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Abstract. In this work, we give the seven global phase portraits in the Poincaré disc of the Kukles
differential system given by )

r ==Y,

g =z + az® + baty* + B,
where z,y € R and a,b, c € R with a? + b + ¢ # 0.

Moreover, we perturb these system inside all classes of polynomials of eight degrees, then we use the
averaging theory up sixth order to study the number of limit cycles which can bifurcate from the origin
of coordinates of the Kukles differential system.

Keywords: limit cycle, generalized Kukles differential system, averaging method, phase portrait.
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1. Introduction and statement of the main results

We consider the so-called Kukles homogeneous differential system. Giné [5]

T = -Y, y:$+Qn($>y)a (1)

which has a center at the origin, where Q,(x,y) denotes a homogeneous real polynomial of
degree n.

In 1999 Volokitin and Ivanov [12] conjectured that systems (1) have a center at the origin
definitely if they are symmetric with respect to one of the coordinate axes. For n = 2 and n = 3,
the authors of the conjecture knew that it holds. Giné [5] in 2002 proved the conjecture for n = 4
and n = 5. Giné et al. [6,7] proved the conjecture for all n under an additional assumption, that
the authors believe that it is redundant.

The phase portraits for quadratic systems with center written in the form (1), are known, see
Vulpe [13]. The phase portraits of cubic differential systems symmetry with respect to a straight
line are also known and in particular those of system (1) with n = 3, see Buzzi et al. [3], see also
Malkin [11]; Vulpe Sibirskii [13] and Zotadek [14,15]. The phase portraits of systems (1) with
n = 4 follows from Benterki and Llibre [1]. Llibre and Silva [9,10] classified the phase portraits
of the systems (1) for n = 5,6. The phase portraits of systems (1) with n = 7 follows from
Benterki and Llibre [2].

* Ahlam.belfar@Quniv-bba.dz
r.benterki@univ-bba.dz
(© Siberian Federal University. All rights reserved
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In our work, we classify the global phase portraits of the polynomial differential system

A (2)
¥ =+ azx® + bx*y* + cy®.

The first main objective of this work is to study the phase portraits in the Poincaré disc of the

differential system (2).

The second objectif, is to give the number of limit cycles which can bifurcate from the origin
of coordinates of system (2) when we perturb them inside all classes of polynomial of eight degree,
and we do this by using the averaging theory up sixth order.

In Section 2 we give more information about the global phase portraits of the polynomial
differential system (2).

Our first main result is given in the following Theorem.

Theorem 1. The set of all global phase portraits in the Poincaré disc of the differential system
(2) with a® 4+ b% + % # 0, are topologically equivalent to the phase portraits given in Fig. 1.

3.5=9,R=3

) ®

R 6.5 =18, R=3

O,
}@\x

—
[@5)
I
—
L
=
I
[N
[N}
W
I
(&)
O
,.;;

@&

@
&

S
n
I
[N}
\.l\D
=
I
\]
ot
n
Il
—_
Nej

7..5=29R=6
Fig. 1. Global phase portraits of differential system (2)

Theorem 1 is proved in Section 3.

When we perturbed the polynomial differential system (2) with polynomials of degree eight,

we get
=-y+ ZE Z a-sf)xiyj,

s=1  0<itj<8 3)
6 . .
y =+ az® + bxty* + cy® + ZES Z ﬂi(j)xlyj,
s=1  0<itj<8

where 7, j € N. For more information about the averaging theory of higher order see Section 5.
Our second main result is given in the following theorem.
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Theorem 2. The number of limit cycles of the differential system (3) with € # 0 is
(a) 0 if we use the averaging theory of order 1 or 2,
(b) 1 if we use the averaging theory of order 3 or 4,
(c) 2 if we use the averaging theory of order 5 or 6.

We give the Proof of Theorem 2 in Section 5.

2. Preliminaries

In this section, we give some basic results which are necessary to study the behavior of the
trajectories of a planar differential systems near infinity. Let X (z,y) = (P(z,y), Q(x,y)) rep-
resent a vector field to each system which we are going to study its phase portraits, then for
doing this we use the so called a Poincaré compactification. We consider the Poincaré sphere
S? = {(z,y,2) € R®: 22 + y* + 22 = 1}, and we define the central projection f : T(0’0,1)82 — §?
(with T(p,0,1)S* the tangent space of S? at the point (0,0,1) ), such that for each point
q € T(O,OJ)SQ, T(0,071)82 (q) associaltes the two intersection points of the straight line which con-
nects the point ¢ and (0,0)). The equator S' = {(z,y,2) € S? : z = 0} represent the infinity
points of R?. In summary we get a vector field X’ defined in S? \ S!, which is formed by to sym-
metric copies of X, and we prolong it to a vector field p(X) on S?. By studiying the dynamics
of p(X) near S! we get the dynamics of X' at infinity. We need to do the calculations on the
Poincaré sphere near the local charts U; = {Y € S? : y; > 0}, and V; = {Y € §? : y; < 0} for
i =1,2,3; with the associated diffeomorphisms F; : U; — R? and G; : V; — R2 for i = 1,2, 3.
After a rescaling in the independent variable in the local chart (Uy, Fy) the expression for p(X) is

1 1 1
a2 e (1)
v v v v v v

in the local chart (Us, F3) the expression for p(X) is

o pe2) (3] me(sd)

and for the local chart (Us, F3) the expression for p(X) is

4= P(u,v), ©0=Qu,v).

3. Study of phase portraits

In what follows we shall study the phase portraits of the polynomial differential system (2)
with (a,b,c) # (0,0,0).

Remark 3. System (2) is invariant under the change (t,z,y) — (—t,—x,y). Hence, the phase
portrait of system (2) is symmetric with respect to the x-axis.

Remark 4. System (2) is also invariant under the change
(:E, y,t,a, ba C) - (*SC, Y, =1, —a, *b7 70)

then we only need to study the phase portrait of system (2) when (e =0, b > 0 and ¢ > 0),
(a=0,b>0andc<0),(a>0,b=>0andc>0), (a<0,b>0andc=0), (a>0,b>0 and
c<0), (a>0,b%>—4ac=0, and b<0) and (a >0, b*> —4ac >0, b <0 and c > 0).
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3.1. Configurations of singular points

To study the phase portrait of system (2) we identify all the finite singular points and their
local phase portrait. We go through the same steps to study the local phase portrait for the
infinite ones.

3.1.1. Finite singular points

We identify the finite singular points of the generalized kukles polynomial differential system
(2) in the following Proposition.

Proposition 5. The differential system (2) has

(i) Two finite singular points, a center at (0,0) and a hyperbolic saddle at (—</1/a,0), if
a#0;

(ii) one singular point at (0,0) wich is a center, if a = 0.

Proof. Clearly when a # 0 the system has two equilibria the origin, with eigenvalues +i, then we
take into acount the symmetry of system (2) with respect to z-axis, we conclude that the origin
is a center. The second equilibria is (—{/1/a,0) with eigenvalues ++/7. So it is a hyperbolic
saddle. O

3.1.2. Infinite singular points

By using the preliminaries given in Section 2 we study the infinite singular points and their
nature in the Poincaré disc.

Proposition 6. In the chart Uy system (2) has

(a) The origin as a linearly zero infinite singular point, and its local phase portrait consists of
four hyperbolic sectors, if a =0,b>0 and ¢ > 0;

(b) three infinite singular points, the origin mentioned in the previous case and two saddle-
nodes at (:I: Y —b/c,O), ifa=0,b>0 and c<0;

(¢) no singularity, ifa >0,b>0 and ¢ > 0;
(d) two infinite semi-hyperbolic saddle-nodes, (:I: v/ —a/b, 0), ifc=0,b>0anda<0;

4/ —b—Vb? —4ac

(e) two infinite semi-hyperbolic saddle-nodes at <:|: 50

c <0y

,O), ifa>0,b>0 and

(f) two infinite linearly zero singular points (£+/—2a/b,0), such that their local phase portraits
consist of two hyperbolic and two parabolic sectors, if a > 0, ¢ > 0, b%> = 4ac and b < 0;

(g) four infinite semi-hyperbolic saddle-nodes,

W= 7 / 7
(:I: b—|—\/2bc 4ac’0>’ and (:t b+\/_b2c 4acyo>’

ifa >0, b> —4ac >0, b<0 and ¢ > 0.
The origin of the chart Us is

(h) a hyperbolic node, which is stable if ¢ > 0 and unstable if ¢ < 0;
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(i) a linearly zero singular point, such that its local phase portrait consists of four parabolic
sectors, if c = 0.

Proof. The differential system (2) in the chart U; is given by

U =a+bu*+ cud + 0" +u7,

8 (4)

v = uv®.
If b>0,a=0and ¢ > 0 system (4) is written as follows

= bu* + cud + 07 + w207,

8 ®)

v = uv®.

System (2) has one linealrly zero singular point at the origin. Then to study its local phase
portrait we have to do blow-up’s. We take the directional blow-up (u,v) — (u,w) with w = v/u
and by doing the rescaling of the time u?dt = ds we have

U = bu+ cu® + utw” + ubuw,

6
W= —bw — cutw — uwdws, (6)

this system has one hyperbolic saddle at (0,0), with eigenvalues +b. Returning through the
change of variables to system (4), we conclude that the local phase portrait at the origin trained
by four hyperbolic sectors.

Ifa=0,b=0and ¢ > 0, and after taking a rescaling of the time udt = ds we get the
following system

= cu? + uw” +uduw’,

) 8 (7)
W= —cuw — wd.
System (7) has a linearly zero singular point at the origin. Doing blow- up’s by performing the
directional (u,w) — (u, z) with z = w/u and by doing rescaling of the time udt = ds we get

t=cu+u'z" +u",

8
2= —2cz — 2u828 — uB28. (8)

System (8) has one hyperbolic saddle at the origin with eigenvalues ¢ and —2¢. Returning through
the change of variables to system (7), we conclude that the local phase portrait at the origin
formed by four hyperbolic sectors.

If 5> 0, a =0 and ¢ = 0 we have the following system

= bu + v w” + vw’,

w = —budw — uSws. )

Doing a change of variable u3dt = ds, we get the following system

4 = bu + vtw” + ubw’,

10
W = —bw — uwdws. (10)

System (10) has one hyperbolic saddle at the origin with eigenvalues b and —b. Returning through
the change of variables, we know that the local phase portrait at the origin of system (4), when
a=0,b>0and ¢ =0, consists of four hyperbolic sectors. Then the statement (a) holds.

Ifb >0, a =0 and ¢ < 0 system (6) has in addition to the origin (the same case in
satement (a)) two infinite semi-hyperbolic singular points, namely (++/—b/c, 0), with eigenvalues
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+4b{/—b3/c3 and 0. Applying Theorem 2.19 of [4] we know that these points are saddle-nodes.
Then statement (b) holds.

If a>0,b>0and ¢ > 0 system (4) has no singular point.
Ifc=0,b>0and a <0 system (4) becomes
U =a+but + 07 +u,

11
0 = uvd, (11)

this system has two semi-hyperbolic singular points, (++/—a/b,0) with eigenvalues A\; =
= +4b(—a® /%)Y and Ay = 0. We perform the translation v = z 4 (—a/b)1/% to system (11).
Applying Theorem 2.19 of [4] we know that the points are saddle-nodes. Then (d) is proved.

If a >0, ¢ > 0, b> = 4ac, and b < 0 we get the following system

0= (2a + bu)?/(4a) + (1 + u?)0”

0 = uvd.

(12)

This system has two singular points (£+/(—2a)/b,0) which are linearly zero. We study at first

the point ({/(—2a)/b,0) after performing the translation u = z + /(—2a)/b. Doing blow-up’s
by taking the directional (z,v) — (z,w) with w = v/z, and eleminating the common factor z
between Z and w, we get the following differential system

-2
5= —8bzy | — VY G b D)2 — 34b23 +714( 2a/b) 0% 2*
7 2.6 7,6 —2a 7 ¢
+a” b)bz—i—wz—i—q/bwz
—a

14 —2a. s
4 il St 2
8\/ b bwz—|—3 bwz? a( ; ) bwz?
7 -2
a\/ bzwz - = 2a/b)%b2wz5 — w2’ — 4/ baw8z5
b w2"
4a

—(— 5 )iw 25.

For z = 0, system (13) has one hyperbolic saddle at the origin with eigenvalues —8v/2by/(—a/b)
and 8v/2b\/(—a/b). Going back through the change of variables to system (12), we conclude that
the local phase portrait at the singular point (+/(—2a)/b,0) formed by two hyperbolic and two
parabolic sectors. We get the same local phase portrait for the singular point (—1/(—2a)/b,0)
as the singular point ({/(—2a)/b,0).

If a >0, b2 —4ac > 0, b < 0 and ¢ > 0 system (4) has four semi-hyperbolic singular

5 b— Vb2 —4dac\ i
points, (i </(—b + Vb2 — dac)/2¢, 0), with eigenvalues \; = 21 (b? — 4ac)® <—ac> *

c

and Ay = 0, and the points (:I: f/(—b— Vb2 —dac)/2c, 0)7 with eigenvalues \; = —27 (b2—
_bh— 2 _ 3
~dac) (/D (b— Vb4ac> 1

c
After transforming these points to the origin we apply Theorem 2.19 of [4] we know that these
points are saddle-nodes.

and Ay = 0. Hence the four singular points are semi-hyperbolic.
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In the chart U, the differential system (2) becomes

3 aqud — u2vS,

4

U=—cu—bud—v

14
v — bulv — uvt. (14)

U= —cv—buv —au
If ¢ # 0 the origin is a hyperbolic node of system (14), with eigenvalues —c¢ and —c, then it is
stable if ¢ > 0 and unstable if ¢ < 0. So statement (e) holds.

If ¢ = 0, system (14) becomes

0= —bud — 0% — au® — u?v3,

4 (15)

v — buv — uvt.

U= —buv — au
The origin is a linearly zero singular point of the differential system (15). We have to do blow-
up’s to know the local phase portrait at this point. We take the directional blow-up w = v/u,
and by doing the rescaling udt = ds and we get the system

4= —bu? — au* — vw?® — vtw3,

16
W = —bw + uw?. (16)

When u = 0; the origin is the only singular point of system (16), with eigenvalues 0 and —b.
Then, it is a semi-hyperbolic singular point. By using Theorem 2.19 of [4] we conclude that the
origin is a saddle-node. Going back through the change of variables to system (15), we know
that its local phase portrait formed by four parabolic sectors. O

4. Phase portraits on the Poincaré disc

Taking into account the results on the finite and infinite singular points given in Subsections
3.1.1 and 3.1.2, respectively, we shall obtain the different phase portraits of the system (2) that
we describe in what follows.

Theorem 7. The phase portraits in the Poincaré disc of the two compactified polynomial differ-
ential systems p(X) and p()) are topologically equivalent if and only if their separatriz configu-
rations S(p(X)) and S(p(Y)) are topologically equivalent.

Case 1. When a = 0, b > 0 and ¢ > 0 system (2) has one finite singular point, a center at
(0,0). And from statement (a) of Proposition 6 we know that in the chart U; the system has one
singular point at (0,0) wich is linearly zero and its local phase portrait consists of four hyperbolic
sectors. From statement (h) of Proposition 6, the origin of U; is a hyperbolic stable node. So,
the phase portrait of system (2) is given by Fig. 1 (1), and its immediate that S = 10 and R = 2.

Case 2. When a =0, b > 0 and ¢ < 0 system (2) has one finite singular point at the origin of
coodrinates, wich is a center. From statement (b) of Proposition 6 and in the local chart U; the
system has three infinite singular points, a linearly zero singularity at the origin such that its
local phase portrait consists of four hyperbolic sectors, and two semi-hyperbolic saddle-nodes.
In U; and from statement (h) of Proposition 6, the origin is a hyperbolic unstable node. Then,
the phase portrait in this case is topologically equivalent to Fig. 1(2), and its immediate that
S =20 and R=4.

Case 3. When a > 0, b > 0 and ¢ > 0 system (2) has two finite singular points, a center at
(0,0) and a hyperbolic saddle at (—{/1/a,0). From statement (c) of Proposition 6 the system
has no singular points in the local chart U;. In U and from statement (h) of Proposition 6,
the origin is a hyperbolic stable node if ¢ > 0, and from statement (i) of the same proposition
the origin is a linearly zero singular point and its local phase portrait formed by four parabolic
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sectors if ¢ = 0. So, in this case the phase portrait is topologically equivalent to Fig. 1(3), and
its immediate that S =9 and R = 3.

Case 4. When a < 0, b > 0 and ¢ = 0, this case and the following cases 5, 6 and 7 have the same
finite singularities as the case 3. From statement (d) of Proposition 6 the system has two infinite
semi-hyperbolic saddle-nodes in the local chart U;. In Us and from statement (i) of Proposition
6, the origin is a linearly zero singular point with local phase portrait formed by four parabolic
sectors. Therefore in this case, the phase portrait of system (2) is topologically equivalent to the
Fig. 1(4), and its immediate that S =22 and R = 7.

Case 5. When ¢ > 0, b > 0 and ¢ < 0 system (2) and from statement (e) of Proposition 6
we obtain that the system has two infinite semi-hyperbolic saddle-nodes in the local chart U;.
The origin of the chart Us is a hyperbolic unstable node. So, the phase portrait of system (2) is
topologically equivalent to Fig. 1(5), and its immediate that S = 19 and R = 5.

Case 6. When a > 0, b2 = 4ac and b < 0 and from statement (f) of Proposition 6 the
system has two infinite linearly zero singular points in the local chart U; and their local phase
portraits consist of two hyperbolic and two parabolic sectors. In Us and from statement (h)
of Proposition 6, the origin is a hyperbolic unstable node. Then, we conclude that the phase
portrait of system (2) is topologically equivalent to Fig. 1(6), and its immediate that S = 18
and R = 3.

Case 7. When a > 0, b* —4ac > 0, b < 0 and ¢ > 0 and from statement (g) of Proposition 6 we
obtain that the system has four infinite semi-hyperbolic saddle-nodes in the local chart U;. In
U, and from statement (h) of Proposition 6, the origin is a hyperbolic unstable node. Therefore
in this case, the phase portrait of system (2) is topologically equivalent to the Fig. 1(7), and its
immediate that S = 29 and R = 6.

To know the number of zeros of a real polynomial, we are going to use the following Theorem.

Descartes Theorem. Consider the real polynomial p(x) = a;, % + a,x® + -+ + a;, 2" with
0<ip <idp <--- <ip and a;; # 0 real constants for j € {1,2,---,r}. When a;;a;,,, <0, we
say that a;; and a;;,, have a variation of sign. If the number of variations of signs is m, then
p(x) has at most m positive real roots. Moreover, it is always possible to choose the coefficients
of p(x) in such a way that p(x) has exactly r — 1 positive real roots.

5. Proof of Theorem 2

Consider system (2), we shall study which periodic solutions of the center become limit cycles
when we perturb the center inside the class of polynomial differential systems of degree 8. This
study will be done by applying the averaging theory, we work as follows.

Before doing the scaling x = ¢ X, y = €Y', with ¢ is a small parameter we get a new differential
system (X, Y) After we perform the polar change of coordinates X = rcosf, Y = rsinf, then
we get a differential system (7’,0) We take the independent variable the angle 6 we get the
differential equation dr/df, and by doing a Taylor expansion up to 6-th order in ¢ we obtain the
differential equation

dr 6
/ — [ nl 7
r=2 ;:Ojg Fy(6,r) + O(<7). (17)

The functions F;(0,7) i = 1,...,6 of the differential system (17) are analytic, and since the
independent variable 6 appears through the sinus and cosinus of 6, they are 2w-periodic. Hence
the assumptions for applying the averaging theory given in [8] are satisfied.

To know how the averaging theory for differential equation works we advice the lecture to
see [8].
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We give only the expression of the function Fj(r,6). The explicit expression of F;(r,6) with
i=2,...,6 is quite large so we omit them.

The functions F;(0,r) ¢ = 1,...,6 and R(t,z,e) of system (17) are analytic, and since the
variable appears through sinus and cosinus of 6, they are 27-periodic. Hence the assumptions of
Theorem 10 are satisfied.

The expression of Fy(r,0) is
_ (2) o (1) (1)
Fi(r,0) = +Bg sinf + (Oém + 851 + (afy) = B51)) cos 20 + (agy + By sin 20).
Using the formulas given in section 4.1 of [8] the averaged function of first order is

fi(r) = (a10 +ﬁo ) T.

Clearly equation fi(r) = 0 has no positive zeros. Thus the averaging method of first order does
not provide limit cycles.

We put a§10> = —ﬁéi) we obtain fi(r) = 0. We apply the averaging theory of second order,

we get the averaging function of second order.

fa(r) = (a10 +50 ) T

We see that the equation fo(r) = 0 has no positive zeros, it follows that there is no limit cycle

by applying the averaging theory of second order.

To apply the averaging method of third order we must put a%) = —ﬂg), and we get fa(r) = 0.

The third averaging function is
Falr) = —(B By — By + 2600 ok’ — 265 ) — iy afy) — aig)r
+(1/4)(360 + B + 3aly) + afy)r?
So, f3(r) can have at most one positive real root. Then we have the proof of the theorem for
’ :rl?c; apply the averaging method of fourth order, we need to have f3(r) = 0, for that we set

off) = BUAR — 8 + 26 0y 262 — aVal?) and aff = ~(36%) + ALY + 3a%).
The averaging function of fourth order is

fa(r) = r(Ay + Agr?),
where
Av= (BB 8E +260 85 88 — 6585 - 8788 + 260 8F oy — 26l
5(1)5(2) (1)7 1)5(1) (2)+25(2) (2)+25(1) (1) (2) 25(1) (1) (2)

1) (1) & ) 3
(()1)0451 %0 - 2ﬁoo a 0 éo)an + 260 )aoo + O‘gl)a(()o) alO +ﬂo1)>-

As

(B8 + 06 + 86 + 2853 368 — 52 + pYafy
2l el + 200 3 e

3a3 2) + 2620 042 ag)).

- 395 —



Ahlam Belfar, Rebiha Benterki Centers and Limit Cycles of Generalized Kukles Polynomial. ..

According to the expression of the function f; we conclude that we can get at most one limit
cycle.

Solving A1 = 0 and Ay = 0 we obtain f4(r) = 0, so we can apply the averaging theory of
order 5, and its corresponding averaging function is f5(r) = (B + Bar? + Bar?).

The explicit expression of B;, with i = 1,2, 3 is quite large so we omit them.

The rank of the largest square matrix of the Jacobian matrix B = (Bj, B2, Bs) is 3. Then the
coefficients By, Bs and Bj are linearly independent in their variables. By the Descartes Theorem
(or by the roots of a quadratic polynomial in the variable 72) it follows that we can get at most
two positive real roots of f5(r). So statement (c) holds. Solving By =0, B, =0 and Bs =0 we
obtain f5(r) = 0.

Now if we apply the averaging method of sixth order we get

fo(r) = (K1 + Kor? + K3r4) T

In this case and for the same reason as the previous one we will not give the explicit expression
of K;, with ¢« = 1,2,3 because it is quite large.

The rank of the Jacobian matrix K = (K7, Ka, K3) with respect to its variables is 3. We have
three of the coefficients K, i = 1,2, 3 which are linearly independent in their variables. Therefore
by Descartes Theorem, it follows that fs(r) = 0 can has 2 positive real solutions. Consequently,
the differential system (2) has at least 2 limit cycles. This ends the proof of the theorem.

References

[1] R.Benterki, J.Llibre, Centers and limit cycles of polynomial differential systems of degree 4
via averaging theory, J. Computational and Appl. Math., 313(2017), 273-283.

[2] R.Benterki, J.Llibre, The centers and their cyclicity for a class of polynomial differential
systems of degree 7 via averaging theory, J. Computational and Appl. Math., 368(2020),
112456.

[3] C.A.Buzzi, J.Llibre, J.C.Medrado, Phase portraits of reversible linear differential systems
with cubic homogeneous polynomial nonlinearities having a non—degenerate center at the
origin, Qual. Theory Dyn. Syst., 7(2009), 369-403.

[4] F.Dumortier, J.Llibre, J.C.Artés, Qualitative theory of planar differential systems, Univer-
sitext, Spring-Verlag, 2006.

[5] J.Giné, Conditions for the existence of a center for the Kukles homogenenous systems,
Comput. Math. Appl., 43(2002), 1261-1269.

[6] J.Giné, J.LLibre, C.Valls, Centers for the Kukles homogeneous systems with odd degree,
Bull. London Math. Soc., 47(2015), 315-324.

[7] J.Giné, J.LLibre, C.Valls, Centers for the Kukles homogeneous systems with even degree,
J. Appl. Anal. Comp., 7(2017). DOI: [10.11948,/2017093]

[8] J.Llibre, D.D.Novaes, M.A.Teixeira, Nonlinearity, 27(2014), 563-583.
DOL: 10.1088/0951-7715/27/3/563

[9] J.Llibre, M.F.da Silva, Int. J. of Bifurcation and Chaos, 26(2016), no. 3, 1650044. DOI:
10.1142/50218127416500449

[10] J.Llibre, M.F.da Silva, Global phase portraits of Kukles differential systems with homoge-
nous polynomial nonlinearities of degree 5 having a center, Topological Methods in Nonlinear
Analysis, 48(2016), 257-282.

- 396 —



Ahlam Belfar, Rebiha Benterki Centers and Limit Cycles of Generalized Kukles Polynomial. ..

[11] K.E.Malkin, Criteria for the center for a certain differential equation, Volzhskii Matematich-
eskii Sbornik, 2(1964), 87-91 (in Russian).

[12] E.P.Volokitin, V.V.Ivanov, Isochronicity and Commutation of polynomial vector fields,
Siberian Mathematical Journal, 40(1999), 23-38.

[13] N.I.Vulpe, K.S.Sibirskii, Centro—affine invariant conditions for the existence of a center of a
differential system with cubic nonlinearities, Soviet Math. Dokl., 38(1989), 198-201.

[14] H.Zoladek, The classification of reversible cubic systems with center, Topol. Methods Non-
linear Anal., 4(1994), 79-136.

[15] H.Zotadek, Remarks on: The classification of reversible cubic systems with center, Topol.
Methods Nonlinear Anal., 8(1996), 335-342.

IlenTpbl 1 npeaeIbHbIE ITUKJIBI
0000111eHHO- T P epeHITnAIbHBIX HOJINHOMIAJIBHBIX CHUCTEM
Kykieca: ¢pa3oBbie mopTpeThl U NpeaeibHbIE ITKJIbI

Axgam Bendap

Pebuxa Bentepku

Maremaruiecknit hakymapTeT

VYuusepcurer Moxammena Db Bagupa Db M6paxumu
Dab Anaccep, Axup

Amunorarusi. B 1ol pabore MBI j1aeM ceMb IJI00aJIbHBIX (Pa30BbIX MOPTPeTOoB B aucke [lyankape mud-
depennmabHOM cuctembl Kykieca, 3a1aHHOM Kak
r ==Y,
. 8 44 8
y=x+ ax® + bz y" + cy°®,
2, 32 2
rae z,y € R, a,b,c € Rua” +b° + ¢ #0.

Kpome Toro, Mbl BO3MYyIIIaeM 3Ty CHCTEMY BHYTPU BCEX KJIACCOB MHOI'OYJIEHOB BOCHBMOI CTEIEHU, &
3aTeM WCIIOJIb3yeM TEOPHIO YCPEIHEHUs JI0 IMEeCTOW CTENEeHU NI U3YUEHUsT UUCJIa TPeIebHBIX ITUKJIIOB,
KOTOpBbIE MOT'YT Pa3[BOMTHCS OT Hadasa KoopauHaT auddepeHnuaibaoil cucrembl Kykireca.
KiroueBble cioBa: npejieIbHbIN UK, 000bumeHHas guddepeHimanbaas cucremMa Kykieca, MeTomn
ycpeaHeHus], (Pa30BbIil TOPTPET.
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Introduction

The problem of constructing and analyzing cubature formulas that are exact for a given set
of functions was earlier considered primarily as applied to the computation of integrals exact
for algebraic and trigonometric polynomials. For example, the approximate integration formulas
of algebraic accuracy can be found in [1,2]. The cubature formulas exact for trigonometric
polynomials in particular were studied in [3-7].

The approximate integration formulas exact for the system of Haar functions can be found in
the monograph [§]. The accuracy of approximate integration formulas for finite Haar sums was
used in [8] to derive error estimates for these formulas.

A description of all minimal weighted quadrature formulas possessing the Haar d-property,
i.e., formulas exact for Haar functions of groups with indices not exceeding a given number d, was
given in [9]. The error estimates for quadrature formulas possessing the Haar d-property in the
case of the weight function g(z) = 1 were obtained in [10]. In particular, in the mentioned paper
the upper estimate for the norm of the error functional ||0y| 5; Was found for the quadrature
formulas having the Haar d-property:

_1
lonls, < (2477,

and the lower estimate for the norm of the error functional |||
ture formulas exact for constants:

g+ was obtained for the quadra-
P

lonllg, > 275N s
P

The problem of constructing cubature formulas possessing the Haar d-property, i.e., formulas
exact for Haar polynomials of degree at most d, was solved in the two-dimensional case in

*kkirillow@Qyandex.ru  https://orcid.org/0000-0002-3763-1303
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[11-15] under the condition that the weight function g(z1,22) = 1. The error estimates for these
cubature formulas was derived in [16]. In particular, in [16] the upper estimate for the norm of
the error functional ||d x|

g+ was obtained for the mentioned cubature formulas:
P

1 _1
lonllgy < 20(27) 7.

In the present paper the error estimates of cubature formulas with arbitrary positive coeffi-
cients at the nodes, similar to the estimates given above for the one- and two-dimensional cases,
are derived in the n-dimensional case. As a result, we find the upper estimates for the error
functional éy of the cubature formulas possessing the Haar d-property:

n—1

S;gQ"

ox 1l <257 @Y7 Iflls,. o] (2) 77,

and we obtain the lower estimate for the norm of the error functional ||dx||4. for the cubature
p

formulas exact for any constant:

[on]

5> (@ —n—1) PN

1. Basic definitions

In this paper, we use the original definition of the functions X, ;(z) introduced by
A.Haar [17].

1 om=l 1
The binary intervals of rank m are the intervals [, 1 = {0, 27n1>’ L gm—1= (2ml, 1} )

J—1
2m—1’ om—1 ’

m=2,3,...,and l,, ; = m=3,4,...,5=2,...,2m 1 —1. By a binary interval

of the 1st rank we will consider the interval {1 ; = [0, 1]. The binary segments of rank m are the

e
J J ],ml,Q,...,jl,...,2m1.

closed intervals I, ; = {Qm_l, T

The left and right halves of {,,, ; (without its midpoint) are denoted by L, ; and l:z’ j» respec-
tively. Obviously, l;,j = lm+1,2j—1, l;rw- = lm+1,2j-
In [17], the Haar functions x,, ;(x) are defined by:
m—1 —
27z, T € lm,j’
m—1

277, rzell
Xm,j(7) = R — (1)

0) T e [O, 1] \lm,j7

{vaj (x —0) + xm,j(z+ O)}/Q, x is an interior discontinuity point,

m=12...,5=1,...,27° %

Thus, the Haar system of functions is constructed in groups: the mth group contains 2™!
functions {xm ()}, where m = 1,2,..., j = 1,...,2"" 1. The Haar system of functions
includes the function x1(x) = 1 too, which is outside of any group.

In the one-dimensional case, the Haar polynomials of degree d are by definition the functions

d 2m!
Py(x) = ao + Z Z ) Xm j (@),
m=1 j=1
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v\}hered:l)Q7 , ag, agn)ER m—l d j:l,...,2m_1,and

2d—1
S {af} #0.
j=1

By the 0-degree Haar polynomials we will consider real constants.
In the n-dimensional case, the Haar polynomials of degree d are the functions

Py(z1,...,2y) = ap+

om1— 1 Qms — 1

n
J1, J? y . . . .
+§ : E : E E E gnll, s Zl""7zs)xm1,]1(xll)"'Xmm]s(xls)?
s=1 1<i1<...<is<n mi+...+ms<d j1=1 Jjs=1
where d = 1,2,..., ag, a9 (i, i) € R, 1< iy < ... <ig<n, my+...+m, <d,

s=1,...,n, jp=1,...,2™ 1 k=1,...,s, and

gm1—1 gms—1

Eni > ooy Y { (15 1,...,15)}27&0,

s=1 1<i1<...<is<n mit...+ms=d ji1=1 Jjs=1

The same way as in the one-dimensional case, by 0-degree Haar polynomials we will consider
real constants.
Consider the following cubature formula

1 1 N
:/0 /0 f(a:l,...mn)d:rl...dxn%chf(xgk),...m;k)):QN[f], (2)
k=1

where (xgk), e ,x%k)) € [0,1]™ are the nodes, the coeflicients C} at the nodes are real,
k=1,...,N.

The cubature formula (2) is said to possess the Haar d—property (or just the d-property) if it
is exact for any Haar polynomial P(x1,...,z,) of degree at most d, i.e., Qn[P] = I[P]. Such a
formula with the least possible number of nodes is called a minimal cubature formula with the
d-property.

We recall the definition of the linear normed space S, in the n-dimensional case introduced
by I. M. Sobol’ [§].

Let p be a fixed number with 1 < p < +00. The set of functions f(z1,...,x,) defined in the
unit n-dimensional cube [0, 1]™ and representable as a Fourier-Haar series

flxy,...,zn) = co+

0 2mi—l gms—1 (3)
E ]17 Js) ; . . . .
+Z Z Z Z Z m17 M Zl"."ZS)thJl(xll)"'Xms>]s(x15)
s=11<i1<...<is<nmi=1 ms=1 j1=1 js=1
ith real coeffici (g15002ds) (- ) (1< g < — 1.9
with real coefficients co, ey s (i1, - -,0s) (1 < i1 < ... <y < n, my,...,mg = 1,2,...,

s=1,...,n, jr=1,...,2m~1 k=1 ... s) satisfying the conditions

A:E)zl,...,zs) (f) _

) 00 L gm1—1 gms—1 % (4)
mq— mg—1
— E E —g—t. =5 § E yeeeads P \|P
= 272 2 ’07(.,%11’ ’Zmb Z]_,...,ZS)‘ gAil’m’iN

my1=1 ms=1 Ji=1 Js=1

- 400 -



Kirill A. Kirillov On Error Estimates in Sy for Cubature Formulas Exact for Haar Polynomials

(where A;, . ;. are real constants, 1 < 43 < ... < i3 < n, 1 < s < n) is called the class
Sp(A1, .oy Aps oo A i AL )

It was proved in [8] that the set of functions f(z1,...,z,) belonging to all the classes
Sp(Al,...7An,... All A1 ) (Wlth all possible Al,...,An,..., Ailv"wis""7A17"'7n’

while p being fixed) equlpped with the norm
Iflls, = Z Z Al()z‘l,.i.,z‘s)g)’ (5)
s=11<i1<...<is<n

forms a linear normed space, which is denoted by S,. All the functions f(x1,...,x,) that differ
by constant terms are regarded as a single function.

The coefficients cy, 6%11’7 ’js)(il,...,is) (1 <ip < ... <idg<n, my,...,mg = 1,2,...,
s=1,...,n, jg=1,...,2™ 1 k=1,...,5) in the representation of the function f(xy,...,x,)

as a series (3) are called the Fourier-Haar coefficients of this function.
In [8] it was proved that the series (3) converges absolutely and uniformly.

2. Derivation of estimates for the norm of the error functional
of cubature formulas in §,

Let (2) be a cubature formula with the coefficients C at the nodes satisfying the inequalities
Cr>0,k=1,2,...,N. We denote the error functional of the cubature formula (2) by oy [f] so
that

1 1 N L
5N[f]:I[f}—QN[f]:/O /O f(xl,...,mn)dml...dmn—ZCkf(xg>,.._,xgc>)7 (6)
k=1

where the function f € S,, p > 1. It was shown in [8] that any such function is contin-
uous at all points which coordinates are not binary rational numbers. Hence the integral

[ flz1,...,2n)dzy ... dx, exists not only in the Lebesgue sense, but also in the Riemann
0 0
sense.
Let
om1— 1 oms — 1 q %
- N mp—1_ =  mg—1 k
Bt (@) =2 et L Y Y zck xomna(#0) X (#)| 6 @)
Jji=1 js=1 |k=
where ¢ > 1, 1<i1<...<is<n, my,....,meg=12..., s=1,...,n.

Lemma 1. If the cubature formula (2) is exact for any constant and f € S, then for the absolute
value of the error functional satisfies the inequality

R i e

s=1 1<i1<...<is<n mi1=1 meg=1

om1—1 gms—1 , %
(Jrommns ; (i1 mris)
ml’, wds) Zlv"'vzs) Emli’,;rg(Q) .

Ji=1 Jjs=1

Proof. The series (3) is substituted into (6). Since the series (3) converges uniformly and
since the cubature formula (2) is exact for any constant, we have:
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oo 2m1—1 gms—1

on [f]=— Z Z Z Z Z{Tﬁ 239 (i, i) X
s=1 1<i1<...<ts<nm1=1 ms=1 j1=1 js=1
< (9
X ZCkal,jl (IE?) o X s (:L’Ef)) }

k=1

Since the series in (3) is absolutely convergent, it follows that the series in (9) also absolutely
converges. Applying the triangle inequality to the expression on the right-hand side of (9), we

obtain:
0o 2mi-l  gms—l
LTRSS DD SERD Db DD DY £t IURAR
s=1 1<n<.. <z;<nm1 1 ms=1 j1=1 js=1 (10)

X Z Ckath (a:gf)> s Xme,gs ($55)> ‘
k=1

Now we apply the Holder inequality to the sums over ji,...,js on the right-hand side of (10).
Taking into account (7), we obtain the inequality (8). O

It was shown in [9] that there exist Haar polynomials of one variable of degree m that satisfy
the equality:

2m, Z € lmy1,5,
fmg(@) =q 271 2 € g1\l (11)
0. 2ef01\ Tty
where m = 1,2,... and j = 1,2,...,2™. It was also proved in [9] that the functions
Km,1(Z), ..., km,om () form a basis in the linear space of Haar polynomials of degree at most

m.
The definition of the Haar functions (1) and relation (11) imply the following equalities:

_m41

Xm,j (i) =272 |Km2j—1(2:) — Km,25 ()|, (12)
Fom,2j—1(2i) + K 2 (i) = 26m—1,5(3), (13)
i=1,...,n, m=1,2..., j=1,...,2™" 1
Let
K0 (@i, i,) = Koy gy (T6,) - o, (24, (14)
1<ii<...<ig<n, my,...,mg=1,2,..., s=1,...,n, j,=1,....27 L r=1 . s.
Lemma 2. For any ordered set (i1,...,is), 1 <i3 <...<is<n, 1<s<n, and for any

positive integer M there exists at least one ordered set (M, ..., M) satisfying the inequality
M +...+ Mg > M such that

DUt (@)= sup Xt (g), (15)

mi+...+ms=2M
Proof. For a fixed positive integer M, we choose (mq,...,m,) in accordance with condition
that the sum mj +...4+mg is minimum among all ordered sets (my, ..., mg) such that m;+...+

+m, = M and each of the closed s-dimensional binary parallelepipeds Iy, 11,5, X ... X I 41,5,
contains at most one node of the cubature formula (2).
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If the coordinates of the nodes of the cubature formula (2) acgf) ¢ {27 (25, — 1) : g, =

=1,...,2" 1} k=1,...,N, then we set m, = m,. Otherwise, we set M, = 1—|—max{m,. eN:
there exists z\/) = 2~ mT(QJ(K) 1),1< G <ome—1l 1 < K < N},r=1,...,s
Then, for all ordered sets (myq, ..., ms) such that my +...+ms > m1+...+ Mg the following

three conditions are satisfied:

— the inequality m1 + ... +ms > M holds;

— each of the closed s-dimensional binary parallelepipeds I, 41,5, X ... X by 41,5, contains
at most one node of the cubature formula (2);

— the coordinates of every node of the cubature formula (2) differ from the points
{27 (25, — 1)} = supp {km, 2j,—1} N supp {km, 25, }, Jr = 1,..., 2" r=1,...,s.

By virtue of (7), (12), we have:

y . gy —1 gMa-11 N

1150525 —My—...— Mg

st @=amn S UE S o
= Js= =

q) ¢
k k k k
o (45) s (o)) s (o) = s, ()]}

1< <...<13&<n, 1 <s<n.

According to the choice of (71, ..., M), the coordinates
2P (k=1,...,N) (17)
of every node of the cubature formula (2) differ from the points {277+ (2j, —1)} =
= supp {fm, 2j,—1} N supp {km, 25}, jr = 1,...,2™ 71 r =1,...,s, and each of the closed
s-dimensional binary parallelepipeds
Zfﬁ1+1,j1 X ... X lﬁ%SJrl,js (18)

contains at most one node of the cubature formula (2) (by this fact every binary segment
l#,+1,j, = supp {km, .} contains a projection at most one of node of the cubature formula),
jr=1,...,2m r=1,...,s. Then the equality (16) can be rewritten as

Ji=1 Jjs=1

ool 8 R o () o ()]}

1
o1 oMMs N q] ¢
i1y ——. k k
ZGot) (g) =2 {z z[z Cutir o (20)) - Ko, (xEJ)H -

Js=1

1<ii <...<ig<n, 1<s<n. Here we use the fact that the sum

N
Z Ck/q’ml,]l ( Ef)> M K/ﬁls»js (ng))
k=1

contains at most one nonzero term for any ordered set (ji,...,Js)-
Consider the coordinates (17) of nodes of the cubature formula (2) satisfying the equality

.’L‘Ek) = 2_mrjra 1<y < 2mr 1< r<s. (20)

- 9

The following (s + 1) cases are possible for the quantity of such coordinates of the nodes.
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1. Equality (20) does not hold for any of the coordinates (17) of the nodes (for definiteness,
the numbers of such nodes are denoted by k =1,..., Ny).

2. Only one coordinate in (17) satisfies equality (20) (let & = Ny +1,..., N2 be the numbers
of nodes whose coordinates satisfy this condition).

3. Exactly two coordinates in (17) satisfy equality (20) (to be specific, we assume that the
coordinates of the nodes with numbers k = Ny + 1,..., N3 obey this condition).

s+ 1. Equality (20) holds for all s coordinates (17) (let k = Ny +1,..., N be the numbers of
nodes whose coordinates satisfy this condition).

Moreover, each of the nodes with the numbers k = N,.+1,..., N1 belongs to exact 2" closed
s-dimensional binary parallelepipeds of the form (18), where r = 0,1,...,s, Ng =0, Ngy; = N.
Given the above, as well as the equality (11), the relation (19) can be rewritten as

) . ~ M - _ N2 . _
S (g) = g | (@bt py $R (R moi)
k=1 k=N;+1
1
N3 ~ ~ q N R N .l
+4 3 (Mt 20 T 4 428 Y (Mt eSO T = (21)
k=Ny+1 k=N.+1
1
Ny N> N3 N a
= Z Cr? + 21—q Z Cr? + 22(1-q) Z Cil+ ...+ 2s(1—q) Z e ,
k=1 k=Ny+1 k=Na+1 k=N.+1
1< <...<ig<n, 1 <s<n.

Since this reasoning holds not only for (71, . .., M), but also for any ordered set (my, ..., ms)
such that mqy + ... + mg > m1 + ... + my it is true that the value 27(,311:','_'_’,32)5 (q) does
not depend on myq,...,ms for all (mq,...,m,) satisfying the inequality m; + ... + ms; >
> mq+...+m,. Therefore, sup in the equality (15) reduces to max ,

mit...4+ms>=M ML<my+...+ms<mi+...+Mg
whence we obtain the assertion of the lemma. O
Let ¢ be a number related to p by
1 1
-+ -=1 (22)
p q

Let us prove the following theorem.

Theorem 1. If the cubature formula (2) is exact for any constant, then its error functional
satisfy the following relations:

Onlfll < IIflls,  sup _ Slvnia) (), f € Sy, (23)
mM1,y...,Mg
Ioxlls, = sup TGt (g). (24)

mi,...,msEN

If the cubature formula (2) possesses the Haar d-property, then

OnLf1l < £ s, Sup >d255;§:::::izl(q), f €Sy, (25)
mi—+...mMgs
lonllsy = sup TG (g). (26)

mi+...+ms>d
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Proof. Let the cubature formula (2) be exact for any constant. By virtue of (4), (5), the
inequality (23) follows from (8). Using (23), we obtain:

| sup S (o)

M,y Mg
mi,...,msEN

In order to establish that this inequality can not be improved, we use the technique applied in [§].
For M = s, we fix the ordered set (My,..., M), the existence of which was proved in Lemma 2.
We introduce the following notation:

N
i15ls _My-1 o Ms—1 A i
C"‘);lll ,JZ ) —9=% 3 ZC’k Xty i <x§1)> o Xt (335)) )

Then, according to Lemma 2, we have

oMy —1 oMs—1

sup TR () = 2V (a) = [ XX
mi+..+ms=>M J1=1 Js=1

N (i
15
Z @.717 7]5

k=1

] e

Consider the function

oMi—1  oMg—1

ff(‘jfll oM ($1,...,xn): ooy mgn@“’ s

Jji=1 Jjs=1

-1

g
9(“’”.715) Xy .5, (wil)"‘X]WS,js ("I;'Ls) )

J1--e5ds

1<i; <...<is<n, 1<s<n. For this function, the Fourier—Haar coefficients are given by

g—1

. (11, iis) | (it

. 51n@ SN my = Mq,...,mg =M

00:0, C(Jh ,js)(zlw“als){ g 7_75 1, 7_75 ) 1 1 s Hbs ER)

M, M .
0 otherwise.

Then, taking into account the relation (4) and the equality (¢ —1)p = ¢, which follows from (22),

we have:
1
21Wl 1 2]\/[;—1 P
(i15eeris) [ p(E1esis) ) _ oMty Med Z Z i1
Ap fMl,...,Ms =2 6]17 »Je (28)
Ji=1 Js=1
At the same time, according to (9),
) 2t 2t (z i ) (¢ i ) -1
o (A == S X (sl el
G1=1 Ge=1
N oM —1 oMs—1
(k) (k)Y | _ M-l 4 M1 (i1,0nsis) |2
X ZCkXMl,jl (xil e X s (T4, = -2 ‘Zl '21 @Jh i
= J1i= Js=

The last relation, combined with (27) and (28), shows that

[ e oM1—1 QMa 1
=275 ttTy |

Ji=1 Js=1

o i)

‘@ i1,

1
q P
Jise- Je X

=g () S @

My —1 Mg—1

2 2 . N

« @(7,1,...,25)
Z Azl J1ysds

Jji=1 Js=
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Note that A(kl" N (f(“’,,._, ) = 0 for all ordered sets (k1,...,ks) # (i1,...,i5). Then
(i i1,ee8s) (i
WA g, = AR (fiid, ), and
o [ )| = =i @ |

which implies the equality (24).
If the cubature formula (2) possesses the Haar d-property, then by virtue of its accuracy for
Haar polynomials of degree at most d, the equality (9) becomes

my—1 ms—1
2™m1 2

77% Z Z Z Z {c(“’ STe) (i, i) %

s=1 1<i1<.. <ib<nm1+ Ams>d ji1=1 Js=1
(k)
X E CrXmi g1 ( i ) <o Xmg,gs (xis .

Hence, the inequality (8) can be written as

oA Y 3 {Q"gu..‘w;—lx

s=1 1<i1<...<is<n mi+...4+ms>d

omy—1 gms—1 %
N P o
X[ > - § i) (i, i) ] Eﬁii’;:z:%l(q)}-

Then the inequality (2 ) becomes (25). Proceeding as in the proof of the equality (24), we

construct the function f ““"’ZM) (z1,...,2y) such that

on [ ]| = sup Tt (g), (29)

vvvvv ms
Sp mit...4+ms>d

..... M

where the ordered set (M, ..., M) satisfies the following conditions:

M+ ...+ M, >d,

S @ = s D0 (q).

M1, M
mi+...4+ms>d

This ordered set exists by virtue of Lemma 2, which is used for M =d + 1.

The equality (26) follows from (25) and (29). a
Lemma 3. For positive integer my, ..., mg satisfying the inequality
my+...+ms < d, (30)

it is true that

where 1< iy < ... <ig<n, s=1,....n, jr=1,...,2" 1 r=1...s.
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Proof. Since each of the functions Km, j, (i), ..., Km, ;. (2, ) is a Haar polynomial of one
variable and the degrees of these polynomials are my, ..., mg respectively, then it follows from
(14) that for my, ..., ms satisfying the condition (30), the function Kf,{}fn) (Xiyy ..., x,) 1S a
Haar polynomial of degree my + ... + mgy < d of variables x;,,...,2;,. Then, by virtue of the
accuracy of the cubature formula (2) for the Haar polynomials of degree at most d, the first
equality in (31) holds true.

The second equality in (31) follows from the relations (14) and (11), which define the functions

Kr(,ﬁ fn) (Tiy, ..oy mi) and Koy gy (T0)), ooy K. (T4,)- ]

.....

Lemma 4. For positive integer I, the following inequality holds:

om1—1 oms—1 q %
R _ —.—ms+ils) X N\ ) |G s
27(7?1: :in)s( )<2 mq m +é{ Z Z {QN[Kr(rﬁ—l,?..,ms—l(xil“"7xi5):|} } , (32)
Ji=1 Js=1
where 1 <i1 < ... <is<n, my,....,mg=1,2..., s=1,...,n.

Proof. Inequality (32) is proved by induction on I.
Applying the triangle inequality, and also taking into account the equality (12) and the
positivity of the coefficients at the nodes of the cubature formula (2), we obtain:

N
Z Ci Xmi,j1 (xz(f)> s X, gis (!ng))
k=1

N
X ch Hm172j1_1 (ng)> - K‘m172j1 (l‘gf)> ’ e “mm?js—l (ng)) - Hms,st ('/ng)) ‘
k=1

The nonnegativity of the functions x, j(z) implies the inequality

Km,., 25, -1 (Igf@)) - Bm,,2j, ( ( ))‘ Km,.,2j,—1 ( ( )) + Km,. 25, (:C’Ef:)> ’

r=1,...,8, k=1,...,N. Then, by virtue of the equalities (13) and (14), it is true that

Kmq,2j:-1 (l‘if)) — Kmq,2j: (ng)) ’ s |Fmg,25,—1 (mgf)) — Km,,2js ( gg))‘ =

< |:K‘m172j1_1 (x'ff:)) + K’mlx2j1 (I‘Ef)):| te |:I€m372j3—1 (ng)) + 'L@msa2js ( ’Sf)):|
i (29 o, (o) = 2EG (o).
Combining this with (33) yields
N
Z Ck Xmi,j1 (mgf)) <o Xms,gs (‘Tz(f))
k=1

which implies (32) for [ = 1.
Based on the induction hypothesis that

_omi+l mgtl
2 PIENING

(33)

_mytlmg +1
—s—

+SQ |:[(7(rﬁ7 17-] )ms—l(IiU' .. 5Iis):|a

2(217 ,1 )( ) < 2—m1—4..—m3+ls—sx

mi,..
gmi—l+1 gms—l+1 1
KU ds) ( , ) " (34)
m1 I+1,..., ms—I+1 Liyy ooy Lig ’
Ji=1 Js=1
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we prove (32). The sum on the right-hand side of the inequality (34) can be written as

gm1—l+1 gms—l+1 q
‘715 7]3) R R _
E E : { |: mi—Il+1,..., m5l+1(x117""mls)i|} -
Ji=1 Js=1
35
2m,1—l 2m,s—l 2]-1 2j3 q ( )
_ (J17~~-7JS) . .
=D IRED DD DIRSED IR (oM S CARRES)
J1=1 Jjs=1 J1=2j1 -1 Js=2js—1

Using inequality

M M q
Zagg{Zal} (a; 20, i=1,....,M, ¢>1)

i=1 i=1
and equality (13), we have:

2j1 27s

q
Z Z {QN{ n;]f’zﬁ,.)..,msl+1(xi1""’xis)}} S

Ji1=2j51—-1 Js=25s—1

271 2Js q
< {QN[ Z Z Kv(rﬁ"iiJl'g...,mg—l+1($217~-wxis)]} =

J1=2j1—1  Js=2j,—1

2j1 2js q
:{QN[ Z Z “ml—l—&-LJl(fL‘il)--~Hms—l+1,J5($is>]} =

J1=251—1 Js=2j5s—1

q
= { N|:(/‘9m1—l+1,2j1—1(xi1)+"5m1—l+1,2j1 (%1)) . -(Hms—l—&-l,st—l(xi1)+/‘5ms—l+1,2js (wz))]} =
q q
= {QN [2‘gmm1_l7jl (Jc“) o RBmg—1,js (xzs):l } {2 QN [ nﬁ’ l’jé)mrl(xil, ... ,xis)} } .

In view of the equality (35) and the last relations, it follows from (34) that the inequality

(32) holds true. O
Lemma 5. If the cubature formula (2) possesses the Haar d-property, then
. . n—1 _1
sup - Tl (g <27 (29) P (36)
mi+...+mg>d
Proof. Let (mq,...,ms) be an arbitrary fixed set of indices for which the inequality

mi + ...+ ms > d holds true. We denote by [ the minimal number among all integers L
satisfying the condition
mi+...+mg— Ls <d. (37)

Then the following equality holds:
mi+...+mg—Ils=d—r, where r€{0,1,...,s—1}. (38)

Applying Lemmas 4 and 3 (by virtue of (37), the condition of Lemma 3 for the lower indices of

the Haar polynomial K(] ’J&)msfz (ziy, ..., ;) is satisfied) and taking into account (22) yields
om1 1 oms— l 1
Tl yeensls mi—...—ms+ls
SRR DS oI
ji=1 js=1 (39)

1

1 _1
:2—m1—...—ms+ls (2m1+...+ms—ls) a _ <2m1+...+ms—ls) P )
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The relations (39) and (38) imply
. . _1 ” s— n—1 _1
S @) < () =2k ()P <0 (0 P <o (2)7F
whence we obtain the inequality (36). |

Lemma 6. If the cubature formula (2) is exact for any constant, then
sup Bl (q) > (27— — 1) 7P N7 (40)
N

Proof. Consider the function

N1 N2 N3 N
o(Ch,...,CNn) = chq+21—q Z C74-22(1-9) Z Cpl4. .. 4+250-9) Z Cud, (41)
k=1 k=N;+1 k=No+1 k=Ns+1

where the constants Ni,..., Ny are defined in the proof of Lemma 2. By virtue of (21), the
equality

Q=

Sleis) () — 6 (Cy, Ca, . ..., ON)]

M,y ms

(42)

holds true.
If the cubature formula (2) satisfies the condition

Ci+Co+...4Cn=1(C; >0,i=1,2,...,N),

which follows from the accuracy of (2) for any constant, it is easy to show that the function (41)
attains its infimum, which is equal to

[Ny +2(Na = N1) + 22 (N3 — Np) + ... +2° (N = N,)] 7 =

= [N+(21—1)(N2—N1)+(22—1)(NB—N2)+...+(2S—1)(N—NS)}1“’,

when
Ci=Cy=...=Cy, = [Ny +2(Ny — Ny) + 2% (N5 — No) + ... +2° (N = N,)] ",
s -1
Cni+1=Cnyp2=...=Cn, =2 [Ny +2(Ny — Ny) +2° (N3 — No) + ... +2° (N = N,)]
. —1
CNot1 =Cnyg2=...=Cn, =2° [Ny +2(N2 — N1) + 2> (N3 — No) + ...+ 2° (N = N,)|
s s -1
CnNyt1=CNnyq2=...=Cn =2°[N1 +2(No — N1) + 2> (N3 — N3) + ...+ 2° (N = N,)] .

Then, taking into account (22), we derive from (42)

ZULt) () > [N+ (28— 1) (No — Np) + (22— 1) (N3 — No) +... + (2° — 1) (N — N,)]

’ﬁll ..... mg
_1 .
2 [N+(21—1)N+<22—1)N++(2571)N] P — (2S+17571) pN_% 2
_1
> (2" —n 1) * N7,
where (M1, ...,my) is the ordered set chosen in the proof of Lemma 2 (in this case M = s, where

M is the parameter from the conditions of Lemma 2). This yields the inequality (40). O
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Theorem 2. For the cubature formula (2) exact for any constants, the norm of the error func-
tional satisfies the inequality

> (2 —n—1) P N5, (43)

If the cubature formula (2) possesses the Haar d-property, then

lon [f]] <

= (2977 ||f\|sp, (44)

1on]ls; < 25 (2d) : (45)

Inequality (43) follows from Theorem 1 and Lemma 6, while inequalities (44), (45) follow
from Theorem 1 and Lemma 5.

Remark 1. In [9] one considered the following weighted quadrature formulas possessing the

/0 () () di ~ ,éck 7 (=®). (46)

where 2(*) € [0, 1] are the nodes of a formula; Cy, are the coefficients of the formula at the nodes

(real numbers); and k = 1,..., N. If the weight function g(z) = 1, then the number N of nodes
2d—1

Haar d-property:

of the quadrature formula (46) satisfies the inequality N > . The last inequality follows
from a lower estimate for the number of nodes of the quadrature formula (46) possessing the
Haar d-property, where g(z) is an arbitrary weight function (see [9]).

Moreover, in [9] all minimal weighted quadrature formulas possessing the d-property were
described. In the case of the weight function g(z) = 1, it was proved that the minimal formula is
unique: the number of its nodes is N = 2471, the nodes of this formula are 2*) = 274(2k — 1),
and the node coefficients are Cj, = 279+ for k = 1,2,...,29"1. The norm of the error functional

of this formula satisfies the equality (see [10])
S
Ionllg, =277 N7, (47)

which also follows from the inequalities (43) and (45) for n = 1; a number d related to N by
N =24-1,

Remark 2. In [12], one constructed the minimal cubature formulas possessing the Haar d-
property for d > 5

//fxl,xz ) dy dia ~ Z(ka( ) ) (48)
(k) (

where (27,25 ) € [0,1]? are the nodes of a formula; Cy, are the coefficients of the formula at

the nodes (real numbers); and k = 1,..., N. The number N of nodes of such formulas satisfies
the equality

—3.2% 4 2, d is odd
N = ’ 49
{ 2d722+1+27 d is even, (49)
where d = 5, 6, 7,... Then, the norm of the error functional of the minimal cubature formulas
(48) possessing the Haar d-property satisfies the inequality
S* g EN7 (50)
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L m\/i ;)-% .
where Ey = 21(N+ NV st , d is odd, 51)
2% (N—i—%/ﬁ)_;, d is even.

The inequality (50) follows from the estimate

_1
Ion|ls- < 27 (2977,
P

which was obtained in [16] for the norm of the error functional of arbitrary cubature formulas
(48) having the Haar d-property. The number N of nodes of these cubature formulas is defined
by (49).

The relations (50), (51) also follows from (45) for n = 2; a number d related to N by (49).

3. Conclusions

In [8], the cubature formulas

1 1 N
1
/ f(xl,...,asn)dasl...dxn%—Zf(:cgk),...,x%k» (52)
0 0 N 1
with nodes z(k), . ,x%k) €1[0,1]™ (k=1,...,N) were considered that form P,-nets, i.e., nets
1

that consist of N = 2¥ nodes and satisfy the following condition: each binary parallelepiped of
volume 277" contains 27 net points (v > 7). For such formulas with a function f from S, the
following upper estimate for the norm of the error functional was proved in [8]:

n—147

Ionllg. <27 N5, (53)

It is easy to see that for n = 1 and n = 2 P,-nets with an arbitrarily large number N = 2" of
nodes exist for any 7 = 0,1, 2,... Therefore, in the one- and two-dimensional cases, the constant
multiplier on the right-hand side of (53) takes the least value at 7 = 0, and estimate (53) for the
cubature formulas (52) with nodes forming Py-nets in the one-dimensional case is written as

1]

_1
S; g N p, (54)
while in the two-dimensional case this estimate is written as

161

i .1
5 S2PNTE. (55)

It was proved in [8] that cubature formulas (52) with 2¢ nodes forming Py-nets have the
Haar d-property. Therefore, the estimate (45), which is obtained in the present paper, is a
generalization of the estimate (53) to the case of arbitrary cubature formulas possessing the
Haar d-property.

Moreover, for any cubature formula (52) with a function f € S, it was established in [8] that
the norm of the error functional satisfies the lower estimate

o]

_1
o 2 N7r.

Hence, the cubature formulas (52) with the nodes forming P.-nets have the best convergence
1
rate of 0 in the norm, which is equal to N™» as N — oc.
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The relations (43), (47), (50), (51) imply that for minimal formulas possessing the Haar
d-property in the one- and two-dimensional cases |||/ g. < N “% as N — oc.

Comparing the values on the right-hand sides of the relations (47) and (54), as well as (50)
and (55), we conclude that the upper bounds for the |[0x|/g. in the case of minimal quadrature
formulas (46) with the weight function g(z) = 1 and the minimal cubature formulas (48) with
the d-property are less than the upper bounds for this value in the inequalities (54) and (55),
respectively, i.e., the upper bounds for the norm of the error functional of formulas with nodes
forming the Py-net in the one- and two-dimensional cases.

In addition, the quadrature formula (46) with the weight function g(z) = 1 and the number
N = 2971 of nodes, as well as the cubature formula (48) with the number N of nodes satisfying the
equality (49), being the minimal formulas of approximate integration, provide the best pointwise
convergence of Jy[f] to zero as N — oo.
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Universal algebraic geometry is a new area of modern algebra, whose subject is basically the
study of equations over an arbitrary algebraic structure A (see [11]). In the classical algebraic
geometry A of type L is a field. Many articles already published about algebraic geometry over
groups, see [1,8,16], and [10]. O.Kharlampovich and A.Miyasnikov developed algebraic geom-
etry over free groups to give affirmative answer for an old problem of Alfred Tarski concerning
elementary theory of free groups (see [7] and also [15] for the independent solution of Z. Sela).
Also in [9], a problem of Tarski about decidablity of the elementary theory of free groups is solved.
Algebraic geometry over algebraic structures (universal algebraic geometry) is also developed for
algebras other than groups. A systematic study of universal algebraic geometry is done in a
series of articles by V. Remeslennikov, A. Myasnikov and E. Daniyarova in [2—4], and [5].

The notations of the present paper are standard and can be find in [2] or [11]. Our main
aim in this article is to deal with the equational conditions in the universal algebraic geometry
over Heyting algebras, i.e. different conditions relating systems of equations especially conditions
about systems and sub-systems of equations over algebras. The main examples of such condi-
tions are equational noetherian property and g,-compactness. We begin with a review of basic
concepts of universal algebraic geometry and we describe the properties of being being equational
noetherian, g,-compact. We will show that only finite Heyting algebras have these properties.

1. Basic notions

We need to give a brief introduction of universal algebraic geometry. Our notations here are
almost the same as in the above mentioned papers, especially [11].

We begin with an algebraic language £ and an arbitrary algebra A type £ and then we
extended the language by adding new constant symbols a € A. This extended language will
be denoted by L£(A). An algebra B of type £(A) is called A-algebra, if the map a +— o is an
embedding of A in B. In this notation, a® denotes the interpretation of the constant symbol a
in B.

Suppose that X = {z1,...,z,} is a finite set of variables. We denote the term algebra in
the language £ and variables from X by T, (X), and similarly the term algebra in the extended

*mahtopology@gmail.com
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language £(A) will denoted by Tz(4y(X). For the sake of simplicity, we define our notions in the
coefficient free frame, i.e. in the language £ and then we can extend all the definitions to the
language L(A).

An equation is a pair (p,q) of the elements of the term algebra T, (X). In many cases, we
assume that such an equation is the same as the atomic formula p(x1,...,z,) ~ q(z1,...,2,) or
p =~ q in short.

Any set of equations is called a system of equations in the language £. A system S is called
consistent over an algebra A, if there is an element (aq,...,a,) € A™ such that for all equations
(p =~ q) € S, the equality

pA(al, cey Q) = qA(al, ceeyGp)

holds. Otherwise, we say that S is in-consistent over A. Note that, p* and ¢” are the corre-
sponding term functions on A™. A system of equations S is called an ideal, if it corresponds to a
congruence on T, (X). For an arbitrary system of equations S, the ideal generated by .S, is the
smallest congruence containing S and it is denoted by [S].

For an algebra A of type £, an element (ay,...,a,) € A™ will be denoted by @, sometimes.
Let S be a system of equations. Then the set

Va(S) = {ac A" :V(p~q) € 5, p*(a) = ¢* (@)}

is called an algebraic set. It is clear that for any non-empty family {S;};cs, we have

Va(lJ i) = [ Va(Sh).

i€l i€l

It is possible to define a topology on A™ using algebraic sets as elements of subbasis: define a
closed set in A™ to be an arbitrary intersections of finite unions of algebraic sets. Therefore, we
obtain a topology on A", which is called Zariski topology.

For any set Y C A", we define

Rad(Y) = {(p,q) : Va ey, p*@) = q¢*(a)}.

It is easy to see that Rad(Y") is an ideal in the term algebra. Any ideal of this type is called an
A-radical ideal or a radical ideal for short. Note that any ideal in the term algebra is in fact a
radical ideal. To see the reason, just note that for any ideal R in the term algebra T, (X), if we
consider the algebra B(R) = T;(X)/R, then Radpr)(R) = R.

It is easy to see that a set Y is algebraic if and only if V4(Rad(Y)) =Y. In the general case,
we have V4(Rad(Y)) = Y (see [3]). The coordinate algebra of a set Y is the quotient algebra

_ Te(X)
L) = gy

An arbitrary element of I'(Y) is denoted by [p]y. We define a function p¥ : Y — A by the rule

pY(a) = pA(a’la .. '7an)7

which is a term functionon Y, for all ay, ..., a, € A. The set of all such functions will be denoted
by T(Y) and it is naturally an algebra of type L. It is easy to see that the map [p]y +— pY is a
well-defined isomorphism. So, we have I'(Y') = T'(Y').

For a system of equation, we can also define the radical Rad4(S) to be Rad(V4(S5)). Two
systems S and S’ are called equivalent over A, if they have the same set of solutions in A, i.e.
Va(S) = Va(S’). So, clearly Rad 4(S) is the largest system which is equivalent to S. Note that
[S] € Rada(S).
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One of the major problems of the universal algebraic geometry is to determine the structures
of algebras which appear as the coordinate algebras. There are many necessary and sufficient
conditions for an algebra to be a coordinate algebra and we will give a summary of such results
in the Subsection 2.4.

In this article, we are dealing with equational conditions on algebras. The first and maybe
the most important condition of this type can be formulated as follows.

Definition 1. An algebra A is called equational Noetherian, if for any system of equations S,
there exists a finite subsystem Sy C S, which is equivalent to S over A, i.e. Va(S) = Va(So).

If an A-algebra is equational Noetherian in the language £(A), then we call it A-equational
Noetherian. Many examples of equational Noetherian algebras are introduced in [3]. Among
them are Noetherian rings and linear groups over Noetherian rings as well as free groups. In [3],
it is proved that the next four assertions are equivalent:

i- An algebra A is equational Noetherian.
ii- For any system S, there exists a finite So C [S], such that V4(S) = Va(So).

1i- For any n, the Zariski topology on A™ is Noetherian, i.e. any descending chain of closed
subsets terminates.

w- Any chain of coordinate algebras and epimorphisims
(Y1) = I(Yz2) = I'(Ys) — -+

terminates.

So, in the case of equational Noetherian algebras, any closed set in A™ is equal to a minimal
finite union of irreducible algebraic sets which is unique up to a permutation. Note that a set
is called irreducible, if it has no proper finite covering consisting of closed sets. The following
theorem is proved in [3].

Theorem 1. Let A be an equational Noetherian algebra. Then the following algebras are also
equational Noetherian:

i- any subalgebra and filter-power of A.

1i- any coordinate algebra over A.

1i- any fully residually A-algebra.

w- any algebra belonging to the quasi-variety generated by A.
v- any algebra universally equivalent to A.

vi- any limit algebra over A.

vii- any finitely generated algebra defined by a complete atomic type in the universal theory
of A or in the set of quasi-identities of A.

The most important theorem for equationally Noetherian algebras is called Unification The-
orem. It describes the structure of coordinate algebras over equationally Noetherian algebras.
For a proof of this theorem (see [2]).
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Theorem 2. Let A and T" be algebras in a language L. Suppose A is equational Noetherian and
T is finitely generated. Then the following assertions are equivalent.

- I' is the coordinate algebra of some irreducible algebraic set over A.

1- T is a fully residually A-algebra. This means that for any finite subset C C T, there exists
a homomorphism o« : T' — A, such that the restriction of a to C' is injective.

1i- I' embeds into some ultra-power of A.
iv- T belongs to the universal closure of A, i.e. Thy(A) C Thy(T).
v- T is a limit algebra over A.

vi- T is defined by a complete type in Thy(A).

There are similar theorems for the cases where A is g,-compact. Note that an algebra A is
called g,,-compact, if for any system S and any equation p & ¢, the condition V4(S) C V4(p = q)
implies that V4(Sg) C Va(p = q) for some finite Sy C S. Clearly, every equationally Noetherian
algebra is g,-compact.

A. Shevlyakov studied algebraic geometry over Boolean algebras, [17]. He obtained necessary
and sufficient condition for a Boolean algebra to be equationally Noetherian or to be ¢,-compact.
Let B be a Boolean algebra and C be a subalgebra of B. Then we can consider B as a C-algebra.
Shevlyakov proved that B is C-equationally Noetherian, if and only if C' is finite. Consequently
only finite Boolean algebras are equationally Noetherian in the case of Diophantine algebraic
geometry. He also obtained necessary and sufficient conditions for the C-Boolean algebra B to
be g,-compact. To explain it, we need to define Ej-systems: a system of C-equations S is called
Ey. system over B, if V5(S) has k elements, but for any finite subsystem S’ & S, the algebraic
set Vp(S') is infinite. It is proved that B is g,-compact as a C-algebra, if and only if there are
no any Fy and F4-systems over B.

In this article, we are dealing with the case of Heyting algebras, which are natural general-
izations of Boolean algebras.

2. Algebraic geometry over Heyting algebras

Heyting algebras for propositional intuitionistic logic are the same as Boolean algebras for
classical propositional logic. Note that in intuitionistic logic, truth is equivalent to provability.
Since by the incompleteness theorem of Godel, there are sentences « in the language of arithmetic
such that « V -« is not provable, so in the case of intuitionistic logic, Boolean algebras are not
useful and one must employ the more general frame of Heyting algebras. A Heyting algebra is
a bounded lattice H, such that for all a,b € H, there exists a maximum element x with the
property a A x < b. Let’s denote that element = by a — b. Then, one can see that the following
identities are hold
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So, let £ = (A,V,—,1,0) be the language of bounded lattices extended by adding a new
binary symbol —. Then the variety of Heyting algebras is just the variety axiomatized by the
identities of bounded lattices plus the above four new identities. Let -a = a — 0. It can be shown
that in any Heyting algebra, we have only one of the De Morgan’s laws, namely —(aVb) = ~aA—b,
but the other law —=(a A b) = —a V —b is not valid, despite the case of Boolean algebras. It is also
true that =———a = —a and —a V ——a = 1. Recall that a complete Heyting algebra is a Heyting
algebra which is also a complete lattice.

An element a in a Heyting algebras H is called regular, if =—a = a. Clearly, both 0 and 1
are regular. Let H,.4 be the set of all regular elements of H. It is easy to see that H,.q = - H,
the set of all negated elements of H. This set is not a Heyting subalgebra in general, but it is a
Boolean algebra bey the following operations

1) aApegb=aAnb.
2) Tregd = Ta.
3) aVyeg b= —(—a A -b).

We will use the notation L,.q4 for the Boolean language (A, Vyeg, =, 0,1). This will help us to
apply results of [17] for Heyting algebras.

Note that, despite Boolean algebras, the free Heyting algebra Fy(X) is always infinite for
any non-empty set X. For example, if X = {z}, then the free Heyting algebra over X consists
of the following elements

0,z,~x,~—x,xV ~x,~xV -z, e =z, (oo = x) = (e Vox), ...

We focus on the case of equations with coefficients inside H (Diophantine Geometry). It is
known that free groups are equationally Noetherian. Free Boolean algebras of finite rank are
also equationally Noetherian since they are finite. We show that no non-trivial Heyting algebra
is equationally Noetherian.

Proposition 1. Let X be a non-empty set. Then the free Heyting algebra Fy(X) is not equa-
tionally Noetherian.

Proof. Tt is enough to consider the case X = {p}, because subalgebras of equationally Noetherian
algebras are again equationally Noetherian. Consider the following infinite chain

Let S be the system {z > p,z > ——p,xz > —pV ——p,...}. It is obvious that Vr(S) = {1}.
But, since the above chain is infinite, so for every finite Sy C S, there are infinitely many
elements in Vi (Sy). Hence Vp(S) # Vi(Sp). This shows that F' = Fy(X) is not equationally
Noetherian. 0

Note that in the same time the above argument shows that non-trivial free Heyting algebras
are not g,-compact. This is true because we have Vg(S) C Vr(z & 1), but for any finite Sy C S,
the algebraic set Vg (Sp) is infinite.

We now, can use the same idea to prove that infinite Heyting algebras are not equationally
Noetherian. It can be also applied for infinite complete Heyting algebras to prove that they are
not gq,-compact.

Theorem 3. Let H be a Heyting algebra and K be a subalgebra, which is infinite. Then H is
not K-equationally Noetherian.
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Proof. For simplicity we discuss Diophantine case (K = H). The idea of the proof is taken from
a similar theorem for Boolean algebras (see [6]). Let

bOublub27 s

be an infinite set of elements in H. Let Ly = {0,1} and define L,, by inductions as follows: if
L,—1={a0=0,a1,...,an_1,a, =1}, and if 0 < i < n, then define

Ci+1 = Q4 \Y (aiJrl A bn)
For example, we have Ly = {ag = 0,a; = 1}. Then we compute
C1 = Qo V (Cll /\bl) = bl.

It is clear that 0 < by < 1. Let Ly = {0, a1, 1} and rename its elements as ag = 0, a; = by, ag = 1.
Now, to find Ly, we compute

61:(10\/(a1/\b2):b1/\b2,

and
Co :al\/(ag/\bg) = by V bs.
We have
0< b Aby <by <by Ve <1,
so Lo consists of the above elements. Again rename a9 = 0, a; = by A by, ag = by, ..., and

continue this process. It is clear from the construction that
LOCL1CL2C"',

so the set L = Up>0Ly, is an infinite chain in H.
Now, we proved that there is an infinite chain ag < a1 < as < --- in H so we can consider
the following system
S={zx>ap,x > a1,z >as,...}.

For any finite subsystem Sy = {z > ag,x > a1, > ag,...,a,}, we have an41 € Vi (Sp), while
an+1 does not belong to Vi (S). This proves that H is not equationally Noetherian.
O

Note that if H is complete, then in the above proof we can put a = sup; a;. Then Vg (S) C
Vi (z > a), but for any finite subset Sy, it is not true that Vi (Sy) C Vi (x > a). This shows
that if H is a complete infinite Heyting algebra, then it is not ¢,-compact. The next theorem
concerns the relation between g,-compactness of a Heyting algebra H and H.g.

Theorem 4. Let H be q.,-compact. Then there is no Ey and Ei-systems in the language Lycq
over the Boolean algebra Hycq.

Proof. Assume that S is an L,¢,-system of equations with n indeterminate and denote H.g4
for simplicity by R. Let Vgr(S) C Vr(p = ¢), where p = ¢ is an L,.4-equation. Note that R"
is an algebraic set in H™ because it is just the solution set of the system ——x, ~ z1, "z ~
To, ..., X, ~ T,. Hence we have

VR(S) = VH<S+ L] R Ly, Ty R .Tn),

and
VrRip=q)=Vulprq+ w1 ®T1,..., Ty X Ty).
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This shows that

Va(S+-ay =ay,..., 2, R a,) CVg(pr g+ oy & ay,..., 0y & Xy),

and hence

V(S + -z ~x1,...,~ T, 2 1,) C Vy(p ~q).

Since H is assumed to be q,,-compact, so there is a finite subset Sg C S+—-—x1 ~ x1,..., "X, ~
x, such that Vi (So) € Vu(p = q). Therefore, Vr(So) C Vr(p = ¢). Let 8" = Sp \ {-z1 =
Z1y..., 7y & Ty }. Then we have

Vr(S") € Vr(So) C Va(p = q),

and this shows that the Boolean algebra R is g,,-compact in the Boolean language L,.4. Now,
we can apply the result of [17] to conclude that there are no Ey and E;-systems in the language
Lyeg over Hyeq. ]
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Introduction

The problem of estimation of multivariate distribution (or survival) function from incomplete
data was considered from the beginning of 1980’s (Campbell (1981), Campbell & Foldes (1982),
Hanley & Parnes (1983), Horvath (1983), Tsay, Leurgang & Crowley (1986), Burke (1988),
Dabrowska (1988, 1989), Gill (1992), Huang (2000), Abdushukurov(2004) etc.) (see, [1-20]).
In the special bivariate case there are the numerous examples of paired data that represent
life time of individuals (twins or married couples), the failure times of components of a system
and others which are subject to random censoring. At present there are several approaches to
estimate survival functions of vectors of life times. However, some of these estimators are either
nconsistent or not fully defined in the range of joint survival functions. Hence they are not
applicable in practice. In this work we present estimators for bivariate survival function and
present some sample properties of estimators. We extend some results given in [1-4] to Poisson
random summation. At the end of the paper we present consistent estimators of parameters of
Marshall-Olkin exponential distribution.

1. Random right censoring model

Let X={X,; = (X1i, X2i)},-, be a sequence of independent and identically distributed (i.i.d.)
two-dimensional random vectors with a common continuous survival function F(s,t) =

*abdushukurov1710@Qgmail.com
frustamjonmuradov@gmail.com
© Siberian Federal University. All rights reserved
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= P(X11>s8, Xa1 > 1), (s,t) € RY” = [0,00) x [0,00). This sequence is censored from
the right by sequence Y = {Y¥; = (YliaY%)}?; of ii.d. random vectors with survival func-
tion G (s,t) = P (Y11 > s, Yo1 > 1), (s,¢) € R*®. Let us assume that there is the sample
V(n) = {(Zz, A1)7 1 < 7 < n}, Where Zz = (Zh‘,Zgi), A, = (511';621’)7 Zki = min(in,Yki),
Ori = I(Zygi = Xki), k = 1,2, and I (-) is the indicator. The problem consist of estimating
F from the sample V). TLet H (s,t) = P(Zy; > s, Z9; > t), (s,t) € R and sequences X
and Y are independent. Then H (s,t) = F (s,t)G (s,t), (s,t) € R*2. In this paper we use
exponential-hazard, product-limit and relative-risk power types functionals in order to construct
the corresponding estimates of three types for F'. In the empirical estimates the upper index of
summation n is replaced by the Poisson random variable (r.v.) wu, with expectation Eu, = n.
This arises in the insurance business as the size of group insurance payments by an insurance
company to customers in connection with an insured event. Following [2], we introduce some
auxiliary functionals for (z,y) € R*2:

M(w7y):P(Z11 \37 Z21> )7 N($7y):P(le>l‘, Zngy)7

M (z,y) = P (Z11 < =, Z21>y7 S11=1), N(z,y)=P(Z11 >z, Zon <y, 21 =1),

) Y N (z,dt)
(ds y) - (Y N(x,dt) '
) /H L & T}
A(z,y) = Ay (2,0) + Ao(2,y), A(z,y) = Ay (2,0) + As (z,9),

)
A (z,y) :A ('T 0) +Ac(m7y)’ Ac(m>y) :Ai ($>O)+Z_\§ (x,y),

where

Af (2y) = Ay (z,y) = Y A (A s,y), A (o s,y)=A1(s,y) — A1 (s—, ),

s<x

A ( ) A2 .’Ey ZAQ .TAt A2($,At>:Ag(l‘,t)—/\2<.’1?,t—>,
t<y
and similarly defined A§ and AS. To construct estimates for F' we estimate functionals (1.1).

Firstly, we introduce the following empirical estimates of the first four probabilities in (1.1) from
the sample V(™):

1 n
H, (z,y) = EZI(ZU >z, Zoi > Y),
i=1

ZI (Z1i <y Zoi > ),

N, (I,y) = E ZI(ZM >, Jo < y), (12)

i=1

ZI le x, Z2z>ya 617,—1)

N (l’y ZI Z11>£C ZQZ Y, 521:1)
i=1

Let {n, n = 1} be a sequence of Poisson random variables (r.v-s.) with parameter Eu,, = n, that
is independent of the pair (X,Y). Along with estimates (1.2), we propose also their analogues
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Hy, M*, N3, MY, N} obtained from estimates (1.2) by replacing the upper limit of summation
However, it should be noted that these estimates have the disadvantage because

n by r.v. f,.
they can be greater than 1. In fact, for example, for
1 &
H (z,y) = ZI (Z1i >z, Zoi > y),
=1
we have
N = nme "
P(H};(0,0)>1)=P(up >n)= »_ >0

m=n+1
To avoid this disadvantage we consider the following truncated versions of estimates
HY, My, N} M} N:
H (z,y) if H}(z,y)<1
0 —1_ o * * < _ n ) n ) )

and similarly constructed estimates M2, N9, M?, NU. In similar way we construct the corre-

sponding estimates for functionals in (1.1):

_ MO (ds,y) o) = Y NY (z,dt)
Moo= [ gy A = [
- [T MY (ds,y)  + o) = Y NO (z,dt) (1.3)
Aln (xay) - 0 HO (s—,y)’ A2n( ay) - /0 Hg (.’L‘, t_)a

The relative-risk function is

A(z,y)
R(z,y
(59 = K ay)
and its estimator is A ( )
n (T, Y
R’I’L ‘T’y = X
@) Ay (z,y)

Using estimates (1.3), we propose the following three estimates of F' (x,y) for exponential, prod-
uct and power structures

Fln (a:,y) = eXp {_An (J?, y)} = eXp {_ (Aln (J?,O) + AQn (a:,y))} )
Fy, (z,y) = [T (1= Ava (2 5,0) [T (1 = Aon (2,8 1)), (1.4)
s<z t<y
Fa () = [Hy (2,)) ™.
Let A, = [o, Z{"’} x [o, 22")} NA, where Z™ =max (Zu1, ..., Zjn), A= [07 qu x [0, qu :
Ték) =inf{t > 0: P(Zy; <t) =1}, k = 1,2. The following theorem states the asymptotic
equivalence of estimates (1.4).

Theorem 1.1. For all (x,y) € A,

(1) 0% Fio ) = P 2:0) = 0y (1)

n

If the survival function G is also continuous on A, then
logn 1/2
(II) |F1n(x7y)_F3n(-ray)|:Op ( n ) .
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One can also obtain from (I) and (IT) that

|Fyn (2,9) — Fan (2,)] = O, ((“jf”)”j |

To prove Theorem 1.1 we need the following auxiliary statements.

Lemma 1.1. Let {u,, n > 1} — be a sequence of Poisson r.v-s. with expectation n. Then for
any number € > 0 and for n such that

n 9

= 3, €= €xXp (1) ) (15)
logn 8(1 + f)
3
the inequality
p(lm=nl Lie logn " <o (1.6)
n 2\2 n h ’ '
is true, where co = co (¢) =€/16 (1 +¢/3).
Proof. Let 41,72,... be a sequence of Poisson r.v.-s with expectation E(v;) = 1 for all k =

n

=1,2,.... Then p, —n= > (yx — 1) = >_ &, where
k=1

o ( t\k
Ee'®r = ¢t BeM = e7te? Z (ek') =exp(e’ — (t +1)).
k=0

Using Taylor expansion of e!, we have

2 ¢2
Ee'*s = exp (1 +t+ 5+ U(t) — (t+ 1)) = exp (2 + \I/(t)) ,

t3
where U(t) = Eexp(é’t)7 0 <f <1 For 0<t< 1,we have t3 < t? and consequently
3 t?
T(t) < 5 e<e- 5 From here, for 0 < ¢ < 1 we obtain

t? e A e
t&k < J— 7> — —k . 2 = —.
FEe \exp<2(l+3> exp<2 t), py 1—|—3

Then using following exponential inequality for nonidentical distributed r.v.-s of Petrov ([22])
1

2
P( >u><2exp<—1;>, 0<u<N,

> &
k=1
1
under 0 < u = 3 (%nlog n) ’ < A\gn = N, we obtain (1.6). O

The following inequality for two-dimensional empirical estimates from [21, p. 292] is used
below. Let C =C (H)=H (Té1)7Té2)) < 0.

Lemma 1.2 ([21]). For all real z >0
P sup  |Hy (z,y) — H (z,y)| >2C% | <V, - (1+ n2)2 exp (—2nz* - C*), (1.7)
(z,y)€ RT2
where V., =V, (H) = 4exp (42C? + 422C*) .
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1/2
Corollary 1.1. Let z = 2y = (4J2r6 . 10%”) -C~%in (2.7). Then

4+¢ logn /2 9
P\ sup [Hp(zy) = H(z,y)| > ——- O < qn (o), (1.8)
(z,y)ER+2 n

where

4 1/2 4 1/2
qn(g) = dexp (4(;—5 -logn> 1+ (;E ~10gn> . (n2 + 1)2n_(4+8) =0 (n_a) .
n n

Therefore, for € > 1 from (1.8) we have by Borel-Cantelli lemma that

ogn\ /2
sup |Hn<x7y>—H<x,y>|“'=5'0<(lg) ) (1.9)

(z,9)€EA, n

In the next lemma we establish an analogue of (1.7) for an empirical estimate HY. Let q° (¢) be
obtained from ¢, (¢) by replacing 4 + ¢ with (4 4 ¢) /4.

Lemma 1.3. Under the conditions of Lemma 1.1

4+¢ logn
2 n

P sup |H)(z,y)—H(z,y)|> <
(I,y)GAn

1/2
> -02) <270 10 (2) . (1.10)
Proof. For p,, <n: HY (z,y) = H} (z,y) for all (z,y) € R*? and for u, > n we have

sup  |H)(z,y) — H(z,y)| < sup |H;(z,y) — H(z,y)l.
(z,y)eRT2 (z,y)eRT2

Using the formula of complete probability, we obtain

P| swp |[H)(w,y)—H(z,y)|>2C|<P| swp [H(z,y)—H(zy)>2C| <
(z,y)€EA, ($7y)eAn

1 &
<SP sup |Hy(z,y)—H(z,y)+ - Z (Zy; >, Zoi > y)| > 20C° [t > 0 | -P(py > 1)+
(a:,y)EAn n i=n-+1
1 b
+P | sup  |Hu(w,y)— H(z,y)— — Y I(Z1; > 2, Zai > y)| > 200% /i > n | P > n) <
(z,y)€EAL n i=n+1
1 2
<SP sup [Ho(zy)—H(z,y)| > 52007 | +
(@.y)€An 2
1 1
+P sup |— Z I(Zyi > 2, Za; > y)| > 20C% | <
(w’y)eA" n 1=nApn+1 2
n ]- —
<qn(e)+P (Iunnl > 22002) <2n70EH) 4 gl (e),
where (1.6) and (1.8) are used. a

Proof of Theorem 1.1. From inequalities (2.4.2) in [2] applied to estimates F},, and F5,, we have
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0 < Fun o)~ Fan o) < 3 3 |(o? 0.0+ (2 (0) ] =
a7 L | Gy 1 (Zfi) < z,29; < y)

AR (s92(2-) = (HS(J:,ZS“—))2

< (111)

-2 -2
< o s (20 0-) o (ot 28 0) .

where Z,gl) <...< Z,gn) order statistics are constructed from Z;, k = 1,2, d3(;) corresponds to
Z,ii) and SYZ (z) = H? (x;0). It is known that for n — oo, Z,(Cn) £>Ték)7 k =1,2. We show that
Z,i“"')ngf), k=1,2whenn —oo. Fore >0, 0<d <1and k=1,2 we have

P (‘Z]E;Mn) _ Ték)‘ > 5) g

<P (‘Z,(f") . Tg@\ > e,

”"—1‘<6)+P(‘@—1‘>5)<

<P(‘Z,§”")—T§’“>’ Se n(l—08) <, <n(l +6)) (’?—1’ 6) <

P2 -1 > <)+ P (|5 -1 29).
For arbitrary n > 0 there are numbers n; and € such that for n > ny
P (\z,gm _Tgﬂ] > 5) < g k=12 (1.12)
SlncePQ 1‘ ) — 0 when n — oo then for n > no
Hn n
P(‘——l‘}é) 7 1.13

Then for n > ny = max(ni,ng) we obtain from (1.12) and (1.13) that
P (’z,gw - Tg”‘ > 5) <, (1.14)

which is required result. Thus, taking into account (1.13) and (1.14), for n — oo with probability
close to 1 we have

Z(Mn—l) Z(" 1)7 k=1,2,
fn _o, 1 (1.15)
n? n

Taking into account (1.15) and the following relations obtained from (1.10) for (z,y) € A,

1 ‘S%(m)—slz(x)‘ I | logn 1/2
S (x) S S () 57 (@) +Sf<x>‘55<x>+op<< >) )

1 |H2(x,y)—H(x7y)| 1 1 logn 1/2
HS(x,y)g HY (z,y) H (z,y) +H(x’y)_H(%y)+Op<( " ) ),
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we obtain the right estimate in (I). Now according to the inequality |u — v| < |logu — log v], for
O<u, v<1, 0< R, (z,y) <1 and (z,y) € A, we have

(7 IOg HO (I7y))
Fn x,y _F’ﬂ x,y <An T,y _1+—n =
[Ern (2,y) = Fan (2, 9)] (z,y) )
1.16
— R (@.9) | (~Tog H) (2,3)) = A (2.9)] < 119
< |- log HY (x.y) + log H (2,9)| + |(~log H (2.)) — A, ().
According to Lemma 1.3 and the mean value theorem for (z,y) € A,, we obtain
0 logn /2
|— log H,, (z,y) + log H (z, y)| =0, . . (1.17)

Taking into account continuity of G, Lemma 3.4.3, the proof of Theorem 2.4.3 and Remark 2.4.4
in [2] we obtain for (z,y) € A, that

oo n 1/2
IMH@MM@MIQ(C5> ) (118)

Now (II) follows from relations (2.16)—(2.18). a

It was shown in Theorem 2.4.3 in [2] that in the case of continuity of F and G both
exponential-hazard and relative-risk power functionals coincide with the estimated survival func-
tion F. Then, taking into account Theorem 1.1, we can state that all three estimates (1.4) are
consistent estimates of F' (see, also [5]).

2. Estimation of parameters of Marshall-Olkin exponential
distribution

Let us consider survival function F'(s,t) = P(X11 > s,Xo1 > t), (s,t) € R*? of Marshall-
Olkin exponential form with unknown parameters Ai, Ag, A1s :

F(s,t) = exp (=18 — Aot — Ao max(s,t)), (s,t) € R (2.1)
Then corresponding cumulative hazard function is
A(s,t) = —log F(s,t) = A\1s + Aot + A2 max(s, t). (2.2)

Nonparametric estimator of A(s,t) from (2.4) is A, (s,t) = —log Fi,(s,t) = A1,(5,0) + Aa, (s, ).
It is easy to verify from (2.2) that we have the system of equations for s > 0
A (S, 0) = A5+ A28,
A(0,8) = Aas + A1as, (2.3)
A(s,8) = Ais+ Aas + Apas.

From (2.3) we find expressions for unknown parameters Aj, A2 and Aj2 for a fixed point
s=159>0:

AL = Sio (A (s0,50) — A (0, 50)) ,
)\2 = %(A (50,80) —A(So,O)), (24)

A2 = % (A (80,0) + A (0780) - A (So,SQ)) .
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Now we obtain estimators of parameters from (2.4) by replacing A with A,, :

n 1 — _

/\5 ) = 5 (An (s0,50) — Ay (O, So)) ,
n 1 — -

A = — (B (50, 50) = K (50,0)) (2.5)
n 1 — - -

)\52) = g (An (50’ O) + An (Oa 50) - An (50; 50)) .

It follows from Theorem 1.1 that A, (s,t) is consistent estimator of A(s,t). Consequently, rela-
tions (2.5) give consistent estimators of corresponding parameters (2.4) of distribution (2.1).
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OO0 orneHMBaHUM JIByMepHOI (pyHKIINN BHI>KWUBAHUS
0 CJy4YailHO IIEH3ypPUPOBAHHBIM JaHHBIM

Abaypaxum A. AGaymiykKypoB

MTI'Y, TamkenTckuit dumnan

Tamxkent, Y36ekucran

Pycramxkou C. MypamoB
HaMaHI‘aHCKHﬁ I/IH)KeHepHO—TeXHI/I‘{eCKI/IIL/'I UHCTUTYT
Hamanran, Ysbekucran

Awnnoranusi. B mHacrosiimee BpeMst CyIeCTBYeT HECKOJIBKO IMOXOOB K OIEHKE (DYHKIWI BBIXKUBAHUST
BEKTOPOB BpeMeHu Ku3uu. OIHAKO HEKOTOPBIE U3 3TUX OIEHOK JINOO SIBJISIIOTCS HECOCTOSATEIbHBIMU, JIN-
60 He TOJTHOCTBIO OIPEJIE/IEHbI B 00/1aCTH (DYHKIIUNA COBMECTHOTO BBIXKUBAHUS U IIO9TOMY HE TTPUMEHUMbI
Ha MpakTHKe. B paboTe aBTOpaMu MpEIoKEHBI COCTOSITEILHBIE OIEHKH COBMECTHOM (DYHKITMH BHI2KHBa~
HUSI SKCITOHEHITNATBHOM, MHOYKUTEJILHON M CTENIEHHON CTPYKTYP IPH CIyYailHOM IIyaCCOHOBCKOM OObEMeE
BbIGOPKU. [loKa3aHO, YTO 9TH ONEHKU ACUMITOTUYECKN SKBUBAJIEHTHBHI.

KuaroueBrblie ciioBa: nBymepHas (pyHKINsS BHIXKUBAHUs, IYACCOHOBCKUE CJIyYailHbIE BEJIMINHBI, SMITUPU-

YEeCKHE OICHKH.
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Abstract. The structural and magnetic properties of CoPt-InoOs nanocomposite films formed by
vacuum annealing of the In/(Co3O4 + Pt)/MgO film system in the temperature range of 100-800°C
have been investigated. The synthesized nanocomposite films contain ferromagnetic CoPt grains with
an average size of 5 nm enclosed in an In»Oz matrix, and have a magnetization of 600 emu/cm®, and a
coercivity of 150 Oe at room temperature. The initiation 200 °C and finishing 800 °C temperatures of
synthesis were determined, as well as the change in the phase composition of the In/(Co304 + Pt)/MgO
film during vacuum annealing.
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Introduction

In recent years, composite nanomaterials have been the subject of numerous studies due to
their novel functional properties that differ from the properties of their components [1]. Compos-
ite ferromagnetic films containing nanoclusters of transition-metal Co, Fe, or Ni in a dielectric or
semiconductor matrix obtained by different physical and chemical methods, including the sol-gel
method, spray pyrolysis, the microemulsion method, magnetron sputtering, pulsed laser deposi-
tion, ion implantation, and joint deposition have been intensively studied [2-9]. The synthesis
of these nanocomposites often passes under equilibrium conditions, but lately there has been a
surge in nonequilibrium processing of ferromagnetic composites using methods like pulsed laser
irradiation [10], pulsed laser deposition [11], ion implantation [12,13], and the ball-milling pro-
cess [14] and thermite synthesis of materials. Nanocomposites obtained under nonequilibrium

*lebyk@iph.krasn.ru
(© Siberian Federal University. All rights reserved
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conditions often have metastable phases and possess unusual magnetic and physicochemical prop-
erties. Recently, a simple and effective method of solid state synthesis of magnetic nanogranular
thin films has been proposed, based on initiating thermite reactions between 3d-metal oxide
films (FeqOs, Co304) and In, Zr, Zn, Al metals, whose oxides are wide-gap semiconductors or
dielectrics [15-19]. Such an approach makes it possible to obtain thin single-layer and multilayer
nanogranular films with a well-controlled size and distribution of magnetic granules over the
thickness of the film [19]. CoPt and FePt alloy films have attracted a great deal of attention
because of their strong perpendicular magnetic anisotropy, which is important for many practical
applications. To date, there have been a small number of studies on the synthesis and investiga-
tion of nanocomposites containing CoPt and FePt nanoparticles in oxide matrices [20-26]. These
investigations are important for applications involving the synthesis of nanocomposites with the
desired magnetic, structural, and transport properties.

In this work, we report the results of the synthesis and investigation of the structure and
magnetic properties of CoPt-InyO3 nanocomposite films. The films were synthesized by a solid-
state reaction in the In/(CozOy4 + Pt)/MgO film system with annealing in a vacuum at 10~% Torr
in the temperature range of 100 —800 °C. The main synthesis parameters, including the initiation
temperature and the phase composition of the reagents and reaction products, were determined.

Experimental procedures

Fig. 1 shows the scheme for synthesizing CoPt-In, O3 nanocomposite films. First, we prepared
the CoPt(111) ferromagnetic films using the technique described in [20]. This began with the
magnetron sputtering of Pt films with a thickness of ~ 50 nm in a vacuum at a residual pressure of
1078 Torr onto a MgO(001) substrate heated to a temperature of ~ 250 °C, which ensured epitax-
ial growth of the Pt(111) plane relative to the substrate surface. Next was the thermal deposition
of a polycrystalline Co film with a thickness of ~70nm in a vacuum at a residual pressure of
106 Torr onto the Pt film at room temperature to prevent a reaction between the layers (the
chosen thicknesses of the reacting layers were ~70 nm for Co and ~ 50 nm for Pt, which provided
an equiatomic composition), followed by the annealing of the obtained Co/Pt(111)/MgO bilayer
samples in a vacuum at 1079 Torr at a temperature of 650 °C for 90 min. After annealing the
Co/Pt(111) /MgO samples, the magnetically hard L1o-CoPt(111) phase forms in the Co/Pt(111)
film structure based on the oriented Pt(111) layer [20, 27].

350 °C
G 1) 02
@ -
@@ @
\: o © O .\ In
oPte In,0;® 800 °C

Fig. 1. Schematic of the formation of the CoPt-InyO3 nanocomposite films
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Then, the L1y-CoPt/MgO films were oxidized in air at a temperature of ~350°C for 3h.
The oxidation yielded a Co304 -+ Pt film structure containing Pt nanoclusters dispersed in a
Co304 matrix. It should be noted that in the method used, the Co was oxidized, while the Pt
remained unoxidized.

The CoPt-InpO3 nanocomposite films were obtained by annealing the initial
In/(Co304 + Pt)/MgO(001) samples in a vacuum at 107® Torr in the temperature range
of 100—-800°C with a step size of 100°C and exposure at each temperature for 40 min. Film
magnetization was measured after each annealing. The formations of the Co and CoPt magnetic
phases were detected by the occurrence of magnetization. Through these measurements, the
temperatures of initiation and end of the CoPt-Ino O3 nanocomposite synthesis were determined.

The thicknesses of the reacting layers were determined by X-ray fluorescence analysis. The
saturation magnetization M was measured with a torque magnetometer in a maximum magnetic
field of 17 kOe. Hysteresis loops in the CoPt-InoO3 film plane and perpendicular to it were
measured on a vibrating sample magnetometer in magnetic fields up to 20 kOe. The phase
composition was investigated by X-ray diffraction using a DRON-4-07 diffractometer in CuK,
radiation (ow=0.15418 nm). The analysis of the intensity of the X-ray diffraction reflections were
made using the ICDD PDF 4+ crystallographic database [28].

Results and discussion

Cobalt reduction and the formation of the CoPt ferromagnetic grains were investigated by
measuring the saturation magnetization of the initial In/(Co304 + Pt)/MgO(001) samples as a
function of the annealing temperature M(T) (Fig. 2). It can be seen from the M, (T) dependence
that, below 200°C, Co reduction processes do not occur in the investigated In/(Co3O4 + Pt)
structure and its magnetization is therefore close to zero. The magnetization sharply increases
at T'>400°C and reaches a maximum at T'> 700 °C. The M,(T) (Fig. 2) dependence includes
three portions: near T} ~ 200 °C, near Ts ~ 400 °C and near T3 ~ 700 °C. It is well known [17] that
T; is close to the temperature ~ 200 °C of Co reduction from the Co304 oxide in the In/Co304
film system. At the same time, it is well-known [27] that the L1o-CoPt phase starts forming at
a temperature of ~375°C in Pt/Co films. We can conclude that, at T5 ~400°C, the reaction
of the Co reduction from the Co30,4 oxide with the formation of the CoPt and InyO3 phases
continues. At temperatures above 400 °C, the magnetization of the film sharply grows, which
indicates the continuation of the solid-state reaction in the In/(Co304 + Pt)/MgO(001) film with
the formation of the CoPt and InyO3 phases. Annealing at T' > 700 °C facilitates the occurrence
of the maximum number of CoPt grains.

D

o

o
T

Ms (emu/cm®)

Fig. 2. Dependence of the saturation magnetization M, on the annealing temperature 7' of the
In/(00304 + Pt)/MgO film
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X-ray measurements performed after the oxidation of the L1p-CoPt/MgO films in air at a
temperature of ~ 350 °C for 3 h and the deposition of the In layer showed that the obtained system
consists of the CozO,4 (the space group Fd-3m, lattice constant a = 8.0837 A, PDF Card # 00-
042-1467), Pt (the space group Fm-3m, lattice constant a = 3.9231 A, PDF Card # 00-004-0802),
and In (the space group I4/mmm, lattice constants: a = 3.252 A, ¢ =4.9466 A, PDF Card # 04-
004-7737) phases (Fig. 3a). Annealing at a temperature of 400°C (Fig. 3b) led to the formation
of a small amount of the ordered L13-CoPt tetragonal phase in the reaction products, which
is confirmed by the presence of the (001) superstructural reflection (the space group P4/mmm,
lattice constant a = 2.677A, ¢ = 3.685 A, PDF Card # 04-003-4871). The InyOs5 reflections
are also present in the diffraction pattern (the space group Ia-3, lattice constant a = 10.118 A,
PDF Card # 00-006-0416). When annealing at temperatures below 400 °C reflections from the
reduced cobalt were not observed because of its high dispersion.

A-In 0- Co30,
A -1ny,04 m-CoO
o- Pt 0-MgO
e - A1-CoPt - CoPt;
o - L1,-CoPt ¢- CosPt
as prepared
0
=
C
o}
o)
—_
L
>
=
[72]
C
()
[}
£
(d) 700 °C
200
4
111
*— 200
\
(e) , 200 ¢ 800 °C
1\—~/x\k Il 1 1 I lL‘ . T —
20 30 40 50 60 70

20 (degree)

Fig. 3. X-ray diffraction patterns of the In/(Co304 + Pt)/MgO film after annealing in a vacuum
in the temperature range of 100—800°C

When the sample was heated to 500°C (Fig. 3c¢), the reflections from the Pt phase dis-
appear and reflections from the disordered A1-CoPt (the space group Fm-3m, lattice constant
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a = 3.768 A, PDF Card #04-001-0115) and CoPt3 (the space group Pm-3m, lattice constant
a = 3.831 A, PDF Card # 04-004-5243) phases appear. When the sample was annealed to 700 °C
(Fig. 3d), the intensity of the diffraction reflections increased, which is related to reaction relax-
ation processes, including the increase of the size of the CoPt grains and the improvement of the
crystal quality in the insulating In,Os matrix, but no new phases were formed. Annealing at
T = 800°C (Fig. 3e) led to the formation of the CosPt (the space group Fm-3m, lattice constant
a = 3.668 A, PDF Card # 01-071-7411) phase.

The CoPt grain size was estimated from the width of the CosPt (200) reflections (Fig. 3e) by
the Scherrer formula d=Fk\/B cosf, where d is the mean crystal grain size, 8 is the diffrac-
tion maximum width measured at half the maximum, A is the X-ray radiation wavelength
(0.15418 nm), @ is the diffraction angle corresponding to the maximum of the peak, and & = 0.9.
The obtained calculated size of the crystal grains of CoPt was ~ 5nm.

X-ray diffraction allows us to conclude that after annealing the film contains CoPt (A1-CoPt +
CoPts + CosPt) alloy nanograins surrounded by In,Os. The synthesis of the nanocomposite
includes the following successive solid-state reactions:

1. 200°C — 8In + 3Co0304 = 9Co + 4In,03,

2. 400°C — Co + Pt = L1y-CoPt,

3. 500-700°C —Co + Pt = A1-CoPt and A1-CoPt + 2Pt = CoPt3,
4. 800°C — A1-CoPt + 2Co = CosPt.

When annealing above 400 °C, the transition of the cubic CoPt phase to the tetragonal
L1p-CoPt phase does not occur and the formed films are low-coercive. Recently, we synthesized
high-coercive CoPt-Al;O3 films under the same synthesis conditions (an equiatomic composition
Co:Pt = 50:50 on an MgO(001) substrate, vacuum annealing) [20,27]. It’s possible this difference
between the synthesis of CoPt-InoO3 and CoPt-AlsO3 nanocomposite films is due to the fact
that in In/(Co304 + Pt)/MgO(001) films the cobalt is restored before (~ 200 °C) the formation
of the L1p-CoPt phase (~400°C) and the formed InyO3 phase prevents the transition of the
cubic CoPt phase to the tetragonal L1y-CoPt phase. In the synthesis of CoPt-Al;Og films, in
Al/(Co304 + Pt)/MgO(001) films, the formation of the L1¢p-CoPt phase occurs at ~375°C and
the Co is restored from the Coz04 oxide at ~490°C |20, 27].
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Fig. 4. Hysteresis loops in the CoPt-InpO3 nanocomposite film plane and the perpendicular
plane

Fig. 4 presents the hysteresis loops measured in the CoPt-In,Og film plane and the per-

pendicular plane. They have a coercivity of H.~ 150 Oe, and a saturation magnetization of
M, ~600 emu/cm3. The relatively large ratio M,./M, < 0.3 between the remnant magnetiza-
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tion M, and saturation magnetization My (Fig. 4) shows that the CoPt nanoparticles consist of
randomly oriented grains with a cubic magnetocrystalline anisotropy [29].

Conclusion

The main results of our investigations are as follows. The low-coercivity CoPt-InsOg
nanocomposite films were obtained by annealing the In/(Co304 + Pt)/MgO(001) samples in
a vacuum at 107¢ Torr in the temperature range of 100800 °C with a step size of 100°C and
exposure at each temperature for 40 min. Comprehensive structural and magnetic investiga-
tions unambiguously indicate that after annealing the film contains CoPt (A1-CoPt + CoPts +
CosPt) alloy nanograins by the InpOgs layer, with an average size of 5 nm. The synthesized
CoPt-Iny O3 film nanocomposites had a magnetization of about 600 emu/cm?® and a coercivity
of about 150 Oe at room-temperature. The initiation 200 °C and finishing 800 °C temperatures
of synthesis and the phase composition of the reaction products were determined. It has been
suggested that the formed In,O3 phase prevents the transition of the cubic CoPt phase to the
tetragonal L1y3-CoPt phase and, as a result of the synthesis, low-coercive films were formed.
Thus, the solid-state method is promising for synthesizing ferromagnetic nanocomposite thin
films consisting of ferromagnetic nanoparticles.

This study was supported by the Russian Foundation for Basic Research, Government
of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science to the research projects

no. 19-43-240003.
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MarsauTHble U CTPYKTYPHbBIE CBOICTBa HAHOKOMIIO3UTHBIX
njieHoK CoPt-In,05

JIronmuia E. BeikoBa
BukTop I'. Msarkos
BukTop C. 2Kwurasosn
Agnekceii A. Maubiaua
Hmurpwmii A. BeaukaHoB

Nucruryr dusuku um. Kupenckoro, ®UIL KHIT CO PAH
Kpacnosipck, Poccuiickast Penepariust

T'asnmua H. Boangapenko

WNucruryT xuMun u xumudeckoii rexuosorun, @YU KHIT CO PAH
Kpacnosipck, Poccuiickass ®eneparus

I'eanaguii C. IlaTrpun

Cubupckuii deepasbHbIl YHUBEPCUTET

Kpacnosipck, Poccuiickas @eneparnus

Nucruryr dusukn nm. Kupenckoro, ®UIT KHIT CO PAH
Kpacnosipck, Poccuiickass @eneparus

Annoranus. VcciaenoBansl CTpyKTypHbIE M MarHUTHBIE CBOMCTBA HAHOKOMIO3UTHBIX mieHoK CoPt-
In2 O3, HoOMy9YeHHBIX BaKyyMHBIM OT2KuroM IuteHounoit cucremsl In/(CosO4 + Pt)/MgO B unrepsase
remneparyp 100—800 °C. CuHTe3upOBaHHBIE HAHOKOMIIO3UTHBIE IJIEHKU COZepKaju (heppPOMArHUTHBIE
CoPt-kmacTepsl co cpelHIM pa3MepoM 5 nm, 3ak/odeHHble B MaTpuily [noOz, u mMenn HaMarHW9eH-
HocTh 600 emu/ cm?®, kosprmTuBHyo cmiy 150 Oe mpu KomHATHOI Temmeparype. OIpe/esieHbl TeMile-
parypbl Havasa 200 °C u okonuanus 800 °C cumHTe3a, a TakxKe M3MeHeHHE (Pa30BOr0 COCTaBa ILJIEHKU
In/(Co304 + Pt)/MgO upu BakyyMHOM OTKHUTE.

KiroueBsble ciioBa: ToHKHE IUIeHKY, heppoMarHuTHbIe HaHOKOMIO3UTHI, ciiaB CoPt, okcnt IngOs.

- 438 —



Journal of Siberian Federal University. Mathematics & Physics 2020, 13(4), 439-450

DOI: 10.17516/1997-1397-2020-13-4-439-450
VIIK 536.423.1

To the Question of Analytical Estimate of Evaporation Time
of the Drop, Crossing Through the Heat Media

Sergey O. Gladkov*

Moscow Aviation Institute
Moscow, Russian Federation

Received 01.02.2020, received in revised form 13.03.2020, accepted 20.05.2020

Abstract. Due to the kinetic approach the modelling description of the drop evaporation is offer.
The main equation of the theory received due to the conservation law of dissipative functions of the
vapor —liquid system. The diapason of drop size it’s finding when its stability. It’s comparison of the
results with the famous classical is given. The numerical estimate of the linear size of small disperse
phase when take place usually evaporation (i.e. the Knudsen’s number is a small Kn = 7 < 1, where [

is a free length path of the molecule and R is an drop radius) are given.
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The task that will be discussed in this article is not new, and has about a century of back-
story. It must be said that for many physical tasks devoted to the study of the properties of
fine environments (fogs, steam, smoke, dust, etc.), it is characteristic that their solution in the
vast majority of cases has an empirical and experimental character. Although the number of
theoretical works in this direction has been growing quite rapidly in recent years, the conclusion
of the main equations is usually based on the dependents obtained purely experimentally. In this
paper, we will move away from the well-established stereotype of problem-solving in this direc-
tion, and use the general principles of the theory of non-equilibrium processes, using as the basic
method of describing the dissipative function Q = T'S, where T is an equilibrium temperature,
S is an entropy, and the "point" under the letter as usually shows the differentiation in the time.

1. The conclusion of the main equation

Let’s write the balance equation taking into account the interaction of gas phase molecules
and molecules in a drop at the edge of their contact in the form of the next amount of dissipative
functions

d d d
T dV + T~ AV + = | ado =0 1
a Jo, Y T w2 T ) = (1)

where s; is an entropy of drop in the unite of its volume, s is an entropy is a unit of volume
surrounding the gas phase drop, including molecules of the already evaporated drop matter, V;

*sglad51@mail.ru
(© Siberian Federal University. All rights reserved
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variable drop volume, V = V; 4+ V5 = const fullvolume occupied by drop and gas, o the surface
area of the drop. By performing a simple time-by-time differentiation, we find

TS'l + T81V1 + TSQ - TSQVl + Old'l =0. (2)
Introducing here the hidden warmth of steam formation
AQV =T (81 — 52) . (3)

Getting out (2)
TS, +TSs +AQvV, +ady =0. (4)

Our task now is to calculate the first two components that are part of the equation (4). According
to the definition of entropy in the language of the distribution function (see [1]), we have

1
S = ——/nl Inn,d®p, (5)
A

where ny is an nonequilibrium function of the distribution of fluid molecules by pulses, and the
rationing multiplier

Z1 = /ﬁ1d3p7 (6)

where the equilibrium distribution function

El(p) — ul(P7 T)
D), )

n1 = exp (—

Note here that Boltzmann’s constant in (5) and in (7) and beyond we will believe an equal unit.

Kinetic energy of molecules in liquid is 1 (p) = 2p—, where pq (P, T) is the chemical potential of
my

a liquid molecules in drop. Similarly
1 3
SQ = ——= o lnngd D, (8)
Zo
where Z = [ nad®p,

iy = exp <_62(p) —;2(13’ T)), )

2
where e5(p) = 21:)71 is the kinetic energy of gas molecules, and po(P,T') their chemical potential.
2

Differentiating (5) and (8) on time, we have, lowering the permanent term
Sy =

n1 Inn,dp, Sy = 2 In nad>p. (10)

1
Z1 22

In the accordance with Boltzmann’s kinetic equation, we have the right to write down that
hl :Ll(nl,ng), ’fl2 :Lg(n27n1)7 (11)

where Lj(nq,ns) and Lo(ng,ny) respectively, the integrals of the collisions of liquid and gas
molecules at the border of their contact. Therefore, with the account of expressions (10) and
(11) the equation (4) will take the form

T

T .
A Li(ny,no) Innid®p — A /Lg(ng,nl) Innod®p + AQy Vi + ady = 0. (12)
1 2
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The solution of kinetic equations we will look for in the so-called "tau- approximation", according
to which the integrals of collisions are replaced by the approximation of expression

le—i, L2@_77 (13)

where 715 the relaxation time of the liquid molecules when they are scattered on gas molecules,
and 791 the relaxation time of the gas molecules when they are scattered on liquid molecules. It
is clear that these times are different. We will now find amendments én; 2 to the distribution
function due to the interaction. According to the kinetic equation, we have

. onq ony ny —ny
— -1 .V F.—— =_ . 14
n1 En +v-Vn + op 1 (14)
. . . Onp Ong .
As we are looking for a stationary solution o 0. To the rum of that, it should be
considered that strength F = 0. As a result
V-Vm:—nl_nl. (15)
T12
And similarly -
V- Vng = 2712 (16)
T21

We will look for solutions to equations (15) and (16) by the method of successive approximations,
that is, let’s put that
ny =nq, +0ny, nNg = g + dna. (17)

That’s why we get

Lig-0ng +0ny = L2 - Vg,

(18)
Io1 - dng + dng = —lag - Vg

where free-range vectors are introduced lyo = v7y2, 1o; = v7o;. The solution of equations (18) is
convenient to look for by decomposition of the desired functions in the integral Fourier. Indeed,
have for arbitrary (yet) function

oo 3
1) = [ exp ik s, (19)

— 00

where by one-dimensional integral we mean three-dimensional integral, fi is the Fourier image
of the function f. Substituting (19) in any of the equations (18), easy find

3
/ (1 +14kl) 5nk% =-1 V/T_Lk exp (ikr) (271_1){3.

From where
. (k . l)ﬁk

Trik-1
where 71k is Fourier image of the equilibrium function of molecule distribution 7(r). Substituting
now the solution (20) in the definition (19), find the amendment of interest to the equilibrium
function of distribution

ong = — (20)

= omgs [ 1 e e () 2
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Here and beyond we simplify the recording of the Integral Fourier, lowering the limits of inte-
gration. To calculate the resulting integral, it is convenient to use the next artificial technique.

Let’s imagine the function in the form of an integral

14+ik-1
LI /Ooe (—z(1+ik-1))dz (22)
1rik-1 J, &P '
Then from (21) it follows
on=—— / exp (—x)da:/ (k - 1) Ay exp (ik(r — 21))d’k. (23)
(2m) Jo
Next, as
Nk = /ﬁ(r')exp(—ikr')d?’r', (24)

then substituting (24) in the solution (23), will have as a result of a simple regrouping of multi-

pliers
i

on = ~@p /Oooexp (—x)dx / n(r")d®r’ / (k- 1) exp (ik(r — v’ — z1))d®k. (25)

To calculate the internal integral, let’s use the following technique. Let’s write it down as

/exp (ik(R — 1z))(k1)d®k = z’% /exp (ik(R — 1z))d®k = i(2w)3%5(R —1z),

where radius—vector R = r — r’/. As a result, from (25) it follows

_ > _ Q = (] o 3 /_/Oo _ 27 _
(5n—/0 exp ( x)dxax/n(r )o(r —r' —lx)d’r’ = ; exp ( x)dxaxn(r lx)dz.

We will take the resulting integral by means of integration piece by piece. In fact,

on = / exp (fa:)dzagﬁ(r —lz)dx = / exp (—z)a(r — lx)dz — n(r). (26)
0 Z 0
Remembering now the operator of the broadcast, namely the rule
Ai(r — lz) = exp (—z1- V)a(r).

Find out (26)
on = / exp(—z(14+1-V))a(r) — n(r). (27)
0

Therefore, for the amendments we are in, we get such solutions to equations (18)

5TL1 = /0 exp (71‘(1 + 112 . V))ﬁl(r) — ﬁl(r),

o0 (28)
ong = / exp (—z(1 + 1g1 - V))ig(r) — nia(r).
0
And hence, according to (12) and (13) find
T (6 T [6 .
M @+ — [ L2 nned® + AQy VA + a6y = 0, (29)
Z1 T12 Zs T21
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where the amendments dny, dny accurate solutions (28), albeit in tau approximation. By de-
termining the equilibrium functions of distribution (7) and (9) of (29) the dissipative balance
equation follows

T [e1— T [e2— . )

S s Sy 2 7/ 2712 5o d®p + AQy VA + ady = 0. (30)
A T12 Zo T21

Note that the last (30) is also convenient to present as [ adS = &Ny = & [ ¢1dVi, where & some

medium energy coming from one particle of liquid, ¢; is their concentration. In the accordance

with (28) the solution can be written down in the form of an endless series of

on = /0 exp (—z(1+1-V))a(r)de —n =
3

:/Oooexp(—x) (1—x1~v+3§(1~v)2—:;(1~V)3+--->n(r)dx—n-

Integrating here each of the material on, we come to the next decision (see [3])
m=[1-1.V+1-V)?2-(1-V)P:+.. ]Ja-n= a1
. 31
=[-1-V+1-V)?=(1-V)?+(1-V)'.. ]n,

where the shortness of the decision record (28) is presented with a single designation dn and 1, i.e.
dn = {0n1,dns} and 1 = {115,151 }. If you now put the solution (31) in the balance equation (30),
(1- V) then thanks to the integration of momentum all odd degrees will disappear, and instead
(30) we get

T _
e [ P R (PP v K| P A LIS B P
Zy T12 )
T - .
-7 EQT o [(121 : V)2 + (Ipg - V)4 + (lg - V)G .. ] nd®p + AQy Vi + ady = 0.
2 21

Leaving in (32) only square length of free run components, and given the clear kind of equilibrium
function of molecule distribution (7), (9), as a result of elementary differentiation come to such
an equation

T—e1—p 13 Vig)?
_Mu(Am+<w>_
T T12 T
, (33)
Tl
T 721

=0.

r=n

(Viug)?
T

(AMQ + ) +AQy Vi + aS

Since at the border of the two phases in the absence of chemical reactions must be met the
condition of continuity of entropy, it is quite clear that there is equality

AQV =T (81 - 82)|r:R =0. (34)

As we can see, this condition is true if the temperature is constant. However, it is quite clear that
the equality of entropy at the border of the contact of the drop and gas mixture does not mean
the equality of their specific heat-intensiveness, because from the point of view of mathematics
equality (34) should be recorded in a slightly different form, namely how

81|r:Rf() = sQIr:RJrO . (35)
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That is, the limits are taken to the left and right of the contact boundary. Therefore, it is quite
clear that due to the lumpy smoothness of entropy (35) follows and condition for temperature
derivatives from entropy, which just characterizes the heat intensity of both phases. Formally,
this means that there is equality

Cl|r:R70 = C2|T:R+o + Ac, (36)

where the heat capacity supplement Ac means the final spike in heat capacity at the edge of the
section of the two environments, and the isobaric heat intensity is introduced here in accordance

Os:
Sl) , where index is 1 = 1, 2.
P

oT
As for the physical side of the equation (33), it should be stressed immediately that as soon

with the generally accepted definition [2] ¢; =T (

as we introduce the concept of variable entropy, we automatically move on to taking into account
the dissipative properties of the matter. That is, in an nonequilibrium case, which is described
by the equation (33), has a condition of increasing entropy (H — Boltzmann’s famous theorem).
As it becomes clear now, taking into account the interaction between molecules of both phases,
that is, the transfer of energy from water molecules to gas molecules and vice versa leads to
the destruction of the weak surface tension of the drop. To analytically describe this process, it
is necessary to focus on the remarkable property of any natural physical phenomenon, like the
hierarchy of relaxation times [4].

Indeed, by the order of magnitude, the free path of molecules in the liquid l;5 is much less
than the free path of gas molecules l51, that is, inequality is performed l15 < l27.

This means that in terms of the hierarchy of times by virtue of the condition 715 < 791, which
actually follows from a condition 7.7 > no, where n1, gy accordingly the average concentrations
of liquid and gas molecules, the basic evaporation process belongs to the first composed (33),
and it is this important fact that allows us to neglect the second term.

Otherwise. The first process, as the fastest, has already occurred and the drop has begun to
evaporate, and the second has not yet had time to begin. This does not mean, however, that it
does not contribute to the evaporation process: in a later period of time, this contribution will
appear. So, given the continuity of entropy at the contact boundary (35) and with all that said,
we get this equation from (33)

o 2 _
T ulll2<Au1+(vu1) )Jras

=0. 37
T T12 T ( )

r=R

Note also that for the chemical potentials of both phases at the border there is a condition of

equilibrium
M1|T:R = M2|T:R- (38)
Because S = 8taRR, of (37) find
. M1 76_‘1 7Tl%2 1 8u1 2
=——=1A P .
sTaRR e C R (39)

Because the distribution of heterogeneous chemical potential in contact between the two media
(see [5]) describing due to the equation

Ap+ £ — =0, (40)
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where § is the length of heterogeneity that satisfies inequality 0 < Ilnin, wWhere ln;, =
= min{lya,l21}, and & is some coefficient leading to a correct decision (41), then in one-
dimensional case out of (40) we will get

_Mitpe o —pe o (0T
wir) = 5 ) th( 5 ) . (41)

Therefore, at the border of contact we have

op B2 —
— = . (42)
or|,._g 26
Thus, the equation (42) takes on the form of
_ 2 2
: o+ =Tl [ 142 §pq
—— B2 58 ). 43
StaRR T pvill W o + T (43)

Where do we get a direct integration, taking into account the initial conditions R(0) = Ry

R =/R3 — Drt, (44)

where the diffusion coefficient is

= _ T2 2 2
D=t + &1 o (:“1 <1_/“‘2> +£M1—1>. (45)

draT T12§2 4T H1 T2

And hence the time of evaporation of the liquid drop is from here from the condition of equality
of zero subdivided expression, that is,

R2
tevap = D—;. (46)
As to the time of relaxation 715 it is easy to show that it can be calculated by formula
1 2riny mifn ma (47)

T2 3my/2r (i +ma)3\ T

where 75 is a radius of a molecule of the gas, fi; their medium chemical potential, m; is the mass
of molecule of the water, ms is the mass of the molecule of the gas, 77 is the middle concentration
of molecules of the water. In order of magnitude (47) it follows that 72 ~ 1071%s. A similar
formula has a place for relaxation time 79;. It comes from a formula (47) formally replacing
1" with ”2". In the order of magnitude 79, ~ 1078 5. Calculating the evaporation time
of the formula (45) also requires substitution of the chemical potential of gas and liquid. Based

indices

on the general definition of the average energy of a large particle statistical system, namely
Q = pu(P,T)N, where N is a number of particles in the system, for its differential we have

_ (9 on
an = (6T>PNdT+ (8P>TNdP+udN. (48)

According to [2], for example, in the variable (T, P, N) the Helmholtz’s energy differential is

d® = —SdT' + VdP + pdN. (49)
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From the comparison (48) and (49) we see that

S:—N(%)P, VzN(SZIi)T. (50)

Tt is known from [2] the one that entropy per particle can be calculated as

S 1 3
S—N——Z/nlnnd p, (51)

where the rationing multiplier Z = [ Ad>p, and

7 = exp (_@T‘“) (52)

is the equilibrium Maxwell distribution function, p momentum of molecule. Neglecting in (51)
molecule scattering processes, we have

_ N omade = N [ _ET g
S = Z/nlnndp—ZT (e u)exp( T )dp. (53)

The chemical potentials in the exhibitor indicators under integral in (53) and in the normal
multiplier will be reduced, and as a result of simple calculation we will come to such an answer

3
S=N|=-—-~=]. 54
(3-2) (54)
Remembering now the definition (50), we get the following differential equation to determine of
chemical potential u
0 3
gy K2 (55)
or), T 2

Simple integration leads us to the next result
3
w(P,T)=C(P)T — §T1n T, (56)

where the dependence C(P) we can easy find due to the second ratio in expr. (50), i.e.

_ N (O _ npdC
V_N(8P>T_NTdP. (57)

Since the Clapeyron-Mendeleev equation PV = NT is in place for the ideal gas, we immediately
get that
C(P)=A+InP, (58)

where A is an constant of integration. Assuming that A = 1 and substituting expr. (58) to the
(56), find the dependency we’re going to find

P 3 T
PT :T+Thr1<>—Tln<>7 59
u(P,T) 7)) 3 T (59)
where Ty, Py are the temperature and the pressure at normal condition, i.e. Ty = 300 K,

Py =1 atm = 10° Pa. That is, for the gas phase, the chemical potential is determined by (59)

as
P, 3 T
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As for the drop of water, it is very problematic to use the gas approximation for it, and in this
case it is necessary to apply the equation of the state of Van-der-Waals. As a result, the chemical
potential can also be calculated analytically, but now we will not stop there, and move on to
the assessment of the time of evaporation, considering for simplicity that pu; ~ po. Note, by the
way, that this ratio is quite correct. To estimate the evaporation time according to the general
expression (43), we will select the following values of the parameters included in it

a= 70392,
cm

Ro=5-10"Yem, 112 =10""¢, §~10"%cm.

p1~ o =6-10"1erg, T=300 K =4-10"erg,

In the result

4raR36>
tevap = T12 2 2 ~ ~
’u1<_’u’2> _Ar_fﬂ_ (’u'1+61_1>u112
AT {11 T2 T 2 (61)
4w -70-25-1072-10712  2.70-25
~ 1n—10 _ ~ 3 . _ .
~ 10 3.6 104,00 3 ~ 1.15-10% s = 20 nun.

That is, a drop of water with a diameter of five millimeters evaporates in about twenty minutes.
And then there’s. Looking at the equation (39), we clearly see an equation such as a thermal
conductivity equation with a temperature-conductivity factor y, or a diffusion-type equation
with a diffusion factor D, which is determined by the ratio of the right side of the equation (39),
ie. , s
D~yx~ L) _ birTiz _ VIrT1a. (62)
T12 T12

This remarkable result is evidence that the evaporation process is purely dissipative and in
isotherm conditions is determined by the heterogeneity of chemical potential at the border of
contact between liquid and gas. In light of what has been said, it can be argued that according
to (62) the described evaporation effect is nothing more than isotherm diffusion. In fact, the
assessment (61) of the task of analytical description of the drop evaporation process can be
considered solved.

The theoretical approach described above is worth comparing with the approach outlined, for
example, in the Fuchs’s classic monograph [6]. It is worth noting that this monograph is entirely
based on the interpretation of purely empirical dependencies, that is, dependencies obtained
experimentally. However, the formulas in it allow us to draw some parallel with the theoretical
analysis given a little above. If we enter the Sherwood number according to the formula (see [6, 7])

Iy

Sh=——""———
21 RD(co — Coo)’

(63)

where I is a speed of evaporation, having the dimension g, D is the diffusion coefficient with the
S

. . sm* . . . o .
dimension ——, ¢p is the concentration of steam in close proximity to the drop (its dimension
s

Is —— ), Coo 1S concentration of steam on infinity with the same dimension, in the case of a
cm

stationary drop, the Sherwood’s number is exactly 2. Using empirical dependence (63) we will
find the dependence of the radius of the evaporating drop from time to time. Assuming that
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4
Iy = 1, where the mass of the drop is m = ppV = %ka‘g, and accounting that Sh = 2, we

find from expr. (63),
4rppR’R = 47 RD(co — Co0)-

Or D
rip - Pl —c) (64)
Pk
Where does the solution come from immediately
R(t) = R% — Deyyt, (65)
where the effective diffusion coefficient is
D(co — ¢oo)
Depp = ——=. (66)
Pk

Comparing (65) with our decision (44) we see their full identity. According to the formula (44),
the rate of evaporation behaves like

_ Dr
2v/R2 — Dyt

It’s the right place to go, that when the drop size is reduced, its evaporation rate increases

Uyap = |R(t)| = (67)

dramatically, which is experimental observe (see an example papers [8,9]). Dependencies (44)
and (67) are illustrated by drawings in Figs. 1, 2.

RO

R

0

r('c).:

Fig. 1. Schematic representation of the time as dependence of the radius drop

However, our diffusion coefficient (45) and the empirical formula (63) according to (66) are
quite different from each other qualitatively. Although in order of magnitude they both give
the correct value of the time of evaporation of the stationary drop at condition that in the

formulae (66) difference ¢y — coo choose equal 1#, and the diffusion coefficient put equal as
2

cm

in our theory value D = 5-107° ——. This is, in principle, understandable, since the rigorous
S

analytical solution to the problem, based on the equation of preserving the amount of dissipative

function (1) and the experimentally obtained dependence (63), is based on different physical
assumptions on which the authors rely.
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AV

evap

t IZ)

evap

Fig. 2. The time as dependence of the evaporation rate drop

Conclusion

In the conclusion, it is worth noting three important points.

1. The theory of evaporation of droplets of fine-dispersed environment, based on the condition
of preservation of dissipative function, has been built (dissipated energy cannot disappear
without a trace, but passes into something).

2. Suggested description of the dynamics of the drop in a high-temperature environment,
taking into account its evaporation.

3. The numerical estimates of the optimal size of the drops and their initial speed in the jet
are.
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K Bompocy aHaJuTU4YeCcKOii OIleHKN BpPpeMEeHU HCHapeHus
KallJIi, ITPOXO/IAINEeil CKBO3b ropa4yIO Cpejy

Cepreit O. 'nagkos
MockoBcKwmit aBUAITMOHHBI WHCTUTYT
Mocksa, Poccuiickast @enepariust

Awnnoraiusi. C moOMOIIbI0 KHHETUYECKOTO TOIX0a IIPEJIOKEHO MOJIe/IbHOE OITMCAHUE IIPOIECCA UCTIAPe-
HUSI KallJIu, JBUXKYIIEHcs B packaieHHO! cpefe. OCHOBHOe ypaBHEHUE TEOPUU TOJIyUEeHO OJiarofapsi Uc-
MOJIb30BAHUIO 3aKOHA COXPAHEHUs IUCCUTATUBHBIX (DYHKITHI CUCTEMBI ITap — KUAKOCTh. Haitmen nuama-
30H pa3dMepoB KaIlJId, IPH KOTOPBIX OHA yCcToi4unBa. JlaHo cpaBHEHUE MOy Y€HHBIX PE3YJIbTATOB C U3BECT-
HBIMU KJIaccuuecKuMu. [IpruBeieHBI YiC/IEHHBIE OIIEHKN PAa3MepPOB MEJIKOIMCIIEPCHO (ha3bl, MPU KOTOPBIX

“MeeT MeCcTO OOBIYHOE CHapeHue (TO eCTh BBIOJIHAETCS yCIoBre Ha ancyio Knyacena Kn = = < 1, rme
| — nymHa cBOGOAHOrO Ipobera MoJseKyIbl, a R — paauyc kamm).

KuaroueBrbie cioBa: mguccunaruBHas QYHKIHs, UCIAPEHNE, TJINHA CBOOOIHOTO Ipobera.
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these industries, using the chemical technology is very perspective for the purposes of produc-
ing thin magnetic films which are necessary for developing such devices as memory cells for
magnetic/thermomagnetic recording and data storage, as well as creating highly sensitive signal
transmitters. The most interesting, from an applied science’s point of view, is a possibility of
producing materials with various characteristics that is easily performed by changing conditions
of chemical reactions, such as chemical composition and acidity of the deposition’s environment,
a temperature of the deposition and so on. There upon, the magnetic films produced by Co-P
alloying are especially interesting. This alloy, because of high values of some cobalt parameters, is
most usable in terms of practical application. Therefore, the specificity of its producing is a sub-
ject of scientific interest that resulted in a number of publications. The most of them are focused
on the influence of solution acidity upon the films’ structural and magnetic properties. Using
some additional reagents, able to change solutions’ pH, it is possible to improve the morphology
of film’s surface, to change its structure [1-5] and to produce, depending on the pH value, either
highcoercivity or lowcoercivity specimens [6-8]. However, because of the experiment’s multi cen-
tricity and the complexity of describing the redox processes, the technology of metals’ chemical
deposition from water solutions is not properly studied and developed. This is the main factor
barring broad use of chemical deposition for the purposes of producing magnetic films.

This work, based upon experimental data, demonstrates that, within the given range of
the process solution’s concentrations, growth of the solution’s pH follows to a polymorphic phase
transition of the Co crystal lattice from the hcp structure to the fcc one, that results in anomalous
changes of its magnetic properties: coercive force and magnetic anisotropy. Basing on the analysis
of redox processes of the cobalt deposition, the procedure of revealing the pH influence upon the
granular microstructure is proposed.

1. The technology of specimen producing and
the procedure of measurement

The process solution is the water one of cobalt sulphate (CoSOy4 - TH20) with the concen-
tration of 15 g/1, the solution of sodium hypophosphite (NaHsPOs - H0) of 10 g/1, and the
one of sodium citrate (NazCsHs07) of 25 g/1. The required pH value is reached by adding
alkaline reagents such as sodium hydro carbonate NaHCOg3 or caustic soda NaOH of different
concentrations. The value of solutions’ acidity is measured by the pH-150MI apparatus to an
accuracy of £ 0.05. The deposition goes under the temperature of 100°C and the magnetic-field
strength of H=3 kOe on a cover glass faceplate, previously cleaned, sensitized and activated by
the methods, standard for the technology of dielectrics’ chemical metallization.

The films’ microstructure is analyzed by the methods of transmission electron microscopy,
including revealing the specimens’ elemental composition, using a TEM HT-7700 (Hitachi) with
a X-Flash 6T/60 (Bruker) energy dispersive detector. The values of coercive force and saturation
intensity are revealed by, consequently, the meridional Kerr effect and a SQUID magnetometer
(room temperature). Measuring NMR-signals is performed by a standard spin echo apparatus
within the range of 150250 MHz.

2. Research results

Fig. 1 shows dependence of the created films’ induced anisotropy constant Ky and the coer-
civity Hc upon solutions’ acidity.
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Fig. 1. Dependence of H¢ and Ky on the solution’s acidity

Within the range of low pH (7.2+ 8.5) Ky value is ~ 2.5 x 10° erg/cm?. Growing pH follows
to rising anisotropy, and within the range of pH~ 8.5 Ky is ~ 6 x 10 erg/cm?® The following
growth of acidity results in a step-like drop of Ky by an order, to 5 x 10* erg/cm3. The value of
Hewith pH growing to ~ 8.5 rises from ~ 1 kOe to ~ 1.5 kQOe, and later, with the following pH
growth, He step-likely drops down to few Oes.

As it follows from the data of specimens’ X-ray diffraction analysis, obtained for pH < 8.5
(Fig. 2a), the highly coercivity is characterized by existing a hcp-phase of cobalt. Relatively equal
heights of major peaks reflect presence of the polycrystalline structure with no preferred direction
of the crystallite growth; that may also be derived from the analysis of electron microscopic
(TEM) micrographs of the surfaces, represented by Fig. 2b. Fig. 2¢ demonstrates a typical
electron diffraction pattern of a highcoercive polycrystalline film.

The transition to lowly coercive conditions with pH > 8.5 corresponds with the film struc-
ture changes, visible at transmission electron microscopic (TEM) micrographs of the surface,
represented by Fig. 3b. X-ray photographs of such specimens show diffused reflexes, typical for
nanocrystalline materials (Fig. 3a). Layers, dividing denser structural formations, are visible
at TEM micrographs as well as it is in the case of highly coercive Co-P films. These electron
diffraction patterns (Fig. 3c) bear witness to the presence of a nanocrystalline structure.

Basing on the analysis of TEM micrographs of the highly anisotropic polycrystalline films
and electron diffraction patterns of the lowly anisotropic polycrystalline ones, the dependence of
the size of granules (of which the films consist) on pH values is revealed (Fig. 4).

Because the X-ray diffraction analysis is poor for obtaining data on the Co atomic environment
in the films with small grains the spin echo NMR method has been used for these purposes [9].
It is well-known that the amplitude of the spin echo NMR signal is determined by the specimen’s
magnetic susceptibility x, that is inversely proportional to the value of the magnetic anisotropy’s
field (Ae ~ 1/H). Thus the NMR technology has been used for researching lowly anisotropic
specimens. The integral spin echo spectrum of the studied specimens is a broad curve (within
the range of 185-230 MHz) having a diffused maximum, located near 200 MHz, the signal
intensiveness dropping to zero at the low-frequency left part of the curve and, at the same time,
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Fig. 2. Research data on the highly anisotropic specimens: a — roentgenogram, b — electron
microscopic (TEM) micrograph, ¢ — electron diffraction pattern

certain absorption features at the right part of the spectrum (Fig. 5). This absorption maximum
corresponds with incomplete filling of the first coordination sphere (11 instead of 12) in the
nearest environment of Co atoms within close packing of the fcc-phase. This effect may be a
result of cobalt lattice defects, diamagnetic substitution of a cobalt atom by one of phosphorus,
edge (surface) effects and uncompensated ties on the surface of crystallites. Additional absorption
maxima (216 MHz and 227 MHz) correspond to the high-frequency absorption of Co nuclei for
fec and hep structures consequently. This peak looks more intensive for the A-specimen and
more diffused for the B one, that is caused by a greater degree of disordering within the nearest
atomic environment of the fcc lattice. There is an additional peak (227 MHz) for the B-specimen
that corresponds with the influence of the hep lattice.

3. Discussion

It is well-known that there is close interrelation between the cobalt particles’ sizes and their
crystal structure. Small particles(d < 10 nm) have cubic fec structure (S-phase), whereas large
ones (d > 40 nm) have hep structure (a-phase); the intermediary field has a mixture of both [10].
Such transformations of crystal structures are caused by a various degree of dependence of the
a- and (-phase free energy on cobalt particles’ diameters. The structural changes of cobalt
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Fig. 5. Spectrum of spin echo specimens, created by pH= 8.9 (a) and 9.15 (b)

particles correspond with visible structural variations of the films studied. If pH is low, large
Co particles emerge (up to 70 nm); their stable phase is a-phase. Growing acidity results in the
emergence of smaller Co particles (up to 5 nm) whose stable phase is S-phase. As it follows from
the aforementioned data, the films, created within the environment with low pH values, mostly
have the hcp structure with large crystallites; the latter are diminishing together with growing
acidity and, if pH becomes more than 8.5, the structure of the substance is becoming transformed
into the fec-modification. In the beginning of this transformation we can see a mixture of the
phases with the dominated influence of hcp-cobalt upon magnetic properties of the substance.
The phase transition ends at pH ~ 8.7 when the substance’s magnetic properties become to be
determined by cobalt’s B-phase. This transition is diffused because of sufficient dispersion of
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the particles’ sizes in the films that results in their phase heterogeneity. The following acidity
growth leads to subsequent depressing a-phase of cobalt; the substance mostly transforms into
a fce lattice with an incomplete environment.

4. Conclusion

As it follows from the data obtained, sharp changes of the induced magnetic anisotropy and
the coercive force of Co-P films in the conditions of growing acidity correspond with Co crystal
lattice’s modifications. The films, created in the environment with low pH, have a structure
with large Co crystallites of hep lattice. The acidity growth leads to decrease of the crystallites’
typical sizes and, as a result, to the polymorphic phase transition with emerging fcc structure.

We are grateful to the Center for the common use of Federal Research Center KSC SB RAS.
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Awnnoranusi. O6cyxmarorcs ¢da3oBble mpeBpainenns: pemrerku Co, KOTOPbIE OMPEIEISIIOT aHOMAJTbLHBIE
M3MEHEHUsI MATHUTHBIX CBONCTB XUMHMYECKHM OCAXKIEHHBIX IJIeHOK Co-P, mojyd4eHHBIX IpHU pas/IMIHbIX
sHadenusix pH. KospuurusHast cuiia mIeHOK, IOy YeHHBIX TIPU HU3KNUX 3HadYeHusX pH, npepbimaer 1 kD
¥ CHM2KAETCs [0 HECKOJIbKUX €JMHUIL O B IJIEHKAX, TOJIYY€HHBIX pU BhicOKuX 3HavueHusix pH. [Tokazano,
4TO HabOJIIOIaeMble N3MEHEHUST MArHUTHBIX CBOMCTB I1eHOK Co-P BBI3BaHBI IEPEX0I0M KPUCTAITIECKOMN
peleTkr Koba/ibTa B HAHOKPUCTAJIMYECKOE COCTOSIHUE.

Kirouesble ciioBa: ILIEHKHA CO—P, XUMHNYIECKOE BOCCTAaHOBJIEHUE METaJIJIOB, HaBEACHHAaA MAariuTHasd aHUu-

30TpOINsA, HAHOKPUCTAJIINIECKUIT MaTepHuaJl.
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Abstract. The work is devoted to the study of structural-phase transformations in composite coatings
(Ti-Al)+Ti during mechanical alloying. The data on the structural-phase states of (Ti-Al)-Ti coatings
after mechanical alloying have been obtained, confirming the mechanism of formation of the modified
layer due to deformation compaction of powder particles on the titanium surface under mechanical
action. As a result of mechanochemical fusion, a TiAls phase with a bee lattice (14/mmm structure) was
detected, which corresponds to the stable state of the TiAls alloy. Under conditions of mechanical alloying
of the structure, I4/mmm transforms into the L1s structure, which corresponds to the metastable state
of TiAls.
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Introduction

Currently, it is known that intermetallics represent a unique class of materials that retain an
ordered structure up to the melting point, i.e., the melting and ordering temperatures coincide.
Long-range order provides a stronger interatomic bond.
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Of the large number of known intermetallic compounds, the greatest attention of both ex-
perimenters and theoreticians is attracted by alloys based on titanium and aluminum.

Alloys of the Ti-Al system retain their structure and strength at high temperatures, have good
anticorrosion and antifriction properties, which are significantly superior to conventional metals.
In addition, alloys of the Ti-Al system have: high melting point, low density, high modulus of
elasticity, resistance to oxidation and fire, high specific heat resistance [1,2].

Titanium aluminides are considered promising structural materials for high-temperature ap-
plications in modern industries, such as aerospace, automotive, shipbuilding and others.

High values of specific strength of Ti-Al compounds in comparison with nickel superalloys
make titanium aluminides very promising for the production of components of modern aircraft
engines and turbines, however, their corrosion resistance remains lower than desired. In addition,
a balance between the mechanical properties of titanium aluminides and their resistance to
external factors cannot always be achieved.

Recently, processes activated by mechanical action (mechanochemical synthesis, mechanical
activation, mechanical fusion) have become the subject of intensive research in connection with
their promising application in various industries, since they provide the creation of new non-
traditional, environmentally friendly and less costly technologies compared to existing methods
of coating metal surfaces, such as chemical and physical vapor deposition, self-propagating juice
temperature synthesis, thermal spraying, sol-gel method, etc.

The use of mechanical alloying to obtain coatings on a metal surface is a new area of surface
treatment. The idea of this method is to use the impact energy of a moving ball to coat metal
surfaces. This method, due to the solid phase state of the process, has practically no restrictions
on the combinations of the deposited and base metal, does not require special preparation of the
surface of the samples, and has relatively low energy costs for coating [3].

Currently, there are more than dozens of models of mechanochemical interactions; neverthe-
less, up to now, an empirical approach has been used in the development of functional materials,
since existing models cannot explain the entire set of experimental results. This is due to the fact
that mechanochemical fusion (MF) is a complex process, since the dispersion, phase composi-
tion, defective structure, and mechanical properties of the reaction mixture continuously change
during its mechanical processing. In the process of MF, the number of parameters involved is
very large (time, size of grinding media, the ratio of the mass of balls to the mass of powder,
temperature, surrounding atmosphere, amplitude and frequency of oscillations) [4]. The variety
of types of equipment leads to a huge variety of possible machining modes. And therefore, the
identification of the main regularities of the MF process, which serve to predict the state of the
final product of machining, is still an unresolved problem.

The aim of the work is to study the structural-phase transformations in composite coatings
(Ti-Al) + Ti during mechanical alloying.

1. Methodology and discussion of experimental results

The sample for the study was obtained by mechanical alloying on a vibrating unit SVU2. A
mixture of Ti + Al powder under the influence of ball impacts was deposited (welded) on the sur-
face of a substrate of technical pure titanium VT1-0 with dimensions of 7x7x 2 mm. The coating
thickness was about 25-30 microns. Powder fraction size: Ti — 45 microns; Al — 5 microns.

X-ray phase studies of the samples were carried out on a DRON-6 diffractometer using CuKa-
radiation. The image capture was carried out in the following modes: tube voltage U = 40 kV;
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tube current I = 20 mA; exposure time 3 s; capture step 0.02°. Processing and analysis of
experimental data was carried out using the PDWINA4.0 software package (NPP «Burevestnik»
St. Petersburg), using the attached database.

The phase composition and structural parameters of the samples were studied on an XRD-
6000 diffractometer using CuKa-radiation. An analysis of the phase composition was carried
out using PDF4+ databases. The capture was carried out in the following modes: tube voltage
U = 40 kV; tube current I = 30 mA; exposure time 1 s; capture step 0.02°.

The study of the microstructure and analysis of the chemical composition of the samples was
carried out on a JCXA-733 «Superprobes electron probe microanalyzer with an INCA Energy
SEM 300 energy-dispersive microanalysis attachment, and on a JSM-6390 scanning electron
microscope with an electronic probe attachment for local microanalysis.

In a vibrating installation SVU2, particles of Ti-Al powder are cold-welded to the surface of
Ti under the influence of ball impacts. The Ti-Al powder particles were subjected to mechanical
grinding and repeatedly repeated deformation, and densification on the Ti surface. Intensive
energy supply by spheres accelerated chemical reactions and solid-phase diffusion, both in the
coating and at the interface, which led to strong adhesion of a metal matrix with particles of
Ti-Al powder.

As a result, a coating was formed on the surface — a layer of composite material having a
nano- and microstructure, which are characterized by very high adhesion.

Figs. 1 and 2 show the results of Ti-Al coatings on the titanium surface obtained inside the
vibration chamber in the light and dark field modes.

Fig. 1 a—c shows that in the cross section of the coating there are dark patches in the light
matrix. This is evidenced by the distribution of elements over the thickness of the coatings.
Under the action of impacts, Al + Ti particles are driven into the Ti matrix, as a result of which
a coating is formed.

This is more clearly evidenced by the images of the contact area between the dark and light
parts of the coating, the substrate with the coating adhering at the top with different increases,
and the image of the transition coating-substrate layer shown in Fig. 2 a—c.
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Fig. 1. Cross section of the coating: a) — general view (there are dark areas in the light matrix),
b) — and ¢) — an enlarged image of a dark area of the coating

Fig. 3 shows the images of the cross section (a) and the concentration profile of the cross
section of the substrate (b). It is seen that during the formation of coatings, a process of
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Fig. 2. (a) The contact area of the dark and light areas of the coating. (b) Images of the
substrate with a coating adhering on top at different magnifications. (c) The transition layer is
coating-substrate

conglomeration of particles of Ti and Al powders occurs, particles of a soft element, in our case
Al, envelop Ti particles, forming a plastic matrix on the substrate surface. Under the influence
of ball impacts in the surface layer, a lamellar structure is formed from flattened particles of
powder components. A detailed image indicates the viscous behavior of the material in MF.
The cellular structure in some areas, observed at high magnifications, confirms the flow of the
material during processing (Figs. 1 and 2).

Substrate Coating (TitAD+Ti
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Fig. 3. Ti-Al coating on the surface of Ti: a) — cross section, b) — concentration profile

Spectra of energy dispersive analysis were taken from the cross section. The results of the
decoding of the spectra are shown in Fig. 4 a, b.
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Fig. 4. Interpretation of spectra from the cross section shown in Fig. 1

Deciphering the microdiffraction pattern from the substrate surface (Fig. 5 a, b) showed that,
as a result of mechanochemical fusion, a TiAls phase with a bce lattice (structure I4/mmm) was
detected. This corresponds to the stable state of the TiAls alloy. The presence of reflections of
the atomically ordered structure of L1y was found, which corresponds to the metastable state of
TiAl;. This can be explained by the fact that under mechanical alloying the structure I4/mmm
transforms into the structure L1s.

The processes of structural-phase transitions under extreme conditions of mechanochemical
fusion proceed according to the principle of maximum entropy production. As a result, the
entropy of the resulting structures can be negative. This is possible due to the switching of
chemical bonds in the process of mechanochemical reactions that occur in time 120 min, and the
switching time of chemical bonds is from 10719 — 10713 s,

It was shown in [5-12] that the formation of cubic Al3Ti (cP4) was detected in thin films de-
posited from vapors [5], mechanically doped [6-9] and rapidly solidified [10] samples. Tetragonal
Al3Ti (Al3Ti (¢116) forms a metastable phase in the temperature range 495-800°C upon heating
of mechanically doped cubic Al3Ti (¢cP4) [11]. Above 800°C, Al3Ti (¢/16) transforms into the
equilibrium structure of AlsTi (¢tI8). Another form of Al3Ti, is AlsTi (¢164), which is regarded
as the superstructure of Al3Ti (¢I8), which was observed in diffusion pairs [12]. A recent study
of phase equilibria in Al-Ti [10] using bulk alloy samples has not confirmed the stability of this
structure. Therefore, the authors of [1] consider Al;3Ti (¢/64) as a metastable phase, possibly
stabilized by the action of voltage.

Indeed, the atomic volumes of Al3Ti phases for various modifications are presented in [1],
where it was shown that the volume of the metastable phase with structure L1 is much smaller
than the volume of the stable phase I4/mmm, i.e. the phase with the L1, structure has a higher
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a) b)

Fig. 5. (a) — Microdiffraction pattern of the surface of a titanium substrate treated with particles
of Al+ Ti powder. (b) — Scheme of deciphering the diffraction pattern in which superstructural
reflexes are present

specific strength compared to the phase with the 74/mmm structure. In this way, the possibility
of hardening the surface layers (Ti-Al) + Ti by mechanochemical fusion was found in the work.
Hardening is associated with the polymorphic transformation of the stable phase I4/mmm into
the metastable phase L15.
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NccaenoBanme ToHKOI cTpyKTypbI Ti-Al mokpbiTmii
Ha noBepxHOcTH Ti, MOJIy9YeHHBIX METOJ0M MEXaHUYIECKOTO
CILJIaBJIEHUS
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Awnnoranusi. Pabora mocssilieHa MCC/IEIOBAHUIO CTPYKTYPHO-(A30BBIX MPEBPAINEHUI B KOMIIO3UIIN-
ounblx NOKpbITHAX (Ti-Al)+Ti npu MexaHwmdeckoM cruiasjeHuu. IToydeHbl JaHHBIE O CTPYKTYPHO-
dazosbix cocrostausx (Ti-Al)-Ti moKpeITHil TOCHE MEXAHMYECKOTO CIUIABJIEHUS, IIOITBEPKIAIONINE Me-
XaHU3M (HOPMHUPOBAHNS MOIUMDUITMTPOBAHHOTO CJIOSI 38 CUIET J1eOPMAIMOHHOTO YILIOTHEHHUS JYaCTHUIL IT0-
pOITIKa Ha MMOBEPXHOCTH THUTAHA IOJ, MEXaHWYECKUM BO3IeiicTBHEM. B pe3ysibrare MeXaHOXUMHIECKO-
ro cruiasienusi obHapy»xkena dasza TiAls ¢ OLIK-pemerkoit (ctpykrypa I4/mmm), 9r0 cOOTBETCTBYeT
crabmibHOMy cocTosiHmio ciiaBa TiAls. B ycioBusiXx MeXaHMYECKOro CILIABJIEHUs CTPYKTypa I4/mmm
epexoauT B cTpyKTypy Ll2, 9To cooTBeTcTByeT MeTacTabmibHOMy cocTostauio TiAls.

KirouyeBble ciioBa: CprKTypHO-d)aSOBBIe IIpeBpalieHusa, KOMIIO3UIIUOHHBIE ITIOKPBITHUA, MEXaHU1IeCKOe

CILTaBJIeHNE, TBEPAOMA3HbBIE TPOIECCHI.
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1. Introduction and preliminaries

Let B = Gx]0,T[, where G is a bounded plane sector constitued of two plane sectors Gy, G
with respective opening w; and ws, separated by an interface X..

G1 = {(rcosf,rsinf);—w; <0<0,0<7r <1},
Gy = {(rcosf,rsinf);0 <6 < ws,0<r <1},
Y = {(r0);0<r<1}

In this paper we study the regularity of the solution of the following transmission problem for
the heat equation

O — Au;, = g inB;=G;x]|0,T[; i =1,2, (1)

up = wuz onXxx|[0,T], (2)

O 0,2 g nnx [0,7] (3)
o T on, Y

w; = 0 on(0G;\X)x[0,T); i=1,2, (4)

u;(,0) = 0 inG;i=1,2, (5)

*selma.kouicem@yahoo.fr
fw _chikouche@yahoo.com
© Siberian Federal University. All rights reserved
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where n; denotes the unit normal vector to X x [0, T directed outside B;, u; means the restriction
of u to B;, g € LP(B) and a1, ay are two positive real numbers such that ay # as.
Problem (1)—(5) is a particular case of the abstract Cauchy problem

Ou(t) + Au(t) = f(t) 0<t<T, (6)
u(0) = 0, (7)

where f € LP(]0,T[; X), also considered as a special case of the more general operator equation
(A+ BJu= f, ®)

in which B is the derivative operator defined on the interval [0,7] with values in a Banach
function space.

The study of the abstract equation (8), where A and B are two closed linear operators with
dense domains acting in a complex Banach space X, is based on the theory of sums of operators
in Banach spaces. In [2], G. Da Prato and P. Grisvard proved under appropriate assumptions on
the resolvents of A and B that the sum operator A + B is closable. As an application, problem
(6)—(7) has a strong solution that is a solution in LP(]0, T'[; X ). In their famous paper [6], G. Dore
and A. Venni showed under appropriate assumptions on the imaginary powers of A and B and
if the space X is U.M.D. that A+ B is closed. As an application, problem (6)—(7) has the LP
maximal regularity property. We refer to [1,4,5,7-12] for some applications of the theory of
sums of operators.

By analogy with Grisvard [8,9] who studied the heat equation in plane polygonal domains in
LP-Sobolev spaces and De Coster-Nicaise [5] who extended his results to the weighted LP-Sobolev
spaces setting, we show that the solution u of problem (1)—(5) is decomposable into a regular
part having the optimal regularity L?(]0, T[; PW??(G) N Wy P(G)) N WLr(]0, T[; L*(G)) and a
finite sum of explicit singular functions. For the sake of simplicity, we restrict ourselves to the
case of two sectors G;, i = 1,2 with a common interface 3. The result of this paper can be easily
extended to the case of more than two sectors using the results from [13].

The paper is organised as follows:

In Section 2, we present the main results of the theory of the sums of operators of Da
Prato-Grisvard [2] and Dore-Venni [6]. Applying this theory requires some results concerning a
transmission problem with complex parameter z. This will be recalled from [1] in Section 3 and
extended for z in a larger part of the complex plane. In Section 4 we apply the strategy of Da
Prato-Grisvard to show existence and uniqueness of a strong solution u of problem (1)—(5) which
admits a decomposition in regular and singular parts. Optimal regularity of the regular part is
obtained in Section 5 by applying a Dore-Venni result.

Let us finish this introduction with some notation used in the whole paper: if D is an
open subset of RNV (N = 1 or 2), we denote by LP(D), (p > 1) the Lebesgue spaces, and by
W#P(D), s > 0, the standard Sobolev spaces built on. The space W, (D) is defined as usual
by Wy (D) :={v € WHP(D);v =0 on dD}. When p = 2, we use the common notation H}(D)
instead of W,*(D).

For any separable Banach space X provided with the norm || - || x, we denote by L?(]0,T[; X)
the space of measurable functions v from ]0,7[ in X such that

. :
|U||LP(]0,T[;X):( / ||v<-,t>||§<dt) < +o0,

and by W1P(]0,T[; X) the Sobolev space of functions v in LP(]0, T'[; X) such that d;v belongs to
LP(J0,T]; X).
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2. Sums of linear operators

For an operator P we denote by o(P) and p(P) respectively its spectrum and its resolvent
set.

2.1. The first strategy

We recall some results on sums of operators of Da prato-Grisvard taken from [9].
Let E be a complex Banach space and A, B two closed linear operators with dense domains
D(A) and D(B) respectively. Their sum is defined by

Lx = Az + Bz,

for every x € D(L) = D(A) N D(B).
Assumptions

H; There exist positive numbers M4, Mg, R, 04, Op such that 6,4 + 0 > 7 and
p(—A) contains the truncated sector

Sa= (AN > R, arg Al < 04},
while p(—B) contains the truncated sector

Sp ={\ |\ = R,|arg \| < O},

and u
A+ 27 < ﬁ VA€ Sa,

M
I(B+ A7 < ITJIB VA € Sp.

H, o(—A)No(B) = 0.

Hj3 The resolvents of A and B commute, i.e.
(A+N M B+p) =B+ A+,
for every A € p(—A) and every p € p(—DB).

Theorem 2.1 (Da Prato-Grisvard [2]). Under the assumptions Hy, Hy, Hs, the closure L of L
is tnvertible.

An explicit construction of the inverse of L is given by the Dunford integral

@) = = [ (A AD A - B) N,

2mi ~

where the path v separates o(—A) and o(B) and joins coe™ to coe?® where 6., is chosen so
that 7 — 0 < 97 < fy.

The unique solution v € D(L) of the equation
Lv=(A+ B)v=f,

is called the strong solution of Lv = f. This means the existence of a sequence (v,) C D(L)
such that v, — v and Lv,, — f in E.
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2.2. The second strategy

Here we just recall from [6] an application of the theory of sums of operators of Dore-Venni.
Let X be an U.M.D. complex Banach space and A : D(A) — X a closed linear operator with
dense domain in X satisfying the following assumptions

H, p(A) D] — 0,0] and there exists M4 > 0 such that

M
[(A+8)7Y < H—“‘l Vi > 0.

Hjs A% € £(X) for all s € R and there exist K > 0, 74 such that 0 < 74 < g and

A% < KelI™ Vs € R,

where A% are the complex powers of A.

If we also call A the operator induced on E = LP(]0, T[; X) by the equality (Au)(t) = A(u(t)),
it is obvious that A has the same properties in E as in X. The application of Theorems 2.1 and
3.1 of [6] gives

Theorem 2.2 (Dore-Venni [6]). Under the assumptions Hy and Hs, the Cauchy problem (6)—(7)
has the LP maximal regularity property, that is for each f € LP(]0,T[; X), 1 < p < oo, it has a
unique solution w € WP (10, T[; X) N LP(]0, T[; D(A)).

3. Results on the transmission problem

We consider the following Helmholtz transmission problem with complex parameter z

u; = 0 ondG;\%; i=1,2 (10)
U = Uy on X, (11)

8u1 8@62
— =0 by 12
04181+&28n2 on 2., (12)

where f € LP(G), 1 < p < 400, n; here denotes the normal vector to ¥ directed outside G; and
u; is still the restriction of u to Gj.

Problem (9)—(12) admits the equivalent variational formulation:
Find u € H(G) such that

az(u,v) = /Ga fodx Yo € HY(Q), (13)

where

2
Ou Jv _
a,(u,v) —/Ga{; O, O, —|—zuv}dm,

alx) =a; >0 for x € G;; i =1,2, with o # as.

In what follows, we use the positive constant C to denote a generic constant and may take
different values in different places.

Lemma 3.1. Let 04 €]0,7[. Then problem (13) admits a unique solution v € H}(G) for any
f € LP(GQ) and any z € C with |arg z| < 04.
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Proof. Since H}(G) — L¥' (G) (p' being the conjugate exponent of p), we can easily see that the
antilinear form

K:Hj(G) — C
v / a fode,
G
is continuous on H{ (@), with the estimate
K ()] < Cllfllee) vl ay Yo € Hy(G). (14)

It is clear that the sesquilinear form a, is continuous on H}(G) x H}(G). It is also coercive
observing that, for all z € C with |argz| < 64, there exists 6 € [0, 27] such that cosf > 0 and
R(ze*) > 0, which implies thanks to Poincaré’s inequality

R(e” a.(v,v)) > cos 0/ a|Vol2dz > Cllvllm e,
G

for all v € H}(G). We conclude using the Lax-Milgram lemma. O

For R > 0 and 64 € }g,ﬂ'[ fixed, we define the sets ST and S4 as follows

ST ={zeC/R(2) >0},
Sa={2€C/|z| 2R and |argz| < 04}.

Lemma 3.2. Let R > 0 and 04 € :|g,ﬂ'[ be fized. Let z € ST US4 and u € HY(G) be the

solution of (13), then u satisfies the estimate

lullzr @) < ClfllLe)- (15)

Proof. We proceed as in [3, Lemma 2.4]. By Applying (13) with v = u, we obtain

/ 04{|Vu\2+z\u|2}dm:/ o fude. (16)
G G
Taking the real and the imaginary parts of (16) respectively, we obtain using (14)
[ alvular +RG) [ afuf*de < €l lulye. a7)
and
1S(2)] /Ga|u|2dx < C|flle@lullaz - (18)

Case 1 : R(z) > 0. Due to (17) and Poincaré’s inequality, we deduce that
lull @y < CllfllLe (o)

which gives (15) since H}(G) — LP(G) for all 1 < p < cc.

Case 2 : R(z) < 0. In this case z € Sy, then R(z) = pcosh, J(z) = psinf with p > R and
|S(2)| > psinba.

Consequently, from (18) we obtain

1
[ull 2@y < C;”fHLP(G)Hu”Hé(G)' (19)
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As R(z) < 0, the estimate (17) gives

IVulZz(q) < CU e lullay ) — R(2) lulZz(q))-
Due to (19) and Poincaré’s inequality this gives
lullnyie) < (1= %)) o
We conclude using the inequality —%(z) < p. O
For all 1 < p < oo, we consider the operator A, defined by

D4 = {u € HY(G); Au; € LP(Gy),u1 = us and al% +a22—:‘; =0on 2},
A,:Day CLMG) — LP(G)
u=(uy,uz) +— (—Aur, —Aus).

Note that LP(G) = LP(G1) x LP(G2) and u; = u|g,; i = 1,2.

Theorem 3.1 ([1]). Let f € LP(G),z € C with R(z) = 0 and u € H(G) be the solution of (13),
then u satisfies the estimates

R(2) lullr @) < IfllLr ey,

L
2

S| Nullze ey < S flle(ays

and
|z [Jull r ey < CllfllLrc)- (20)

Corollary 3.1. —A, is the infinitesimal generator of a Cy semigroup of contraction T'(t) for
t>0.

As in [3], we can prove the estimate (20) for z in a larger part of the complex plane.

Corollary 3.2. There exists 04 € }g,w[ such that, for all f € LP(QG), all z € C with |arg z| <
04 and u € HY(G) solution of (13), we have

1zl l|lullze (@) < CllfllLe - (21)
Proof. By Theorem 3.1, there exists a positif constant ¢ such that, for all ¢ > 0 and 7 € R*
o+ || (Ap + (o +in) )7 < e

hence, thanks to Corollary 3.1, we can apply Theorem II-5.2 in [14] to deduce the existence of
RS }O,g{ and M > 0 such that

p(—A,) DT = {z € C/largz| < g + 5} u{o}, (22)

and, for all z € T,
|2lll(Ap + 2I) 71| < M. (23)
This proves (21) with 04 = 0" + g, where 0 < 0" < 6. O
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In order to present the singular behavior of the variational solution of the transmission prob-

lem (9)—(12), we need the following notations.
For s > 0,
PW*P(G) = {u € H'(G); u; € WHP(G;), i = 1,2},
is the space of piecewise WP functions on G.
Let S(™) be the function defined by

S = priet,. (),

(24)

where 7 is a radial cut-off function such that 7 = 1 in a small ball centered at the origin and
n = 0 outside a larger ball of radius strictly less than 1, A, is a nonnegative real number and A\2,,
tm are respectively the eigenvalues and eigenfunctions of the following Sturm-Liouville problem:

_t;;L(e):Agntm (0) for 0 € [_whw?]a 0 7é Oa
tm(o_):tm(0+)7
anty, (07)=aut;, (07),

tm(—wl) = tm(WQ) =0.

2
Theorem 3.2. If \,, # }? for all m € N*, then there exists 04 € }g,w{ such that, for all
f € LP(G), all z € ST U Sa, the unique solution u € HE(G) of problem (9)—(12) admits the

decomposition
U = URr + Z mem('z)v
0<Am<Z
where
—rVEg(m) 72 2
e TvESIm if ——1< A, < —,
- 2 P’
Ym(2) = 2
e TVE(L 4 1ry/z)Sm) if A < o 1,

ur € PW?P(G) satisfies

1
lurllpw2r(c) + |22 lurllwir @) + 2llurllze@) < Cllfllzra); 2 # 0,

and ¢, satisfies
Am 1
lem| < Clz[ 2 || fllze(ay; 2 #0,

1 _Am
S lenl (1217 E) < Cllflaoy,

0</\m<§

(25)

(27)

(28)

(29)

Proof. The proof of this Theorem stays as in [1] until the inequality (28), thanks to Theorem 3.1

and Corollary 3.2. It remains to prove the estimate (29).
From the decomposition (25), we have

Z Cm¥m(z) = u — up.

0<Am <2
P

By using the estimates (15) and (27), we deduce that

H Z mem(Z)HLP(G) S C||f||LP(G)~

0<)\7n<§
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2
As the space VS:span{wm(z); 0< Ay < —/} being of finite dimension, we have
p

Z lem| < O Z cmPm(2)r @) < Clfllzr (-

0<Am <2 0<Am <2

From the previous estimate and inequality (28), we deduce that we have (29). O

With the notation introduced above, we can write
u = (A:D + Z)ilfv

consequently the decomposition (25) implies a similar decomposition of the resolvent of A,.
Namely we may write

(Ap+2) =R+ Y Tul2) ©¢u(2), (30)

0<Am <2
where R(z) is the continuous linear operator from LP(G) into PW?2P(G) defined by
R(z)f := ug,
and T,,(z) is the continuous linear functional on LP(G) defined by
< T (2), f >=cm.
Recall that

(T (2) @ Y (2))(f) =< Tin(2), f > thm(2).
The estimates (27) and (29) imply that

1
|R(2)|| e (q)—Pw2r(c) + |22 [|R(2) || Lr(a)—wirie) + |2l |R(2) | o) 1r (@) < C,

and
1

1T ()| o (o) < C (31)

1 _Am?
1+ |z 2
forall ze STUS,.

4. Application of the first strategy

In order to apply Theorem 2.1 to problem (1)—(5), we write it as the sum of linear operators
on the Banach space E = LP(I; LP(G)) (where I =]0,T|) by setting

Au = *{Aui}i:m,
for u € D(A) = LP(I; D(A)),
Bu = 0w = {atui}izl,%
for w € D(B) = {v € WY'P(I; LP(GQ)); v(.,0) = 0}.
Proposition 4.1. The closure L of L = A+ B is invertible, i.e. for all g € LP(I; LP(G)), there
exists a unique strong solution uw € LP(I; LP(G)) of (A + B)u = g. In addition u is explicitly
given by

u= i/(A—l—z)_l(z—B)_lgdz. (32)

T oM
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Proof. The properties of A are those of its realization A,. Thanks to (22) and (23), hypothesis
H, is fulfilled for the operator A with some 64 in ] g, T [, while from [2, p. 330-331], it is fulfilled

for the operator B for all 0 < g So there exists M > 0 such that

M
1B+~ < Bk (33)
for all A € Sp = {\ € C/|arg()\)| < Op}.
Hence, we conclude that H; is satisfied with 64 in } g,w[ and g = g —d0p with 0 < dp <
™
On the other hand, it’s clear that | — 00, 0] C p(B). Thus the assumption Hy is fulfilled since
A has a discrete spectrum that contains only strictly positive eigenvalues (see [1, p. 20-21]).
The commutativity assumption Hj follows from the fact that the variables are separate in

these two operators.
Hence we can apply Theorem 2.1 to conclude. O

For each ¢, we can write
[(A+2I)7 h](t) = (A + 2) 7 (A(1)).

Using the decomposition (30), the representation formula (32) can be split as follows

u=1ugp+ Z U, (34)

0<Am < 5
where )
un =52 [ RO - B) gl (35)
= 5 [ T2, = B) ghim ()i (30)

Summing up, we have prove the following theorem.

2
Theorem 4.1. Suppose that A, # R then for all g € LP(I; LP(Q)), the problem (1)-(5) has a
unique strong solution u which is in the form

u=ugr+ § U,

0<Am <2
P

where up (resp. um) is given by (35)(resp. (36)).

1 A
17 -5 then for all g €
LP(I; LP(@)), there exist ¢ € Wo™P(I) and E,, such that u,, defined by (36) can be written as

2
Theorem 4.2. Let p > 2, suppose that A\, # — . Denote o, =
p

Um = (Em *¢ qm)S(m)a (37)
the symbol x; means the convolution product in t. Moreover we have

i =5z [ (Tn2). (- = B) gz, (39)
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1 9
eiEte=VIE ¢ for Am >1-— 2=,

Bntrt)= ] ¥ y (39)
m(T,t) = 1 / it 1_|_T\f —def for Am g
o p’

and the mappings

Uy : LP(; LP(G)) — WomP(I)
g = 4m,

Uy : WomP(I) —  LP(I; LP(Gy))

0
Gm (& — AU i,
are continuous.

Proof. We proceed as in [9, Proposition 6.2] and [5, Proposition 2.2|. First we consider the
extension of g to G x R, defined by

g(z,t) if t€0,T],
§lot) = { 0 if tg[0,7T],
and denote by 1, = (2I — Bs,) "1 , the solution of
zu— 0Ot =g inG xR,
{ 4(.,0)=0 in G,
where B, is the operator, defined by
Boou = dwu for u € D(By) = {v e WHP(]0, o0o[; L (G)); v(-,0) = 0}.
Observe that, by uniqueness of the solution of the Cauchy problem, we have .|gxo,7] =

=(2I - B)!
Consider the functions

U (z,t) = 2%” <Tm(z),(zIfBoo)*1§>¢m(z) dz, (40)
in(0) = 5 [ (Tle), (T — Bu)'5(1)) o (41)

We assume that § € D(G x R), a dense subspace of LP(G x R). Then we can apply partial
Fourier transform in ¢, to (40) and (41). By Fubini’s theorem, we obtain

Sin(@ ) = 5 [ (Ta(e (121 = B) 79 8)pin(2) 0 =

211

= 5 [ (B0 2Dy

2 z—1€

and

3t Gm(€) = 1'/V<Tm( >vgig_(£)>dz
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The decaly at infinity of T,,(z) and ¢,,(z) due to (31) and (26) allows us to apply Cauchy’s
foumula. We get

Sitim (2, €) = —(Tm(i€), 81 9(-, §)) Ym (i€), (42)
and
81Gm (§) = — (T (i€), 81 9 (-, €))-
According to (26), the identity (42) can be written as follows

; 2
(T (i€), 1 4., €)) e Vi€ S(m) i A >1— -,
Belinn (x,€) = | 5 (43)
~(Tn(i€): 8¢ &) € VE L +1vi) ST if A <12
Now we consider the function F,, defined by
e TVE An > 12,
StE’m(xa g) = 12)

eVEN 4 ri€)  if Ay <1— =
p

Tt is clear that E,, is given by (39).
Then (43) can be seen as the Fourier transform of a convolution in ¢. We have

T = (B %¢ G )S™.

This identity is easily extended from g € D(G x R) to any g € LP(G x R). The identity (37)

1 -1
57 T2, (2 = B) )z = an.
Let us underline that we differ from [5] in the definition of A, the operator B being the same
but in Sobolev spaces instead of the weighted LP-Sobolev spaces. This comes from the fact
that a depends only on the plane variables thus the interface has no effect on the variable t.
Thus, the continuity of the operators U; and Us can be shown as done in [5, Theorem 2.3 and

Theorem 3.2]. O

follows by observing that @, |gxj0,7] = tm and Gmlp,r =

5. Application of the second strategy

Now we are able to prove the regularity of ug.
From [1, Section 5.2], the following estimate for R(z) (defined in Section 3) is derived thanks to
an interpolation argument.

1
IR rer sy = O (g ) Vo <2
With the help of (33), this yields

ug € LP(I; PW*P(Q)) for every s < 2, (44)

with the estimate
lurllLe(r;pwer(ay) < C() lgllLe(r;zr(6))- (45)
Going back to (34), we have

Owups — Aup; = gi — Z (Ot ,i — At i) = gryi; 1= 1,2, (46)
o</\,,,<§
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the function g € LP(I; LP(G)) by Theorem 4.2.

We shall apply Theorem 2.2 to study the equation (46) with X = L?(G), the space E and
the operator A are defined exactly as in Section 4.

By Theorem 3.1 and Lemma 3.2, the assumption Hy is fulfilled. It remains to check Hs.

Thanks to [1] there exists 74 < g such that

1457 = 0(eI™).

Accordingly Theorem 2.2 may be applied, then we have the existence and the uniqueness of
wr € WH(]0,T[; LP(G)) N LP(]0,T'[; D(A,)) solution of

Oiwr + Awg = gr,
wR(., 0) = 0.

wpg do not coincide necessarly with ugr, so we will prove that wg = ug.
First we show that ug is a strong solution of

Owups — Augp; = g — z (Optim ;i — Aty ) in By i =1,2, (47)
0<>\m<p%
UR,1 = UR2 on 3 X [OaT]a (48)
ou ou
a a:f + as aij =0 on X x [0,7], (49)
URi = 0 on (8Gl \ E) X [O,T]; 1= 1,2, (50)
upi(,0) = 0 in Gy i=1,2. (51)

Due to Proposition 4.1, u is a strong solution of

Owu; — Au; = g; inBy; i=1,2,
up = wup onX x[0,T],
8U1 8u2
— — =0 ¥ x0,T
a18n1+a28n2 on ¥ x 0,7,
w, = 0 on (0G;\X)x][0,T]; i=1,2,
u;(,0) = 0 inGy i=1,2,

i.e. there exists (u,) C D(A) N D(B) and (g,) C E such that (A + B)u, = gn, un —> u and
gn —> g in E.
Moreover, as in Section 4, for every n, we have

Up = Un,R + § Un,m-
0<Am <2

Thanks to Theorem 4.2, we have
atun,m,i - Aun,'rmi — atumﬂ’ - Aum7i7

then
Ottn R — AUn R — i — E (Ot i — Aty ).
0</\m<§

From the estimate (45) it follows that w, r — ug in E.
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It is obvious that wg is a strong solution of (47)—(51). Consequently, by applying the first
strategy to (47)—(51), we have by uniqueness of the strong solution that wr = ug.
This implies that ugr € L? (I; D(A,)) N WY (I; LP(G)). With the help of (44), this yields

up € LP(I; D(A,) N PW*P(G)).
Then, from [1, Lemma 5.4], we deduce that
up € LP(I; PW2P(G) N Wy P(G)) N WP (I; LP(@)).
Summing up, we have proved the following Theorem.

2
Theorem 5.1. Let p > 2, suppose that \,, # — Ym € N*. Then for every g € LP(I; LP(G)),
p

there exists a unique solution uw € LP(I; LP(QG)) to the transmission problem (1)—(5). Moreover u
admits the decomposition

U =upr+ Z (B *4 qm)S(m),

0<Am <2
P

with ug € LP(I; PWQ’p(G)ﬁW&"p(G)) NWP(I; LP(G)), where Ey, (resp. ¢ € W_ATmH_%(I))
is defined by (39) (resp. (38)) and the singular functions S are given by (24).
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LP-peryssipHOCTDH pellleHusl ypaBHEHUs TEIJIOMPOBOIHOCTU
C pa3pbIBHBIMU KO3 dunmeHTamun

Cesbma Kycem

Yuusepcurer Abneppaxman Mupa

Bemxast, Amxup

Bupaen Yukyue

Yuusepcurer Moxamena Cennuka Ben fxbst
>xumxkenb, Algeria

Annoranus. B 3Toit cTaTbe MBI PACCMOTPHUM 333y IIPOXOXKIEHUS [JIsT yPABHEHUS TEIJIOIPOBOIHOCTH
Ha OIpaHMYEHHOM IIJIOCKOM cekTope B mpocrpaHcTBax LP-Cobosesa. [Ipumensis Teopuio cymMm oreparo-
pos la IIparo-I"'pucsapna u Jlope-Bennn, MbI 10Ka3b1BaeM, 9TO pellleHre MOXKHO pa30UTh HA PEryJIsIDHY IO
gacTb B nnpocrpanctse LP-CoboseBa 1 sBHYIO 0COOYIO 4acTh.

KorogeBble ciioBa: ypaBHEHHE TeIIONEpPeadn, CyMMbI JIMHEHHBIX OIIEPATOPOB, CHHIYJISIPHOE IIOBEJIe-

HUe, HerJIaKue o0JIacTy.
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Abstract. In this paper, a nonparametric estimation of a generalized regression function is proposed.
The real response random variable (r.v.) is subject to left-truncation by another r.v. while the covariate
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1. Introduction and preliminaries

The investigation of the link between a scalar variable of interest Y and a functional covariate
X is among the most famous nonparametric statistical works in the last two decades. We mention
[1] who proposed a new version of the estimator of the regression operator m(z) = E(Y/X = z),
in the case of independent and identically distributed (i.i.d.) observations, and studied its almost
complete convergence. They used the so called local linear method.

In the case of complete data, many works followed this last method. For example, in [9]
the uniform almost-complete convergence of the local linear conditional quantile estimator was
established, while in [8] the case of a generalized regression function with functional dependent
data was considered. The asymptotic normality of the local linear estimator of the conditional
density for functional time series data was studied in [12] and both the pointwise and the uniform
almost complete convergences, of a generalized regression estimate, were investigated in [7].
All these studies were carried in the case of complete data, however in practice, one or more
truncation variables may interfere with the variable of interest and prevent its observation in a
complete manner. In this setting of truncation model, one can find many works such as that
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of [5] where a kernel conditional quantile estimator was proposed and its strong uniform almost
sure convergence established. Similarly, [2] studied the almost complete convergence rate and
the asymptotic normality of a family of nonparametric estimators for the ¥-regression model.
But, as far as we know, the local linear method has not been investigated for truncated data.

Hence, our goal is to propose a generalized regression estimator, when the response variable
is subject to left-truncation, and to establish both its pointwise and its uniform almost sure
convergences.

To this end, this article is ordered as follows. In Section 2, we recall some basic knowledge
of the left -truncation model and we construct our local linear estimator. Section 3 is devoted
to prove its pointwise almost sure convergence. Finally, its uniform convergence is established in
Section 4.

To make things more easier for readers, we give the definition of the almost complete conver-
gence:

Let (Wy)nens be a sequence of real random variables r.r.v.. We say that (W, )nens converges
almost completely to some r.r.v. W, and we note W, —*° W, if and only if Ve > 0,
o0

> P(|W,, — W| > €) < co. Moreover, let (v, )nen« be a sequence of positive real numbers going

n=1
to zero; we say that the rate of the almost complete convergence of (W,,)nens to W is of order

(vp,) and we note W,, — W = O, ¢o.(vn), if and only if Jeg > 0, Y P(|W,, — W| > €v,) < c0. It

n=1
is clear, from Borel Cantelli lemma, that this convergence is stronger than the almost-sure one

(a.s.).

2. Estimation

Let (X;,Y;) for i =1,..., N, be N identical and independent couples distributed as (X,Y)
which takes its values in F x R, where F is a semi metric space endowed with a semi metric d.
The unknown distribution function (d.f.) of Y is denoted by F.

Let T be another r.v. which has unknown d.f. G and (T;);=1,... n be a sample of i.i.d. random
variables that are distributed as T. T is supposed independent of (X,Y). N is unknown but
deterministic. In the left truncation model, the lifetime Y; and the truncation r.v. T; are both
observable only when Y; > T;. We denote (Y;,T;),i = 1,2,...,n(n < N) the actual observed
sample of size n which, as a consequence of truncation, is a binomial r.v. with parameters N
and p =P(Y > T). It is clear that if © = 0, no data can be observed, and therefore, we suppose
throughout this article that pu > 0.

By the strong law of large numbers, we have

. n
Hn = N — p, P—p.s.

We point out that if the original data (Y;,T;),i =1,2,..., N are i.i.d., the observed data (Y;, T;),

i=1,2,...,n are still i.i.d. (see [6]).

Under random left truncation model, following [10], the d.f.s of Y and T are expressed re-
spectively as,

Fr(y) =yt /_ D G)dFm) and GH(t) = p) /_ " Gt A w)dF W),

where t A w = min(¢,u) and are estimated by their empirical estimators,

Fry)=n""> Iy and Gu(t)=n"") lircy-
=1

i=1
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Define
Cly) == G*(y) — F*(y) = n 'G(y)(1 — F(y)),

the empirical estimator of C(y) is defined by

n

Coly) =n"" > Lincysyiy-

i=1
The nonparametric maximum likelihood estimators of F' and G are given respectively by

{ncn(Yi) - 1} [nCn(Ti) - 1] .

Bw=1- 1 5665 nOn(T3)

i/Yi<y

and G,(y) = H

Z/TZ >y
According to [4], p can be estimated by

fin = C M (y) G (y)(1 — Fuly)),

which is independent of y.

Our results will be stated with respect to the conditional probability P(.) related to the n-
sample instead of the probability measure P(.) related to the N-sample. We donate by E and E
the respective expectation operators of P(.) and P(.).

For any d.f. L, let ar = inf {y : L(y) > 0} and by, = sup{y : L(y) < 1} be its two endpoints.
The asymptotic properties of F},,G,, and pu,, are obtained only if ag < ap and bg < bp. We
take two real numbers ¢ and d such that [¢,d] C [ar,bF], we are going to use this inclusion in
the uniform consistency of the distribution law G(.) of the truncated r.v. T which is stated over
a compact set (see Remark 6 in [11]).

Hence, based on the idea of the Nadaraya-Watson kernel smoother, the estimator of the
general regression function m, () defined, for all z € F, by m,(x) = E (p(Y)/X = z), where ¢
is a known real-valued borel function, is defined by

Yim pV) K (h~1d(Xi, 7)) Gt (Vi)
Y K (h1d(X,2)) Ga (Vi)

My (x) =

where K is a standard univariate kernel function and the bandwidth A := h,, is a sequence of
strictly positive real numbers which plays a smoothing parameter role.

Note that all the sums containing G;,*(Y;) are taken for i such that G,,(V;) #0 .

Following [1] and [7], the local linear estimator of m,, in the case of truncated data is obtained
as the solution for a of the following minimization problem

n

min (V) — a —bB(Xi,2))* K (h™'d(X;,2))G,. (Vo)
(a,b)ER? P

where §(.,.) is a known operator from F x F into R such that, Vz € F, S(z,z) = 0.
By a simple calculus, one can derive the following explicit estimator

N We@e) (o
m¢($) a Z;L,j=1 W”(;z:) <0 o O) ’
where
Wij(x) = Ay ()G, (i) G (),
with

Ajj(x) = B(Xi, x) (B(Xi,2) — B(X;, 2)) K (h™1d(X;, 2)) K (b~ d(X;, z)).
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3. Pointwise almost sure corvengence

For any positive real h, let B(x, h) := {y € F /d(z,y) < h} be a closed ball in F of center x
and radius h, ®,(h, ) := P(h < d(z,X) < h’) and D, (h) := D,(0,h).

To establish the asymptotic behaviour of our estimator m(x) for a fixed point  in F, we
use the following assumptions:

(H1) For any h > 0; ®,(h) > 0.

(H2) There exists b > 0 such that for all 21,22 € B(z, h); [my(z1) — my(22)] < Cpd® (21, 22)
where C,, is a positive constant depending on z.

(H3) The function $(.,.) is such that

30 < My < My, Vo' € F, Myd(z,2") < |B(z,2")| < Mad(x,2").

(H4) The kernel K is a positive and differentiable function on its support [0, 1].
1
(H5) The bandwidth h satisfies hm h=0and lim AL, R
n— o0 n®,(h)
(H6) There exists an integer no, such that

1
Vn > no, %(h)/ @z(zh,h)diz (22K (2)) > 0.
@ 0

H?) h [ Blu,z)dPx(u) = 0( i ,Bz(u,a:)dPX(u)>, where dP x is the distribution of X.
B(z,h) B(z,h)
(H8) Vm > 2; oy, : . — E(J¢™(Y)|/X) is a continuous operator on F.

Remark 3.1. Hypotheses (H1)-(H5) are standard in the nonparametric functional regression
setting. The rest of the hypotheses have already been used in the literature, we refer for (H6) and
(H7) to [1] and for (H8) to [7].

Theorem 3.1. Assume that assumptions (H1)—(H8) are satisfied, then

~ Inn
m@(I) m‘P(x - O(h’b) Oa.s. ( n@x(h)> .

We remark that to prove our theorem we need to define the following pseudo-estimators

n@) = TR 2 G (R0 ()4 ()¢ 1)
and
my(z) = o 1 e ;G (Yj)Ai(2)'(Y;), for 1=0,1.
Consider the following decomposition
igl) = o) = L < () =
1 1 1
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Moreover, we note for any x € F and for alli =1,...,n
Ki(z):= K (h"'d(X;,2)) and Bi(z) = B(X;,z).
To make things easier, we introduce the following lemmas.

Lemma 1. Under the assumptions (H1)-(HS8), we have

ri(x) — ()] = Oa.s. ( T%) :

Proof. For 1 = 0,1

Iru(@) =m(@)] = ‘n(n—l E(Ao(z ZG (Y)) A (2)¢' (V) —
- S DEGLE) ZG L) Ay (@)e (1) <
. né,; S <bupye[bd )<a52( >|>] )
< 2l 1(%@(11/( 5l

7]

From Theorem 3.2 of [4] we have |u, — p| = Oa.s(n~/?), while Remark 6 of [11] gives

1
|Gn(ar) — G(ap)| = Ou.s(n~1/?) which are negligible with respect to O( (I)n ?h)) The rest
\ nd,
1
of the proof is completed in [7]. Thus, we have |r;(z) — my(z)| = Oa_s,< (I)n(nh)> . O
n®,

Lemma 2. Under the assupmtions (H1), (H2) and (H4), we obtain
| B (2)) — my ()| = O(h").
Proof. We have

B(mi(#) = E( (TH‘E — ;c )Au<x>som>) -
B A12 E<G A12( e (Y2)> N
I {Y1>T1} {Y2>T2} _

= mE (A12( )map(XQ))

So we can write, under assumption (H4)

T = ; z) (my(z) —m
Ime(z) — E(mai(2))] = EBn@)] [E (Ar2(2) (my(x) — my(X2))) | <
< sup  |my(x) — me(a)].
z’€B(x,h)
Using (H2), we obtain |E(11 (z)) — my(x)| = O(h®). O
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Lemma 3. i) Under the assumptions (H1)-(H8), we get

- 5 Inn
mi(x) — E(mi(x)) = Oq.co ( M) )

it) Under the assumptions (H1), (H3)-(H7), we obtain

- Inn
mo(7) — 1= Oq.co < M) and

39 >0, suchthat Z P(rg(z) < V) < o0

n=1

Proof. Remark that
() = Q) [Ma(z)Mao(x) — M (x) Ms ()],
where for p=2,3,4and [ = 0,1

n?h?®2(h)

@) = n(n — 1E (A2(z))

and
Z nkK;(z)BY 2 Y;
P l hp— 2GE )) ( ) ’

So, we have
mi(x) — E (mi(z)) = Q(z) {Mz,1(x) My o(z) — E (M1 (2)Mso(z))} —
= Q(x) {M3,1(2) M3 0(z) — E (M3 1(z)Ms0(2))}

Notice that Q(z) = O(1), see the proof of Lemma (4.4) of [1].
We need to prove that for p =2,3,4 and [ = 0,1

E(M,(z)) = O(1); My (x) — E(M, () = Oq.co ( n;?(%h))’

E(Ms1(x)E(Myo(z)) — E(Ma1(x)Myo(z)) =0 ( lnn> ’

E(Ms,1(2))E(Ms0(x)) — E(Ms1 ()M 0(z)) = O < nfi?@) '

e Using assumptions (H1)—(H4), we can easily have for p=2,3,4 and [ = 0,1
_ P ()8 (@) ' (V) | _
E(Mp,l (33)) - < Z hp 2G ) -

= uh*Po; Y (h)E {E (Kl(w)ﬁf_Q(I)@l(Yl)1;2(>T1}/U(X1’Y1)>} -

Yy)
_ hzip@;l(h)E (Kl(x)ﬂzlﬂ*%x)mia(Xl)) .

Lemma A.1 (i) in [1] and the condition (H2) allow us to get E(M, ;(z)) = O(1).

— 485 —



Halima Boudada, Sara Leulmi, Soumia Kharfouch Rate of the Almost Sure Convergence. ..

e Treatment of the term M, ;(x) — E(M,, (z)). We put

Myi(2) ~ By () = 3 200 @),
i=1

where

gy L[ @A 00 (K@ @) )
A { GTY) E( am) )}

hp=23,(h)

The main point is to evaluate asymptotically the mth-order moment of the r.r.v. Zi(p ’Z)(x).

By using Lemma A.1 (i) in [1] , we have

- _ (2) 8P ()¢ Y:) ’
§ Crlz(_l)m k (MK ( )Bz ( )(P ( ) %
k=0

G(Y3)
>m—k

Finally, it suffices to apply Corollary A.8 (ii) in [3] with a2 = @;_1)(h) to get, for
p €{2,3,4} and [ € {0,1}

MP,Z(I) - E(Mp,l(x)) = Oq.co (\/E%) .

e Moving to study the term E(Ms31(2))E(Myo(z)) — E(Ma1(x)Myo(x)), we have

B[ {ZP0@)}" | = nermarmnE
I (1) (1) (Vi)

" (E G,
- 0 (cbgjm“)(h)) :

E(Mz,1(2))E(Myo(z)) — E(M2,1(2)Mao(z)) =
=n"'hT?@(h)E (K1 (2)57 (2)) E (K1 (2)p(Y1)) + O((n@s(h) ™),
by using similar arguments as previously, we get

E(My1(2))E(Myo(z)) — E(My1(z)Myo(z)) = O((n®.(h) ),

[ 1
which is, under (H5), negligible with respect to O ( 7’@122))

e By similar arguments, one can prove that

E(Ms,1(2))E(Ms,0(2)) — E(Ms,1(2) Ms,0(x)) = O ( M) ‘

For the second part of the lemma, it’s easy to find that E (mo(x)) = 1 and this leads us to get
the last result.
Theorem 3.1 is proved. O
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4. Uniform almost sure convergence

In this section, we will investigate the uniform almost sure convergence of 7., on some subset
S7 of F, such that Sr C UZ;I B(zy,ry), where z;, € S and 7, (respectively d,,) is a sequence
of positive real (respectively integer) numbers. For this, we need the following assumptions.

(Ul) There exist a differentiable function ® and strictly positive constants C,C; and Cs such
that
Ve e Sy, Vh >0; 0<C1®(h) < @y(h) < Co®(h) < 0

and
Ino >0, Vn < ng, ®'(n) < C,

where ® denotes the first derivative of ® with ®(0) = 0.

(U2) The generalized regression function m,, satisfies
3C>0,3b>0,Vr € Sr, 2’ € B(z,h), |my(x) —my(2))| < Cd°(z,2).

(U3) The function S(.,.) satisfies (H3) uniformly on x and the following Lipschitz’s condition
3C >0,Vz, € Sr, 20 € Sy, € F, |B(x,21) — Bz, 22)| < Cd(21,22).

(U4) The kernel K fulfils (H4) and is Lipschitzian on [0, 1].

1
(U5) limy,,— 00 h =0, and for r, = O (nn), we have for n large enough
n

(Inn)? n®(h)
n®(h) <lnd, < Inn

and

ngfﬁ) < oo forsome (> 1.

n=1

(U6) The bandwidth h satisfies 3 ng € N, 3 C > 0, such that

1 ! d
Vn>n07Vx€S}-,m/o @m(zh,h)i(z K(z))>C>0

and

=0 2 u,xr u
h /B ., P Px() = ( /B B >>

uniformly on zx.

(U7) 3 C > 0 such that Ym > 2 : E(J¢"™(Y)|/X = z) < vn(z) < C < oo with v, (.) continuous
on S]:.

Remark 4.1. These hypothesis are the uniform version of the assumed conditions in the point-
wise case and have already been used in the literature (see [7]).

Theorem 4.1. Under assumptions (U1)-(U7), we have

~ Ind,
zselgi M (x) = my(z)| = O(R) + Oas ( n@(h)) .
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The proof of Theorem 4.1 is based on the same decomposition (1) and on the following lemmas

Lemma 4. Under the assumptions (U1)-(U7), we get

- Ind,
;Euspf |ri(x) — my(z)| = Og.s. ( n@(h)) .

Proof. By following the same steps as the proof of Lemma 1 and using Lemma 2.2 in [7] we get
our result. a

Lemma 5. Under the assumptions (U1), (U2) and(U4), we obtain that

sup | E((x)) —me(z)| = O(h").

rESFE

Proof. Poof of Lemma 5 is similar to that of Lemma 2. o

Lemma 6. i) Under the assumptions (U1)-(U7), we have

i 3 B Ind,,

i) If assumptions (U1), (U3)-(U6) are satisfied, we get

Ind,,
7 -1 =0 d
zsgug; \mo(iﬂ) | a.co ( ?’L‘P(h)) an

39 >0 h that P inf nm ¥ < oo.
>0, suc a n; <w1€nsf mo(x) < > 00
Proof. By considering the same decompositions and notations (2)—(5), following the same steps
as in the proof of Lemma 3 and using Lemma 6 (i) in [7] instead of Lemma A.1 (i) in [1], we get

under assumptions (U1)—(U4) and (U6)

sup Q(z) =0(1) and sup E(M,,(z)) = O(1)

TESF TESF

uniformly on z, for p=2,3,4 and | =0, 1,

1
;eusz |[E(Ms1(x)E(Myo(x)) — E(M21(x)Myo(z))| = O <n<I>(h)>

and

sup |E(M3,1(I))E(M3,o(l’))E(Ms,l(T/)M&o(l’))O< ! )

TESF

Ind,
which is, using hypothesis (U5), equals to O ( n;(h)>

Now we prove that

Ind,
sup |M(x) = B(Myi(2))] = Ouco ( n@(h)> '
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To this end, we need the following decomposition.

Let be j(z) = i d i); h
et be j(x) argje{llg,l.r.l.,dn} (x,x;); we have

sup |Mpi(z) — E(Mp(2))| < sup [Mpi(x) = Myi(z()) +

TESF TESF
+  sup [Mpi(zj(2)) — B(Mp (7)) +
TESF
+  sup [E(My (7)) — E(My(2))]
TESF

DYt 4 Dyt DR
Using (U1), (U3) and (U4), we get

Cr n
S e (eol X;).
P nhq)(h) zseusp}_;hp( Z)| B(w’h)UB(zj(m%h)( 1)
Taking
Cry

The aSSulnptiOn (U 1) allows us to write

Cr
EZ" < ———2—~.
| 1 | hm(pmil(h) (6)

Using Corollary A.8 (ii) in [3] with a2 = h;(lh)’ we get

1 & [ r,lnn
E;Zi = E(Zl) +Oa.co < ’I’Lh@(h)) .

Applying (6) again (for m = 1), one gets

il T rplnn
Dp' =0 (3) + Ouco (\/ nm(h)> '

Combining this last result with assumption (U5) and the second part of the assumption (U1),

we obtain
Ind
ol n
DY = 0Oq.co < n@(h)) . (7)

.
For the term D%, since

TESF

D < B ( sup [ My (x) - Mp,luj(z)))

thus

Dg’?l = Oq.co < 712)635) . (8)

And finally for the term D', we have For all > 0

Ind Ind
P | DY n = P M, (z:00) — E(M, (2i(s —r <
< 5 > nq’(h)> (je{rlr,l.z.l.),(d”}| () — E( p,l(%(m)))>m/n¢(h)>

Ind,
n}P (IMp,z(xj(m)) — E(Mp(2j())| > n<I>(h)> '

N
oY
3
X
:
"

je{l,....d
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Taking for p = 2, 3,4

Tm’ =

1 [UKi(xj(a:))/BzP_Q(xj(w))@l(Yi) B <“Ki($j<m>)ﬁf_2(afj<w>)¢l(Yz‘))
hp—=20,(h) G(Y)) G(Y:)

Using the binomial Theorem and hypothesis (U1), (U2) and (U7), we obtain for p = 2,3, 4
E[T,[" = O(@~"*(h)).

So, we can apply a Bernstein-type inequality as done in the Corollary A.8 (i) in [3], to obtain

P(l
n

Thus, by choosing 3 such that Cn? = 3, we get

n

Z pri >

i=1

Ind,,
n®(h)

Ui

) < 2exp (anz In dn) .

Ind,
n®(h)

P (ngl > ) < Cdi P,

Then, hypothesis (U5) allows us to write

Ind
p,l n
DY _om< n@(h)) 9)

Finally, the result of lemma (6) follows from the relations (7), (8) and (9).
The second part of the lemma (6) can be directly deduced from the proof of the first one such
that E(mg(x)) = 1. For the last part, it comes straightforward that

1
inf mmo(x) < 3= dr € Sy such that

rESF
1 J— 1
1—mo() > 5 = s 1= ip(2)] > 5 = >p (miergffﬁzo(x) < 2) < 0.

n=1
Theorem 4.1 is proved.

The authors would like to thank the Editor and the anonymous reviewer for their valuable
comments.
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1 PYHKIIMOHAJIBHBIX JTAHHBIX

Xaauma Bynama
Capa Jleynamn
Yuusepcurer @pep Mantypu
Koncrantune 1, Amxup
Coymna Xapdyun
Yuusepcurer Canax By6uumep
Koncrantune 3, Amxkup

Amnnoranusi. B s10it crarhe mpejjiaraeTcs HemapaMeTpruUIeckasi OIeHKa 0000IEHHOM (DYHKIUN perpec-
cum. CuryuaiiHasi mepeMeHHasi PEaJbHOro OTBeTa (I.v.) TOJIBEPraeTcsl yCEYeHUIO BJIEBO JAPYTUM I.V., B
TO BpeMsl KaK KOBapuaTa IPUHUMAET CBOW 3HAYEeHUs] B OECKOHEYHOMEPHOM mpocTpaHcTBe. lpu cran-
JapTHBIX IIPEAIIOJIOXKEHUAX YCTAHABINBAIOTCA TOUYEYHbIE I PABHOMEPHBIE IIOYTH HABEPHSAKA CXOAUMOCTH
npegjiaraeMoil OIeHKU.

KirroueBsbie ciioBa: beHKLLI/IOHaJIbeIE JlaHHbIE, yC€YEeHHbIe JJaHHbIE, IIOYTHU YBEPEHHasl CXOJAUMOCTD, JIO-
KaJIbHas JINHEHHASA OIlCHKAa.
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Abstract. The purpose of this paper is to establish some coupled fixed point theorems for a self mapping
satisfying certain rational type contractions along with strict mixed monotone property in a metric space
endowed with partial order. Also, we have given the result of existence and uniqueness of a coupled fixed
point for the mapping. This result generalize and extend several well known results in the literature.
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The existence and uniqueness of a fixed point was given by Banach [1] in 1922, which was
acclaimed as Banach contraction principle and plays an important role in the development of
various results connected with Fixed point Theory and Approximation Theory. The Banach’s
fixed point theorem or the contraction principle concerns certain mappings of a complete metric
space into itself. It lays down conditions; sufficient for the existence and uniqueness of a fixed
point. Besides, this famous classical theorem gives an iteration process through which we can
obtain better approximation to the fixed point. Banach’s fixed point theorem has rendered a
key role in solving systems of linear algebraic equations involving iteration process. Iteration
procedures are used in nearly every branch of applied mathematics, convergence proof and also
in estimating the process of errors, very often by an application of Banach’s fixed point theorem.

After that several mathematicians contributed to the growth of this area of knowledge and
extensively reported in their work by taking various conditions on mappings as well as on spaces
(see [2-11]). Also, numerous generalizations of this theorem have been obtained by weakening
its hypotheses on various spaces like rectangular metric spaces, pseudo metric spaces, fuzzy
metric spaces, quasi metric spaces, quasi semi-metric spaces, probabilistic metric spaces, D-
metric spaces, G-metric spaces, F-metric spaces, cone metric spaces, and so on. More work on
fixed points, common fixed points results in cone metric spaces, partially ordered metric spaces
and others spaces can see from [12-24]. Recently, The existence and uniqueness of coupled fixed
points on ordered sets have been investigated by many authors with various conditions on the
mappings, readers may refer to [25-42] and references therein.
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In this paper, we proved some coupled fixed point results in the frame work of partially
ordered metric space satisfying a generalized contractive condition of rational type with strict
mixed monotone property of the mapping. Also, we presented the existence and uniqueness of
a coupled fixed point result for the mapping. These results generalized many well known results
in partially ordered metric space.

1. Preliminaries

Definition 1. Let (X, <) be a partially ordered set. A self mapping f : X — X is said to be
strictly increasing if f(x) < f(y), for all x,y € X with x < y and is also said to be strictly
decreasing if f(x) > f(y), for all z,y € X with xz < y.

Definition 2. Let (X, <) be a partially ordered set and f is a self mapping defined over X is said
to be strict mized monotone property, if f(x,y) is strictly increasing in x and strictly decreasing
mn Yy as well.

i.e., for any x1,xe € X with 1 < x9 = f(x1,y) < f(x2,y) and also

Jor any yi,y2 € X with y1 <y2 = f(z,y1) > f(x,92).

Definition 3. Let (X, <) be a partially ordered set and f: X x X — X be a mapping. A point
(x,y) € X x X is said to be a coupled fixed point to f, if f(z,y) =z and f(y,z) =y.

Definition 4. The triple (X, d, <) is called partially ordered metric space if (X, <) is a partially
ordered set together with (X,d) is a metric space.

Definition 5. If (X,d) is a complete metric space, then triple (X,d,<) is called a partially
ordered complete metric space.

Definition 6. A partially ordered metric space (X,d, <) is called an ordered complete (OC), if
for each convergent sequence {x,}52, C X, the following one of the condition holds

e if {z,} is a non-decreasing sequence in X such that x, — x then x, < z, for alln € N
that is, © = sup{z,} or

o if {z,} is a non-increasing sequence in X such that x, — x then x < x,, for alln € N
that is, x = inf{x, }.

2. Main results
In this section, we prove some coupled fixed point theorems for a self mapping satisfying
certain rational contraction condition in ordered metric space.

Theorem 1. Let (X,d,<) be a complete partially ordered metric space. Suppose thal a self
mapping f : X x X — X has a strict mixed monotone property on X satisfying the following

condition
o, S € QA HET 0 L] ) e )
Fold(, £(,y) + dlp F o) + 8ld(z, fu,0) + d, fy)] D
+Ad(z, 1)
forallz,y,p,v € X withx > p and y < v, where a, B3,7,0, A € [0,1) with 0 < a+B+2(y+ )+
+X <1. Suppose that either f is continuous or X has an ordered complete property (OC) then f

has a coupled fized point (z,y) € X x X, if there exists two points xo,yo € X with o < f(z0,Yo)
and yo > f(yo, xo).
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Proof. Suppose f is a continuous map on X. Let zg,yo € X such that zg < f(xo,y0) and
yo > f(yo,x0) then, define two sequences {z,},{yn} in X as follows

Tnt1 = [(@n,yn) and yp41 = f(Yn,z,) for all n > 0. (2)
Next, we have to show that for all n > 0,
Tp < Tngl (3)
and

Yn > Un+1 (4)

for this, we use the method of mathematical induction. Suppose n = 0, since 29 < f(zg, yo) and
yo > f(yo,x0) and from (2), we have zg < f(xo,y0) = 1 and yo > f(yo,2o) = y1 and hence
the inequalities (3) and (4) hold for n = 0. Suppose that the inequalities (3) and (4) hold for all
n > 0 and by using the strict mixed monotone property of f, we get

Tn+1 = f(xnayn) < f(xn-i-layn) < f(-rn-l-lvyn-ﬁ-l) = Tn+2 (5)
and

Yn+1 = f(yn; mn) > f(yn+1>xn) > f(yn+17xn+1) = Yn+2- (6)
Thus, the inequalities (3) and (4) hold for all n > 0 and we obtain that

o<1 <3< Tg < -+ < Ty < Tpy1 < ... (7)
and

Yo >Y1>Y2>Y3> > Yn > Yntl > e - (8)
We know that @, < Tpni1, Yn > Yns1 for all n then, by (1) and use of (2), we get

d(anrl?xn) :d(f(wruyn)y f(xnflu ynfl))

a d(@n, f(@n,yn)) [+ d(@n—1, f(@n-1,Yn-1))]
1+ d(xn, xn-1)
(@ny f(@nsyn)) d@n—1, f(Tn-1,Yn-1))
Ay, Tp—1)
+y[d(@n, f(xn,yn)) + d(@n-1, f(Tn—1,Yn-1))]
+0[d(@n, f(@n-1,Yn-1)) + d(@n—1, f(Zn, yn))] + Ad(Tn, Tr—1)

N

+Bd

which implies that

d(@n, Tni1) (L + d(@n—1,20)] (Tn, Tng1) d(@n-1,2n)
1 —|—d(l‘n,.’1,‘n,1) d(l‘n;xn71>

+ ’Y[d($n7 xn-‘rl) + d(xn—lv $n)] + 5[d($n7 xn) + d(xn—lv $n+1)]

+ Ad(zpn, Trn-1).

d
d(xn+17xn) < « +ﬂ

Finally, we arrive at

Y+d+ A
l—-a—-pB—7y—9¢

d(Xpt1,Tn) < < ) d(xp, Tn_1). 9)

Similarly by following above, we get

Y+I+ A
l-a—-B—-—vy-94¢

d(Yn+1,Yn) < d(Yn, Yn—1)- (10)
( )
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So, from equations (9) and (10), we have

Y+I+ A
l—a—-pF—vy-96

Now, let us define a sequence {S,} in X as {S,} = {d(@n+1,2n) + d(Yn+1,Yyn)}. Therefore, by
induction we get

d(Zni1,Tn) + d(Ynt1,yn) < ( ) [d(xmxnfl) + d(yn, ynfl)] .

k3S,_3 < ... < E"Sp,

(e}
N
"
N

-
~
L
N

-

(o]
g
&
p

< 1 and hence, we obtain

lim S, = lim [d(Zn,Znt1)+ d(Yn,Ynt1)] = 0.

n—+oo n——4oo

Consequently, we get lim d(zp,2n4+1) = 0 and lim d(yn,yn+1) = 0. By using triangular
n—+oo n—-+o0o

inequality for m > n, we get

AT, Tn) € d(@m, Tm—1) + d(@m—1, Tm—2) + -+ + d(Tpt1, Tpn)
and

A(Yms Yn) < A(Yms Ym—1) + AYm—1,Ym—2) + - + d(Yn+1,Yn)-
Therefore,

d(l‘m, -Tn) + d(yvm yn) <Sm—1+Sm—2+-+ 5,

< (km—1+km—2++k_n>50
kn
1-k

N

So.

Letting limit as n,m — oo in the above inequality, we obtain that d(z..,xn) + d(Ym,yn) — 0.
Consequently, the sequences {z,} and {y,} are Cauchy sequences in X and by completeness
of X, there exists a point (z,y) € X x X such that z,, — = and y,, — y. And also from the
continuity of f, we have

z= lim z,41 = lim f(z,,yn) = f(lim z,, im y,) = f(z,y),
n— oo n—oo n— oo n—o0

and

Yy = nlggo Yn+1 = nlgr;o fWnszn) = f(nlgr;o Yns nlgrgo r,) = f(y, ).
Therefore, we have © = f(z,y) and y = f(y,x), i.e., f has a coupled fixed point in X x X.
Another way, suppose X has an ordered complete property (OC). From above discussion there
is an increasing Cauchy sequence {x,} in X converges to x € X. Then from (OC) property of
X, we have x = sup{z,}, i.e., x,, < z, for all n € N. Therefore, we conclude that z,, < z, for all
n otherwise there exists a number ng € N such that z,, = z, and hence z < z,, < Tp,4+1 =2
which is wrong. Thus, from the strict monotone increasing of f over the first variable, we get

f@nyn) < f(@,yn). (11)

Similarly, from above there is a decreasing Cauchy sequence {y,} in X, which converges to a
point y € X. Thus, by (OC) property of X, we have y = inf{y,}, i.e., y, > y, for all n € N.
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As from similar argument above, we have y,, > y, for all n € N. Also, from the strict monotone
decreasing of f on the second variable, we get

f(@,yn) < flz,y). (12)
Therefore, from equations (11) and (12), we obtain

f@nyn) < f(@,y) = nir < f2,y), foralln eN. (13)

Since z, < zpy1 < f(z,y), for all n € N and = = sup{z,}, then we obtain x < f(z,y).
Now, let z9 = z and 2,41 = f(2n,yn) then, by similar argument above the sequence {z,} is a
nondecreasing Cauchy sequence, since zgp < f(z0,yo) and converges to a point z in X, implies
that z = sup{z,}.

Since for all n € N, x,, < & = 20 < f(20,¥0) < 2 < 2z then from (1), we have

d(.’EnJr], Zn+1) = d(f(ajn7 yn)7 f(zna yn))

a d(@n, [ (@0, yn)) [L + d(2n, [ (20, yn))]
1+ d(xn, 2n)

(@ns f(@nsYn)) d(zns f (20, Yn))
d(xn, 2n)

+yd(@n, f(@n,yn)) + d(zn; f(2n,Yn))]

N

Jmé’d

On taking limit as n — oo in the above inequality, we get
d(z,z) < (20 + N)d(z, z),

but 20 + A < 1, then we obtain that d(xz,z) = 0. Hence z = z = sup{z,}, implies that
x < f(z,y) <. Thus, x = f(z,y). Again following the similar above argument, we obtain that
y = f(y,z). Hence, f has a coupled fixed point in X x X. O

For the existence and uniqueness of a coupled fixed point of f over a complete partial ordered
metric space X, we furnish the following partial order relation.

(1,v) < (w,y) & & 2 p, y <o, for any (2,y), (1,v) € X x X,

Theorem 2. Along the hypothesis stated in Theorem 1 and suppose that for every (x,y), (r,s)
X x X, there exists (u,v) € X x X such that (f(u,v), f(v,u)) is comparable to (f(x,y), f(y,z))
and (f(r,s), f(s,r)), then f has a unique coupled fized point in X x X.

Proof. As we know from Theorem 1, the set of coupled fixed points of f is non empty. Suppose
that (z,y) and (r, s) are two coupled fixed points of the mapping f, then x = f(x,y), y = f(y,x),
r = f(r,s) and s = f(s,7). Now, we have to show that x = r, y = s for the uniqueness of a
coupled fixed point of f.

From hypotheses, there exists (u,v) € X x X such that (f(u,v), f(v,u)) is comparable to
(f(z,y), f(y,2)) and (f(r,s), f(s,7)). Put u = ug, v = vy then choose uj,v; € X such that
uy = f(up,vo) and v1 = f(vo,up). Thus, following the proof of Theorem 1, we construct two
sequences {uy }, {v,} from up 1 = f(un,v,) and v,1 = f(vp,uy,) for all n € N. Similarly, define
the sequences {x,}, {yn}, {rn} and {s,} by setting © = x¢, y = yo, r = 1o and s = sg. As form
Theorem 1, we have z,, =z = f(z,v), yn = vy = f(y,x), r, > 7= f(r,s) and s, = s = f(s,r)
for all n > 1. But (f(z,y), f(y,2)) = (z,y) and (f(ug,vo), f(vo,ug)) = (u1,v1) are comparable
and then we have > u; and y<vi. Next to show that (x,y) and (uy,,v,) are comparable, i.e.,
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to show that > wu, and ygv, for all n € N. Suppose the inequalities hold for some n > 0,
then from strict mixed monotone property of f, we have up41 = f(un,vn) < f(z,y) = 2 and
Un+1 = f(vn,un) = f(y,z) = y. Therefore, we have z > u,, and y<v, for all n € N.

Again from (1), we have

d(@, unt1) =d(f(@,y), f(un, vn))
o A, fla,y)) [+ d(un, f(un, vn))] n d(z, f(z,y)) d(un, f(un,vn))
1+ d(z,up) d(x,uy)
+ld(@, (2, ) + d(un, f(un, vn))] + 6[d(z, f(un, vn)) + d(un, f(2,y))] + Ad(z, un)
which implies that

Y+I+ A
d(x,un+1) < <1—f‘)/—6> d(x,un)

Similarly, we can obtain

Y+I+ A
< | ——— .
d(y,Un+1) X (1 — = 5) d(y,’l)n)
O+ A
Suppose D = % < 1, then from above equations, we have
— =

d(x’un+1) + d(yvanrl) <D [d(l‘, un) + d(%”ﬂ)]
< D2 [d(z,un—1) + d(y,vn_1)]

< D" [d(x7u0) + d(yaUO)] :
Taking limit as n — +o0o to the above inequality, we get lirf d(x,up+1) + d(y, vpe1) = 0.
n—-+oo
Consequently, we obtain lirf d(x,upt+1) = 0 and lirf d(y,vp41) = 0. Similarly, one can
n—-+0oo n—-+0o0
prove that lim d(r,u,) =0 and lim d(s,v,)=0.
n—oo n—oo
Further form triangular inequality, we obtain that
d(z,r) < d(@,un) + d(un,7) and d(y, s) < d(y, vn) + d(vn, ).

On taking limit as n — oo to the above inequalities, we obtain that d(z,r) = 0 = d(y, s), implies
that x = r and y = s. Hence, f has a unique coupled fixed point in X x X. This completes the
proof. O

Theorem 3. Along the hypotheses stated in Theorem 1 and if xg, yo are comparable then f has
a coupled fixed point in X x X.

Proof. Suppose (z,y) is a coupled fixed point of f, then from Theorem 1, there exists two
sequences {z,} and {y,} such that z, — = and y,, —» y in X.

Assume that xg < yg, then we have to show that z,, < y,, for all n > 0. Suppose it hods
for some n > 0. So, by the strict mixed monotone property of f, we get 11 = f(Tn,yn) <
f(Yn, Tn) = Ynt1. Then, from the contraction condition (1), we get

d(xn+17yn+1) = d(f(xnayn)v f(ynaxn»

a d(@n, [ (@nsYn)) [L + d(Yn, £ (Yn, T0))]
1+ d(zn, yn)

(xnv f(xnayn)) d(yrn f(ynvl'n))
d(xn, yn)
+ ’Y [d(l‘n, f(.I‘n, yn)) + d(yna f(y'ru Z‘n))]

+ 0 [d(xm f(ym xn)) + d(yna f(-Tn, yn))] + /\d(xna yn)

N

+ﬂd

- 497 —



N. Seshagiri Rao, K. Kalyani Generalized Contractions to Coupled Fixed Point Theorems. . .

On taking limit as n — oo, we get
d(z,y) < (26 + ) d(z,y)

which is a contradiction, since 26 + A < 1. Thus, d(z,y) = 0. Therefore, we have f(z,y) =
=2 =y = f(y,z). Similarly, we can also show that f(z,y) = 2 =y = f(y,x) by considering
Yo < xo. Hence, (z,y) is a coupled fixed point of f in X x X. O

Remarks:

1. If « = = § =0, in above Theorems, we obtain Theorems 2.1 and Theorem 2.2 of Ciric
et al. [30].

2. If & = 0 in above Theorems, we can get Theorem 2.1-Theorem 2.3 of Chandok et al. [38].

3. Banach [1] type contraction in partially ordered metric spaces can get by taking o = =

4. Kannan [7] type contraction for coupled fixed point theorem in partially ordered metric
spaces can get by putting & = = § = A = 0 in above Theorem 2.1-Theorem 2.3.

5. Chatterjee [3] type contraction for coupled fixed point theorem in partially ordered metric
spaces can obtain by giving @« = =+ = A = 0 in above Theorem 2.1-Theorem 2.3.

6. Singh and Chatterjee [9] type contraction for coupled fixed point theorem in partially
ordered metric spaces can get by giving o = v = 0 in above Theorem 2.1-Theorem 2.3.

3. Applications

In this section, we state some applications of the main result to a self mapping involving an
integral type contractions.
Let us consider the set of all functions y defined on [0, c0) satisfying the following conditions:

1. Each x is Lebesgue integrable mapping on each compact subset of [0, 00).
€

2. For any € > 0, we have [ x(t)dt > 0.
0

Theorem 4. Let (X,d, <) be a complete partially ordered metric space. Suppose that a self
mapping f : X X X — X has a strict mized monotone property on X satisfying the following
condition

(A () f () Ao (o 10 ) Ao (2.3) (oS Geo))
sY)s ) T, T,
/ o)t < a / o)t + B / o(t)dt
0 0 0
d(o,f (,9))+d(a,f (1,0)) Ao, f(1,0)) +d (s (2,9))
+7/ go(t)dt+5/ o(t)dt (14)
0 0

d(z,p)
+ )\/ o(t)dt
0

for all x,y,u,v € X with x =2 p and y < v, p(t) is a function satisfies the above conditions
defined on [0,00) and a, B,7,0,A € [0,1) with 0 < a+ B+ 2(y+ ) + A < 1. Suppose that either
f is continuous or X has an ordered complete property (OC) then f has a coupled fized point
(z,y) € X x X, if there exists two points xo,yo € X with xo < f(xo,y0) and yo > f(yo,xo).
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Similarly, we can obtain the following coupled fixed point results in partially ordered metric
space, by taking y =6 =0, =0, 8=v=0and 8 =9 =0 in Theorem 4.

Theorem 5. Let (X,d,<) be a complete partially ordered metric space. Suppose that a self
mapping f : X x X — X has a strict mixed monotone property on X satisfying the following
condition

d(x, f(z,y))[1+d(p, f(1,v))] d(@,f(z,y)) d(p,f(p,v))
1+d(z,p) d(x,p)

()t < a @@ﬁ+ﬁ/ p(t)dt
0 0 (15)
A / e (t)dt
+ ; ©

for all x,y,u,v € X with x > p and y < v, p(t) is a function satisfies the above conditions
defined on [0,00) and a, B, A € [0,1) with 0 < a+ B+ X < 1. Suppose that either f is continuous
or X has an ordered complete property (OC) then f has a coupled fized point (z,y) € X x X, if
there exists two points xo,yo € X with xo < f(xo,y0) and yo > f(yo,xo).

/(d(f(w,y) f(psv))

0

Theorem 6. Let (X,d,<) be a complete partially ordered metric space. Suppose that a self
mapping [ : X x X — X has a strict mixed monotone property on X satisfying the following
condition

d(@, f(z,y))[1+d(p, f(p,v))]

1+d(@,p) d(z, f(z,y))+d(p, f(p,v))
¢@ﬁ<a/' ¢@ﬁ+7/ o(t)dt
0 0 (16)

d(z, f(p,0))+d(p, f(z,y)) d(z,p)
+ 5/ o(t)dt + /\/ p(t)dt
0 0

for all x,y,u,v € X with x > p and y < v, p(t) is a function satisfies the above conditions
defined on [0,00) and o,7,0,A € [0,1) with 0 < oo+ 2(y+0) + A < 1. Suppose that either
f is continuous or X has an ordered complete property (OC) then f has a coupled fized point
(x,y) € X x X, if there exists two points xg,yo € X with o < f(zo,y0) and yo > f(yo,zo).

/(d(f(%y) of (,0))

0

Theorem 7. Let (X,d,<) be a complete partially ordered metric space. Suppose that a self
mapping [ : X x X — X has a strict mixed monotone property on X satisfying the following
condition

d(@, f(z,y))[1+d(p, f(p,v))]

(d(f(@,y),f (1,0)) Tt (e d(z, f (p,0))+d(ps f (2,y))
/ p(t)dt < a/ p(t)dt + 5/ (t)dt
0 0 0 (17)
d(z,p)
+ )\/ o(t)dt
0

for all x,y,pu,v € X with x > p and y < v, p(t) is a function satisfies the above conditions
defined on [0,00) and «, 8, A € [0,1) with 0 < a+20+ A < 1. Suppose that either f is continuous
or X has an ordered complete property (OC) then f has a coupled fized point (z,y) € X x X, if
there exists two points xo,yo € X with xo < f(xo,y0) and yo > f(yo,xo).

Theorem 8. Let (X,d,<) be a complete partially ordered metric space. Suppose that a self
mapping [ : X x X — X has a strict mized monotone property on X satisfying the following
condition

d(z, f(z,y)[1+d(p, f(pr,v))]

(d(f(@,y), f(1,v)) jeT e d(z, f(z,y))+d(p, f(p,v))
/ p(t)dt < a/ p(t)dt + ’y/ o(t)dt
0 0 0 (18)
d(z,p)
+ )\/ p(t)dt
0
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for all x,y,p,v € X with x > p and y < v, p(t) is a function satisfies the above conditions
defined on [0,00) and a,y, A € [0,1) with 0 < a+2y+ X < 1. Suppose that either f is continuous
or X has an ordered complete property (OC) then f has a coupled fized point (x,y) € X x X, if
there exists two points xg,yo € X with xo < f(xo,y0) and yo > f(yo, o).
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O06ob61meHHbIE CXKATHSA JIJIsI CBA3aHHBIX TEOPEM
O HEIIOJBM2KHBIX TOYKaX B YACTUYHO YIIOPSI0YE€HHbBIX
MeTPUYECKNX IIPOCTPAHCTBAX

H. Cemarupu Pao

Hayuno-rexuudeckuit yuuepcurer AnaMbl
Apama, Dduonus

Kapycana Kansau

Dona HAYKHU, TEXHOJOTHI U nccaeoBanmii Burnan
IIpanem, Nnansa

Awnnoranus. lenb 310it craTbu — yCTAaHOBUTH HEKOTODPBIE CBSI3aHHBIE TEOPEMbBI O HEIOIBUYKHON TOY-
K€ JIJIT CaMOIIPEJ/ICTABJIEHUSI, YJIOBJIETBOPSIONIETO OIPEJIEIEHHBIM PAIlMOHAJBbHBIM COKPAIIEHUSM THUIIOB
HapsAy CO CTPOrO CMEIAHHONW MOHOTOHHON COOCTBEHHOCTHIO B METPUYECKOM IMPOCTPAHCTBE, CHAOKEH-
HOM YaCTUYHBIM HOPsIKOM. Tak»Ke MBI JaJIM Pe3yIbTaT CYIIECTBOBAHUS U €IMHCTBEHHOCTH CBSI3aHHOMN
HEMOABUKHON TOYKHU JJIsT OTOOPaXKeHUsi. DTOT pPe3ysbTaT 0H6006IIaeT M PaCIIUpsieT HECKOJIBKO XOPOIITO
W3BECTHBIX B JIUTEPATYPE PE3YIbTATOB.

KiroueBble cjioBa: 4acTUYHO yHnopaaovdeHHble MEeTPpUYIECKUEe IIPOCTPpaHCTBa, palliOHaJIbHbIE COKpPaIllle-
HUA, CBA3aHHaA (i)I/IKCI/IpOBaHHaEI TOYKa, MOHOTOHHAaA COOCTBEHHOCTD.
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Abstract. We provide new sharp decomposition theorems for multifunctional Bergman spaces in the
unit ball and bounded pseudoconvex domains with smooth boundary expanding known results from the
unit ball.

Namely we prove that [] |[fjllx; =< ||fi... fm|lar for various (X;) spaces of analytic functions in
j=1

bounded pseudoconvex domains with smooth boundary where f, f;, j = 1,...,m are analytic functions
and where A%, 0 < p < o0, @ > —1 is a Bergman space. This in particular also extend in various
directions a known theorem on atomic decomposition of Bergman A%, spaces.

Keywords: pseudoconvex domains, unit ball, Bergman spaces, decomposition theorems, Hardy type
spaces.
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Introduction and preliminaries

The problem we consider is well-known for functional spaces in R™ (the problem of equivalent
norms) (see, for example, [1]).

Let X, (X;) be a function space in a fixed domain D in C™ (normed or quazinormed) we wish
to find equivalent expression for ||fi ... fm||x; m € N. Note these are closely connected with
spaces on product domains since

f(zlv"'vzm):Hfj(Zj)v ||f|‘X:H||fJ||X77 ZjeD;j:]-,"'am'
j=1

Jj=1

These our results also extend some well-known assertions on atomic decomposition of
Bergman AP, type spaces as we will see below. For m = 1 Hardy space case (see, for exam-
ple, [274])

To study such group of functions it is natural, for example, to ask about structure of each
{f;}jL, of this group.

This can be done for example if we turn to the following question find conditions on

{fi,-- -, fm}, so that |[fi,..., fullx =< II l|fjllx, sharp (R) decomposition is valid. In this
j=1

case for example we have if for some positive constant c;

*rsham@mail.ru
Ttomele@mail.ru
(© Siberian Federal University. All rights reserved
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m
[T14lx, <clfis- - fmllxs
=1

then we have each f;, f; € X;;j5 = 1,...,m, where X; is a new normed (or quazinormed)
function space in D domain and we can easily now provide properties of f; based on facts of
already known one functional function space theory. (For example to use known theorems for
each f; € X;;7 =1,..., m on atomic decompositions). This idea was used for Bergman spaces in
the unit ball then in bounded pseudoconvex domains with smooth boundary in recent papers [5]
and [6]. In this paper we extend these results in various directions using modification of known
proof.

We refer to [5,6] for a complete and not difficult proof of a basic known "purely A" case
then in this paper show in details how to modify it to get new results. The old known proof
is simple and very flexible as it turns out and we can easily get, as we can see below, various
new interesting results from it directly. This remark is leading us to provide only some sketchy
arguments sometimes below of proofs when we deal with new theorems , since the core of all
proofs is basically the same in all our theorems. Here is partially the transparent proof of the
classical case of the Bergman space AP case in the unit ball B,, of C". The case of A? Bergman
space in more general bounded pseudoconvex domain can be seen in our recent paper [6].

We define AP, space as usual

= {r ey, = [ 1o 0=l <o},

dv is a Lebeques measure on B, f; is analytic in B, 0 <p < oo, > —1, j = 1,...,m and where
H(B) is a class of all analytic functions in the unit ball B.

We see in [6] that [|f1... fm]laz < 'H1Hfj
]:

<landif 7 =7(p, a1, ..., Qm, m).
We denote constants as usual by C,Cq,Cy, ...
Note from our discussion above the only interesting part is to show that

(A) condition if

11 fillaz, 5. < cillfr- fumllazs,), (S)
=1

since the reverse follows directly from the uniform estimate (see [6,7]).
|f(z )|(1—|z|) c||f||Ap O<p<oo, aj>—1,5=1,....m
and ordinary induction. This also lead easily to the fact that 7 can be calculated

:(n+1)(m—1)+ZaJ~; a; >—1; 0 <p < oo.

Note similar very simple proof based only on various known uniform estimates can be used
in all our proofs below in similar inequalities for various spaces. So we mainly concentrate on
reverse to (S) estimates. Let further H? be a usual Hardy H? space in B,, (see [7,8]).

Note further if aq is large enough and if

m

s

Il
s

i / fi(z)(1 = |z[)*dv(2)
filwi) = cqo . — , wieB, 7=1,....m, a> ag,
i=1 B T]( —2wi)n+l+a ’ ’

i=1
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then we have easily using directly well-known estimates (see [7]) from last equality for p < 1 (we
refer to [6] for details in more general situation).

r=11 e - s = [ f e TTo - e Tlaeo <

(1 — law[) H dv(zx)
H |fr(2)[P(1 — |2&]*)"dv(2 =
/ / /B H |1_22k‘ n+1+a)p

where o, > =1, k=1,....m7=n+14+a)p—(n+1) > -1, a > ay = ap(p,&,n,m). And
hence we have finnally
or [ TTIAEIPQ- ) do(e) < oc,
B =1

m
where 0 <p<L;mm=(m—-1)(n+1)+ > ag; and o > —1, 71 > —1,a > «p.
k=1

This result is valid also for p > 1 (see [5]). We will repeat this type simple argument several
times below.

The same more general problem which we consider in bounded pseudoconvex domain D is
the following. To find equivalent expressions for ||fi... fm||x;f; € H(D), j =1,...,m. Can
we also say that each fi can be decomposed into "atoms" (BMOA atoms, Bloch atoms, Hardy
atoms, Bergman atoms (see [2—4,6,7,9,10])) if

:ls

/ ‘ ﬁ fj(Z)’p(V(Z)dv(Z) <oo, 0<p<oo, T>—1; &(z)=dist(z,8D)
D'

and dv is a Lebeques measure on D. Only for m =1 A? Bergman class the answer is well known
in the unit ball and in bounded pseudoconvex domains (see [5-7,11]).

For m > 1 the answer is known only partially each (f;) can be decomposed into A% = atoms
for some «; see [5,6]. For m = 1 Hardy space and other spaces (see [2-4,7]) and references there.

We extend these known results in various directions below. It is easy to note that in our
proof at least one f; must be decomposed into AE atoms.

Let us remark the following typical for this paper fact in bounded pseudoconvex D domains
an extension of a classical result namely the following result is valid (note same result with
the same proof even can be provided with the same proofs in unbounded tube domains over
symmetric cones). This will be studied in our next papers. Let H? and A2, 0 < p < oo, a > —1
be Bergman and Hardy space in D domain (see [6,8,12,13]) and definitions below.

Note since proofs are rather simple some arguments have sketchy forms and can be easily
recovered by readers (see [6,13]).

We denote by C's Bergman representation constant below.

Theorem 1. Let f; € ABi,i = 1,...k; fi € HP; i = k+1,....m,p; < 1,0 =1,...,m,
k

a; >—1,j=1,... )k, r=nm—k)+ (n+1)(k—1)+ > «;, then
j=1

n(m k)—&-(i >+(n+1)(k 1)

m P m
; ~
/ll‘fy Z)<C||’f ,,; (4)
D; . APRi
j=1 Jj=k+1
and for cases when p; =p, j =1,...,m the reverse is also true and we have a new sharp result
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. m nm—k)+( 3 a ) +nt1)(k—1) m k ~
I(f):/ H‘ J(Z)‘p z +(j:l >+ -+ dv(g)/\( H ‘f ZPHH‘JCJ‘ZP ’ (A)
Dj=1 j=kt1 j=1 o

if
H fl(wz) = Cﬁ/ (H ]2(2)) X H K% (z,wj)6ﬂ<w)dU(W);
j=1 D ti=1 j=1
5>503w]’€DJ;j*1a akv
wj €D, j=k+1,...,m. (T)

This Theorem 1 is probably true also for p; > 1 (see [5,6] for proof in this case based only on
Holder inequality) we give also very similar same type result for analytic AP weighted Hardy
class below.

Remark 1.
1) Note for m =1 (T) integral condition vanishes (see [12]) and we have an obvious relation.
and hence f; can be decomposed into atoms, f1 € AP (see [6,7]).

2) Our result as a root has the following simple estimate in the unit disk which can be easily
checked.

/H

Remark 2. _

Note for m > 1 we can hence using (A) decompose if I(f) < oo each function (f;) to H?
atoms and (or) A2 atoms using well-known one functional results. Note for m = 1 (T") vanish
and we obtain AP atomic decomposition classical result.

We refer to [14] for other new interesting sharp results in mulifunctional Bergman spaces.

fi(z 5 Ve tdu(z €(0,00), fy €HP, i=1,....k, keN.

1. Main results

We provide our main results in this section. Throughout this paper H(D) denotes the space
of all holomorphic functions on an open set D C C™.

We follow notation from [11]. Let D be a bounded strictly pseudoconvex domain in C™ with
smooth boundary, let d(z) = dist(z,0D).

Then there is a neighborhood U of D and p € C*°(U) such that D = {z € U : p(z) > 0},
|V p(z)] Ze>0forz€dD,0< p(z) <1for z€ D and —p is strictly plurisubharmonic in a
neighborhood Uy of dD. Note that d(z) =< p(z), z € D. Then there is an 79 > 0 such that the
domains D, = {z € D : p(z) > r} are also smoothly bounded strictly pseudoconvex domains
for all 0 > r > rg. Let do, be the normalized surface measure on 9D, and dv the Lebesgue
measure on D. The following mixed norm spaces were investigated in [11]. For 0 < p < o0,
0<g<oo,6>0and k=0,1,2,... set

1/q

e g,
1 llp.q.000 = Z/ </ |Daf|pd(7r> . ; 0<g<oo

la|<k

and weighted Hardy space (A5 = HP)

1/q
1 lpoese = sup Z(vﬁ/ |Daf|pdoT) L 0<g<oo,
oD

0<r<ro lal<k
X
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where D is a derivative of f (see [L1]) The corresponding spaces Ay} = AD{(D) = {f € H(D):
[ f1lp,q.6:k<c0 } are complete quasi normed spaces, for p, ¢ > 1 they are Banach spaces. We mostly
deal with the case k = 0, when we write simply AY'? and || f||,,4,5. We also consider this spaces
for p = oo and k = 0, the corresponding space is denoted by A5™? = AF”P(D) and consists of all

f € H(D) such that
o 1/p
Hf”oo,p,é = </ (sup |f)p7"6pld1"> < 0.
0 oD,

Also, for § > —1, the space A$° = A§°(D) consist of all f € H(D) such that
1fllage = sup [ f(2)lp(2)° < oo,
z€D

and the weighted Bergman space A§ = AJ(D) = A7, (D) consists of all f € H(D) such that

1114z = ( / |f<z>|pp5<z>dv<z>)1/p <.

We denote by Kz the weighted Bergman kernel on D (see [6,12]).

Since | f(z)[P is subharmonic (even plurisubharmonic) for a holomorphic f, we have A?(D) C
AX(D) for 0 < p < oo, sp > n and t = s. Also, AP(D) C AL(D) for 0 < p < 1 and AP(D) C
A} (D) for p > 1 and ¢ sufficiently large. Therefore we have an integral representation

2) =G /D FOK (20 (€)dv(e), fe AYD), =€ D, (+)

where K (z,€) is a kernel of type ¢, that is a smooth function on D x D such that |K(z,£)| <
O|®(z, )|~ where ®(z,£) is so called Henkin-Ramirez function for D. Note that (*)
holds for functions in any space X that embeds into A}. We review some facts on ® and refer
reader to [15] for details. This function is C* in U x U, where U is a neighborhood of D, it is
holomorphic in z, and ®((,¢) = p(¢) for ¢ € U. Moreover, on D x D it vanishes only on the
diagonal (¢, (), ¢ € D. Locally, it is up to a non vanishing smooth multiplicative factor equal
to the Levi polynomial of p. From now on the work with a fixed Henkin-Ramirez function P.
The proof of the following theorem is very similar to the proof of the Theorem 1.

Theorem 2. Let f; € AF,i=1,....k and fi€e AL, i=k+1,....m
Let B; 20,5=1,...,m, let alsop; <1, let o > —1; j =1,...,m; then we have
> (ijj)+(n+1)(m—k—1)+§ ai

/ ﬁ\fj 52y R <o 1 £
Dy i=k-+1

and if p; =p, i =1,...,m we have a sharp result (the reverse of (K) is valid) if

11 #iw) =Cs /D I1 1) = K sinir (2,07)8° (2)dv(2); B> Po; wj€ D, j=1,....m
i=1 j=1

The same type results with very similar proof is valid not only for Ago but also for weighted
Hardy space

= = {f <o) s ([, e

where 0D, = {z : p(z) = €}, 6(£) is a Lebeques measure on 9D, (see [11] for these analytic
Hardy type spaces).

P P
&(5)) xsa<oo;a>0;0<p<oo}
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Theorem 2 can be also viewed similarly (as Theorem 1) as another direct extension of a known
theorem on atomic decomposition of classical Bergman space AP in the D domain. Indeed we
can easily see that (see [7,12]) for m = 1 in the ball (T) integral condition vanishes and we
have AP known atomic decomposition result. For m > 1 taking into account known atomic
decomposition theorems (see [9]) for A? and AF in D, each f;,j = 1,...,m from Theorem 2
can be decomposed into AZ” or A% atoms.

The same type result is valid for some Herz type spaces in bounded pseudoconvex domains
and BMOA type spaces in the unit ball instead of A%" .

We refer to [16] for some interesting results in such type analytic function spaces.

Namely, let B(z,7) be a Kobayashi ball in D,z € D,r > 0 (see [11]).

Let also B2Y, ng, p,q € (0,00), @ > —1, be Herz type spaces in pseudoconvex D domain

Bri(D) = {f €H(D): ) (/mak,r)

k>0

Y]

f(w)‘qéo‘(w)dv(w)) " do(z) < oo} :
)| x5 (wyiotw))
where {ax} is known r-lattice in D (see [13]).

< oo}7
Let also

BMOAsﬁt( ) {fEH n :sup/ ‘f |p>< 1—‘ |)Sd1}( )(1—|w|)t<oo},

weB |1 _w2|ﬂ

be BMOA type space in the unit ball (see also [7,17,18]), where 0< p,q <oo; s >—1, 8,t=0.
Uniform estimates for BMOA in the unit ball can be seen in [7], for B2? and B2? Herz type
spaces they can be easily obtained also based on elementary known estimates (see [12,13])

e <e(),..,

As a result we immediately have that
m t
Pi . Pk
/H ‘fk % 8(2)*dv(z) <CHka‘
D k=1 k=1

Agi
for some s = s(ﬁ, n,m, @, s, ﬁ, z}) and the same type estimate obviously is valid for E(’;’q(D) and

L[

For particular values of parameters we under integral condition (T) can again show similarly
that this (As) estimate is sharp, so each f; can be decomposed into BMOA and Equ (Bg;q)

s antw)) 670 € D0 < p <o

Hn

(As3)

Bpk TR

BMOAY, 4 ,(By,) (We simply replace by quazinorms of these spaces).

BPk-dx

atoms if only ] |f:|P € LL(D), 0 < p < 1 for some s.
i=1

These results in details will be given in another our paper.

Proof of Theorem 1.

The (A) estimate follows from two known uniform estimates directly

(1 1) <

ntltay;

F@)|(1=1e1) ™

eD

sz

and

pi
<01Hf’ z€D, a;>-1, 0<p< oo

o
P
Ao
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(see [6,7,11,13,19]). The (A3) can be shown similarly. To get the reverse estimate we must use
first that for p < 1 (see [6]) we have

( | Jrew) HjK 2,w)[6% (w) w)psc [ Jr] g s 000 o,

7>0,a>—1,p <1 and also the following known lemma (see [6,12,13,19,20]). (Forelly-Rudin
type estimates).

Lemma 1. Leta, > —1,s>0,y € D, 0 <t <ty =tog(\r) then

/ ‘Ka(w,y) ’

{z:r(x)=t}

do(x) =< [r(y) + t} niq, n < q,

and
sup Ka(z,w)‘év(z) < 05_6‘+”(z); (9)
weD

v=20,v—a<0 and

)n—q+,8+1

' r(x))ﬁdv(x) = (T(y) ,m—q+p+1<0,

/D ‘Ka(l’,y) (

and r(y) < d(y), y € D; g = as.

Indeed using (7') and mentioned estimates we have the following chain of inequalities

ﬁ(/ ] 5 winten) 111?;%/@5 e aote) -
:cﬁ\ﬁ; i1 (], <
j=1

fs(z)‘p-‘Ks(z,wj)‘p-65P+(n+1)(17—1)(z)dv(z)dﬁ(x),

j=1
where ) Bin+l
—
k m
/Xdﬁ(x): (j];[l/ljaaj(wj)dv(wj)).(jzlllig% [ o).

Applying Lemma 1 we have after small calculations that

I< é/D f[ (|55 )| 57 () w)).

Theorem 1 is proved.

The proof of Theorem 2 is almost the same. We omit easy details.
Put

{ )] @ =y }
BMOA}, ;=< f<€H(B sup/ dv(w) x (1 —|2])® < oo,

z€B 17 zw‘v
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s=20,p>0,t>—1.
For p > 1 this is a Banach space and complete metric space for p < 1. Obviously based on
properties of r-lattices (the same result with same proof is valid in pseudoconvex domains) based
on vital estimate from below of Bergman Kernel on Bergman ball (see [6,13]),

C ’ ’ 1— s+t—v+n+1,
14/l pso, > Osup ]2 =120

s=20,p>0,t>—1.
This uniform estimate leads immediately to next theorem.

Theorem 3. Let f; € AL ,i=1,....,m and f; € BMOA} , ., j=m+1,....m+k.
Let0 <p <1, sj>0andalsot >—1 v; =0, j—m+1 omak ap > -1, k=1,...,m;
let vy —s; —t; <n-+1,

B+n+1 B+n+1
Tyl PEbtnt Py sy

j=m+1,....m+k, B>F,neN, m>1 meN.
Then for 6(z) =1 —|z|, z € B, we have

m—+k
J, Tl st <11 |

m-+k m-+k

H fi(z) CB/ H fi(w %56(7”)65”(1”)7

(1 — zw) m+*

XH\
AP

5l

BMOA?Y

t 84,V

B > Po, z; EB,j:l,...,m—Fk; Bo is large enough

m m+k
T=m-Dn+1)+Y art+ Y (ti+s;—v)+n+1Dk
k=1 j=m+1

k P
Remark 3. A third group with [] ’ ’ fi ‘ ‘ can also be added in mentioned relation of Theorem
j=1 e

3 with similar proof. One part of theorem (estimate from above) can be even given with group

m
of more general []
i=1

pi
i|| ,, form with almost same proof.
APi
k2

Proof of Theorem 3.
Proof of Theorem 3 we have as in previous theorems. The proof is based on uniform estimate
for BMOA we provided above, arguments of proof of previous theorem and the following Lemma.

Lemma A (See [21]). Let s > —1,m,t >0, r+t—s <n+1 then

/ (1= |zD)*dv(z)  _ c
|

1 — zw|"|1 — zw |t~ |1 — wwy|rtt-s—n-1’

w,wy €EB; r—s;t—s<n+1,

for some constant C > 0.

We omit easy details leaving some calculations with indexes to interested readers. Even more
for other restriction to parameters this theorem is valid in bounded pseudoconvex domain with
smooth boundary D. We’ll discuss in other our papers this in more detail.

We will formulate that interesting result also below. The proof (in BMOA spaces in bounded
pseudoconvex domains) is the same as in theorem above, but is based on new Lemma (see [17]).
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We will below provide proofs of unit ball case in D the proof is practically the same.

Lemma B. Let t —s<n+1<r—s, s>-1, rnt>20, r+t—s>n+1

C
[ (51wl Kt )ole) < st B w)],
D
where w,wy € D.

(6(w))

The rest is the simple repetition of arguments of previous theorems.
We first consider model case of the unit ball. The proof of general case is the same. We have
(when one BMOA is in chain) the general case with several functions from BMOA is the same.

m—+1
m+1 H fi(z ) x (11— |Z|)Bp+(n+1)(p71)dv(z)

P j=1
‘ H fj(wj)‘ = Cﬂ/B’ 1 Btntl
j=1

_ m—+1
IT 1—zw,
il

Then using Lemma A and well-known Forell-Rudin type estimate (see [7])

m—+1
x (1 — |2|)PPHFDE=1) gy (2)

H1 fi(z
C J
1// m+1 B ﬁ;:zﬂ.l )

1fzwj
where
2 a (A — Jwm])* - (1= (@))°

zsup/~-~/ 1 —|w;|)*dv(w;) x — dv(Wm1)-

Jo = foe [ TT = oyt e O )
Hence

m+1 m

C/H’fa (I—lz)7dv(z);  T=(04+n)(m=—1)+Y ap+s+t—v+n+1;

k=1
as easy calculation with indexes shows.

Indeed, we have of our Theorem 3 that k = (W> ;

m+1
(1 — |w])'do(w) (1 — |@])® (1 — [w])'dv(w)
sup/B < su p/ =

GEB [1 — ww|?|1 — zwl|* wép w|v=s - |1 — za|k

1
< sup

< k—t— 1
weB |1 _ wz|v75+k7t7(n+1) (1 — |ZD r=v-—38+ (TL + )

ift>-1,v—s—t<n+l,k—t<n+l,v—s+k—t—(n+1)>0.

This finished the proof of our theorem for the case of the unit ball.

Now we consider the case of pseudoconvex domains, the proof is a repetition of unit ball case
so we again fix our attention to the unit ball case in C".

We have the following chain of estimates now based on Lemma from [6] (see also above). The
only change for general D pseudoconvex domain is to replace (1—|z|)® be §(z) and

|1 — zw|atntl
by K. (z,w).

II ‘fj’p % (8(2))fP+ntDE-1)

p j=1
f' < c m L‘?+n+1p dU(Z),
FaA . m
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where
1 = [w;)*7 x (1 = Jw|)* - (1 = [@])*dv(w;)

o=l / 2
_:116111)3 |1—1Dmu~}\“
Taking into account Lemma B we obtain
m
J<C / 11
B

where 7 was defined in our previous theorem.
Indeed, for wyq,...,w,,_1 variables we must use Forelly-Rudin estimates

£i(2)|(1 = [z do(z),

B4n+1 ~

m

/ (1 — Jw;[)* dv(w;) <C-(1- |Z|)Oéj*%+n+l’ . € B.

‘1—zwj

These estimates are valid also in bounded pseudoconvex domains (see [6,13]).
Then by Lemma B we have

1— t
M = sup (/ ( [wml) R dv(wm)> (1 —1|w])® < sup ~ 70
B |1 TP

weB —wmw\”|1—zwm| m ’(7)€B|172w|v S|]‘7|Z|)u
1 1
for v—s<n+1, wp—t>n+1, —s+v+wp—t—(n+1) > 0, where
m m
+n+1
:ﬁip—t—(n—kl);

M<C@—|z)7" .

Our last general Theorem is the following.
Let

(B3104z,.,) = {1 € D) sup [ |1)[[50:) [ Kot w]ants) - 0*(w) < o0}

weD

0<p<oo,v>0,t>-1,5 > 0is a BMOA-type space in a bounded pseudoconvex domain
with smooth boundary in C™. BMOA type spaces in such domains were studied in [17].

1 1
Theorem 4. Letp <1, letv; —s; <n+1, wp—t >n+1, 5]4_@]4_%1)_

m
—tj—(n+1)>0,j:m—|—1, Kk, 5>50,n€N m>1,meNanda; >-1,j=1,....m
then if s; > 0,t; > =1, v; > 0, j—m+1 .,m + k then the assertion of previous theorem is

o
(1—zw)"™

spaces and for Bergman AP spaces in same type domains.

valid if we replace by K- (z,w) for T > 0 in pseudoconvex domains for BMOA? , (D)

Hence each (f;) can be represented as AP or BMOA atoms (see [7]) if H |filP € LL, for

some parameter v and m,k € N . These results again coincide for m =1 w1th known results on
atomic decomposition of Ag Bergman class theorems (see [6]).

Remark 4. Let us stress in all these assertion is vital in main estimate to keep at least one

component ‘ fil| ,. (Bergman space component) in right side of the main estimates.
o m k p m
Concerning groups without [] ||fi|| 4»: like ] ‘ fi x I1 ‘ fi our methods don’t
i=1 i i=1 HP  i—fq1 BMOA

work other approached here must be invented, based maybe on other integral representations.
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The p > 1 case can be probably covered similarly we refer to [6] for "pure" AP case with
m

I1 || fillaz groups (p > 1) based purely on Holders inequality.
i=1 ‘

Our methods also covers cases when at least one component is our product is Herz-type
spaces. This will be treated in our other papers, so we can similarly also consider the following

products

m N P m P N p

[ ||fi [I ’ fi or ] ’ fill . ox 1 ’ i

i=1 Ba i=me1 Hr i=1 BRY i=m+1 BMOA
with some restrictions on indexes

or

m N m p N

1|4 5 QORI DI y | O s G | 11
i=1 By i=m+1 A% =1 B&l j=m41 AZJ.

with some restrictions on indexes.

These cases will be considered in our other papers, though methods of this and those papers
will be rather similar.

Note all results of this paper have direct analogues also in analytic spaces in unbounded
tubular domains over symmetric cones. Proofs of such type results can be obtained by simple
substitution of our estimates we used in our proofs in pseudoconvex domains to parallel known
estimates in tube domains and on some parallel known related facts on Bergman represenation
formula in tubular domains (see for example [22] and references there).

The only additional condition is on Bergman Kernel in tube domains over symmetric cones
is Lemma B, which is probably also valid.in tube domains also.
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O HOBBIX TeopeMaXx pPa3JI0XKEeHUsI B HEKOTOPBIX ITPOCTPAHCTBAX
aHAJINTUYECKNX (PYHKINI B OrpaHNYEHHBIX IICEBIOBBIMYKJIbIX
obJracTgax

Pomvmu ®@. lITamosia

Enena B. TomarmeBckas
Bpsinckuii rocyiapcTBeHHbBI yHUBEPCUTET
Bpsnuck, Poccuiickas @enepanys

Amnnoranusi. Mbl JjaeM HOBbIE TOYHBIE TEOPEMBI Pa3JIOKEHUsI JJIsi MHOIO(YHKIIMOHAIBHBIX IIPOCTPAHCTB
Beprmana B €IMHUYHOM IIAPE U OrPAHUYEHHBIX IICEBJIOBBIIYKJIBIX O0JIACTEN ¢ IVIaJKON rpaHuLedl, pac-
MINPSIONIEHl N3BECTHBIE PE3YJIBTATHI U3 €ANHUYIHOIO IIapa.
m
A mmenno mur gtoxaxkeM, uto ] ||fillx; X ||f1... fm||ar m1s pasmuamex (X;) mpocTpancTsa ana-
=1
JIITUYeCKNX (DYHKIMHA B OMPDAHMYECHHBIX IICEBJIOBBLIIYKIBIX 00JIAcTAX C IVIaAKoil rpanuneii, rue f, fj,
j=1,...,m — anamurnueckue pyukuu, a A-, 0 < p < oo, @ >—1 — npocrpancrso Beprmana. o,
B YACTHOCTH, TAKIKE PACIIUPSIET B PA3HBIX HAIIPABJICHUSIX U3BECTHYIO TeOPeMy 00 ATOMHOM Da3JIOXKEHUH
npocrpancts AY, Beprmana.

KuroueBbie cjioBa: ICEBIOBBINYKJIBIE 00JIACTH, €IMHUYHBIN IIap, MPOCTPAHCTBa BeprMana, Kjacchbl
TUMa Xapu, TEOPEMbI JTIEKOMIIO3UINH.
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