the convergence domain of the Mellin-Barnes integral (6) has the
form Arg−1(U), where

U =
∩

∥v∥=1

{
θ ∈ Rm : |⟨v, θ⟩| < π

2
g(v)

}
. (7)

In the case when the set U is not empty it coincides with the interior Θ◦ of the polyhedron

Θ =
{
θ ∈ Rm : |⟨vν , θ⟩| 6

π

2
g(vν), ν = 1, . . . , d

}
, (8)

where ±v1, . . . ,±vd is the set of unit vectors generating the fan K defined by a decomposition
of Rm by hyperplanes ⟨Aj ,v⟩ = 0, j = 1, . . . , p and ⟨Bk,v⟩ = 0, k = 1, . . . , q.

Thus, the convergence domain of the integral (6) is not empty if the function g(v) is positive
on the compact set (sphere) ∥v∥ = 1. Since g(v) is homogeneous, this is equivalent to its
positivity for v ̸= 0.

As has been established in earlier papers, the convergence domain of a Mellin-Barnes integral
does not depend on the presence of a polynomial factor Q(u).

For the integral (3) the function g(v) is

g(v) = ∥v∥+ ∥Ω−1Λv∥ − ∥(χ− Ω−1Λ)v∥,

where ∥v∥ = |v1|+ . . .+ |vN |.
The matrix Φ = Ω−1Λ inherits its block structure from the matrix Λ compatible with the

characteristic matrix χ; the blocks of this matrix are denoted by Φ(j). In [9] it has been shown
that in this case the function g(v) vanishes only for v = 0 if and only if all diagonal minors
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of matrices φ =
(
φ(1), . . . , φ(n)

)
are positive, here φ(j) is an arbitrary column vector of the

matrix Φ(j).
Consider a diagonal minor of order p of this matrix, it may be obtained as the determinant

of a product of two rectangular matrices:

φ
j1,...,jp
j1,...,jp

= det
(
(Ω−1)j1,...,jp · λj1,...,jp

)
,

where λ = Ωφ.
By the Cauchy-Binet formula, the determinant of a product of two such matrices is a sum of

products of minors of these matrices:

φ
j1,...,jp
j1,...,jp

=
∑

16k1<...<kp6n
(Ω−1)

k1...,kp
j1,...,jp

· λj1,...,jpk1...,kp
.

By definition,

Ω−1 =
adjΩT

|Ω|
.

Therefore, by the Jacobi identity the minor (Ω−1)
k1...,kp
j1,...,jp

can be computed as:

(Ω−1)
k1...,kp
j1,...,jp

=
(−1)σ

|Ω|
Ω
jp+1,...,jn
kp+1...,kn

,

where σ is the order of the permutation(
j1 . . . jn
k1 . . . kn

)
.

Substituting these expressions into the formula for the minor φj1,...,jpj1,...,jp
and using the Laplace

expansion along several columns we get

φ
j1,...,jp
j1,...,jp

=
|A|
|Ω|

> 0,

where A is the matrix whose columns with numbers js are equal to λ(js), and all the remaining
columns are the corresponding columns of Ω, i.e. A is a matrix of the form (5).

Since the choice of a matrix φ and an order of a minor p is arbitrary, it follows that all
determinants of matrices of the form (5) has the same sign. Thus, we have proved that under the
hypothesis of Theorem 1 the Mellin-Barnes integral corresponding to a solution of the system (1)
converges.

Solution of the system as a Taylor series

Consider the system (2):
yΩ + yΛXχT − I = 0.

The following statement holds

Theorem 3. The monomial ŷµ(x) of the principal solution of the system (2) is given by the
Taylor series

ŷl(x) =
∑
k∈ZN

>

ckx
k (9)
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with the coefficients

ck =
(−1)

|k|

k!

Γ
(
Ω−1 · µ+Ω−1 · Λ · k

)
Γ(Ω−1 · µ+Ω−1 · Λ · k− χ · k+ I)

·Q(k), (10)

where Q(k) = det
(
diag

[
Ω−1 · (µ+ Λ · k)

]
− Ω−1 · Λ · diag[k] · χT

)
.

Proof. First, let us linearize the system (2). Consider it as a system in CNx × Cny and make
in CN+n the following change of variables:

y =W−Ω−1

; x = ξ ⊙WΩ−1Λ−χ.

In the new variable the system becomes

W = ξχT + I.

Represent the inverse ξ(x) as an implicit function given by the system of equations

F (ξ,x) = ξ ⊙WΩ−1Λ−χ − x.

Zeroes of these functions define the change of linearization. Therefore, the monomial function
of the solution can be found by A. P.Yuzhakov’s logarithmic residue formula. According to this
formula

yµ(x) =
1

(2πi)N

∫
Γε

yµ(ξ)∆(ξ)dξ

F I(ξ,x)
, (11)

where Γε = {ξ ∈ CN : |ξλ| = ε, λ ∈ Λ}, ∆(ξ) is the Jacobian of the mapping F (ξ, x) with
respect to variables ξ (notice that the Jacobian does not contain variables x), F I(ξ, x) denotes
the product F1(ξ,x) · . . . ·FN (ξ,x). The radius ε is chosen in such a way that the corresponding
polydisc lies outside zeroes of the Jacobian ∆(ξ).

Lemma 1. The Jacobian of F (ξ,x) with respect to ξ is

∆(ξ) =W (Ω−1Λ−χ)I−I det
(
E +Ω−1Λ · Ξ · χT

)
, (12)

here and further on Ξ = diag[ξ].

Proof. The component of the mapping F (ξ,x) with the index λ(j) ∈ Λ(j), j = 1, . . . , n has
the form

Fλ(j) = ξλ(j)

n∏
k=1

W
(Ω−1Λ−χ)λ

(j)

k

k

here (Ω−1Λ− χ)λ
(j)

k denotes the k-th component of the column with the index λ(j) of the matrix
Ω−1Λ− χ.

Non-diagonal elements of the Jacobian are

∂Fλ(j)

∂ξη(i)
= ξλ(j)(Ω−1Λ− χ)λ

(j)

i

n∏
k=1

W
(Ω−1Λ−χ)λ

(j)

k −δik
k , λ(j) ∈ Λ(j), η(i) ∈ Λ(i),

and if i = j then λ(j) ̸= η(i).
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Its diagonal elements has the form

∂Fλ(j)

∂ξλ(j)

=
n∏
k=1

W
(Ω−1Λ−χ)λ

(j)

k

k

(
1 + ξλ(j)(Ω−1Λ− χ)λ

(j)

j W−1
j

)
, λ(j) ∈ Λ(j),

where δjk is the Kronecker delta.
From each row of the Jacobian we factor out

W (Ω−1Λ−2χ)λ
(j)

=

n∏
k=1

W
(Ω−1Λ−χ)λ

(j)

k −δjk
k .

Then, before the Jacobian we have the factor W (Ω−1Λ−2χ)I , and the elements of the Jacobian
become

∂Fλ(j)

∂ξη(i)
= ξλ(j)(Ω−1Λ− χ)λ

(j)

i , λ(j) ∈ Λ(j), η(i) ∈ Λ(i),

outside the diagonal, and

∂Fλ(j)

∂ξλ(j)

=Wj + ξλ(j)(Ω−1Λ− χ)λ
(j)

j , λ(j) ∈ Λ(j),

on the diagonal.
In each i-th block-column of the obtained determinant subtract one column of this block

from all other columns of the block, the chosen columns we shall call marked, and their indices
are denoted by ′η(i), while ′Λ(i) := Λ(i) \ {′η(i)} denote indices of not marked columns of the ith
block.

The elements of the Jacobian then take the form:

∂Fλ(j)

∂ξη(i)
= 0; λ(j) ∈ Λ(j), η(i) ∈ ′Λ(i), i ̸= j,

for those in non-diagonal blocks in not marked columns.

∂F′η(j)

∂ξη(j)
= −Wj , η(j) ∈ ′Λ(j),

for elements in diagonal blocks in marked columns.

∂Fλ(j)

∂ξλ(j)

=Wj , λ(j) ∈ ′Λ(j),

for diagonal elements in not marked columns.

∂F′η(j)

∂ξ′η(j)
=Wj + ξ′η(j)(Ω

−1Λ− χ)
′η(j)

j ,

for diagonal elements in marked columns.

∂Fλ
∂ξ′η(i)

= ξλ(Ω
−1Λ− χ)λi , λ ∈ Λ \ {η(i)},

for all other elements in marked columns, and

∂Fλ(j)

∂ξη(j)
= 0; λ(j), η(j) ∈ ′Λ(j), λ(j) ̸= η(j),
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for all remaining elements.
Now in each jth block-row add to the row with the index ′η(j) all other rows of this block to

get
∂F′η(j)

∂ξ′η(i)
=Wjδ

j
i +

∑
λ(j)∈Λ(j)

ξλ(j)(Ω−1Λ− χ)λ
(j)

i ,

∂F′η(j)

∂ξη(j)
= 0, η(j) ∈ ′Λ(j).

Since non-zero elements are now only in marked columns and on the principal diagonal, the
Jacobian can be reduced to a determinant of order n:

∂F

∂ξ
=W (Ω−1Λ−χ)I−I det

(
E +Ω−1Λ · Ξ · χT

)
.

This proves the lemma. 2

Substitute now the expression for the Jacobian as well as the expression for yµ(ξ) into (11)

yµ(x) =
1

(2πi)N

∫
Γε

W−Ω−1µ ·W (Ω−1Λ−χ)I−I det
(
E +Ω−1Λ · Ξ · χT

)
(ξ ⊙W (Ω−1Λ−χ) − x)I

dξ (13)

and reduce the fraction in the integrand

yµ(x) =
1

(2πi)N

∫
Γε

W−Ω−1µ−I det
(
E +Ω−1Λ · Ξ · χT

)
ξI(I − x⊙ ξ−E ⊙Wχ−Ω−1Λ)I

dξ. (14)

There exists δ such that for any ξ ∈ Γε and ∥x∥ < δ we have the inequality x ⊙ ξ−E ⊙
Wχ−Ω−1Λ < I, therefore we can represent the integrand as a geometric series

yµ(x) =
1

(2πi)N

∫
Γε

W−Ω−1µ−I det
(
E +Ω−1Λ · Ξ · χT

)
ξI

×

×

∑
k∈ZN

>

xk · ξ−k ·W (χ−Ω−1Λ)k

 dξ.

(15)

Now change the order of integration in (15):

yµ(x) =
∑
k∈ZN

>

ckx
k,

here the coefficients ck are given by

ck =
1

(2πi)N

∫
Γε

W−Ω−1(µ+Λk)+χk−I

ξk+I
det
(
E +Ω−1Λ · Ξ · χT

)
dξ.

The coefficients of the obtained series can be computed by the Cauchy formula

ck =
1

k!

∂k

∂ξk

(
W−Ω−1(µ+Λk)+χk−I det

(
E +Ω−1Λ · Ξ · χT

)) ∣∣∣
ξ=0

.

The computation of the derivatives gives

ck =
(−1)k

k!

Γ(Ω−1(µ+ Λ · k))
Γ(Ω−1(µ+ Λ · k)− χ · k + I)

Q(k),

where Q(k) = det(diag[Ω−1(µ+ Λk)]− Ω−1Λ · diag[k] · χT ). 2
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Computation of the Mellin-Barnes integral

In this section we show that a convergent integral corresponding to a solution of a system of
algebraic equations can be computed as a hypergeometric series, which coincides with a hyper-
geometric series representing solution of this system.

Consider a system of two trinomials

y41 + x1y
2
1y

−1
2 − 1 = 0,

y42 + x2y
−1
1 y22 − 1 = 0 .

It is easy to check that this system satisfies the condition for the convergence of the Mellin-
Barnes integral, which for the monomial of the solution yµ(x) has the form

1

(2πi)2

∫
γ+iR2

Γ(u1)Γ(u2)Γ(
1
4 (µ1 − 2u1 + u2))Γ(

1
4 (µ2 + u1 − 2u2))

Γ
(
1
4 (µ1 + 2u1 + u2) + 1

)
Γ
(
1
4 (µ2 + u1 + 2u2) + 1

) Q(u)x−udu, (16)

where
Q(u) =

1

16
(µ1µ2 + µ1u1 + µ2u2) .

To compute the integral we use the principle of separating cycles of A.K. Tsikh. This principle
applies for computation of integrals

1

(2πi)s

∫
∆g

h(z)dz

f1(z) . . . fs(z)
(17)

of the Grothendieck type where poles of the meromorphic integrand are associated to a proper
holomorphic mapping f = (f1, . . . , fs) : Cs → Cs, and the integration set ∆g is the distin-
guished boundary of the polyhedron Πg associated to another proper holomorphic mapping
g = (g1, . . . , gs) : Cs → Cs. When the mappings f and g coincide, the integral (17) is equal to a
sum of Grothendieck residues of the integrand over all zeroes of f in Πg. Indeed, in this case the
distinguished boundary of ∆g is homologous to a sum of local cycles separating local divisors
Dj = fj = 0, j = 1, . . . , s, i.e. those cycles that are involved into definition of a local residue of
Grothendieck. In the problem of representation of the integral (17) by a sum of local residues a
principal role is played by the following notion.

Definition 1. A polyhedron Πg is called compatible with a family of hypersurfaces (divisors)
{Dj}, if the jth facet of the polyhedron Πg does not intersect Dj for all j, j = 1, . . . , s.

Theorem 4 (The principle of separating cycles). If a polyhedron Πg is bounded in compatible
with the family of polar divisors {Dj}, then the integral (17) is equal to a sum of Grothendieck
residues in Πg.

In case of an unbounded polyhedron, an additional condition of rapid decrease of the integrand
in Πg is required, similar to that in the classical Jordan lemma where instead of Πg we have a
half-plane. Such a condition is given in [8] and [7].

In the integral (16) the vertical subspace γ + iR2 can be seen as a distinguished boundary of
some polyhedron. Note that in the case N > 1 the number of such polyhedra is infinite. Our
task is to divide polar hypersurfaces in (16) into 2 divisors and attach to γ + iR2 a polyhedron
compatible with the obtained family.
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As a polyhedron we take
Π = {Reu1 < γ1,Reu2 < γ2}.

The family of divisors we organize as follows: polar sets of Gamma functions Γ(u1) and
Γ
(
1
4 (µ2 + u1 − 2u2)

)
(red and violet) we put into one divisor, while polar sets of Γ(u2) and

Γ
(
1
4 (µ1 − 2u1 + u2)

)
(blue and green) into another. By gray lines we depict zeroes of the

integrand (singularities of Gamma functions in the denominator and zeroes of Q(u)) (Fig. 1).

Fig. 1. Families of polar divisors of the integrand

It is easy to see that at the intersection points of oblique polar sets with vertical and horizontal
ones inside the polyhedron the residue is 0. Thus, in this case the integral (16) is a sum of residues
over all points of the lattice Z2

60 where the integrand has a pole of the first order.
A pole at a point of Z2

60 gives an expression ckx
k, where ck is defined in Theorem 3 by the

formula (10). Summing up over all points of Z60 we obtain the series from Theorem 3.
Thus, we have shown that the integral (3) under hypothesis of Theorem 1 has a non-empty

convergence domain and represents a monomial of a solution of the system of algebraic equa-
tions (1). Moreover, computations show that the integral (16) coincides with the solution in the
form of a hypergeometric series.

The research is carried out with the financial support of the RFBR, project no. 18-31-00193.
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Гипергеометрические ряды и интегралы Меллина-Барнса
для нулей системы полиномов Лорана

Владимир Р.Куликов
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. В работе приведен критерий сходимости интеграла Меллина-Барнса, представляю-
щего нули системы полиномов Лорана. Представлена формула в виде кратного ряда гипергеомет-
рического типа.

Ключевые слова: интегралы Меллина-Барнса, гипергеометрические ряды, полиномы Лорана.
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Abstract. An experimental device for quasi-static measurements of piezoelectric moduli dijk, based
on the possibilities of precision variations in mechanical stresses with the device DMA 242 C in the
frequency range 0-100 Hz has been developed. A special sample holder and a charge amplifier are used
in the measuring scheme. The measurements of piezoelectric moduli values of trigonal piezoelectric
single crystalls La3Ga5SiO14 (P321) and YAl3(BO3)4 (R32), as well as hexagonal ZnO (P63mc) have
been carried out.
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Introduction
A wide range of piezoelectric materials applications determines the development of physical

methods for the experimental determination of their piezoelectric properties [1–4]. The resonance
[1, 2, 5], ultrasonic [2, 5] and quasi-static [6, 7] methods for determining piezoelectric constants,
along with measurements of direct [8] and inverse [9] piezoelectric effects in crystals are known.
Depending on thermodynamic boundary conditions and point symmetry of a material, each
of these methods has a set of ratios and cuts for the separate determination of piezoelectric
constants. In particular, for ultrasound measurements of piezoelectric moduli eijk of a number
of single crystals, such an analysis is carried out in [10, 11]. The complex of experimental tools
and calculated ratios determine the accuracy and future prospects of a selected method.

The existing experimental methods are subjected to constant modifications and improvements
due to the continuous development of piezoelectric applications [12], as well as appearance of
new materials, for instance, multiferroics [13], and the necessity to study their magnetoelectric
and other properties.

∗pturchin@sfu-kras.ru
c⃝ Siberian Federal University. All rights reserved

– 97 –



P.P.Turchin . . . Application of DMA 242 C for Quasi-Static Measurements of Piezoelectric . . .

The possibilities for applying precision device DMA 242 C to create periodic mechanical
stresses when determining piezoelectric moduli dijk by the quasi-static method are studied in
this paper. The measured values of the piezoelectric constants of trigonal and hexagonal crystals
are compared with the scientific literature data. The values of piezoelectric moduli of yttrium
aluminum borate obtained by the authors with the application of the developed experimental
method are given.

1. Experimental quasi-static method
DMA 242 C device [14] provides a precise change in the applied dynamic load with a frequency

of 0–100 Hz to the sample in the range of 0–8 N with simultaneous possibility to control static
load in the same range. The direction of load application coincides with the vertical axis of the
device pusher.

The block diagram of the experimental method with the use of DMA 242 C for quasi-static
measurements of piezoelectric moduli is given in Fig. 1. The test sample is placed in the measuring
chamber of the device between two dielectric holders. The lower one is installed on the sample
holder DMA 242 C 7, and the upper one is free, and the load from the device pusher is applied
to it. The uniform distribution of mechanical stresses in the sample is achieved by applying
lubricant between the sample and the holder. Electrodes for measuring the charge are applied on
the horizontal facets of the sample for measuring the longitudinal piezoelectric effect and on the
vertical ones for measuring transverse piezoelectric moduli. The electric surface charges of the
piezoelectric sample under load are converted by the charge amplifier 4 to the voltage recorded
by the oscilloscope 3. The value of the measured piezoelectric modulus is determined by the
equation of state, and in this experimental diagram is determined according to the ratio

diλ =
q

F
=

USl
KaFSe

, (1)

where diλ is the measured piezoelectric modulus, q is the charge on the electrodes, F is the
dynamic force amplitude, U is the voltage amplitude at the output of the charge amplifier, Sl is
the load application area, Se is the surface area of the electrodes, Ka is conversion factor of the
charge amplifier.

Fig. 1. Block diagram of the quasi-static method for measuring piezoelectric moduli. A variant of
measurement of the transverse to the direction of the pressure of electric polarization is presented.
1 — DMA 242 C, 2 — personal computer, 3 — oscilloscope DPO 7104, 4 — charge amplifier LE-41,
5 — power supply, 6 — sample, 7 — sample holder, 8 — electrodes, 9 — dielectric holders, 10 —
lubricant layer

The accuracy of the device performance and the piezoelectric moduli measurement were
controlled by measuring piezoelectric constants under conditions of different dynamic loads and
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different measuring frequencies. Fig. 2 demonstrates linear dependence of the measured charge
on the magnitude of the dynamic load, and Fig, 3 shows the constancy of the determined voltage
for different measurement frequencies.

Fig. 2. Dependence of the charge values on the sample facets on the dynamic load magnitude

Fig. 3. Values of voltage U on the sample when measuring at different frequencies

2. Calculated ratios for determining piezoelectric moduli
The implemented quasi-static method has been applied to determine the piezoelectric mod-

uli dijk of the well-studied single crystals of langasite La3Ga5SiO14 [12] and zincite ZnO [15],
as well as yttrium alumoborate YAl3(BO3)4 [16], which belongs to the rare-earth oxiborates
RMe3(BO3)4 (where R=Y, La-Lu; Me=Fe, Al, Cr, Ga, Sc), but does not have a magnetic subsys-
tem. Due to the latter circumstance, yttrium alumoborate is a kind of standard of electroelastic
interaction for the whole family of oxiborates. However, there is no data on the piezoelectric
properties of this single crystal in scientific literature.

Moduli d11 and d14 were determined for trigonal (point symmetry group 32) langasite and
yttrium alumoborate, and for hexagonal (6mm) zinc oxide — d33, d31. The geometry of the
samples required for the separate determination of these components is given in Fig. 4.

In quasi-static measurements, the longitudinal piezo modulus d11 was determined by applying
mechanical compressive stress along axis X1 and registering a charge in the same direction
(Fig. 4 (a, b)). To determine piezoelectric moduli d33 and d31, the mechanical compressive
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Fig. 4. Sample orientation for quasi-static measurements

stress was applied along X3, and the charge was recorded along axes X3 and X1, respectively
(Fig. 4 (a)). The piezo modulus d14 was found by determining the charge in the direction of axis
X1 when mechanical stresses were applied to facets R and R + 90 (Fig. 4 (b)). In this case, from
the rule of the orthogonal tensor transformation [17, 18]

di′j′k′ = ai′laj′mak′ndlmn, (2)

for crystals of the point symmetry group 32 for the direction R we find

dR12 = d14sinφcosφ− d11cos
2φ, (3)

for the direction R+90
dR+90
12 = −d14sinφcosφ− d11sin

2φ. (4)

The angle φ for langasit was 45 degrees, and for yttrium alumoborate 48.05 degrees. The
sign of the piezoelectric modulus was found by determining the direction of the electric induction
vector as related to the axes of the crystal-physical coordinate system, the selection rules of which
are described in [18].

3. Experimental results
The linear dimensions of the samples were about 5–6 mm, the accuracy of the facets’ orien-

tation was not worse than ±3’, the flatness of the opposite facets was 3 microns. The positive
direction of the axis X1 of the crystal-physical coordinate system for the crystals of symmetry
32 was chosen from acoustic measurements [12, 18], under condition that C14<0. The sign of
the piezoelectric constants was controlled by the direct measurement of the piezoelectric effect.
Mechanical compressive stress was considered negative. All measurements were carried out at
room temperature.

The obtained values of piezoelectric moduli are summarized in the Tab. 1 and compared with
the data of other authors for langasite and zinc oxide. According to the Table, the experimental
values of the determined piezoelectric moduli for zinc oxide and langasite correlate with the values
of the piezoelectric moduli obtained by other authors. This fact suggests the correct operation of
the device for quasi-static measurements of the piezoelectric moduli with the application of DMA
242 C and confirms the accuracy of determining piezoelectric moduli of yttrium alumoborate.

Conclusion
The carried out research has demonstrated the possibility to apply DMA 242 C to control

dynamic loads on the crystal in the process of quasi-static measurements of single crystal piezo-
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Table 1. Piezoelectric moduli

Modulus
Experimental value

diλ, 10−12 C/N

Literature values

diλ, 10−12 C/N
References

ZnO

d31 –5.2±0.2

–5.12 [19]

–5.0 [20]

–5.2 [21]

–3.7 [22]

d33 11.7±0.2

12.3 [19]

12.4 [20]

10.6 [21]

8.0 [22]

La3Ga5SiO14

d11 –6.1±0.2

–6.16 [23]

6.25 [24]

6.20 [25]

6.1 [26]

d14 –5.4±0.3
5.36 [23]

–3.65 [24]

5.4 [26]

YAl3(BO3)4
d11 –6.0±0.3 – –

d14 –7.2±0.4 – –

electric moduli. This application is based on the modification of the measuring cell of the device
with the use of additional dielectric sample holders, as well as on the use of the standard charge
amplifier in the measuring diagram. The accuracy and repeatability of the results are based on
the creation of uniform mechanical stresses in the sample. The obtained values of the piezoelec-
tric langasite and zincite moduli correspond to scientific literature data. The device developed on
the basis of DMA 242 C was applied to determine the piezoelectric moduli of yttrium aluminum
borate.

The reported study was funded by Russian Foundation for Basic Research project no. 18-42-
240016, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science, to the
research project: "Electromechanical Properties and Anisotropy of Acoustic Wave Propagation in
Yttrium Aluminoborates Single Crystals".
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Применение DMA 242 С для квазистатических измерений
пьезоэлектрических свойств твердых тел
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Аннотация. Разработана экспериментальная установка для квазистатических измерений пьезомо-
дулей dijkна основе возможностей прецизионных изменений механических напряжений прибором
DMA 242 C в диапазоне частот 0-100 Гц. В измерительной схеме применен специальный держатель
образцов и усилитель заряда. Выполнены измерения значений пьезомодулей тригональных пьезо-
электриков La3Ga5SiO14 (P321) and YAl3(BO3)4 (R32). Результаты исследований коррелируют с
данными других авторов.

Ключевые слова: пьезоэлектрические модули, квазистатический метод, мультиферроики.
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Abstract. We investigate the finite semifields which are distributive quasifields, and finite near-fields
which are associative quasifields. A quasifield Q is said to be a minimal proper quasifield if any of its
sub-quasifield H ̸= Q is a subfield. It turns out that there exists a minimal proper near-field such that
its multiplicative group is a Miller–Moreno group. We obtain an algorithm for constructing a minimal
proper near-field with the number of maximal subfields greater than fixed natural number. Thus, we find
the answer to the question: Does there exist an integer N such that the number of maximal subfields
in arbitrary finite near-field is less than N? We prove that any semifield of order p4 (p be prime) is a
minimal proper semifield.
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1. Introduction and preliminaries

Closely related problems of classification and construction of projective translation planes
and their coordinatizing quasifields have been studied from the beginning of the 20th century
(Dickson [1], Veblen and Maclagan-Wedderburn [2]; see also [3, 4]). Recall that a set L with a
binary operation ◦ is called a loop if L contains a neutral element and equations a ◦ x = b and
x ◦ a = b are uniquely solvable for any a, b ∈ L [5, 6]. So, a group is an associative loop. A set
Q with binary operations of addition + and multiplication · is called a right quasifield [3] if the
following conditions are satisfied

1) (Q,+) is an abelian group with zero 0,

2) Q∗ = (Q \ {0}, ·) is a loop with an identity e,

3) x0 = 0 for any x ∈ Q,

4) Q satisfies the right distributivity (x+ y)z = xz + yz for any x, y, z ∈ Q,
5) if a, b, c ∈ Q and a ̸= b then the equation xa = xb+ c has an unique solution in Q.

A left quasifield is defined in the same way by replacing the right distributivity with the
left distributivity. Any associative right quasifield is called a right near-field. Any distributive
quasifield is called a semifield.

As for finite quasifields the following problems are studied ( see also [7]).

(A) Enumerate maximal subfields and their possible orders.
∗ol71@bk.ru https://orcid.org/0000-0002-6005-2393

c⃝ Siberian Federal University. All rights reserved
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(B) Find finite quasifields Q with not-one-generated loop Q∗.

The hypothesis is as follows: a loop Q∗ of any finite semifield Q is generated by one element.

(C) Define a spectra of a loop Q∗ if Q is a finite quasifield or a semifield.

(D) Find the automorphism group AutQ.

The problems were studied earlier for certain semifields and quasifields of small orders [7–9].
See also Theorem 3.4 in Section 3. In Section 2 of the paper the question (A) is studied on
maximal subfields for the finite near-fields.

Clearly that a field is a trivial example of a quasifield. Any finite quasifield which is not a
field is said to be a proper quasifield. A quasifield Q is called a minimal proper quasifield if any
of its sub-quasifield H ̸= Q is a subfield. For instance, any of non-trivial quasifields of order p2

(p is a prime number) is evidently a minimal proper quasifield. Therefore, by the well-known
Zassenhaus theorem, studies of question (A) are reduced to Dickson near-fields.

According to Dancs [10, 11] and Felgner [12], the maximal subfield of Dickson near-field
containing the center is unique. Certain near-fields have only two or three maximal subfields
[13]. However, earlier V. M. Levchuk noted that the answer to the following question is unknown:

Does there exist an integer N such that the number of maximal subfields in arbitrary finite
near-field is less than N?

The Dancs description of sub-near-fields in a Dickson near-field is used (see also [13]). Devel-
oping Dancs and Felgner approach, the method of construction of some minimal proper near-fields
is proposed (Theorem 2.1). Main theorem 2.2 in Section 2 provides the negative answer to the
question above even in the class of minimal proper near-fields.

In the case of a finite semifield (Section 3), it is proved that any semifield W of order p4 is
a minimal proper semifield, and any of its sub-semifields H ̸= W is a subfield of order p or p2

(Theorem 3.3). A semifield of order p3 > 8 is also a minimal proper semifield. According to
Knuth’s theorem [14], such semifield contains only the prime subfield.

2. Subfields in finite near-fields

First examples of finite near-fields were constructed by Dickson in 1906. All finite near-fields
were described by Zassenhaus [15] in 1936. His construction of Dickson near-field is based on the
special expansion of a Galois field GF (q), q = pl for a prime p. The additive group of a Galois
field GF (qn) is used and it is characterized by the Dickson pair (q, n), where

1) any prime divisor of n divides q − 1;
2) if q ≡ 3 (mod 4) then n ̸≡ 0 (mod 4).

By Zassenhaus theorem [15], all finite near-fields are Dickson near-fields, except seven near-
fields of order p2 where p = 5, 7, 11 (two near-fields), 23, 29 and 59 (see also [6]).

Clearly that the prime subfield P = {ke | k ∈ Z} of any finite near-field Q is in the kernel

K(Q) = {x ∈ Q | x(y + z) = xy + xz, (y + z)x = yx+ zx ∀y, z ∈ Q}.

However, the center Z(Q) is not necessary a subfield. In fact, it was shown [13, Th. 1] that
for any finite near-field the center coincides with the kernel except Zassenhaus near-fields Q of
orders 52, 72, 112 and 292 with |Z(Q∗)| = 2, 2, 2 and 14, respectively.
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According to [16], the prime subfield is a unique maximal subfield in a near-field of order
pr for any prime number r. So, in this case the near-field is a minimal proper near-field, and
question (A) is reduced to the case of Dickson near-fields, where r = ln is not prime number.

The class of all Dickson near-fields of order qn with the center GF (q), q = pl is denoted by
DF (q, n). The well-known correspondence between the subfields in a Galois field GF (pm) and
the divisors of m may be generalized to Dickson near-fields and their sub-near-fields (see [10,11]).
The following lemma describes this generalized correspondence.

Lemma 1. For any sub-near-field H of a Dickson near-field Q ∈ DF (pl, n) there are h | (ln)
and 0 < j 6 n such that |H| = ph, H ∈ DF (pz, h/z), z = GCD(jl, h) and

j ≡ pln − 1

ph − 1
(mod n). (1)

Inversely, if h | (ln) then Q contains the unique sub-near-field H of order ph.

Felgner [12] proved that any Dickson near-field Q has the unique maximal subfield M(Q)

containing the center Z(Q). By [13], if |M(Q)| = qλ, then for the canonical decomposition of n
and λ we have:

n = pn1
1 pn2

2 . . . pnr
r , λ = p

[n1/2]
1 p

[n2/2]
2 . . . p[nr/2]

r .

Example 1. Let Q be any near-field of order 2180 from the class DF (24, 45). Lemma 1 is used
to construct the lattice of sub-near-fields of Q (see Fig. 1). The commutative sub-near-fields, i.e.
subfields, are shown in colour. The near-field Q contains three maximal subfileds, their orders
are 245, 230 and 212 = |M(Q)|. Maximal sub-near-fields of orders 290, 236, 260 are not subfields.

Further, examples of minimal proper Dickson near-fields Q will be given. Next we consider
the following Lemma.

Lemma 2. Let H be a sub-near-field of order ph in a Dickson near-field Q ∈ DF (pl, n) and
H ∈ DF (pz, h/z). Then (h/z)|n.

Proof. It is enough to consider the case where k = (ln)/h is a prime number. Let k divides
n. Then n = kn′, h = ln′,

z = GCD (jl, h) = GCD (jl, ln′) = l · GCD (j, n′) = ln′′,

where n′′ divides n. So, we have
h

z
=
ln′

ln′′ =
n′

n′′
|n.

Let k divides l. Then l = kl′, h = l′n,

z = GCD (jl, h) = GCD (jkl′, l′n) = l′ · GCD (jk, n) = l′n′,

where n′ divides n. So,
h

z
=

l′n

l′n′
=

n

n′

divides n. 2

Let us denote the set of all prime divisors of m ∈ N by π(m). Firstly, we consider the case of
the minimal expansion degree n = 2.
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Fig. 1. Sub-near-fields lattice in the Dickson near-field of order 2180 with the center GF (24)

Lemma 3. The center Z(Q) ≃ GF (pl) is the unique maximal subfield in any finite Dickson
near-field Q ∈ DF (pl, 2).

Proof. It is evident that p > 2 and Z(Q) is a maximal subfield of Q. Let H be another
maximal subfield of Q. Then H ̸⊂ Z(Q) and |H| = p2l

′
, where l′ divides l. Let us consider the

sub-near-fields sequence

Q = H0 ⊃ H1 ⊃ · · · ⊃ Hk−1 ⊃ Hk = H,

where |Hi| = phi and hi−1/hi are prime numbers. The maximality of subfield H leads to
Hk ∈ DF (p2l

′
, 1) and Hk−1 ∈ DF (pl

′′
, 2), where l′|l′′, l′′|l and l′′/l′ = m is a prime number. Let

us determine parameter j (1) for the sub-near-field Hk in Hk−1 and obtain

j =
p2l

′′ − 1

p2l′ − 1
=
p2ml

′ − 1

p2l′ − 1
= p2l

′(m−1) + p2l
′(m−2) + · · ·+ p2l

′
+ 1 ≡ m(mod 2),

that is j = 1 if m > 2 and j = 2 if m = 2.
If m > 2 then z = GCD(jl′′, h) = GCD(l′m, 2l′) = l′ so Hk ∈ DF (pl

′
, 2) and Hk is not a

subfield. This is contradictory to the supposition.
If m = 2 then z = GCD(jl′′, h) = GCD(2l′′, 2l′) = 2l′. We have Hk ∈ DF (p2l

′
, 1) and

Hk−1 ∈ DF (p2l
′
, 2), where 2l′ divides l, so Hk is in the center Z(Q) and it is not a maximal

subfield. This is contradictory to the supposition. 2

If the expansion degree n is greater than two then one can choose the prime number p such
that a Dickson near-field Q ∈ DF (q, n) is a minimal proper near-field.

Theorem 2.1. There exist infinitely many minimal proper near-fields Q ∈ DF (q, n) for any
fixed prime number n > 2.
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Proof. Let n > 2 be a prime number. Let us consider the field GF (n) and choose its primitive
element p0, pn−1

0 ≡ 1(modn) and pm0 ̸≡ 1(modn) for any 0 < m < n − 1. The arithmetical
progression {p0 + nt}∞t=0 contains infinitely many prime numbers. Let p = p0 + nt be one of
them. Then (pn−1, n) is a Dickson pair. Indeed,

pn−1 = (p0 + nt)n−1 ≡ pn−1
0 ≡ 1(modn),

that is, n divides q − 1 = pn−1 − 1. Now let Q be any near-field from the class DF (pn−1, n).
Let us consider all its maximal sub-near-fields. Number n is a prime number. It is clear that the
center Z(Q) ≃ GF (pn−1) is a maximal sub-near-field in Q. Suppose that H ̸= Z(Q) is another
maximal sub-near-field of Q. Then |H| = ph, where h = nl′ and k = (n−1)/l′ is a prime number.
Let us determine parameters j and z (1) for H and obtain

j ≡ p(n−1)n − 1

pl′n − 1
(modn),

p(n−1)n − 1 ≡ 0(modn), pn ≡ p(modn),

pl
′n − 1 = (pn)l

′
− 1 ≡ pl

′
− 1(modn) ̸≡ 0(modn),

so j = n. Further, z = GCD(jl, h) = GCD(n(n − 1), nl′) = nl′ = h and H ∈ DF (ph, 1), that
is, H is a subfield of Q. So, all maximal sub-near-fields of Q are subfields, and their number is
equal to |π(n− 1)|+ 1. 2

The following theorem proposes a method to construct the minimal proper near-field where
the number of maximal subfields is greater than any fixed integer.

Theorem 2.2. For any s ∈ N there exists a minimal proper Dickson near-field that has more
than s maximal subfields.

Proof. Let s be any integer. Let us consider the product of s different prime numbers
N = r1 · r2 · · · · · rs. Then the arithmetical progression {1 + Nt}∞t=1 contains infinitely many
prime numbers. Let n = 1+Nt0 be one of them. According to Theorem 2.1, one can choose the
prime number p such that the class DF (pn−1, n) contains a minimal proper near-field Q. The
number of maximal subfields in Q is equal to 1 + |π(n− 1)| > 1 + s. 2

Example 2. Using these results, one can give an example of a minimal proper near-field with
five maximal subfields. Let n = 2 · 3 · 5 · 7 + 1 = 211. It is a prime number. The Galois field
GF (211) contains the primitive element 3: 3210 ≡ 1(mod 211) and 3m ̸≡ 1(mod 211) for any
0 < m < 210. Then the near-field Q ∈ DF (3210, 211) contains five subfields Hi of orders 3hi ,
i = 1, . . . , 5, where

h1 =
210 · 211

2
, h2 =

210 · 211
3

, h3 =
210 · 211

5
, h4 =

210 · 211
7

, h5 =
210 · 211

211
.

Indeed, the calculation of j and z (1) shows that j = n and z = hi so hi/z = 1 and Hi ≃ GF (3hi).
Numbers n/hi are all prime numbers so these subfields are maximal sub-near-fields in Q.

A minimal proper near-field with exactly one maximal subfield is also determined.

Lemma 4. A Dickson near-field Q is a minimal proper near-field that has unique maximal
subfield iff Q is from one of classes DF (p, r), DF (p, r2), DF (pr, r), where p and r are possible
prime number.
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Proof. According to [16], in a near-field Q ∈ DF (p, r) the center Zp is a unique maximal
subfield, and Q has no another sub-near-fields by Lemma 1. For a near-field Q ∈ DF (p, r2)

or Q ∈ DF (pr, r) of order pr
2

the unique maximal sub-near-field is the subfield M(Q) because
λ = r. Inversely, let Q ∈ DF (pl, n) satisfies the condition. It is clear that ln is a degree of
one prime number, ln = rt. The maximal subfield M(Q) which contains the center GF (pl) has
the order pλ, where λ = r[t/2]. If H ̸= Q is a maximal sub-near-field in Q of order pr

t−1

then
H =M(Q). So, t = 1 or t = 2. The case DF (pr, 1) is evidently corresponds to the field GF (pr).

2

Clearly, that the multiplicative group Q∗ of the minimal proper near-field Q ∈ DF (22, 3) is
a Miller–Moreno group [17]. On the other hand, the multiplicative group Q∗ of the near-field Q
from Example 2 is not a Miller–Moreno group.

3. Subfields in finite semifields

Let ⟨W,+, ◦⟩ be a semifield of order pn (p is a prime number). The universal method to
determine a finite semifield (see, for example, [3, 18]) is to introduce n-dimensional linear space
over the field Zp with a multiplication law

x ◦ y = x · θ(y) (x, y ∈W ).

Here, θ is an injective linear mapping from W to GLn(p) ∪ {0} with the property θ(e) = E

(the identity matrix) for some vector e ∈W (neutral under the multiplication ◦). Then, the set
R = {θ(y) | y ∈W} is called a spread set of a semifield W . The notation W =W (n, p, θ) is used.
Elements of the prime subfiled P ≃ Zp correspond to the scalar matrices kE = θ(k ◦ e) ∈ R.
Note that k ◦ a (k ∈ N, a ∈ W ) is the sum of k items equal to a. According to the definition of
a semifield, the following result is evident (see also [19]).

Lemma 5. Let W be a semifield of order pn, and R ⊂ GLn(p)∪{0} is its spread set. Then, for
any non-scalar matrix A ∈ R the characteristic polynomial χA(x) ∈ Zp[x] has no linear divisors
x− λ.

Proof. Indeed, let A = θ(a), a ∈ W , and x − λ divides χA(x). If b ∈ W is a correspondent
eigenvector then

bθ(a) = λb, bθ(a− λ ◦ e) = 0, b ◦ (a− λ ◦ e) = 0, b ̸= 0.

So, we have a = λ ◦ e because a semifield has no zero divisors. 2

In what follows the results on minimal polynomials in finite semifields which were proved
in [20] are used. For any polynomial f(x) ∈ Zp,

f(x) = cmx
m + cm−1x

m−1 + · · ·+ c2x
2 + c1x+ c0 (ci ∈ Zp, i = 0, 1, . . . ,m),

and any element a ∈W the right- and left-ordered value of the polynomial are defined:

f(a)) = cm ◦ am) + cm−1 ◦ am−1) + · · ·+ c2 ◦ a2 + c1 ◦ a+ c0 ◦ e,

f((a) = cm ◦ a(m + cm−1 ◦ a(m−1 + · · ·+ c2 ◦ a2 + c1 ◦ a+ c0 ◦ e.

Here, as) and a(s are the right- and left-ordered degrees of an element a, respectively. They are
determined inductively by the rule

as) := as−1) ◦ a, a(s := a ◦ a(s−1, a1) := a = a(1.
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Evidently, in the case of degree 6 2, the right- and the left-ordered values f(a)) and f((a) are
equal.

The right-ordered minimal polynomial of an element a ∈ W (n, p, θ) is said to be a monic
polynomial µra(x) ∈ Fp[x] of the minimal degree such that µra(a)) = 0. The left-ordered minimal
polynomial µla(x) is defined in a similar way. According to [20], we have

Lemma 6. If a ∈ W (n, p, θ) and A = θ(a) then the right-ordered minimal polynomial of an
element a is a factor of the minimal polynomial of the matrix A.

Now consider semifields of small orders p3 and p4 and their subfields. It is well-known [14]
that a semifield of order p2 or 8 is a field. So, it is clear that any semifield of order p3 > 8 is a
minimal proper semifield. Let us specify the possible orders of subfields in such a semifield.

Lemma 7. Let W be a semifield of order pn with the multiplicative identity e. If a non-zero
element a ∈ W has the right-ordered minimal polynomial µra(x) ∈ Zp[x] then deg(µra) = 1 iff a
belongs to the prime subfield P and deg(µra) = 2 iff K = {α1 ◦ e + α2 ◦ a | α1, α2 ∈ Zp} is a
subfield in W of order p2.

Proof. The first proposition is evident. Let deg(µra) = 2. Then the system of vectors e, a
is linear independent over Zp, a2 ∈ K, so |K| = p2. Moreover, K is closed with respect to
multiplication and multiplication in K is associative. Inversely, if K is a subfield of order p2 then
a ̸∈ P and a2 ∈ K. 2

Corollary 1. Let W be a semifield of order pn. The subset of elements with the minimal
polynomial of degree 1 or 2 (together with 0) is the union of all subfields of order p2 in W .

Let us note that for a sub-semifield (or a subfield) U of order pm in a semifield W of order
pn the condition m|n need not be satisfied. This fact can be explained by the absence of multi-
plicative associativity: in general a semifield W is not a linear space over U . Moreover, a finite
semifield may contain more than one sub-semifields (subfields) of the same order.

For example, there exists the semifield of order 32 containing the subfield of order 4, and also
semifields of order 81 with three disjoint subfields of order 9 (see [7, 9, 21]).

The evident examples of subfields in the finite semifields are the left, middle and right nuclei [3]

Nl = {x ∈W | x ◦ (y ◦ z) = (x ◦ y) ◦ z ∀y, z ∈W},
Nm = {x ∈W | y ◦ (x ◦ z) = (y ◦ x) ◦ z ∀y, z ∈W},
Nr = {x ∈W | y ◦ (z ◦ x) = (y ◦ z) ◦ x ∀y, z ∈W},

the nucleus N = Nl ∩ Nm ∩ Nr and the center Z = {z ∈ N | z ◦ x = x ◦ z ∀x ∈ W}. Let us
consider now another example of a semifield of order p4 with a subfield of order p2 (see [18]).

Lemma 8. Let W be a semifield of order p4 and φ be an involutory automorphism of W . Then
the stabilizer U = {x ∈W | φ(x) = x} is a subfield of order p2.

It is natural to assume that for a semifield of order pn any sub-semifield is of order pm, where
m 6 n/2. Let us show that it is true, at least, for the semifields of order p3 and p4.

Theorem 3.3. For a semifield W of order pn, where n = 3 or n = 4, any proper sub-semifield
is a subfield of order pm, m 6 n/2.

Proof. Let W be a semifield of order p3, U be its subfield of order p2, and the element a ∈ U

does not belong to the prime subfield P . Then, its minimal polynomial µa(x) ∈ Zp[x] is of degree
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two and it divides the minimal polinomial µA(x) of the correspondent matrix A = θ(a) ∈ GL3(p)

from the spread set. Then, the characteristic polynomial χA(x) of matrix A has a linear factor
that is impossible.

Let W be a semifield of order p4, U be its sub-semifield of order p3. It was proved above
that it does not contain the subfields of order p2. So, any of its elements a ∈ U , not from the
prime subfield P , has the right-ordered minimal polynomial µra(x) ∈ Zp[x] of degree 3. Then,
the characteristic polynomial χA(x) of the correspondent matrix A = θ(a) ∈ GL4(p) from the
spread set has a linear factor. 2

One can generalize the obtained result using the notion of the right-cyclic semifield. An
element a of a semifield W of order pn is called right-cyclic over Zp, if elements

e, a, a2, a3), . . . , an−1)

form a base of W as a n-dimensional linear space over Zp. So, the semifield W is called right-
cyclic over Zp. A left-cyclic element and a left-cycllic semifield are defined in a similar way. Let
us note that all known up to now finite semifields are right- and left-cyclic even non-primitive
semifields of order 32 and 64 (see, for example, [19, 22,23] and [7].

Corollary 2. A semifield W of order pn contains no right-cyclic over Zp sub-semifields of order
pn−1.

Proof. It is enough to consider the right-ordered minimal polynomial of a right-cyclic element
a of a sub-semifield of order pn−1. The characteristic polynomial of correspondent matrix A =

θ(a) from a spread set has a linear factor. 2

Let us now illustrate these results by the examples of semifields of order 54 and 134 with
additional condition to autotopisms. Remind that the triple of automorphisms ⟨α, β, γ⟩ of the
additive group (W,+) is called an autotopism of a semifield W if for all x, y ∈ W the equality
xα ◦ yβ = (x ◦ y)γ is satisfied. It is simple to prove (see [18]) that fixed α and γ defines the
automorphism β.

Let W be a semifield of order p4 (p is a prime number, p ≡ 1(mod 4)) determined as a
4-dimensional linear space over Zp. Now consider its mappings

α1 : (x1, x2, x3, x4) → (−ix1,−ix2, ix3, ix4),
α2 : (x1, x2, x3, x4) → (−x3,−x4, x1, x2), xj ∈ Zp, j = 1, 2, 3, 4,

(2)

where i ∈ Zp, i2 = −1. Let σ1 = ⟨α1, β1, α1⟩, σ2 = ⟨α2, β2, α2⟩ be the autotopism of W ,
where α1 and α2 are defined by (2), and H = ⟨σ1, σ2⟩ be the autotopism subgroup. Then, H is
isomorphic to the quaternion group Q8. It can be verified by direct calculation. Let us denote
the numbers of non-isomorphic and non-isotopic semifields of order p4 admitting H by n(p) and
n′(p), respectively. Questions (A)–(D) from the introduction can be solved with the use of
computer constructions.

Theorem 3.4. Let W be a semifield of order p4, where p = 5 or p = 13, which admit an
autotopism subgroup H = ⟨σ1, σ2⟩ ≃ Q8. Then W is not commutative. It is left- and right-
primitive, and it has the center of order p and the left nucleus Nl of order p2, and

n(5) = 9, n′(5) = 3, n(13) = 99, n′(13) = 33.

The number of maximal subfields of order p2 in W equals 1, 2 or p+2. The automorphism group
AutW is the cyclic group Z2 or Zp+1.
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Note that any such semifield is a minimal proper semifield but it may contain more than one
subfiled of order p2. It is anomalous property in comparison with the properties of finite fields
and finite near-fields. The theorem does not concern the question (C) on the spectra of elements
of multiplicative loop because of its complicated statement. But it is another anomalous property
of finite semifields that the spectra contain the integers which does not divide the order of W ∗.

This work was funded by Russian Foundation for Basic Research (project no. 19-01-
00566 А).
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Минимальные собственные квазиполя
с дополнительными условиями

Ольга В.Кравцова
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. Мы рассматривем конечные полуполя, то есть дистрибутивные квазиполя, и конеч-
ные почти-поля, то есть ассоциативные квазиполя. Квазиполе Q называем минимальным собствен-
ным квазиполем, если всякое его подквазиполе H ̸= Q является подполем. Оказывается, существует
минимальное собственное почти-поле, мультипликативная группа которого есть группа Миллера–
Морено. Найден алгоритм построения минимального собственного почти-поля, в котором коли-
чество максимальных подполей больше любого заданного числа. Таким образом, получен ответ
на вопрос: существует ли такое натуральное число N , что количество максимальных подполей в
произвольном почти-поле меньше N? Доказано, что всякое полуполе порядка p4 (p – простое) есть
минимальное собственное полуполе.

Ключевые слова: квазиполе, полуполе, почти-поле, подполе.
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Abstract. In the paper, we deal with the problem of getting analytic continuations for the monomial
function associated with a solution to the reduced trinomial algebraic system. In particular, we develop
the idea of applying the Mellin-Barnes integral representation of the monomial function for solving the
extension problem and demonstrate how to achieve the same result following the fact that the solution to
the universal trinomial system is polyhomogeneous. As a main result, we construct Puiseux expansions
(centred at the origin) representing analytic continuations of the monomial function.
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Introduction

We consider a system of n trinomial algebraic equations of the form∑
α∈A(i)

a(i)α yα = 0, i = 1, . . . , n, (1)

with the unknown y = (y1, . . . , yn) ∈ (C \ 0)n and variable coefficients a(i)α , where A(i) ⊂ Zn are
fixed three-element subsets and yα = yα1

1 · . . . · yαn
n is a monomial. Without loss of generality we

assume, that all sets A(i) contain the zero element 0̄ (this may be achieved by dividing the ith
equation in (1) by a monomial with the exponent in A(i), see the system (2) below). We call (1)
the universal trinomial system since any trinomial algebraic system is a result of the substitution
of polynomials in new variables for coefficients a(i)α .

When n = 1, the system (1) is a scalar trinomial equation. It has a special place in the
centuries-old history of algebraic equations. As early as 1786, Bring proved that every quintic
polynomial could be reduced to the trinomial form y5 + ay + b using the Tschirnhaus transfor-
mation. At the turn of the XIX–XX centuries, the dependence of norms of roots on coefficients
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of the trinomial equation with fixed support was actively studied. Although algebraic character-
isation of the mentioned dependence was given by Bohl already in 1908, the geometric view on
the problem has been formed much later. In the recent study by Theobald and de Wolff [15], a
geometrical and topological characterisation for the space of univariate trinomials was provided
by reinterpreting the problem in terms of the amoeba theory.

Of particular interest is the reduced system of n trinomial equations

yω
(i)

+ xiy
σ(i)

− 1 = 0, i = 1, . . . , n, (2)

with the unknown y = (y1, . . . , yn), equation supports A(i) := {ω(i), σ(i), 0} ⊂ Zn> and variable
complex coefficients x = (x1, . . . , xn). It is assumed that a matrix ω composed of column vectors
ω(1), . . . , ω(n) is nondegenerate.

Let y(x) = (y1(x), . . . , yn(x)) be a multivalued algebraic vector-function of solutions to the
system (2). We call a branch of y(x) defined by conditions yi(0) = 1, i = 1, . . . , n the principal
solution to the system (2). Having determined the principal solution y(x), we consider the
following monomial function

yd(x) := yd11 (x) · . . . · ydnn (x), d = (d1, . . . , dn) ∈ Zn+. (3)

Our goal is to obtain Puiseux expansions (centred at the origin) representing analytic continu-
ations of the Taylor series for the monomial yd(x) of the principal solution to the system (2).
Puiseux type parameterizations of an algebraic variety via the amoeba of the discriminant locus
of the variety canonical projection were studied in [6]. The existence of such parameterizations
for plane curves was proved by Puiseux [12]: this fact is known as the Newton-Puiseux theorem
which states that one can find local parameterizations of the form x = tk, y = φ(t), where φ
is a convergent power series. We aim at investigating Puiseux expansions for analytic continu-
ations of (3) which may fail to "recognize" some pieces of the discriminant set. It means that
the convergence domain G of a series projects onto the domain Log(G) containing a certain
collection of connected components of the discriminant amoeba complement. An example in
Section 1 illustrates how the series converging in the preimage Log−1(E0) of the component E0

of the amoeba complement admits an analytic continuation to the domain G for which Log(G)

covers components E1, E2 and an amoeba tentacle separating them, see Fig. 1. This analytic
continuation is given by another series expansion.

When n = 1, analytic continuations for the Taylor series of the principal solution to the
universal algebraic equation (not necessarily a trinomial) were found in [3], where the Mellin-
Barnes integral representation for the solution was used as a tool of the analytic continuation.
This integral, with indicating the convergence region of it, was wholly studied in [2]. While a
power series converges in a polycircular domain, a Mellin-Barnes integral converges in a sectorial
domain which is defined only by conditions for arguments arg xi of variables xi. Remark that
the intersection of these domains is always nonempty. Consequently, a series expansion of the
solution to the equation admits an analytic continuation into the sectorial domain by means
of the integral. Of course, we may follow this approach to getting analytic extensions for the
monomial (3) in a case when the corresponding Mellin-Barnes integral represents it. Herein
we can obtain analytic continuations of the Taylor series in the form of Puiseux series via the
multidimensional residues technique.

However, we can get the same series following the fact that the solution y(a) to the system (1)
is polyhomogeneous. This means that via some monomial transformation of coefficients the
system (1) can be reduced to the form (2) or to another system which, similarly, has only one
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variable coefficient in each equation. We perceive any reduced system of equations as the general
(homogeneous) system (1) written in suitable coordinates. The transition from one reduced
system to another enables us to obtain series continuations for monomials of coordinates of
solutions to these systems.

The paper is organized as follows. In Section 1 we review the technique of the calculation
of multidimensional Mellin-Barnes integrals which is based on the separating cycle principle
formulated in [16] (see also [17]). We present an example which illustrates what computational
issues can arise in this way of getting analytic extensions. In Section 2 we discuss the procedure
of the dehomogenization (reduction) of the system (1) and obtain the Taylor series expansions for
the monomials of the principal solutions to all reduced systems associated with the system (1).
Theorem 1 gives these series as a result of the application of the logarithmic residue formula [5]
and the linearization procedure for each reduced system. The idea of using the logarithmic residue
formula for getting the Taylor expansions was developed in [8], where the special instance of the
reduced polynomial system with the diagonal matrix ω was considered. In Section 3 we use
Taylor expansions derived in Theorem 1 and appropriate monomial transformations to obtain
the desired Puiseux series which are supposed to be the analytic continuations of the Taylor
series for the monomial yd(x) of the principal solution to (2) (Theorem 2). Finally, we discuss
the example from Section 1 again in terms of the result of Theorem 2.

1. Mellin-Barnes integral as a tool of analytic continuation

Traditionally, the Mellin-Barnes integrals are regarded as the inverse Mellin transform for
special meromorphic functions, which are rations of products of a finite number of superpositions
of gamma functions with affine functions. Their role in the theory of algebraic equations was
revealed first by Mellin in [9], where he wrote down without any proof the integral representation
for the solution to the universal algebraic equation later investigated in [2]. In our study we
consider such integrals in the extended sense, having in mind the presence of a polynomial factor
in the integrand besides gamma-functions.

The Mellin integral transform for monomials of a solution to the reduced polynomial system
was studied in [1] and [14]. Following [14], we associate the Mellin-Barnes integral

1

(2πi)
n

∫
γ+iRn

n∏
j=1

Γ(zj)Γ
(
dj
ωj

− 1
ωj
⟨σj , z⟩

)
Γ
(
dj
ωj

− 1
ωj
⟨σj , z⟩+ zj + 1

)Q(z)x−z dz (4)

with the monomial yd(x). In (4) x−z denotes the product x−z11 · . . . · x−znn , σj is the jth row of
the matrix σ composed of column vectors σ(1), . . . , σ(n), γ belongs to the domain

U = {u ∈ Rn+ : ⟨σj , u⟩ < dj , j = 1, . . . , n},

and Q(z) is a polynomial represented by the determinant

Q(z) =
1

detω
det
∣∣∣∣∣∣δji (dj − ⟨σj , z⟩) + σ

(i)
j zi

∣∣∣∣∣∣n
i,j=1

,

where δji is the Kronecker symbol. Here it is assumed that ω is a diagonal matrix with elements
ω1, . . . , ωn on the diagonal.

Remark that the integral (4) can have the empty convergence domain. It follows from [7]
that its convergence domain is nonempty if and only if all the diagonal minors of the matrix σ
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are positive. In this case, the integral (4) represents the monomial yd(x) of the principal solution
to the system (2), and it can be used as a tool of the constructive analytic continuation of power
series.

Let us show how to calculate the integral (4). A method of the calculation is based on the
separating cycle principle formulated in [16] and developed in [17]. This principle deals with the
calculation of the Grothendieck-type integrals

1

(2πi)n

∫
∆g

h(z)dz

f1(z) . . . fn(z)
, (5)

where the integration set ∆g is the skeleton of the polyhedron Πg associated with the holomorphic
proper mapping g : (g1, . . . , gn) : Cn → Cn, and the integrand has poles on divisors Dj =

= {z : fj(z) = 0}, j = 1, . . . , n. The polyhedron Πg is the preimage g−1(G) of the domain
G = G1 × . . .×Gn, where each Gj is a domain on the complex plane with the piecewise smooth
boundary. We associate a facet σj = {z : gj(z) ∈ ∂Gj , gk(z) ∈ Gk, k ̸= j} of the polyhedron
Πg with j ∈ {1, . . . , n}.

Definition. A polyhedron Πg is said to be compatible with the set of divisors {Dj}, if for each
j = 1, . . . , n the corresponding facet σj of the polyhedron Πg does not intersect the divisor Dj .

Assume further that the intersection Z = D1 ∩ . . . ∩Dn is discrete. The local residue with
respect to the family of divisors {Dj} at each point a ∈ Z (the Grothendieck residue) is defined
by the integral (see [16])

resf,aΩ =
1

(2πi)n

∫
Γa(f)

Ω,

where Ω is the integrand in (5), and Γa(f) is a cycle given in the neighborhood Ua of the point
a as follows

Γa(f) = {z ∈ Ua : |f1(z)| = ε1, . . . , |fn(z)| = εn}, εj << 1.

If a is a simple zero of the mapping f , i.e. the Jacobian Jf = ∂f/∂z is nonzero at the point a,
then the local residue is calculated by the formula

resf,aΩ =
h(a)

Jf (a)
. (6)

Theorem 1 (principle of separating cycles). If the polyhedron Πg is bounded and compatible
with the family of polar divisors {Dj}, then the integral (5) equals to the sum of Grothendieck
residues in the domain Πg.

One can reduce the integral (4) to the canonical form (5) in the following way. We interpret
the vertical integration subspace γ + iRn as the skeleton of some polyhedron. For instance, in
the case n = 1, it can be the skeleton of only two polyhedra: the right and left halfplanes with
the separating line γ + iR. For n > 1 this subspace may serve as the skeleton of an infinite
number of polyhedra. Our objective is to divide all the set of 2n families of polar hyperplanes
of the integral (4)

Lj : zj = −ν,

Ln+j :
dj
ωj

− 1

ωj
⟨σj , z⟩ = −ν, j = 1, . . . , n, ν ∈ Z>
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into n divisors and construct a polyhedron compatible with this family of divisors. We consider
polyhedra of the type

Πg = {z ∈ Cn : Regj(z) < rj , j = 1, . . . , n},

where gj(z) are linear functions with real coefficients. It is clear that Πg = π + iRn where π is
a simplicial n-dimensional cone in the real subspace Rn ⊂ Cn. Remark that in the case of an
unbounded polyhedron, besides the compatibility condition of the polyhedron and polar divisors,
one should require a sufficiently rapid decrease of the integrand Ω in the polyhedron Πg. For the
integral (4) the nonconfluence property provides the decrease of the integrand, see [10] and [17].
We recall that the nonconfluence property for the hypergeometric Mellin-Barnes integral means
that sums of coefficients of the variable zj over all gamma-factors in the numerator and the
denominator are equal.

Now, applying the technique discussed above, we construct analytic continuations for the
solution to the following system of equations{

y41 + x1y
2
1y2 − 1 = 0,

y42 + x2y1y
2
2 − 1 = 0.

(7)

For the description of the convergence domains of power series and Mellin-Barnes integrals
we introduce the following mappings from (C \ 0)n into Rn:

Log : (x1, . . . , xn) −→ (log |x1|, . . . , log |xn|) ,

Arg : (x1, . . . , xn) −→ (arg x1, . . . , arg xn) .

The monomial y1(x) ·y2(x) of the principle solution to the system (7) admits the Taylor series
representation

∑
|k|>0

(−1)
|k|

k!

Γ
(
1
4 + 1

2k1 +
1
4k2
)
Γ
(
1
4 + 1

4k1 +
1
2k2
)

Γ
(
5
4 − 1

2k1 +
1
4k2
)
Γ
(
5
4 + 1

4k1 −
1
2k2
) 1

16
(1 + k1 + k2)x

k1
1 x

k2
2 , (8)

which converges in some neighborhood of the origin, see Theorem 1 below. In turn, the Mellin-
Barnes integral of the form

1

(2πi)
2

∫
γ+iR2

Γ(z1)Γ(z2)Γ
(
1
4 − 1

2z1 −
1
4z2
)
Γ
(
1
4 − 1

4z1 −
1
2z2
)

Γ
(
5
4 + 1

2z1 −
1
4z2
)
Γ
(
5
4 − 1

4z1 +
1
2z2
) (1− z1 − z2)

16
x−zdz, (9)

where γ is a point in the open quadrangle

U =
{
u ∈ R2

+ : 2u1 + u2 < 1, u1 + 2u2 < 1
}
,

represents the monomial y1(x) · y2(x) in a sectorial domain Arg−1(Θ) determined by

Θ =

{
(θ1, θ2) ∈ R2 : |θ1| <

π

2
, |θ2| <

π

2
, |2θ2 − θ1| <

3π

4
, |θ2 − 2θ1| <

3π

4

}
, (10)

here θ1 = arg x1, θ2 = arg x2. Fig. 2 shows the domain Θ which is the interior of the convex
octagon. The general description of convergence domains of multiple Mellin-Barnes integrals
gives Theorem 4.4.25 in the book [13]. Thus, the integral (9) gives the analytic continuation of
the series (8) into the sectorial domain Arg−1(Θ) .

– 118 –



Irina A. Antipova, Ekaterina A. Kleshkova, Vladimir R. Kulikov Analytic Continuation for Solutions . . .

We next calculate the integral (9) using the principle of separating cycles. It admits a
representation as a sum of local residues of the integrand

Ω =
Γ(z1)Γ(z2)Γ

(
1
4 − 1

2z1 −
1
4z2
)
Γ
(
1
4 − 1

4z1 −
1
2z2
)

Γ
(
5
4 + 1

2z1 −
1
4z2
)
Γ
(
5
4 − 1

4z1 +
1
2z2
) (1− z1 − z2)

16
x−z11 x−z22 dz1 dz2 (11)

in some polyhedron, which contains the vertical imagine integration subspace γ + iR2 as the
skeleton. Furthermore, the polyhedron and polar divisors of Ω should satisfy the compatibility
conditions.

The form Ω has four families of polar complex lines:

L1 : z1 = −ν,
L2 : z2 = −ν,

L3 :
1

4
− 1

4
(2z1 + z2) = −ν,

L4 :
1

4
− 1

4
(z1 + 2z2) = −ν, ν ∈ Z≥.

(12)

Figs. 3 and 4 show the intersection of the real subspace with families (12), and also with

L5 :
5

4
+

1

2
z1 −

1

4
z2 = −ν,

L6 :
5

4
− 1

4
z1 +

1

2
z2 = −ν,

which are polar sets of gamma-functions in the denominator of the form (11). The quadrangle
U , to which the point γ belongs, is coloured in grey.

Fig. 1. The discriminant amoeba of the system (7)
and its complement components Eν

Fig. 2. The domain Θ

First, given the set of all polar lines of the integrand Ω, we form two divisors D1 = {L2, L3}
and D2 = {L1, L4}. We next construct a polyhedron Π1 = π1 + iR2 compatible with this set
of divisors, with the skeleton γ + iR2. Fig. 3 shows a two-dimensional cone (sector) π1 ⊂ R2

generated by rays which are parallel to the real sections of L3 and L4. It forms the polyhedron Π1.
Second, we consider divisors D

′

1 = {L3, L4} and D
′

2 = {L2}. A cone π2 generated by rays which
are parallel to the real sections of L3 and L2 forms a polyhedron Π2 = π2+ iR2, compatible with
the set of divisors D

′

1, D
′

2, see Fig. 4.
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We can see in Fig. 3 that families L5, L6 as well as L1, L2, L3, L4 come into the polyhedron
Π1, so in the cone π1 there are points at which two, three and even four lines intersect. However,
the form Ω has nonzero residues only at points z(k) = (z1(k), z2(k)) with coordinates

z1(k) =
1

3
+

8

3
k1 −

4

3
k2,

z2(k) =
1

3
− 4

3
k1 +

8

3
k2, k = (k1, k2) ∈ Z2

>.
(13)

The intersection points (13) of lines L3, L4 are indicated in Fig. 3 by a black colour. Hence, the
sum of local residues at points z(k) yields the Puiseux series

P1(x) =
1

x
1/3
1 x

1/3
2

∑
k∈Z2

>

ckx
−8/3k1+4/3k2
1 x

4/3k1−8/3k2
2 (14)

with coefficients

ck =
(−1)

|k|

k!

Γ
(
1
3 + 8

3k1 −
4
3k2
)
Γ
(
1
3 − 4

3k1 +
8
3k2
)

Γ
(
4
3 + 5

3k1 −
4
3k2
)
Γ
(
4
3 − 4

3k1 +
5
3k2
) 1
9
(1− 4k1 − 4k2). (15)

Four families of lines L2, L3, L4 and L5 come into the polyhedron Π2, see Fig. 2. However,
the form Ω has nonzero residues only at points z(k) = (z1(k), z2(k)) with coordinates

z1(k) =
1

2
+ 2k1 +

1

2
k2,

z2(k) = −k2, k = (k1, k2) ∈ Z2
>.

(16)

Points (16) are black in Fig. 4, where lines L2, L3 intersect. The sum of residues at z(k) yields
the Puiseux series

P2(x) =
1

x
1/2
1

∑
k∈Z2

>

ckx
−2k1−1/2k2
1 xk22 (17)

with coefficients

ck =
(−1)

|k|

k!

Γ
(
1
2 + 2k1 +

1
2k2
)
Γ
(
1
8 − 1

2k1 +
3
8k2
)

Γ
(
3
2 + k1 +

1
2k2
)
Γ
(
7
8 − 1

2k1 −
5
8k2
) 1

16
(1− 4k1 + k2). (18)

We remark that arguments of Γ–functions in coefficients of the series (8) and also in (15) and
(18) can be real nonpositive numbers, which are poles for the function Γ. So, by a ration of two
Γ–functions we mean a meromorphic function with removable singularities at those points. For
instance, we mean

Γ(−1)

Γ(0)
=

Γ(−1)

−Γ(−1)
= −1.

So, series (14) and (17) are analytic extensions of the series (8).
We now characterize domains of convergence of Puiseux series obtained above in the loga-

rithmic scale. According to the two-sided Abel lemma for hypergeometric series [10], there exists
a relationship between the structure of the convergence domain of this series and its support.
Since series (14) and (17) represent branches of the multivalued algebraic function y1(x) · y2(x)
with singularities on the discriminant set of the system (7), projections of convergence domains
of such series on the space of variables log |x1|, log |x2| are unions of several components of the
discriminant amoeba complement, see Fig. 1. We recall that the amoeba of the algebraic set
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V ⊂ Cn is defined to be the image of V under the mapping Log. In this way, the series (14)
converges in the domain G1 = Log−1(E3), where E3 is an amoeba complement component. The
projection Log(G2) of the convergence domain G2 of the series (17) covers two components E1,
E2 and an amoeba tentacle separating them, see Fig. 1.

Fig. 3. The real section of polar divisors. The
cone π1

Fig. 4. The real section of polar divisors. The
cone π2

2. Taylor series for monomials of solutions to reduced
systems

We consider the system of n trinomials (1) with unknowns y1, . . . , yn, variable coefficients
a = (. . . , a

(i)
α , . . .) and the set of supports A(1), . . . , A(n), the same as the system (2) has.

Let us denote by A the disjunctive union of sets A(i). It consists of 3n elements, and we
interpret it as the (n× 3n) – matrix

A =
(
A(1), . . . , A(n)

)
=
(
α1, . . . , α3n

)
,

with columns αk which are exponents of monomials of the system (1). We order elements α ∈ A,
and, correspondingly, coefficients a(i)α , α ∈ A of the system (1). The set of coefficients a = (aα)

is a vector space CA ≃ C3n.
The system (1) can be reduced by an appropriate change of coefficients in such a way that

only one variable coefficient remains in each equation, and the other ones will be constant as
in the system (2). Herein, supports A(1), . . . , A(n) remain the same, and the solution to the
system (1) can be restored by the solution to any reduced system. On the whole, the reduction
procedure (dehomogenization) of the system is based on the polyhomogeniety property of the
solution y(a) = (y1(a), . . . , yn(a)), which can be expressed as follows:

y
(
. . . λ

(i)
0 λαa(i)α . . .

)
=
(
λ−1
1 y1

(
..a(i)α ..

)
, . . . , λ−1

n yn
(
..a(i)α ..

))
, (19)

where λ0 =
(
λ
(1)
0 , . . . , λ

(n)
0

)
, λ = (λ1, . . . , λn) ∈ (C \ 0)n, see [4].
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In each set A(i) we fix a pair of elements µ(i), ν(i) and form the n× n-matrix

κ :=
(
µ(1) − ν(1), . . . , µ(n) − ν(n)

)
(20)

with columns µ(i) − ν(i). The matrix κ is assumed to be nondegenerate. Each fixed set of n
pairs µ(i), ν(i) corresponds to the reduced system of trinomials

r
(i)

β(i)y
β(i)

+ yµ
(i)

− yν
(i)

= 0, i = 1, . . . , n, (21)

with new unknown y = (y1, . . . , yn), variable coefficients r =
(
r
(i)

β(i)

)
∈ Cn and β(i) ∈ A(i). In

each set A(i), we can choose an unordered pair µ(i), ν(i) in three ways. Hence, we consider at
most 3n ways of the reduction of the system (1) to the form (21). If µ(i) = ω(i), ν(i) = 0 and
β(i) = σ(i) for all i ∈ {1, . . . , n}, then we get the system (2).

Consider a branch of the solution to the system (21) under condition yi(0) = 1 and call it
the principle solution. For the vector d = (d1, . . . , dn) ∈ Rn+ we introduce the monomial function
yd(r) := yd11 (r)·. . .·ydnn (r) of coordinates of the principal solution to the system (21). Concerning
the system (21), we use the following notations: β is the matrix formed of columns β(i) and β

is the matrix with columns
(
β(i) − ν(i)

)
. Moreover, the symbol Γ(b) we will use for the short

writing of the product
n∏
k=1

Γ (bk), where b = (b1, . . . , bn) is a vector. The diagonal matrix with

components of the vector b on the main diagonal we denote by diag[b] and the I denotes the
vector with unit coordinates.

Theorem 1. The monomial yd(r) of the principle solution to the system (21) admits the Taylor
series representation with coefficients

ck =
(−1)

|k|

k!

Γ
(
κ−1d+ κ−1βk

)
Γ
(
κ−1d+ κ−1βk − k + I

)Q(k), k ∈ Zn>, (22)

where Q(k) is the determinant of the matrix
(
diag

[
κ−1d+ κ−1βk

]
− κ−1β diag [k]

)
, k! := k1! ·

. . . · kn! and | k |:= k1 + . . .+ kn.

Proof. Following [4], we carry out the linearization of the system (21). For that we regard (21)
as a system of equations in the space Cnr ×Cny with coordinates r = (r

(i)

α(i)), y = (y1, . . . , yn), and
introduce in Cn × Cn the change of variables (ξ,W ) → (r, y) by setting

y =W−κ−1

, r = ξ ⊙Wκ−1β̄−E , (23)

where ξ = (ξ1, . . . , ξn), W = (W1, . . . ,Wn), ⊙ denotes the Hadamard (coordinate-wise) product
and E is the unit matrix. As a result of this change of variables, the system (21) can be written
in the vector form as follows

W = ξ + I. (24)

Equations of the system (24) are linear, so the change of variables (23) is called the lin-
earization. Coordinates of the solution to the system (21) in new variables ξ = (ξ1, . . . , ξn),
W = (W1, . . . ,Wn) take the form

yj(r(ξ)) = (W1, . . . ,Wn)
−(κ−1)

(j)

,

where Wi = 1 + ξi,
(
κ−1

)(j) is the jth column of the inverse matrix κ−1 for the matrix κ.

– 122 –



Irina A. Antipova, Ekaterina A. Kleshkova, Vladimir R. Kulikov Analytic Continuation for Solutions . . .

We represent the inversion ξ(r) of the linearization (23) as an implicit mapping given by the
following set of equations

F (ξ, r) = (F1(ξ, r), . . . , Fn(ξ, r)) = ξ ⊙Wκ−1β̄−E − r = 0. (25)

Calculate the vector y(ξ) at the value of the mapping ξ(r). To this end, following the idea
implemented in [8] for a system of polynomials with a diagonal matrix ω, we apply the logarithmic
residue formula, see [5, Th. 20.1, 20.2]. It yields the following integral

yd(r) =
1

(2πi)n

∫
Γε

yd(ξ)∆(ξ)dξ

F (ξ, r)
,

where Γε = {ξ ∈ Cn : |ξj | = ε, j = 1, . . . , n}, ∆(ξ) is the Jacobian of the mapping (25) with
respect to ξ and F (ξ, r) denotes the product F1(ξ, r) · . . . · Fn(ξ, r). The radius ε we choose in
such a way that the corresponding polycylinder lies outside the zero set of the Jacobian ∆(ξ).

Lemma 1. The Jacobian of the mapping F (ξ, r) with respect to ξ is

∆(ξ) =W (κ−1β̄)I−2I det
(
E + diag[ξ]κ−1β̄

)
.

Proof. The jth component of the mapping F (ξ, r) has the following form:

Fj = Fj(ξ, r) = ξj

n∏
k=1

W
(κ−1β̄−E)

(j)
k

k − rj .

The calculation of the derivative of Fj with respect to ξj looks as follows:

∂Fj
∂ξj

=
n∏
k=1

W
(κ−1β̄−E)

(j)
k

k + ξj(κ−1β̄ − E)
(j)
j

n∏
k=1

W
(κ−1β̄−E)

(j)
k −δjk

k =

=(1 + ξj(κ−1β̄)
(j)
j )

n∏
k=1

W
(κ−1β̄)

(j)
k −2δjk

k ,

and the derivative with respect to ξi, when i ̸= j, is equal to

∂Fj
∂ξi

= ξj(κ−1β̄ − E)
(j)
i

n∏
k=1

W
(κ−1β̄)

(j)
k −δjk−δ

i
k

k ,

where δjk, δ
i
k denote the Kronecker symbols.

Extracting common factors in the rows and columns of the obtained determinant, we get the
assertion of the lemma.

Remark that at the origin the Jacobi matrix for the mapping F (ξ, r) is the unit matrix.
Hence, the Jacobian ∆(ξ) does not vanish in the neighborhood of the origin and conditions of
Theorems 20.1, 20.2 from [5] hold.

The monomial yd(r) after the change of variables takes the following form:

yd(ξ) =W−κ−1d.

Consequently, application of the logarithmic residue formula yields the integral representation:

yd(r) =
1

(2πi)
n

∫
Γε

W−κ−1d+(κ−1β̄)I−2I

F (ξ, r)
det
(
E + diag[ξ]κ−1β̄

)
dξ. (26)
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Expand the kernel of the integral (26) into a multiple geometric series. To this end, we use
the coordinate notations:

yd(r) =
1

(2πi)
n

∫
Γε

W−κ−1d+(κ−1β̄)I−2I

n∏
j=1

(
ξj

n∏
k=1

W
(κ−1β̄−E)

(j)
k

k − rj

) det
(
E + diag[ξ]κ−1β̄

)
dξ =

=
1

(2πi)
n

∫
Γε

W−κ−1d+(κ−1β̄)I−2I

W (κ−1β̄)I−I
n∏
j=1

ξj

1− rj

ξj
n∏

k=1

W
(κ−1β̄−E)

(j)
k

k

 det
(
E + diag[ξ]κ−1β̄

)
dξ =

=
1

(2πi)
n

∫
Γε

W−κ−1d−I

n∏
j=1

ξj

1− rj

ξj
n∏

k=1

W
(κ−1β̄−E)

(j)
k

k

 det
(
E + diag[ξ]κ−1β̄

)
dξ.

Since there exists such a number δ that for all ξ ∈ Γε and ∥r∥ < δ the inequality

rj

ξj
n∏
k=1

W
(κ−1β̄−E)

(j)
k

k

< 1

is valid, the integral (26) admits the following representation:

yd(r) =
1

(2πi)
n

∫
Γε

W−κ−1d−I det
(
E + diag[ξ]κ−1β̄

)
n∏
j=1

ξj

∑
k∈Zn

>

n∏
j=1

(
rj

ξjW (κ−1β̄−E)(j)

)kj dξ.

Changing the order of summation and integration in the last integral, we get the series

yd(r) =
∑
k∈Zn

>

 1

(2πi)
n

∫
Γε

W−κ−1(d+β̄k)+k−I

ξk+I
det
(
E + diag[ξ]κ−1β̄

)
dξ

 rk.

The coefficient ck of the series is determined by the expression in parentheses. It can be calculated
by the Cauchy integral formula. As a result, we get:

ck =
1

k!

∂k

∂ξk

(
W−κ−1(d+β̄k)+k−I det

(
E + diag[ξ]κ−1β̄

)) ∣∣∣
ξ=0

.

We bring the factor W−κ−1(d+β̄k)+k−I into the determinant in such a way that each row of it
still to depend on one variable ξj . We obtain

ck =
1

k!

∂k

∂ξk
det
(
diag

[
W diag[−κ−1(d+β̄k)+k−I]

]
×
(
E + diag[ξ]κ−1β̄

)) ∣∣∣
ξ=0

.

We next use the multilinearity property of the determinant and the fact that each row depends
only on one variable ξj . As a result, we have

ck =
1

k!
det

∥∥∥∥∥∥ ∂kj

∂ξ
kj
j

W
(−κ−1(d+β̄k))

j
+kj−1

j

(
δji + ξj(κ−1β̄)

(i)
j

)∣∣∣∣∣
ξj=0

∥∥∥∥∥∥
n

i,j=1

.
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Finally, we perform calculations in the above determinant:

∂kj

∂ξ
kj
j

W
(−κ−1(d+β̄k))

j
+kj−1

j

(
δji + ξj(κ−1β̄)

(i)
j

)∣∣∣∣∣
ξj=0

=

=(−1)kj
((

κ−1(d+ β̄k)
)
j
δji − kj(κ−1β̄)

(i)
j

) kj−1∏
m=1

((
κ−1(d+ β̄k)

)
j
− kj +m

)
=

=(−1)kj
Γ
((

κ−1(d+ β̄k)
)
j

)
Γ
((

κ−1(d+ β̄k)
)
j
− kj + 1

) ((κ−1(d+ β̄k)
)
j
δji − kj(κ−1β̄)

(i)
j

)
.

Taking out the common factor in each row of the determinant and taking into account the factor
1

k!
, we get the view of the coefficient ck declared in formula (22).

Coefficients of the Taylor series for the monomial yd(x) of the principal solution to the sys-
tem (2) one can find by formula (22) setting κ = ω, β = σ. Thus, the series is as follows:

yd(x) =
∑
k∈Zn

>

(−1)
|k|

k!

Γ(ω−1d+ ω−1σk)

Γ(ω−1d+ ω−1σk − k + I)
P (k)xk, (27)

where P (k) = det
(
diag

[
ω−1d+ ω−1σk

]
− ω−1σ diag [k]

)
.

3. Puiseux series

We fix n couples µ(i), ν(i) ∈ A(i) of exponents of the system (2) and compose the matrix

κ =
(
κ(i)
j

)
=
(
µ
(i)
j − ν

(i)
j

)
,

assuming that it is nondegenerate. In accordance with the choice of the set of pairs µ(i), ν(i), let
us devide the set {1, . . . , n} on three disjoint subsets:

J = {j : ν(j) = 0, µ(j) = ω(j)},

L = {l : ν(l) = 0, µ(l) = σ(l)},

T = {t : ν(t) = σ(t), µ(t) = ω(t)}.

(28)

We introduce two matrices

Φ := κ−1 · σ, Ψ := κ−1 · ω,

with rows φ1, . . . , φn and ψ1, . . . , ψn respectively. Moreover, we consider truncated rows

φJl , ψ
L
l , ψ

T
l , l ∈ L,

φJt , ψ
L
t , ψ

T
t , t ∈ T,

which consist of entries of rows φl, ψl, l ∈ L and φt, ψt, t ∈ T indexed by elements of sets J, L
and T . Respectively, we introduce truncated vectors kJ , kL, kT for the vector k = (k1, . . . , kn).
The scalar product of vectors we denote as follows ⟨·, ·⟩.
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Theorem 2. For any collection of n couples µ(i), ν(i) ∈ A(i) with the nondegeneracy condition
of the corresponding matrix κ there exists an analytic continuation of the Taylor series for the
monomial yd(x) of the principal solution to the system (2) in the form of the Puiseux series∑

k∈Zn
>

c̃kx
m(k),

which has the support consisting of points m(k) = (m1(k), . . . ,mn(k)) with coordinates

mj(k) = kj , j ∈ J,

ml(k) = −⟨φJl , kJ⟩ − ⟨ψLl , kL⟩+ ⟨ψTl , kT ⟩ − ⟨d,κ−1
l ⟩, l ∈ L,

mt(k) = ⟨φJt , kJ⟩+ ⟨ψLt , kL⟩ − ⟨ψTt , kT ⟩+ ⟨d,κ−1
t ⟩, t ∈ T,

and coefficients c̃k expressed in terms of coefficients (22) as follows

c̃k = e
iπ

∑
t∈T

(kt+mt(k))

ck.

Proof. We start the proof with finding the monomial change of variables r = r(a) reducing the
system (1) to the form (21). To this end, we get the Smith normal form Sq for the matrix κ,
multiplying it on the left and right by unimodular matrices C and F as follows:

CκF = Sq, (29)

here the Sq is a diagonal matrix with integers q1, . . . , qn on the diagonal, and qj | qj+1, 1 6 j 6
n− 1, see [11]. It follows from (29) that the inverse matrix κ−1 admits the representation

κ−1 = FS−1
q C. (30)

As it was mentioned above, the solution y(a) of the system (1) is polyhomogeneous. We find the
polyhomogeneity parameters λ(i)0 and λ = (λ1, . . . , λn) such that

λ
(i)
0 λµ

(i)

a
(i)

µ(i) = 1,

λ
(i)
0 λν

(i)

a
(i)

ν(i) = −1,
(31)

for i = 1, . . . , n. For that, we solve the following system of equations:

λκ
(i)

= gi, i = 1, . . . , n, (32)

where

gi = −
a
(i)

ν(i)

a
(i)

µ(i)

.

Using the relation (30), we can write the solution of the system (32) in the matrix form as
follows

λ = gκ
−1

= gFS
−1
q C =

((
gf

(1)
) 1

q1
, . . . ,

(
gf

(n)
) 1

qn

)C
,

where the vector g has coordinates gi, and f (1), . . . , f (n) are columns of the matrix F . By

choosing for each i all qi values of the radical
(
gf

(i)
) 1

qi , we yield all branchers of the matrix

radical gκ
−1

. There are | detκ |= q1 · . . . · qn of them.
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For each i ∈ {1, . . . , n} we find the parameter λ(i)0 , using one of relations (31). If ν(i) = 0,

then λ(i)0 = − 1

a
(i)
0

. For µ(i) = ω(i) we get

λ
(i)
0 =

1

a
(i)

ω(i)

·
((

gf
(1)
) 1

q1
, . . . ,

(
gf

(n)
) 1

qn

)−Cω(i)

.

If i ∈ J , then the coefficient r(i)
σ(i) of the system (21) can be expressed in terms of coefficients a

of the system (1) in two ways:

r
(i)

σ(i) = −
a
(i)

σ(i)

a
(i)
0

·
(
gf

(1)
) ⟨c1,σ(i)⟩

q1 · . . . ·
(
gf

(n)
) ⟨cn,σ(i)⟩

qn
,

r
(i)

σ(i) =
a
(i)

σ(i)

a
(i)

ω(i)

·
(
gf

(1)
) ⟨c1,σ(i)−ω(i)⟩

q1 · . . . ·
(
gf

(n)
) ⟨cn,σ(i)−ω(i)⟩

qn
.

(33)

If i ∈ L, then the coefficient r(i)
ω(i) of the system (21) can be expressed in terms of coefficients a

of the system (1) as follows

r
(i)

ω(i) = −
a
(i)

ω(i)

a
(i)
0

·
(
gf

(1)
) ⟨c1,ω(i)⟩

q1 · . . . ·
(
gf

(n)
) ⟨cn,ω(i)⟩

qn
. (34)

For i ∈ T the relation is as follows

r
(i)

0
=

a
(i)

0

a
(i)

ω(i)

·
(
gf

(1)
)− ⟨c1,ω(i)⟩

q1 · . . . ·
(
gf

(n)
)− ⟨cn,ω(i)⟩

qn
. (35)

In formulae (33)–(35) vectors c1, . . . , cn are rows of the matrix C.
In particular, if for all i ∈ {1, . . . , n} we choose µ(i) = ω(i), ν(i) = 0, then L = ∅, T = ∅ and

κ = ω. The matrix ω is nondegenerate by assumption and the system (21) coincides with the
system (2). In this case, we get the change of variables x = x(a). It can be written in two ways:

xi = −
a
(i)

σ(i)

a
(i)

0

·
(
hv

(1)
) ⟨u1,σ(i)⟩

p1 · . . . ·
(
hv

(n)
) ⟨un,σ(i)⟩

pn
,

xi =
a
(i)

σ(i)

a
(i)

ω(i)

·
(
hv

(1)
) ⟨u1,σ(i)−ω(i)⟩

p1 · . . . ·
(
hv

(n)
) ⟨un,σ(i)−ω(i)⟩

pn
.

(36)

In formulae (36) the vector h has coordinates hi = −
a
(i)

0̄

a
(i)

ω(i)

, vectors u1, . . . , un are rows of the

unimodular matrix U , in turn, vectors v(1), . . . , v(n) are columns of the unimodular matrix V
such that ω = USpV, where Sp = diag[p1, . . . , pn], pj | pj+1, 1 6 j 6 n− 1.

Remark that gi = hi for i ∈ J . Furthermore, if i ∈ L then gi = −
a
(i)

0̄

a
(i)

σ(i)

, and for i ∈ T we have

gi = −
a
(i)

σ(i)

a
(i)

ω(i)

. Getting these ratios from (36), we substitute the expressions for gi into (33)–(35).
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As a result, we get coordinates of the monomial transformation r = r(x) for the transition from
the system (21) to the system (2):

r
(j)

σ(j) = xj
∏
l∈L

x
−φ(j)

l

l ·
∏
t∈T

(−xt)φ
(j)
t , j ∈ J,

r
(j)

ω(j) =
∏
l∈L

x
−ψ(j)

l

l ·
∏
t∈T

(−xt)ψ
(j)
t , j ∈ L,

r
(j)

0
= −

∏
l∈L

x
ψ

(j)
l

l ·
∏
t∈T

(−xt)−ψ
(j)
t , j ∈ T.

(37)

According to the polyhomogeneity property (19), the division of the jth coordinate of the
solution to the system (1) on λj ̸= 0 is compensated by the multiplication of the coefficient a(i)α
on λα. So taking into account (32) we obtain the relationship between monomials yd(x) and
yd(r) of the following form:

yd(x) =
n∏
j=1

g
⟨d,κ−1

j ⟩
j

h
⟨d, ω−1

j ⟩
j

yd(r), (38)

where κ−1
j , ω−1

j are jth rows of matrices κ−1 and ω−1 correspondingly. Using relations (36),
and the fact that gj = hj for j ∈ J , we write (38) as follows:

yd(x) =
∏
l∈L

x
−⟨d,κ−1

l ⟩
l

∏
t∈T

(
eiπxt

)⟨d,κ−1
t ⟩

yd(r). (39)

Hence, making the substitution (37) in the expansion (22) and taking into account the relation
(39), we conclude, that the support S of the required Puiseux series consists of points m(k) =
= (m1(k), . . . ,mn(k)) with coordinates

mj(k) = kj , j ∈ J,

ml(k) = −⟨φJl , kJ⟩ − ⟨ψLl , kL⟩+ ⟨ψTl , kT ⟩ − ⟨d,κ−1
l ⟩, l ∈ L,

mt(k) = ⟨φJt , kJ⟩+ ⟨ψLt , kL⟩ − ⟨ψTt , kT ⟩+ ⟨d,κ−1
t ⟩, t ∈ T.

The coefficient c̃k of the Puiseux series is expressed in terms of the coefficient (22) by the following
formula

c̃k = e
iπ

∑
t∈T

(kt+mt(k))

ck.

As mentioned in Section 1, by the two-sided Abel lemma for hypergeometric series [10] the
cone of the support S of the series defines the logarithmic image Log(G) of the convergence
domain G of the series. This means that the geometry of the domain G is closely related to the
structure of the amoeba A of the discriminant hypersurface ∇ of the system (2). The amoeba
A can be obtained from the amoeba A′

of the discriminant set of the system (21) via an affine
transform associated with the change of variables r = r(x). Consequently, the recession cone of
the set Log(G) for the Puiseux series of the monomial yd(x) is the image of the negative orthant
−Rn+ under an affine transform.

In conclusion, we return to the example from Section 1 to make the following remark. By
Theorem 2 we associate the Puiseux series (14) with couples of exponents:

(2, 1), (0, 0) ∈ A(1), (1, 2), (0, 0) ∈ A(2),
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and, accordingly, the series (17) with the set

(2, 1), (0, 0) ∈ A(1), (0, 4), (0, 0) ∈ A(2).
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Аналитические продолжения решений систем
триномиальных алгебраических уравнений

Ирина А. Антипова
Екатерина А.Клешкова

Владимир Р.Куликов
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. Статья посвящена исследованию аналитических продолжений мономиальной функ-
ции координат решения приведенной триномиальной алгебраической системы. В частности, по-
казано, как техника интегральных представлений Меллина-Барнса и свойство полиоднородности
решения универсальной триномиальной системы применяются для разрешения задачи аналитиче-
ского продолжения. Таким образом, получены разложения Пюизо (с центром в нуле), представля-
ющие аналитические продолжения ряда Тейлора указанной мономиальной функции.

Ключевые слова: алгебраическое уравнение, аналитическое продолжение, ряд Пюизо, дискри-
минант, интеграл Меллина-Барнса.
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