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Abstract. In this work, we give the seven global phase portraits in the Poincaré disc of the Kukles
differential system given by

ẋ = −y,
ẏ = x+ ax8 + bx4y4 + cy8,

where x, y ∈ R and a, b, c ∈ R with a2 + b2 + c2 ̸= 0.
Moreover, we perturb these system inside all classes of polynomials of eight degrees, then we use the

averaging theory up sixth order to study the number of limit cycles which can bifurcate from the origin
of coordinates of the Kukles differential system.
Keywords: limit cycle, generalized Kukles differential system, averaging method, phase portrait.

Citation: A. Belfar, R. Benterki, Centers and Limit Cycles of Generalized Kukles Polynomial Differen-
tial Systems: Phase Portraits and Limit Cycles, J. Sib. Fed. Univ. Math. Phys., 2020, 13(4), 387–397.
DOI: 10.17516/1997-1397-2020-13-4-387-397.

1. Introduction and statement of the main results
We consider the so-called Kukles homogeneous differential system. Giné [5]

ẋ = −y, ẏ = x+Qn(x, y), (1)

which has a center at the origin, where Qn(x, y) denotes a homogeneous real polynomial of
degree n.

In 1999 Volokitin and Ivanov [12] conjectured that systems (1) have a center at the origin
definitely if they are symmetric with respect to one of the coordinate axes. For n = 2 and n = 3,
the authors of the conjecture knew that it holds. Giné [5] in 2002 proved the conjecture for n = 4
and n = 5. Giné et al. [6,7] proved the conjecture for all n under an additional assumption, that
the authors believe that it is redundant.

The phase portraits for quadratic systems with center written in the form (1), are known, see
Vulpe [13]. The phase portraits of cubic differential systems symmetry with respect to a straight
line are also known and in particular those of system (1) with n = 3, see Buzzi et al. [3], see also
Malkin [11]; Vulpe Sibirskii [13] and Żo la̧dek [14, 15]. The phase portraits of systems (1) with
n = 4 follows from Benterki and Llibre [1]. Llibre and Silva [9, 10] classified the phase portraits
of the systems (1) for n = 5, 6. The phase portraits of systems (1) with n = 7 follows from
Benterki and Llibre [2].

∗Ahlam.belfar@univ-bba.dz
†r.benterki@univ-bba.dz

c⃝ Siberian Federal University. All rights reserved
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In our work, we classify the global phase portraits of the polynomial differential system

ẋ = −y,
ẏ = x+ ax8 + bx4y4 + cy8.

(2)

The first main objective of this work is to study the phase portraits in the Poincaré disc of the
differential system (2).

The second objectif, is to give the number of limit cycles which can bifurcate from the origin
of coordinates of system (2) when we perturb them inside all classes of polynomial of eight degree,
and we do this by using the averaging theory up sixth order.

In Section 2 we give more information about the global phase portraits of the polynomial
differential system (2).

Our first main result is given in the following Theorem.

Theorem 1. The set of all global phase portraits in the Poincaré disc of the differential system
(2) with a2 + b2 + c2 ̸= 0, are topologically equivalent to the phase portraits given in Fig. 1.

1. S = 10, R = 2 2. S = 20, R = 4 3. S = 9, R = 3

4. S = 22, R = 7 5. S = 19, R = 5 6. S = 18, R = 3

7. S = 29, R = 6

Fig. 1. Global phase portraits of differential system (2)

Theorem 1 is proved in Section 3.
When we perturbed the polynomial differential system (2) with polynomials of degree eight,

we get

ẋ = −y +

6∑
s=1

εs
∑

06i+j68

α
(s)
ij x

iyj ,

ẏ = x+ ax8 + bx4y4 + cy8 +

6∑
s=1

εs
∑

06i+j68

β
(s)
ij x

iyj ,

(3)

where i, j ∈ N. For more information about the averaging theory of higher order see Section 5.
Our second main result is given in the following theorem.
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Theorem 2. The number of limit cycles of the differential system (3) with ε ̸= 0 is

(a) 0 if we use the averaging theory of order 1 or 2,

(b) 1 if we use the averaging theory of order 3 or 4,

(c) 2 if we use the averaging theory of order 5 or 6.

We give the Proof of Theorem 2 in Section 5.

2. Preliminaries
In this section, we give some basic results which are necessary to study the behavior of the

trajectories of a planar differential systems near infinity. Let X(x, y) = (P (x, y), Q(x, y)) rep-
resent a vector field to each system which we are going to study its phase portraits, then for
doing this we use the so called a Poincaré compactification. We consider the Poincaré sphere
S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}, and we define the central projection f : T(0,0,1)S2 −→ S2
(with T(0,0,1)S2 the tangent space of S2 at the point (0, 0, 1) ), such that for each point
q ∈ T(0,0,1)S2, T(0,0,1)S2(q) associaltes the two intersection points of the straight line which con-
nects the point q and (0, 0)). The equator S1 = {(x, y, z) ∈ S2 : z = 0} represent the infinity
points of R2. In summary we get a vector field X ′ defined in S2 \ S1, which is formed by to sym-
metric copies of X , and we prolong it to a vector field p(X) on S2. By studiying the dynamics
of p(X) near S1 we get the dynamics of X at infinity. We need to do the calculations on the
Poincaré sphere near the local charts Ui = {Y ∈ S2 : yi > 0}, and Vi = {Y ∈ S2 : yi < 0} for
i = 1, 2, 3; with the associated diffeomorphisms Fi : Ui −→ R2 and Gi : Vi −→ R2 for i = 1, 2, 3.
After a rescaling in the independent variable in the local chart (U1, F1) the expression for p(X) is

u̇ = vn
[
−uP

(
1

v
,
u

v

)
+Q

(
1

v
,
u

v

)]
, v̇ = −vn+1P

(
1

v
,
u

v

)
;

in the local chart (U2, F2) the expression for p(X) is

u̇ = vn
[
P

(
u

v
,

1

v

)
− uQ

(
u

v
,

1

v

)]
, v̇ = −vn+1Q

(
u

v
,

1

v

)
;

and for the local chart (U3, F3) the expression for p(X) is

u̇ = P (u, v), v̇ = Q(u, v).

3. Study of phase portraits
In what follows we shall study the phase portraits of the polynomial differential system (2)

with (a, b, c) ̸= (0, 0, 0).

Remark 3. System (2) is invariant under the change (t, x, y) → (−t,−x, y). Hence, the phase
portrait of system (2) is symmetric with respect to the x-axis.

Remark 4. System (2) is also invariant under the change

(x, y, t, a, b, c) → (−x, y,−t,−a,−b,−c)
then we only need to study the phase portrait of system (2) when (a = 0, b > 0 and c > 0),
(a = 0, b > 0 and c < 0),( a > 0, b > 0 and c > 0), (a < 0, b > 0 and c = 0), (a > 0, b > 0 and
c < 0), (a > 0, b2 − 4ac = 0, and b < 0) and (a > 0, b2 − 4ac > 0, b < 0 and c > 0).
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3.1. Configurations of singular points

To study the phase portrait of system (2) we identify all the finite singular points and their
local phase portrait. We go through the same steps to study the local phase portrait for the
infinite ones.

3.1.1. Finite singular points

We identify the finite singular points of the generalized kukles polynomial differential system
(2) in the following Proposition.

Proposition 5. The differential system (2) has

(i) Two finite singular points, a center at (0, 0) and a hyperbolic saddle at (− 7
√

1/a, 0), if
a ̸= 0;

(ii) one singular point at (0, 0) wich is a center, if a = 0.

Proof. Clearly when a ̸= 0 the system has two equilibria the origin, with eigenvalues ±i, then we
take into acount the symmetry of system (2) with respect to x-axis, we conclude that the origin
is a center. The second equilibria is (− 7

√
1/a, 0) with eigenvalues ±

√
7. So it is a hyperbolic

saddle.

3.1.2. Infinite singular points

By using the preliminaries given in Section 2 we study the infinite singular points and their
nature in the Poincaré disc.

Proposition 6. In the chart U1 system (2) has

(a) The origin as a linearly zero infinite singular point, and its local phase portrait consists of
four hyperbolic sectors, if a = 0, b > 0 and c > 0;

(b) three infinite singular points, the origin mentioned in the previous case and two saddle-
nodes at

(
± 4
√
−b/c, 0

)
, if a = 0, b > 0 and c < 0;

(c) no singularity, if a > 0, b > 0 and c > 0;

(d) two infinite semi-hyperbolic saddle-nodes,
(
± 4
√
−a/b, 0

)
, if c = 0, b > 0 and a < 0 ;

(e) two infinite semi-hyperbolic saddle-nodes at
(
± 4

√
−b−

√
b2 − 4ac

2c
, 0

)
, if a > 0, b > 0 and

c < 0;

(f) two infinite linearly zero singular points (± 4
√
−2a/b, 0), such that their local phase portraits

consist of two hyperbolic and two parabolic sectors, if a > 0, c > 0, b2 = 4ac and b < 0;

(g) four infinite semi-hyperbolic saddle-nodes,(
± 4

√
−b+

√
b2 − 4ac

2c
, 0

)
, and

(
±

√
b+

√
b2 − 4ac

−2c
, 0

)
,

if a > 0, b2 − 4ac > 0, b < 0 and c > 0.

The origin of the chart U2 is

(h) a hyperbolic node, which is stable if c > 0 and unstable if c < 0;
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(i) a linearly zero singular point, such that its local phase portrait consists of four parabolic
sectors, if c = 0.

Proof. The differential system (2) in the chart U1 is given by

u̇ = a+ bu4 + cu8 + v7 + u2v7,

v̇ = uv8.
(4)

If b > 0, a = 0 and c > 0 system (4) is written as follows

u̇ = bu4 + cu8 + v7 + u2v7,

v̇ = uv8.
(5)

System (2) has one linealrly zero singular point at the origin. Then to study its local phase
portrait we have to do blow-up’s. We take the directional blow-up (u, v) → (u,w) with w = v/u
and by doing the rescaling of the time u3dt = ds we have

u̇ = bu+ cu5 + u4w7 + u6w7,

ẇ = −bw − cu4w − u3w8,
(6)

this system has one hyperbolic saddle at (0, 0), with eigenvalues ±b. Returning through the
change of variables to system (4), we conclude that the local phase portrait at the origin trained
by four hyperbolic sectors.

If a = 0, b = 0 and c > 0, and after taking a rescaling of the time u6dt = ds we get the
following system

u̇ = cu2 + uw7 + u3w7,

ẇ = −cuw − w8.
(7)

System (7) has a linearly zero singular point at the origin. Doing blow- up’s by performing the
directional (u,w) → (u, z) with z = w/u and by doing rescaling of the time udt = ds we get

u̇ = cu+ u7z7 + u9z7,

ż = −2cz − 2u6z8 − u8z8.
(8)

System (8) has one hyperbolic saddle at the origin with eigenvalues c and −2c. Returning through
the change of variables to system (7), we conclude that the local phase portrait at the origin
formed by four hyperbolic sectors.

If b > 0, a = 0 and c = 0 we have the following system

u̇ = bu4 + u7w7 + u9w7,

ẇ = −bu3w − u6w8.
(9)

Doing a change of variable u3dt = ds, we get the following system

u̇ = bu+ u4w7 + u6w7,

ẇ = −bw − u3w8.
(10)

System (10) has one hyperbolic saddle at the origin with eigenvalues b and −b. Returning through
the change of variables, we know that the local phase portrait at the origin of system (4), when
a = 0, b > 0 and c = 0, consists of four hyperbolic sectors. Then the statement (a) holds.

If b > 0, a = 0 and c < 0 system (6) has in addition to the origin (the same case in
satement (a)) two infinite semi-hyperbolic singular points, namely (± 4

√
−b/c, 0), with eigenvalues
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±4b 4
√
−b3/c3 and 0. Applying Theorem 2.19 of [4] we know that these points are saddle-nodes.

Then statement (b) holds.

If a > 0, b > 0 and c > 0 system (4) has no singular point.

If c = 0, b > 0 and a < 0 system (4) becomes

u̇ = a+ bu4 + v7 + u2v7,

v̇ = uv8,
(11)

this system has two semi-hyperbolic singular points, (± 4
√
−a/b, 0) with eigenvalues λ1 =

= ±4b(−a3/b3)(1/4) and λ2 = 0. We perform the translation u = z± (−a/b)(1/4) to system (11).
Applying Theorem 2.19 of [4] we know that the points are saddle-nodes. Then (d) is proved.

If a > 0, c > 0, b2 = 4ac, and b < 0 we get the following system

u̇ = (2a+ bu4)2/(4a) + (1 + u2)v7,

v̇ = uv8.
(12)

This system has two singular points (± 4
√

(−2a)/b, 0) which are linearly zero. We study at first
the point ( 4

√
(−2a)/b, 0) after performing the translation u = z + 4

√
(−2a)/b. Doing blow-up’s

by taking the directional (z, v) → (z, w) with w = v/z, and eleminating the common factor z
between ż and ẇ, we get the following differential system

ż = − 8bz

√
−2a

b
− 24(

−2a

b
)

1
4 bz2 − 34bz3 +

1

a
14(−2a/b)

3
4 b2z4

+
7

a

√
−2a

b
b2z5 +

2
5
4

a
(
−a
b

)
1
4 b2z6 + w7z6 +

√
−2a

b
w7z6

+ w7z8 +
b2z7

4a
+ 2

5
4 (

−a
b

)
1
4w7z7,

ẇ = 8

√
−2a

b
bw + 24(

−2a

b
)

1
4 bwz + 34bwz2 − 14

a
(
−2a

b
)

3
4 b2wz3

− 7

a

√
−2a

b
b2wz4 − 2

a
(−2a/b)

1
4 b2wz5 − w8z5 −

√
−2a

b
w8z5

− b2wz6

4a
− (

−2a

b
)

1
4w8z6.

(13)

For z = 0, system (13) has one hyperbolic saddle at the origin with eigenvalues −8
√

2b
√

(−a/b)
and 8

√
2b
√

(−a/b). Going back through the change of variables to system (12), we conclude that
the local phase portrait at the singular point ( 4

√
(−2a)/b, 0) formed by two hyperbolic and two

parabolic sectors. We get the same local phase portrait for the singular point (− 4
√

(−2a)/b, 0)

as the singular point ( 4
√

(−2a)/b, 0).

If a > 0, b2 − 4ac > 0, b < 0 and c > 0 system (4) has four semi-hyperbolic singular

points,
(
± 4

√
(−b+

√
b2 − 4ac)/2c, 0

)
, with eigenvalues λ1 = 2

5
4 (b2 − 4ac)

1
4

(−b−√
b2 − 4ac

c

) 3
4

and λ2 = 0, and the points
(
± 4

√
(−b−

√
b2 − 4ac)/2c, 0

)
, with eigenvalues λ1 = −2

5
4 (b2−

−4ac)(1/4)
(−b−√

b2 − 4ac

c

) 3
4

and λ2 = 0. Hence the four singular points are semi-hyperbolic.
After transforming these points to the origin we apply Theorem 2.19 of [4] we know that these
points are saddle-nodes.
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In the chart U2 the differential system (2) becomes

u̇ = −cu− bu3 − v3 − au5 − u2v3,

v̇ = −cv − buv − au4v − bu2v − uv4.
(14)

If c ̸= 0 the origin is a hyperbolic node of system (14), with eigenvalues −c and −c, then it is
stable if c > 0 and unstable if c < 0. So statement (e) holds.

If c = 0, system (14) becomes

u̇ = −bu3 − v3 − au5 − u2v3,

v̇ = −buv − au4v − bu2v − uv4.
(15)

The origin is a linearly zero singular point of the differential system (15). We have to do blow-
up’s to know the local phase portrait at this point. We take the directional blow-up w = v/u,
and by doing the rescaling udt = ds and we get the system

u̇ = −bu2 − au4 − u2w3 − u4w3,

ẇ = −bw + uw4.
(16)

When u = 0; the origin is the only singular point of system (16), with eigenvalues 0 and −b.
Then, it is a semi-hyperbolic singular point. By using Theorem 2.19 of [4] we conclude that the
origin is a saddle-node. Going back through the change of variables to system (15), we know
that its local phase portrait formed by four parabolic sectors.

4. Phase portraits on the Poincaré disc
Taking into account the results on the finite and infinite singular points given in Subsections

3.1.1 and 3.1.2, respectively, we shall obtain the different phase portraits of the system (2) that
we describe in what follows.

Theorem 7. The phase portraits in the Poincaré disc of the two compactified polynomial differ-
ential systems p(X ) and p(Y) are topologically equivalent if and only if their separatrix configu-
rations S(p(X )) and S(p(Y)) are topologically equivalent.

Case 1. When a = 0, b > 0 and c > 0 system (2) has one finite singular point, a center at
(0, 0). And from statement (a) of Proposition 6 we know that in the chart U1 the system has one
singular point at (0, 0) wich is linearly zero and its local phase portrait consists of four hyperbolic
sectors. From statement (h) of Proposition 6, the origin of U2 is a hyperbolic stable node. So,
the phase portrait of system (2) is given by Fig. 1 (1), and its immediate that S = 10 and R = 2.
Case 2. When a = 0, b > 0 and c < 0 system (2) has one finite singular point at the origin of
coodrinates, wich is a center. From statement (b) of Proposition 6 and in the local chart U1 the
system has three infinite singular points, a linearly zero singularity at the origin such that its
local phase portrait consists of four hyperbolic sectors, and two semi-hyperbolic saddle-nodes.
In U2 and from statement (h) of Proposition 6, the origin is a hyperbolic unstable node. Then,
the phase portrait in this case is topologically equivalent to Fig. 1 (2), and its immediate that
S = 20 and R = 4.
Case 3. When a > 0, b > 0 and c > 0 system (2) has two finite singular points, a center at
(0, 0) and a hyperbolic saddle at (− 7

√
1/a, 0). From statement (c) of Proposition 6 the system

has no singular points in the local chart U1. In U2 and from statement (h) of Proposition 6,
the origin is a hyperbolic stable node if c > 0, and from statement (i) of the same proposition
the origin is a linearly zero singular point and its local phase portrait formed by four parabolic
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sectors if c = 0. So, in this case the phase portrait is topologically equivalent to Fig. 1 (3), and
its immediate that S = 9 and R = 3.

Case 4. When a < 0, b > 0 and c = 0, this case and the following cases 5, 6 and 7 have the same
finite singularities as the case 3. From statement (d) of Proposition 6 the system has two infinite
semi-hyperbolic saddle-nodes in the local chart U1. In U2 and from statement (i) of Proposition
6, the origin is a linearly zero singular point with local phase portrait formed by four parabolic
sectors. Therefore in this case, the phase portrait of system (2) is topologically equivalent to the
Fig. 1 (4), and its immediate that S = 22 and R = 7.

Case 5. When a > 0, b > 0 and c < 0 system (2) and from statement (e) of Proposition 6
we obtain that the system has two infinite semi-hyperbolic saddle-nodes in the local chart U1.
The origin of the chart U2 is a hyperbolic unstable node. So, the phase portrait of system (2) is
topologically equivalent to Fig. 1 (5), and its immediate that S = 19 and R = 5.

Case 6. When a > 0, b2 = 4ac and b < 0 and from statement (f) of Proposition 6 the
system has two infinite linearly zero singular points in the local chart U1 and their local phase
portraits consist of two hyperbolic and two parabolic sectors. In U2 and from statement (h)
of Proposition 6, the origin is a hyperbolic unstable node. Then, we conclude that the phase
portrait of system (2) is topologically equivalent to Fig. 1 (6), and its immediate that S = 18
and R = 3.

Case 7. When a > 0, b2 − 4ac > 0, b < 0 and c > 0 and from statement (g) of Proposition 6 we
obtain that the system has four infinite semi-hyperbolic saddle-nodes in the local chart U1. In
U2 and from statement (h) of Proposition 6, the origin is a hyperbolic unstable node. Therefore
in this case, the phase portrait of system (2) is topologically equivalent to the Fig. 1 (7), and its
immediate that S = 29 and R = 6.

To know the number of zeros of a real polynomial, we are going to use the following Theorem.

Descartes Theorem. Consider the real polynomial p(x) = ai1x
i1 + ai2x

i2 + · · · + airx
ir with

0 6 i1 < i2 < · · · < ir and aij ̸= 0 real constants for j ∈ {1, 2, · · · , r}. When aijaij+1
< 0, we

say that aij and aij+1
have a variation of sign. If the number of variations of signs is m, then

p(x) has at most m positive real roots. Moreover, it is always possible to choose the coefficients
of p(x) in such a way that p(x) has exactly r − 1 positive real roots.

5. Proof of Theorem 2

Consider system (2), we shall study which periodic solutions of the center become limit cycles
when we perturb the center inside the class of polynomial differential systems of degree 8. This
study will be done by applying the averaging theory, we work as follows.

Before doing the scaling x = εX, y = εY , with ε is a small parameter we get a new differential
system (Ẋ, Ẏ ). After we perform the polar change of coordinates X = r cos θ, Y = r sin θ, then
we get a differential system (ṙ, θ̇). We take the independent variable the angle θ we get the
differential equation dr/dθ, and by doing a Taylor expansion up to 6-th order in ε we obtain the
differential equation

r′ =
dr

dθ
=

6∑
i=0

εiFi(θ, r) +O(ε7). (17)

The functions Fi(θ, r) i = 1, . . . , 6 of the differential system (17) are analytic, and since the
independent variable θ appears through the sinus and cosinus of θ, they are 2π-periodic. Hence
the assumptions for applying the averaging theory given in [8] are satisfied.

To know how the averaging theory for differential equation works we advice the lecture to
see [8].
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We give only the expression of the function F1(r, θ). The explicit expression of Fi(r, θ) with
i = 2, . . . , 6 is quite large so we omit them.

The functions Fi(θ, r) i = 1, . . . , 6 and R(t, x, ε) of system (17) are analytic, and since the
variable appears through sinus and cosinus of θ, they are 2π-periodic. Hence the assumptions of
Theorem 10 are satisfied.

The expression of F1(r, θ) is

F1(r, θ) = +β
(2)
00 sin θ +

r

2
(α

(1)
10 + β

(1)
01 + (α

(1)
10 − β

(1)
01 ) cos 2θ + (α

(1)
01 + β

(1)
10 ) sin 2θ).

Using the formulas given in section 4.1 of [8] the averaged function of first order is

f1(r) = (α
(1)
10 + β

(1)
01 )r.

Clearly equation f1(r) = 0 has no positive zeros. Thus the averaging method of first order does
not provide limit cycles.

We put α(1)
10 = −β(1)

01 we obtain f1(r) ≡ 0. We apply the averaging theory of second order,
we get the averaging function of second order.

f2(r) = (α
(2)
10 + β

(2)
01 )r.

We see that the equation f2(r) = 0 has no positive zeros, it follows that there is no limit cycle
by applying the averaging theory of second order.

To apply the averaging method of third order we must put α(2)
10 = −β(2)

01 , and we get f2(r) ≡ 0.
The third averaging function is

f3(r) = −(β
(1)
11 β

(2)
00 − β

(3)
01 + 2β

(2)
00 α

(1)
20 − 2β

(1)
02 α

(2)
00 − α

(1)
11 α

(2)
00 − α

(3)
10 )r

+(1/4)(3β
(1)
03 + β

(1)
21 + 3α

(1)
30 + α

(1)
12 )r3.

So, f3(r) can have at most one positive real root. Then we have the proof of the theorem for
k = 3.

To apply the averaging method of fourth order, we need to have f3(r) ≡ 0, for that we set
α
(3)
10 = β

(1)
11 β

(2)
00 − β

(3)
01 + 2β

(2)
00 α

(1)
20 − 2β

(1)
02 α

(2)
00 − α

(1)
11 α

(2)
00 and α

(1)
12 = −(3β

(1)
03 + β

(1)
21 + 3α

(1)
30 ).

The averaging function of fourth order is

f4(r) = r(A1 +A2r
2),

where

A1 =
(
β
(1)
10 β

(1)
11 β

(2)
00 + 2β

(1)
01 β

(1)
02 β

(2)
00 − β

(2)
00 β

(2)
11 − β

(1)
11 β

(3)
00 + 2β

(1)
10 β

(2)
00 a

(1)
20 − 2β

(3)
00 α

(1)
20

+β
(1)
01 β

(2)
00 α

(1)
11 − β

(1)
01 β

(1)
11 α

(2)
00 + 2β

(2)
02 α

(2)
00 + 2β

(1)
02 α

(1)
01 α

(2)
00 − 2β

(1)
01 α

(1)
20 α

(2)
00

+α
(1)
01 α

(1)
11 α

(2)
00 − 2β

(2)
00 α

(2)
20 + α

(2)
00 α

(2)
11 + 2β

(1)
02 α

(3)
00 + α

(1)
11 α

(3)
00 + α

(4)
10 + β

(4)
01

)
.

A2 =
−1

4

(
β
(1)
20 β

(1)
11 + β

(1)
11 β

(1)
02 + β

(1)
10 β

(1)
21 + 2β

(1)
01 β

(1)
12 − 3β

(2)
03 − β

(2)
21 + β

(1)
21 α

(1)
01

−α(1)
20 α

(1)
11 − 2β

(1)
02 α

(1)
02 − α

(1)
11 α

(1)
02 + 2β

(1)
01 α

(1)
21 + 3β

(1)
10 α

(1)
30 + 3α

(1)
01 α

(1)
30

−3α
(2)
30 + 2β

(1)
20 α

(1)
20 − α

(2)
12

)
.
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According to the expression of the function f4 we conclude that we can get at most one limit
cycle.

Solving A1 = 0 and A2 = 0 we obtain f4(r) ≡ 0, so we can apply the averaging theory of
order 5, and its corresponding averaging function is f5(r) = r(B1 +B2r

2 +B3r
4).

The explicit expression of Bi, with i = 1, 2, 3 is quite large so we omit them.
The rank of the largest square matrix of the Jacobian matrix B = (B1, B2, B3) is 3. Then the

coefficients B1, B2 and B3 are linearly independent in their variables. By the Descartes Theorem
(or by the roots of a quadratic polynomial in the variable r2) it follows that we can get at most
two positive real roots of f5(r). So statement (c) holds. Solving B1 = 0, B2 = 0 and B3 = 0 we
obtain f5(r) ≡ 0.

Now if we apply the averaging method of sixth order we get

f6(r) =
(
K1 +K2r

2 +K3r
4
)
r.

In this case and for the same reason as the previous one we will not give the explicit expression
of Ki, with i = 1, 2, 3 because it is quite large.

The rank of the Jacobian matrix K = (K1,K2,K3) with respect to its variables is 3. We have
three of the coefficients Ki, i = 1, 2, 3 which are linearly independent in their variables. Therefore
by Descartes Theorem, it follows that f6(r) = 0 can has 2 positive real solutions. Consequently,
the differential system (2) has at least 2 limit cycles. This ends the proof of the theorem.
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[15] H.Żo la̧dek, Remarks on: The classification of reversible cubic systems with center, Topol.
Methods Nonlinear Anal., 8(1996), 335–342.

Центры и предельные циклы
обобщенно-дифференциальных полиномиальных систем
Куклеса: фазовые портреты и предельные циклы

Ахлам Белфар
Ребиха Бентерки

Математический факультет
Университет Мохаммеда Эль Бачира Эль Ибрахими

Эль Анассер, Алжир

Аннотация. В этой работе мы даем семь глобальных фазовых портретов в диске Пуанкаре диф-
ференциальной системы Куклеса, заданной как

ẋ = −y,
ẏ = x+ ax8 + bx4y4 + cy8,

где x, y ∈ R, a, b, c ∈ R и a2 + b2 + c2 ̸= 0.
Кроме того, мы возмущаем эту систему внутри всех классов многочленов восьмой степени, а

затем используем теорию усреднения до шестой степени для изучения числа предельных циклов,
которые могут раздвоиться от начала координат дифференциальной системы Куклеса.

Ключевые слова: предельный цикл, обобщенная дифференциальная система Куклеса, метод
усреднения, фазовый портрет.
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Introduction

The problem of constructing and analyzing cubature formulas that are exact for a given set
of functions was earlier considered primarily as applied to the computation of integrals exact
for algebraic and trigonometric polynomials. For example, the approximate integration formulas
of algebraic accuracy can be found in [1, 2]. The cubature formulas exact for trigonometric
polynomials in particular were studied in [3–7].

The approximate integration formulas exact for the system of Haar functions can be found in
the monograph [8]. The accuracy of approximate integration formulas for finite Haar sums was
used in [8] to derive error estimates for these formulas.

A description of all minimal weighted quadrature formulas possessing the Haar d-property,
i.e., formulas exact for Haar functions of groups with indices not exceeding a given number d, was
given in [9]. The error estimates for quadrature formulas possessing the Haar d-property in the
case of the weight function g(x) ≡ 1 were obtained in [10]. In particular, in the mentioned paper
the upper estimate for the norm of the error functional ∥δN∥S∗

p
was found for the quadrature

formulas having the Haar d-property:

∥δN∥S∗
p
6 (2d)

− 1
p ,

and the lower estimate for the norm of the error functional ∥δN∥S∗
p

was obtained for the quadra-
ture formulas exact for constants:

∥δN∥S∗
p
> 2−

1
pN− 1

p .

The problem of constructing cubature formulas possessing the Haar d-property, i.e., formulas
exact for Haar polynomials of degree at most d, was solved in the two-dimensional case in

∗kkirillow@yandex.ru https://orcid.org/0000-0002-3763-1303
c⃝ Siberian Federal University. All rights reserved
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[11–15] under the condition that the weight function g(x1, x2) ≡ 1. The error estimates for these
cubature formulas was derived in [16]. In particular, in [16] the upper estimate for the norm of
the error functional ∥δN∥S∗

p
was obtained for the mentioned cubature formulas:

∥δN∥S∗
p
6 2

1
p (2d)

− 1
p .

In the present paper the error estimates of cubature formulas with arbitrary positive coeffi-
cients at the nodes, similar to the estimates given above for the one- and two-dimensional cases,
are derived in the n-dimensional case. As a result, we find the upper estimates for the error
functional δN of the cubature formulas possessing the Haar d-property:

|δN [f ]| 6 2
n−1
p
(
2d
)− 1

p ∥f∥Sp
, ∥δN∥S∗

p
6 2

n−1
p
(
2d
)− 1

p ,

and we obtain the lower estimate for the norm of the error functional ∥δN∥S∗
p

for the cubature
formulas exact for any constant:

∥δN∥S∗
p
>
(
2n+1 − n− 1

)− 1
p N− 1

p .

1. Basic definitions

In this paper, we use the original definition of the functions χm,j(x) introduced by
A.Haar [17].

The binary intervals of rank m are the intervals lm,1 =

[
0,

1

2m−1

)
, lm,2m−1 =

(
2m−1 − 1

2m−1
, 1

]
,

m = 2, 3, . . . , and lm,j =

(
j − 1

2m−1
,

j

2m−1

)
, m = 3, 4, . . . , j = 2, . . . , 2m−1−1. By a binary interval

of the 1st rank we will consider the interval l1,1 = [0, 1]. The binary segments of rank m are the

closed intervals lm,j =

[
j − 1

2m−1
,

j

2m−1

]
, m = 1, 2, . . . , j = 1, . . . , 2m−1.

The left and right halves of lm,j (without its midpoint) are denoted by l−m,j and l+m,j , respec-
tively. Obviously, l−m,j = lm+1,2j−1, l+m,j = lm+1,2j .

In [17], the Haar functions χm,j(x) are defined by:

χm,j(x) =


2

m−1
2 , x ∈ l−m,j ,

−2
m−1

2 , x ∈ l+m,j ,

0, x ∈ [0, 1] \ lm,j ,{
χm,j(x− 0) + χm,j(x+ 0)

}
/2, x is an interior discontinuity point,

(1)

m = 1, 2, . . . , j = 1, . . . , 2m−1.
Thus, the Haar system of functions is constructed in groups: the mth group contains 2m−1

functions {χm,j(x)}, where m = 1, 2, . . . , j = 1, . . . , 2m−1. The Haar system of functions
includes the function χ1(x) ≡ 1 too, which is outside of any group.

In the one-dimensional case, the Haar polynomials of degree d are by definition the functions

Pd(x) = a0 +

d∑
m=1

2m−1∑
j=1

a(j)m χm,j(x),
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where d = 1, 2, . . . , a0, a
(j)
m ∈ R, m = 1, . . . , d, j = 1, . . . , 2m−1, and

2d−1∑
j=1

{
a
(j)
d

}2 ̸= 0.

By the 0-degree Haar polynomials we will consider real constants.
In the n-dimensional case, the Haar polynomials of degree d are the functions

Pd(x1, . . . , xn) = a0+

+

n∑
s=1

∑
16i1<...<is6n

∑
m1+...+ms6d

2m1−1∑
j1=1

. . .

2ms−1∑
js=1

a(j1,...,js)m1,...,ms
(i1, . . . , is)χm1,j1(xi1) . . . χms,js(xis),

where d = 1, 2, . . . , a0, a
(j1,...,js)
m1,...,ms(i1, . . . , is) ∈ R, 1 6 i1 < . . . < is 6 n, m1 + . . . + ms 6 d,

s = 1, . . . , n, jk = 1, . . . , 2mk−1, k = 1, . . . , s, and

n∑
s=1

∑
16i1<...<is6n

∑
m1+...+ms=d

2m1−1∑
j1=1

. . .

2ms−1∑
js=1

{
a(j1,...,js)m1,...,ms

(i1, . . . , is)
}2

̸= 0.

The same way as in the one-dimensional case, by 0-degree Haar polynomials we will consider
real constants.

Consider the following cubature formula

I [f ] =

∫ 1

0

. . .

∫ 1

0

f(x1, . . . , xn) dx1 . . . dxn ≈
N∑

k=1

Ckf
(
x
(k)
1 , . . . , x(k)n

)
= QN [f ] , (2)

where
(
x
(k)
1 , . . . , x

(k)
n

)
∈ [0, 1]n are the nodes, the coefficients Ck at the nodes are real,

k = 1, . . . , N .
The cubature formula (2) is said to possess the Haar d–property (or just the d-property) if it

is exact for any Haar polynomial P (x1, . . . , xn) of degree at most d, i. e., QN [P ] = I[P ]. Such a
formula with the least possible number of nodes is called a minimal cubature formula with the
d-property.

We recall the definition of the linear normed space Sp in the n-dimensional case introduced
by I. M. Sobol’ [8].

Let p be a fixed number with 1 6 p < +∞. The set of functions f(x1, . . . , xn) defined in the
unit n-dimensional cube [0, 1]n and representable as a Fourier–Haar series

f(x1, . . . , xn) = c0+

+

n∑
s=1

∑
16i1<...<is6n

∞∑
m1=1

. . .

∞∑
ms=1

2m1−1∑
j1=1

. . .

2ms−1∑
js=1

c(j1,...,js)m1,...,ms
(i1, . . . , is)χm1,j1(xi1) . . . χms,js(xis)

(3)

with real coefficients c0, c
(j1,...,js)
m1,...,ms(i1, . . . , is) (1 6 i1 < . . . < is 6 n, m1, . . . ,ms = 1, 2, . . . ,

s = 1, . . . , n, jk = 1, . . . , 2mk−1, k = 1, . . . , s) satisfying the conditions

A(i1,...,is)
p (f) =

=

∞∑
m1=1

. . .

∞∑
ms=1

2
m1−1

2 +...+ms−1
2

{
2m1−1∑
j1=1

. . .

2ms−1∑
js=1

∣∣c(j1,...,js)m1,...,ms
(i1, . . . , is)

∣∣p} 1
p

6 Ai1,...,is ,
(4)
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(where Ai1,...,is are real constants, 1 6 i1 < . . . < is 6 n, 1 6 s 6 n) is called the class
Sp(A1, . . . , An, . . . , Ai1,...,is . . . , A1,...,n).

It was proved in [8] that the set of functions f(x1, . . . , xn) belonging to all the classes
Sp(A1, . . . , An, . . . , Ai1,...,is . . . , A1,...,n) (with all possible A1, . . . , An, . . . , Ai1,...,is , . . . , A1,...,n,
while p being fixed) equipped with the norm

∥f∥Sp
=

n∑
s=1

∑
16i1<...<is6n

A(i1,...,is)
p (f), (5)

forms a linear normed space, which is denoted by Sp. All the functions f(x1, . . . , xn) that differ
by constant terms are regarded as a single function.

The coefficients c0, c
(j1,...,js)
m1,...,ms(i1, . . . , is) (1 6 i1 < . . . < is 6 n, m1, . . . ,ms = 1, 2, . . . ,

s = 1, . . . , n, jk = 1, . . . , 2mk−1, k = 1, . . . , s) in the representation of the function f(x1, . . . , xn)

as a series (3) are called the Fourier–Haar coefficients of this function.
In [8] it was proved that the series (3) converges absolutely and uniformly.

2. Derivation of estimates for the norm of the error functional
of cubature formulas in Sp

Let (2) be a cubature formula with the coefficients Ck at the nodes satisfying the inequalities
Ck > 0, k = 1, 2, . . . , N. We denote the error functional of the cubature formula (2) by δN [f ] so
that

δN [f ] = I [f ] −QN [f ] =

∫ 1

0

. . .

∫ 1

0

f(x1, . . . , xn) dx1 . . . dxn −
N∑

k=1

Ckf
(
x
(k)
1 , . . . , x(k)n

)
, (6)

where the function f ∈ Sp, p > 1. It was shown in [8] that any such function is contin-
uous at all points which coordinates are not binary rational numbers. Hence the integral
1∫
0

. . .
1∫
0

f(x1, . . . , xn) dx1 . . . dxn exists not only in the Lebesgue sense, but also in the Riemann
sense.

Let

Σ(i1,...,is)
m1,...,ms

(q) = 2−
m1−1

2 −...−ms−1
2


2m1−1∑
j1=1

. . .

2ms−1∑
js=1

∣∣∣∣∣
N∑

k=1

Ck χm1,j1

(
x
(k)
i1

)
. . . χms,js

(
x
(k)
is

)∣∣∣∣∣
q


1
q

, (7)

where q > 1, 1 6 i1 < . . . < is 6 n, m1, . . . ,ms = 1, 2, . . . , s = 1, . . . , n.

Lemma 1. If the cubature formula (2) is exact for any constant and f ∈ Sp, then for the absolute
value of the error functional satisfies the inequality

∣∣δN [f ]
∣∣ 6 n∑

s=1

∑
16i1<...<is6n

∞∑
m1=1

. . .

∞∑
ms=1

{
2

m1−1
2 +...+ms−1

2 ×

×

[
2m1−1∑
j1=1

. . .

2ms−1∑
js=1

∣∣∣c(j1,...,js)m1,...,ms
(i1, . . . , is)

∣∣∣p] 1
p

Σ(i1,...,is)
m1,...,ms

(q)

}
.

(8)

Proof. The series (3) is substituted into (6). Since the series (3) converges uniformly and
since the cubature formula (2) is exact for any constant, we have:
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δN [f ] = −
n∑

s=1

∑
16i1<...<is6n

∞∑
m1=1

. . .
∞∑

ms=1

2m1−1∑
j1=1

. . .

2ms−1∑
js=1

{
c(j1,...,js)m1,...,ms

(i1, . . . , is)×

×
N∑

k=1

Ckχm1,j1

(
x
(k)
i1

)
. . . χms,js

(
x
(k)
is

)}
.

(9)

Since the series in (3) is absolutely convergent, it follows that the series in (9) also absolutely
converges. Applying the triangle inequality to the expression on the right-hand side of (9), we
obtain:

∣∣δN [f ]
∣∣ 6 n∑

s=1

∑
16i1<...<is6n

∞∑
m1=1

. . .

∞∑
ms=1

2m1−1∑
j1=1

. . .

2ms−1∑
js=1

∣∣∣∣c(j1,...,js)m1,...,ms
(i1, . . . , is)×

×
N∑

k=1

Ckχm1,j1

(
x
(k)
i1

)
. . . χms,js

(
x
(k)
is

)∣∣∣∣.
(10)

Now we apply the Hölder inequality to the sums over j1, . . . , js on the right-hand side of (10).
Taking into account (7), we obtain the inequality (8). 2

It was shown in [9] that there exist Haar polynomials of one variable of degree m that satisfy
the equality:

κm,j(x) =


2m, x ∈ lm+1,j ,

2m−1, x ∈ lm+1,j \ lm+1,j ,

0, x ∈ [0, 1] \ lm+1,j ,

(11)

where m = 1, 2, . . . and j = 1, 2, . . . , 2m. It was also proved in [9] that the functions
κm,1(x), . . . , κm,2m(x) form a basis in the linear space of Haar polynomials of degree at most
m.

The definition of the Haar functions (1) and relation (11) imply the following equalities:

χm,j(xi) = 2−
m+1

2

[
κm,2j−1(xi) − κm,2j(xi)

]
, (12)

κm,2j−1(xi) + κm,2j(xi) = 2κm−1,j(xi), (13)

i = 1, . . . , n, m = 1, 2, . . . , j = 1, . . . , 2m−1.
Let

K(j1,...,js)
m1,...,ms

(xi1 , . . . , xis) = κm1,j1(xi1) . . . κms,js(xis), (14)

1 6 i1 < . . . < is 6 n, m1, . . . ,ms = 1, 2, . . . , s = 1, . . . , n, jr = 1, . . . , 2mr−1, r = 1, . . . , s.

Lemma 2. For any ordered set (i1, . . . , is), 1 6 i1 < . . . < is 6 n, 1 6 s 6 n, and for any
positive integer M there exists at least one ordered set (M1, . . . ,Ms) satisfying the inequality
M1 + . . .+Ms >M such that

Σ
(i1,...,is)
M1,...,Ms

(q) = sup
m1+...+ms>M

Σ(i1,...,is)
m1,...,ms

(q). (15)

Proof. For a fixed positive integer M , we choose (m̃1, . . . , m̃s) in accordance with condition
that the sum m1 + . . .+ms is minimum among all ordered sets (m1, . . . ,ms) such that m1 + . . .+

+ms > M and each of the closed s-dimensional binary parallelepipeds lm1+1,j1 × . . . × lms+1,js

contains at most one node of the cubature formula (2).
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If the coordinates of the nodes of the cubature formula (2) x(k)ir
/∈ {2−m̃r (2jr − 1) : jr =

= 1, . . . , 2m̃r−1}, k = 1, . . . , N , then we set m̂r = m̃r. Otherwise, we set m̂r = 1+max
{
mr ∈ N :

there exists x(K)
r = 2−mr (2j

(K)
r − 1), 1 6 j

(K)
r 6 2mr−1, 1 6 K 6 N

}
, r = 1, . . . , s.

Then, for all ordered sets (m1, . . . ,ms) such that m1 + . . .+ms > m̂1 + . . .+m̂s the following
three conditions are satisfied:

– the inequality m1 + . . .+ms >M holds;
– each of the closed s-dimensional binary parallelepipeds lm1+1,j1 × . . . × lms+1,js contains

at most one node of the cubature formula (2);
– the coordinates of every node of the cubature formula (2) differ from the points

{2−mr (2jr − 1)} = supp {κmr,2jr−1} ∩ supp {κmr,2jr}, jr = 1, . . . , 2mr−1, r = 1, . . . , s.
By virtue of (7), (12), we have:

Σ
(i1,...,is)
m̂1,...,m̂s

(q) = 2−m̂1−...−m̂s

{
2m̂1−1∑
j1=1

. . .
2m̂s−1∑
js=1

∣∣∣∣ N∑
k=1

Ck×

×
[
κm̂1,2j1−1

(
x
(k)
i1

)
− κm̂1,2j1

(
x
(k)
i1

)]
. . .
[
κm̂s,2js−1

(
x
(k)
is

)
− κm̂s,2js

(
x
(k)
is

)]∣∣∣∣q
} 1

q

,

(16)

1 6 i1 < . . . < is 6 n, 1 6 s 6 n.

According to the choice of (m̂1, . . . , m̂s), the coordinates

x
(k)
i1
, . . . , x

(k)
is

(k = 1, . . . , N) (17)

of every node of the cubature formula (2) differ from the points
{

2−m̂r (2jr − 1)
}

=

= supp {κm̂r,2jr−1} ∩ supp {κm̂r,2jr}, jr = 1, . . . , 2mr−1, r = 1, . . . , s, and each of the closed
s-dimensional binary parallelepipeds

lm̂1+1,j1 × . . .× lm̂s+1,js (18)

contains at most one node of the cubature formula (2) (by this fact every binary segment
lm̂r+1,jr = supp {κm̂r,jr} contains a projection at most one of node of the cubature formula),
jr = 1, . . . , 2mr , r = 1, . . . , s. Then the equality (16) can be rewritten as

Σ
(i1,...,is)
m̂1,...,m̂s

(q) = 2−m̂1−...−m̂s

{
2m̂1∑
j1=1

. . .
2m̂s∑
js=1

[
N∑

k=1

Ckκm̂1,j1

(
x
(k)
i1

)
. . . κm̂s,js

(
x
(k)
is

)]q} 1
q

=

= 2−m̂1−...−m̂s

{
N∑

k=1

2m̂1∑
j1=1

. . .
2m̂s∑
js=1

[
Ckκm̂1,j1

(
x
(k)
i1

)
. . . κm̂s,js

(
x
(k)
is

)]q} 1
q

,

(19)

1 6 i1 < . . . < is 6 n, 1 6 s 6 n. Here we use the fact that the sum

N∑
k=1

Ckκm̂1,j1

(
x
(k)
i1

)
. . . κm̂s,js

(
x
(k)
is

)
contains at most one nonzero term for any ordered set (j1, . . . , js).

Consider the coordinates (17) of nodes of the cubature formula (2) satisfying the equality

x
(k)
ir

= 2−m̂rjr, 1 6 jr 6 2m̂r , 1 6 r 6 s. (20)

The following (s+ 1) cases are possible for the quantity of such coordinates of the nodes.

– 403 –



Kirill A. Kirillov On Error Estimates in Sp for Cubature Formulas Exact for Haar Polynomials

1. Equality (20) does not hold for any of the coordinates (17) of the nodes (for definiteness,
the numbers of such nodes are denoted by k = 1, . . . , N1).

2. Only one coordinate in (17) satisfies equality (20) (let k = N1 + 1, . . . , N2 be the numbers
of nodes whose coordinates satisfy this condition).

3. Exactly two coordinates in (17) satisfy equality (20) (to be specific, we assume that the
coordinates of the nodes with numbers k = N2 + 1, . . . , N3 obey this condition).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s+ 1. Equality (20) holds for all s coordinates (17) (let k = Ns + 1, . . . , N be the numbers of
nodes whose coordinates satisfy this condition).

Moreover, each of the nodes with the numbers k = Nr+1, . . . , Nr+1 belongs to exact 2r closed
s-dimensional binary parallelepipeds of the form (18), where r = 0, 1, . . . , s, N0 = 0, Ns+1 = N .

Given the above, as well as the equality (11), the relation (19) can be rewritten as

Σ
(i1,...,is)
m̂1,...,m̂s

(q) = 2−m̂1−...−m̂s

[
N1∑
k=1

(
2m̂1+...+m̂sCk

)q
+ 2

N2∑
k=N1+1

(
2m̂1+...+m̂s−1Ck

)q
+

+ 4
N3∑

k=N2+1

(
2m̂1+...+m̂s−2Ck

)q
+ . . .+ 2s

N∑
k=Ns+1

(
2m̂1+...+m̂s−sCk

)q] 1
q

=

=

[
N1∑
k=1

Ck
q + 21−q

N2∑
k=N1+1

Ck
q + 22(1−q)

N3∑
k=N2+1

Ck
q + . . .+ 2s(1−q)

N∑
k=Ns+1

Ck
q

] 1
q

,

(21)

1 6 i1 < . . . < is 6 n, 1 6 s 6 n.

Since this reasoning holds not only for (m̂1, . . . , m̂s), but also for any ordered set (m1, . . . ,ms)

such that m1 + . . . + ms > m̂1 + . . . + m̂s it is true that the value Σ
(i1,...,is)
m1,...,ms(q) does

not depend on m1, . . . ,ms for all (m1, . . . ,ms) satisfying the inequality m1 + . . . + ms >
> m̂1+. . .+m̂s. Therefore, sup

m1+...+ms>M
in the equality (15) reduces to max

M6m1+...+ms6m̂1+...+m̂s

,

whence we obtain the assertion of the lemma. 2

Let q be a number related to p by
1

p
+

1

q
= 1. (22)

Let us prove the following theorem.

Theorem 1. If the cubature formula (2) is exact for any constant, then its error functional
satisfy the following relations:

|δN [f ]| 6 ∥f∥Sp
sup

m1,...,ms∈N
Σ(i1,...,is)

m1,...,ms
(q), f ∈ Sp, (23)

∥δN∥S∗
p

= sup
m1,...,ms∈N

Σ(i1,...,is)
m1,...,ms

(q). (24)

If the cubature formula (2) possesses the Haar d-property, then

|δN [f ]| 6 ∥f∥Sp
sup

m1+...+ms>d
Σ(i1,...,is)

m1,...,ms
(q), f ∈ Sp, (25)

∥δN∥S∗
p

= sup
m1+...+ms>d

Σ(i1,...,is)
m1,...,ms

(q). (26)
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Proof. Let the cubature formula (2) be exact for any constant. By virtue of (4), (5), the
inequality (23) follows from (8). Using (23), we obtain:

∥δN∥S∗
p
6 sup

m1,...,ms∈N
Σ(i1,...,is)

m1,...,ms
(q).

In order to establish that this inequality can not be improved, we use the technique applied in [8].
For M = s, we fix the ordered set (M1, . . . ,Ms), the existence of which was proved in Lemma 2.
We introduce the following notation:

Θ
(i1,...,is)
j1,...,js

= 2−
M1−1

2 −...−Ms−1
2

N∑
k=1

Ck χM1,j1

(
x
(k)
i1

)
. . . χ

Ms,js

(
x
(k)
is

)
.

Then, according to Lemma 2, we have

sup
m1+...+ms>M

Σ
(i1,...,is)
m1,...,ms(q) = Σ

(i1,...,is)
M1,...,Ms

(q) =

[
2M1−1∑
j1=1

. . .
2Ms−1∑
js=1

∣∣∣∣ N∑
k=1

Θ
(i1,...,is)
j1,...,js

∣∣∣∣q
] 1

q

. (27)

Consider the function

f
(i1,...,is)
M1,...,Ms

(x1, . . . , xn) =
2M1−1∑
j1=1

. . .
2Ms−1∑
js=1

sign Θ
(i1,...,is)
j1,...,js

∣∣∣Θ(i1,...,is)
j1,...,js

∣∣∣q−1

χ
M1,j1

(xi1) . . . χ
Ms,js

(xis) ,

1 6 i1 < . . . < is 6 n, 1 6 s 6 n. For this function, the Fourier–Haar coefficients are given by

c0 = 0, c(j1,...,js)m1,...,ms
(i1, . . . , is) =

{
sign Θ

(i1,...,is)
j1,...,js

∣∣∣Θ(i1,...,is)
j1,...,js

∣∣∣q−1

, m1 = M1, . . . ,ms = Ms,

0 otherwise.

Then, taking into account the relation (4) and the equality (q−1)p = q, which follows from (22),
we have:

A(i1,...,is)
p

(
f
(i1,...,is)
M1,...,Ms

)
= 2

M1−1
2 +...+Ms−1

2

2M1−1∑
j1=1

. . .

2Ms−1∑
js=1

∣∣∣Θ(i1,...,is)
j1,...,js

∣∣∣q
 1

p

. (28)

At the same time, according to (9),

δN

[
f
(i1,...,is)
M1,...,Ms

]
= −

2M1−1∑
j1=1

. . .
2Ms−1∑
js=1

[
sign Θ

(i1,...,is)
j1,...,js

∣∣∣Θ(i1,...,is)
j1,...,js

∣∣∣q−1

×

×
N∑

k=1

Ck χM1,j1

(
x
(k)
i1

)
. . . χ

Ms,js

(
x
(k)
is

)]
= −2

M1−1
2 +...+Ms−1

2

2M1−1∑
j1=1

. . .
2Ms−1∑
js=1

∣∣∣Θ(i1,...,is)
j1,...,js

∣∣∣q .
The last relation, combined with (27) and (28), shows that

∣∣∣δN [f (i1,...,is)M1,...,Ms

]∣∣∣ = 2
M1−1

2 +...+Ms−1
2

[
2M1−1∑
j1=1

. . .
2Ms−1∑
js=1

∣∣∣Θ(i1,...,is)
j1,...,js

∣∣∣q] 1
p

×

×

[
2M1−1∑
j1=1

. . .
2Ms−1∑
js=1

∣∣∣Θ(i1,...,is)
j1,...,js

∣∣∣q] 1
q

= A
(i1,...,is)
p

(
f
(i1,...,is)
M1,...,Ms

)
Σ

(i1,...,is)
M1,...,Ms

(q).
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Note that A
(k1,...,ks)
p

(
f
(i1,...,is)
M1,...,Ms

)
= 0 for all ordered sets (k1, . . . , ks) ̸= (i1, . . . , is). Then

∥f (i1,...,is)M1,...,Ms
∥
Sp

= A
(i1,...,is)
p

(
f
(i1,...,is)
M1,...,Ms

)
, and

∣∣∣δN [f (i1,...,is)M1,...,Ms

]∣∣∣ = Σ
(i1,...,is)
M1,...,Ms

(q)
∥∥∥f (i1,...,is)M1,...,Ms

∥∥∥
Sp

,

which implies the equality (24).
If the cubature formula (2) possesses the Haar d-property, then by virtue of its accuracy for

Haar polynomials of degree at most d, the equality (9) becomes

δN [f ] = −
n∑

s=1

∑
16i1<...<is6n

∑
m1+...+ms>d

2m1−1∑
j1=1

. . .

2ms−1∑
js=1

{
c(j1,...,js)m1,...,ms

(i1, . . . , is)×

×
N∑

k=1

Ckχm1,j1

(
x
(k)
i1

)
. . . χms,js

(
x
(k)
is

)}
.

Hence, the inequality (8) can be written as

∣∣δN [f ]
∣∣ 6 n∑

s=1

∑
16i1<...<is6n

∑
m1+...+ms>d

{
2

m1−1
2 +...+ms−1

2 ×

×

[
2m1−1∑
j1=1

. . .

2ms−1∑
js=1

∣∣∣c(j1,...,js)m1,...,ms
(i1, . . . , is)

∣∣∣p] 1
p

Σ(i1,...,is)
m1,...,ms

(q)

}
.

Then the inequality (23) becomes (25). Proceeding as in the proof of the equality (24), we
construct the function f (i1,...,is)M1,...,Ms

(x1, . . . , xn) such that∣∣∣δN [f (i1,...,is)M1,...,Ms

]∣∣∣ =
∥∥∥f (i1,...,is)M1,...,Ms

∥∥∥
Sp

sup
m1+...+ms>d

Σ(i1,...,is)
m1,...,ms

(q), (29)

where the ordered set (M1, . . . ,Ms) satisfies the following conditions:

M1 + . . .+Ms > d,

Σ
(i1,...,is)
M1,...,Ms

(q) = sup
m1+...+ms>d

Σ(i1,...,is)
m1,...,ms

(q).

This ordered set exists by virtue of Lemma 2, which is used for M = d+ 1.
The equality (26) follows from (25) and (29). 2

Lemma 3. For positive integer m1, . . . ,ms satisfying the inequality

m1 + . . .+ms 6 d, (30)

it is true that

QN

[
K(j1,...,js)

m1,...,ms
(xi1 , . . . , xis)

]
= I

[
K(j1,...,js)

m1,...,ms
(xi1 , . . . , xis)

]
= 1, (31)

where 1 6 i1 < . . . < is 6 n, s = 1, . . . , n, jr = 1, . . . , 2mr−1, r = 1, . . . , s.
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Proof. Since each of the functions κm1,j1(xi1), . . . , κms,js(xis) is a Haar polynomial of one
variable and the degrees of these polynomials are m1, . . . ,ms respectively, then it follows from
(14) that for m1, . . . ,ms satisfying the condition (30), the function K

(j1,...,js)
m1,...,ms(xi1 , . . . , xis) is a

Haar polynomial of degree m1 + . . . + ms 6 d of variables xi1 , . . . , xis . Then, by virtue of the
accuracy of the cubature formula (2) for the Haar polynomials of degree at most d, the first
equality in (31) holds true.

The second equality in (31) follows from the relations (14) and (11), which define the functions
K

(j1,...,js)
m1,...,ms(xi1 , . . . , xis) and κm1,j1(xi1), . . . , κms,js(xis). 2

Lemma 4. For positive integer l, the following inequality holds:

Σ(i1,...,is)
m1,...,ms

(q) 6 2−m1−...−ms+ls

{
2m1−l∑
j1=1

. . .

2ms−l∑
js=1

{
QN

[
K

(j1,...,js)
m1−l,...,ms−l

(
xi1 , . . . , xis

)]}q
} 1

q

, (32)

where 1 6 i1 < . . . < is 6 n, m1, . . . ,ms = 1, 2, . . . , s = 1, . . . , n.

Proof. Inequality (32) is proved by induction on l.
Applying the triangle inequality, and also taking into account the equality (12) and the

positivity of the coefficients at the nodes of the cubature formula (2), we obtain:∣∣∣∣∣
N∑

k=1

Ck χm1,j1

(
x
(k)
i1

)
. . . χms,js

(
x
(k)
is

)∣∣∣∣∣ 6 2−
m1+1

2 −...−ms+1
2 ×

×
N∑

k=1

Ck

∣∣∣∣κm1,2j1−1

(
x
(k)
i1

)
− κm1,2j1

(
x
(k)
i1

)∣∣∣∣ . . . ∣∣∣∣κms,2js−1

(
x
(k)
is

)
− κms,2js

(
x
(k)
is

)∣∣∣∣.
(33)

The nonnegativity of the functions κm,j(x) implies the inequality∣∣∣∣κmr,2jr−1

(
x
(k)
ir

)
− κmr,2jr

(
x
(k)
ir

)∣∣∣∣ 6 κmr,2jr−1

(
x
(k)
ir

)
+ κmr,2jr

(
x
(k)
ir

)
,

r = 1, . . . , s, k = 1, . . . , N. Then, by virtue of the equalities (13) and (14), it is true that∣∣∣∣κm1,2j1−1

(
x
(k)
i1

)
− κm1,2j1

(
x
(k)
i1

)∣∣∣∣ . . . ∣∣∣∣κms,2js−1

(
x
(k)
is

)
− κms,2js

(
x
(k)
is

)∣∣∣∣ 6
6
[
κm1,2j1−1

(
x
(k)
i1

)
+ κm1,2j1

(
x
(k)
i1

)]
. . .

[
κms,2js−1

(
x
(k)
is

)
+ κms,2js

(
x
(k)
is

)]
=

= 2sκm1−1,j1

(
x
(k)
i1

)
. . . κms−1,js

(
x
(k)
is

)
= 2sK

(j1,...,js)
m1−1,...,ms−1

(
x
(k)
i1
, . . . , x

(k)
is

)
.

Combining this with (33) yields∣∣∣∣∣
N∑

k=1

Ck χm1,j1

(
x
(k)
i1

)
. . . χms,js

(
x
(k)
is

)∣∣∣∣∣ 6 2−
m1+1

2 −...−ms+1
2 +sQN

[
K

(j1,...,js)
m1−1,...,ms−1(xi1 , . . . , xis)

]
,

which implies (32) for l = 1.
Based on the induction hypothesis that

Σ(i1,...,is)
m1,...,ms

(q) 6 2−m1−...−ms+ls−s×

×

{
2m1−l+1∑
j1=1

. . .

2ms−l+1∑
js=1

{
QN

[
K

(j1,...,js)
m1−l+1,...,ms−l+1

(
xi1 , . . . , xis

)]}q
} 1

q

,
(34)
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we prove (32). The sum on the right-hand side of the inequality (34) can be written as

2m1−l+1∑
j1=1

. . .

2ms−l+1∑
js=1

{
QN

[
K

(j1,...,js)
m1−l+1,...,ms−l+1

(
xi1 , . . . , xis

)]}q

=

=

2m1−l∑
j1=1

. . .

2ms−l∑
js=1

2j1∑
J1=2j1−1

. . .

2js∑
Js=2js−1

{
QN

[
K

(J1,...,Js)
m1−l+1,...,ms−l+1

(
xi1 , . . . , xis

)]}q

.

(35)

Using inequality
M∑
i=1

aqi 6
{

M∑
i=1

ai

}q

(ai > 0, i = 1, . . . ,M, q > 1)

and equality (13), we have:

2j1∑
J1=2j1−1

. . .

2js∑
Js=2js−1

{
QN

[
K

(J1,...,Js)
m1−l+1,...,ms−l+1

(
xi1 , . . . , xis

)]}q

6

6
{
QN

[
2j1∑

J1=2j1−1

. . .

2js∑
Js=2js−1

K
(J1,...,Js)
m1−l+1,...,ms−l+1

(
xi1 , . . . , xis

)]}q

=

=

{
QN

[
2j1∑

J1=2j1−1

. . .

2js∑
Js=2js−1

κm1−l+1,J1

(
xi1
)
. . . κms−l+1,Js

(
xis
)]}q

=

=

{
QN

[(
κm1−l+1,2j1−1

(
xi1
)
+κm1−l+1,2j1

(
xi1
))
. . .
(
κms−l+1,2js−1

(
xi1
)
+κms−l+1,2js

(
xis
))]}q

=

=

{
QN

[
2sκm1−l,j1

(
xi1
)
. . . κms−l,js

(
xis
)]}q

=

{
2sQN

[
K

(j1,...,js)
m1−l,...,ms−l

(
xi1 , . . . , xis

)]}q

.

In view of the equality (35) and the last relations, it follows from (34) that the inequality
(32) holds true. 2

Lemma 5. If the cubature formula (2) possesses the Haar d-property, then

sup
m1+...+ms>d

Σ(i1,...,is)
m1,...,ms

(q) 6 2
n−1
p
(
2d
)− 1

p . (36)

Proof. Let (m1, . . . ,ms) be an arbitrary fixed set of indices for which the inequality
m1 + . . . + ms > d holds true. We denote by l the minimal number among all integers L
satisfying the condition

m1 + . . .+ms − Ls 6 d. (37)

Then the following equality holds:

m1 + . . .+ms − ls = d− r, where r ∈ {0, 1, . . . , s− 1} . (38)

Applying Lemmas 4 and 3 (by virtue of (37), the condition of Lemma 3 for the lower indices of
the Haar polynomial K(j1,...,js)

m1−l,...,ms−l

(
xi1 , . . . , xis

)
is satisfied) and taking into account (22) yields

Σ(i1,...,is)
m1,...,ms

(q) 6 2−m1−...−ms+ls

{
2m1−l∑
j1=1

. . .

2ms−l∑
js=1

1

} 1
q

=

=2−m1−...−ms+ls
(

2m1+...+ms−ls
) 1

q

=
(

2m1+...+ms−ls
)− 1

p

.

(39)
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The relations (39) and (38) imply

Σ(i1,...,is)
m1,...,ms

(q) 6
(
2d−r

)− 1
p = 2

r
p
(
2d
)− 1

p 6 2
s−1
p
(
2d
)− 1

p 6 2
n−1
p
(
2d
)− 1

p ,

whence we obtain the inequality (36). 2

Lemma 6. If the cubature formula (2) is exact for any constant, then

sup
m1,...,ms∈N

Σ(i1,...,is)
m1,...,ms

(q) >
(
2n+1 − n− 1

)− 1
p N− 1

p . (40)

Proof. Consider the function

φ(C1, . . . , CN ) =

N1∑
k=1

Ck
q+21−q

N2∑
k=N1+1

Ck
q+22(1−q)

N3∑
k=N2+1

Ck
q+. . .+2s(1−q)

N∑
k=Ns+1

Ck
q, (41)

where the constants N1, . . . , Ns are defined in the proof of Lemma 2. By virtue of (21), the
equality

Σ
(i1,...,is)
m̂1,...,m̂s

(q) = [φ (C1, C2, . . . , CN )]
1
q (42)

holds true.
If the cubature formula (2) satisfies the condition

C1 + C2 + . . .+ CN = 1 (Ci > 0, i = 1, 2, . . . , N),

which follows from the accuracy of (2) for any constant, it is easy to show that the function (41)
attains its infimum, which is equal to[

N1 + 2 (N2 −N1) + 22 (N3 −N2) + . . .+ 2s (N −Ns)
]1−q

=

=
[
N +

(
21 − 1

)
(N2 −N1) +

(
22 − 1

)
(N3 −N2) + . . .+ (2s − 1) (N −Ns)

]1−q
,

when

C1 = C2 = . . . = CN1
=
[
N1 + 2 (N2 −N1) + 22 (N3 −N2) + . . .+ 2s (N −Ns)

]−1
,

CN1+1 = CN1+2 = . . . = CN2
= 2

[
N1 + 2 (N2 −N1) + 22 (N3 −N2) + . . .+ 2s (N −Ns)

]−1
,

CN2+1 = CN2+2 = . . . = CN3
= 22

[
N1 + 2 (N2 −N1) + 22 (N3 −N2) + . . .+ 2s (N −Ns)

]−1
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CNs+1 = CNs+2 = . . . = CN = 2s
[
N1 + 2 (N2 −N1) + 22 (N3 −N2) + . . .+ 2s (N −Ns)

]−1
.

Then, taking into account (22), we derive from (42)

Σ
(i1,...,is)
m̂1,...,m̂s

(q) >
[
N +

(
21 − 1

)
(N2 −N1) +

(
22 − 1

)
(N3 −N2) + . . .+ (2s − 1) (N −Ns)

]− 1
p >

>
[
N +

(
21 − 1

)
N +

(
22 − 1

)
N + . . .+ (2s − 1)N

]− 1
p =

(
2s+1 − s− 1

)− 1
p N− 1

p >

>
(
2n+1 − n− 1

)− 1
p N− 1

p ,

where (m̂1, . . . , m̂s) is the ordered set chosen in the proof of Lemma 2 (in this case M = s, where
M is the parameter from the conditions of Lemma 2). This yields the inequality (40). 2
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Theorem 2. For the cubature formula (2) exact for any constants, the norm of the error func-
tional satisfies the inequality

∥δN∥S∗
p
>
(
2n+1 − n− 1

)− 1
p N− 1

p . (43)

If the cubature formula (2) possesses the Haar d-property, then

|δN [f ]| 6 2
n−1
p
(
2d
)− 1

p ∥f∥Sp
, (44)

∥δN∥S∗
p
6 2

n−1
p
(
2d
)− 1

p . (45)

Inequality (43) follows from Theorem 1 and Lemma 6, while inequalities (44), (45) follow
from Theorem 1 and Lemma 5.

Remark 1. In [9] one considered the following weighted quadrature formulas possessing the
Haar d-property: ∫ 1

0

g(x)f(x) dx ≈
N∑

k=1

Ckf
(
x(k)

)
, (46)

where x(k) ∈ [0, 1] are the nodes of a formula; Ck are the coefficients of the formula at the nodes
(real numbers); and k = 1, . . . , N . If the weight function g(x) ≡ 1, then the number N of nodes
of the quadrature formula (46) satisfies the inequality N > 2d−1. The last inequality follows
from a lower estimate for the number of nodes of the quadrature formula (46) possessing the
Haar d-property, where g(x) is an arbitrary weight function (see [9]).

Moreover, in [9] all minimal weighted quadrature formulas possessing the d-property were
described. In the case of the weight function g(x) ≡ 1, it was proved that the minimal formula is
unique: the number of its nodes is N = 2d−1, the nodes of this formula are x(k) = 2−d(2k − 1),
and the node coefficients are Ck = 2−d+1 for k = 1, 2, . . . , 2d−1. The norm of the error functional
of this formula satisfies the equality (see [10])

∥δN∥S∗
p

= 2−
1
pN− 1

p , (47)

which also follows from the inequalities (43) and (45) for n = 1; a number d related to N by
N = 2d−1.
Remark 2. In [12], one constructed the minimal cubature formulas possessing the Haar d-
property for d > 5: ∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2 ≈
N∑

k=1

Ckf
(
x
(k)
1 , x

(k)
2

)
, (48)

where
(
x
(k)
1 , x

(k)
2

)
∈ [0, 1]2 are the nodes of a formula; Ck are the coefficients of the formula at

the nodes (real numbers); and k = 1, . . . , N . The number N of nodes of such formulas satisfies
the equality

N =

{
2d − 3 · 2

d−1
2 + 2, d is odd,

2d − 2
d
2+1 + 2, d is even,

(49)

where d = 5, 6, 7, . . . Then, the norm of the error functional of the minimal cubature formulas
(48) possessing the Haar d-property satisfies the inequality

∥δN∥S∗
p
6 EN , (50)
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where EN =

 2
1
p

(
N + 3

√
2

2

√
N − 7

8 + 1
4

)− 1
p

, d is odd,

2
1
p
(
N + 2

√
N − 1

)− 1
p , d is even.

(51)

The inequality (50) follows from the estimate

∥δN∥S∗
p
6 2

1
p (2d)

− 1
p ,

which was obtained in [16] for the norm of the error functional of arbitrary cubature formulas
(48) having the Haar d-property. The number N of nodes of these cubature formulas is defined
by (49).

The relations (50), (51) also follows from (45) for n = 2; a number d related to N by (49).

3. Conclusions

In [8], the cubature formulas∫ 1

0

· · ·
∫ 1

0

f(x1, . . . , xn) dx1 . . . dxn ≈ 1

N

N∑
k=1

f
(
x
(k)
1 , . . . , x(k)n

)
(52)

with nodes
(
x
(k)
1 , . . . , x

(k)
n

)
∈ [0, 1]n (k = 1, . . . , N) were considered that form Pτ -nets, i.e., nets

that consist of N = 2ν nodes and satisfy the following condition: each binary parallelepiped of
volume 2τ−ν contains 2τ net points (ν > τ). For such formulas with a function f from Sp, the
following upper estimate for the norm of the error functional was proved in [8]:

∥δN∥S∗
p
6 2

n−1+τ
p N− 1

p . (53)

It is easy to see that for n = 1 and n = 2 Pτ -nets with an arbitrarily large number N = 2ν of
nodes exist for any τ = 0, 1, 2, . . . Therefore, in the one- and two-dimensional cases, the constant
multiplier on the right-hand side of (53) takes the least value at τ = 0, and estimate (53) for the
cubature formulas (52) with nodes forming P0-nets in the one-dimensional case is written as

∥δN∥S∗
p
6 N− 1

p , (54)

while in the two-dimensional case this estimate is written as

∥δN∥S∗
p
6 2

1
pN− 1

p . (55)

It was proved in [8] that cubature formulas (52) with 2d nodes forming P0-nets have the
Haar d-property. Therefore, the estimate (45), which is obtained in the present paper, is a
generalization of the estimate (53) to the case of arbitrary cubature formulas possessing the
Haar d-property.

Moreover, for any cubature formula (52) with a function f ∈ Sp, it was established in [8] that
the norm of the error functional satisfies the lower estimate

∥δN∥S∗
p
> N− 1

p .

Hence, the cubature formulas (52) with the nodes forming Pτ -nets have the best convergence
rate of δN in the norm, which is equal to N− 1

p as N → ∞.
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The relations (43), (47), (50), (51) imply that for minimal formulas possessing the Haar
d-property in the one- and two-dimensional cases ∥δN∥S∗

p
≍ N− 1

p as N → ∞.
Comparing the values on the right-hand sides of the relations (47) and (54), as well as (50)

and (55), we conclude that the upper bounds for the ∥δN∥S∗
p

in the case of minimal quadrature
formulas (46) with the weight function g(x) ≡ 1 and the minimal cubature formulas (48) with
the d-property are less than the upper bounds for this value in the inequalities (54) and (55),
respectively, i.e., the upper bounds for the norm of the error functional of formulas with nodes
forming the P0-net in the one- and two-dimensional cases.

In addition, the quadrature formula (46) with the weight function g(x) ≡ 1 and the number
N = 2d−1 of nodes, as well as the cubature formula (48) with the numberN of nodes satisfying the
equality (49), being the minimal formulas of approximate integration, provide the best pointwise
convergence of δN [f ] to zero as N → ∞.
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Об оценках погрешности на пространствах Sp кубатурных
формул, точных для полиномов Хаара
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Красноярск, Российская Федерация

Аннотация. Получены верхняя и нижняя оценки нормы функционала погрешности обладающих
d-свойством Хаара кубатурных формул на пространствах Sp в n-мерном случае.

Ключевые слова: d-свойство Хаара, погрешность кубатурной формулы, пространства Sp.
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Universal algebraic geometry is a new area of modern algebra, whose subject is basically the
study of equations over an arbitrary algebraic structure A (see [11]). In the classical algebraic
geometry A of type L is a field. Many articles already published about algebraic geometry over
groups, see [1, 8, 16], and [10]. O. Kharlampovich and A.Miyasnikov developed algebraic geom-
etry over free groups to give affirmative answer for an old problem of Alfred Tarski concerning
elementary theory of free groups (see [7] and also [15] for the independent solution of Z. Sela).
Also in [9], a problem of Tarski about decidablity of the elementary theory of free groups is solved.
Algebraic geometry over algebraic structures (universal algebraic geometry) is also developed for
algebras other than groups. A systematic study of universal algebraic geometry is done in a
series of articles by V.Remeslennikov, A. Myasnikov and E. Daniyarova in [2–4], and [5].

The notations of the present paper are standard and can be find in [2] or [11]. Our main
aim in this article is to deal with the equational conditions in the universal algebraic geometry
over Heyting algebras, i.e. different conditions relating systems of equations especially conditions
about systems and sub-systems of equations over algebras. The main examples of such condi-
tions are equational noetherian property and qω-compactness. We begin with a review of basic
concepts of universal algebraic geometry and we describe the properties of being being equational
noetherian, qω-compact. We will show that only finite Heyting algebras have these properties.

1. Basic notions
We need to give a brief introduction of universal algebraic geometry. Our notations here are

almost the same as in the above mentioned papers, especially [11].
We begin with an algebraic language L and an arbitrary algebra A type L and then we

extended the language by adding new constant symbols a ∈ A. This extended language will
be denoted by L(A). An algebra B of type L(A) is called A-algebra, if the map a 7→ aB is an
embedding of A in B. In this notation, aB denotes the interpretation of the constant symbol a
in B.

Suppose that X = {x1, . . . , xn} is a finite set of variables. We denote the term algebra in
the language L and variables from X by TL(X), and similarly the term algebra in the extended
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language L(A) will denoted by TL(A)(X). For the sake of simplicity, we define our notions in the
coefficient free frame, i.e. in the language L and then we can extend all the definitions to the
language L(A).

An equation is a pair (p, q) of the elements of the term algebra TL(X). In many cases, we
assume that such an equation is the same as the atomic formula p(x1, . . . , xn) ≈ q(x1, . . . , xn) or
p ≈ q in short.

Any set of equations is called a system of equations in the language L. A system S is called
consistent over an algebra A, if there is an element (a1, . . . , an) ∈ An such that for all equations
(p ≈ q) ∈ S, the equality

pA(a1, . . . , an) = qA(a1, . . . , an)

holds. Otherwise, we say that S is in-consistent over A. Note that, pA and qA are the corre-
sponding term functions on An. A system of equations S is called an ideal, if it corresponds to a
congruence on TL(X). For an arbitrary system of equations S, the ideal generated by S, is the
smallest congruence containing S and it is denoted by [S].

For an algebra A of type L, an element (a1, . . . , an) ∈ An will be denoted by a, sometimes.
Let S be a system of equations. Then the set

VA(S) = {a ∈ An : ∀(p ≈ q) ∈ S, pA(a) = qA(a)}

is called an algebraic set. It is clear that for any non-empty family {Si}i∈I , we have

VA(
∪
i∈I

Si) =
∩
i∈I

VA(Si).

It is possible to define a topology on An using algebraic sets as elements of subbasis: define a
closed set in An to be an arbitrary intersections of finite unions of algebraic sets. Therefore, we
obtain a topology on An, which is called Zariski topology.

For any set Y ⊆ An, we define

Rad(Y ) = {(p, q) : ∀ a ∈ Y, pA(a) = qA(a)}.

It is easy to see that Rad(Y ) is an ideal in the term algebra. Any ideal of this type is called an
A-radical ideal or a radical ideal for short. Note that any ideal in the term algebra is in fact a
radical ideal. To see the reason, just note that for any ideal R in the term algebra TL(X), if we
consider the algebra B(R) = TL(X)/R, then RadB(R)(R) = R.

It is easy to see that a set Y is algebraic if and only if VA(Rad(Y )) = Y . In the general case,
we have VA(Rad(Y )) = Y ac (see [3]). The coordinate algebra of a set Y is the quotient algebra

Γ(Y ) =
TL(X)

Rad(Y )
.

An arbitrary element of Γ(Y ) is denoted by [p]Y . We define a function pY : Y → A by the rule

pY (a) = pA(a1, . . . , an),

which is a term function on Y , for all a1, . . . , an ∈ A. The set of all such functions will be denoted
by T (Y ) and it is naturally an algebra of type L. It is easy to see that the map [p]Y 7→ pY is a
well-defined isomorphism. So, we have Γ(Y ) ∼= T (Y ).

For a system of equation, we can also define the radical RadA(S) to be Rad(VA(S)). Two
systems S and S′ are called equivalent over A, if they have the same set of solutions in A, i.e.
VA(S) = VA(S′). So, clearly RadA(S) is the largest system which is equivalent to S. Note that
[S] ⊆ RadA(S).
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One of the major problems of the universal algebraic geometry is to determine the structures
of algebras which appear as the coordinate algebras. There are many necessary and sufficient
conditions for an algebra to be a coordinate algebra and we will give a summary of such results
in the Subsection 2.4.

In this article, we are dealing with equational conditions on algebras. The first and maybe
the most important condition of this type can be formulated as follows.

Definition 1. An algebra A is called equational Noetherian, if for any system of equations S,
there exists a finite subsystem S0 ⊆ S, which is equivalent to S over A, i.e. VA(S) = VA(S0).

If an A-algebra is equational Noetherian in the language L(A), then we call it A-equational
Noetherian. Many examples of equational Noetherian algebras are introduced in [3]. Among
them are Noetherian rings and linear groups over Noetherian rings as well as free groups. In [3],
it is proved that the next four assertions are equivalent:

i- An algebra A is equational Noetherian.

ii- For any system S, there exists a finite S0 ⊆ [S], such that VA(S) = VA(S0).

iii- For any n, the Zariski topology on An is Noetherian, i.e. any descending chain of closed
subsets terminates.

iv- Any chain of coordinate algebras and epimorphisims

Γ(Y1) → Γ(Y2) → Γ(Y3) → · · ·
terminates.

So, in the case of equational Noetherian algebras, any closed set in An is equal to a minimal
finite union of irreducible algebraic sets which is unique up to a permutation. Note that a set
is called irreducible, if it has no proper finite covering consisting of closed sets. The following
theorem is proved in [3].

Theorem 1. Let A be an equational Noetherian algebra. Then the following algebras are also
equational Noetherian:

i- any subalgebra and filter-power of A.

ii- any coordinate algebra over A.

iii- any fully residually A-algebra.

iv- any algebra belonging to the quasi-variety generated by A.

v- any algebra universally equivalent to A.

vi- any limit algebra over A.

vii- any finitely generated algebra defined by a complete atomic type in the universal theory
of A or in the set of quasi-identities of A.

The most important theorem for equationally Noetherian algebras is called Unification The-
orem. It describes the structure of coordinate algebras over equationally Noetherian algebras.
For a proof of this theorem (see [2]).
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Theorem 2. Let A and Γ be algebras in a language L. Suppose A is equational Noetherian and
Γ is finitely generated. Then the following assertions are equivalent.

i- Γ is the coordinate algebra of some irreducible algebraic set over A.

ii- Γ is a fully residually A-algebra. This means that for any finite subset C ⊆ Γ, there exists
a homomorphism α : Γ → A, such that the restriction of α to C is injective.

iii- Γ embeds into some ultra-power of A.

iv- Γ belongs to the universal closure of A, i.e. Th∀(A) ⊆ Th∀(Γ).

v- Γ is a limit algebra over A.

vi- Γ is defined by a complete type in Th∀(A).

There are similar theorems for the cases where A is qω-compact. Note that an algebra A is
called qω-compact, if for any system S and any equation p ≈ q, the condition VA(S) ⊆ VA(p ≈ q)
implies that VA(S0) ⊆ VA(p ≈ q) for some finite S0 ⊆ S. Clearly, every equationally Noetherian
algebra is qω-compact.

A. Shevlyakov studied algebraic geometry over Boolean algebras, [17]. He obtained necessary
and sufficient condition for a Boolean algebra to be equationally Noetherian or to be qω-compact.
Let B be a Boolean algebra and C be a subalgebra of B. Then we can consider B as a C-algebra.
Shevlyakov proved that B is C-equationally Noetherian, if and only if C is finite. Consequently
only finite Boolean algebras are equationally Noetherian in the case of Diophantine algebraic
geometry. He also obtained necessary and sufficient conditions for the C-Boolean algebra B to
be qω-compact. To explain it, we need to define Ek-systems: a system of C-equations S is called
Ek system over B, if VB(S) has k elements, but for any finite subsystem S′  S, the algebraic
set VB(S′) is infinite. It is proved that B is qω-compact as a C-algebra, if and only if there are
no any E0 and E1-systems over B.

In this article, we are dealing with the case of Heyting algebras, which are natural general-
izations of Boolean algebras.

2. Algebraic geometry over Heyting algebras

Heyting algebras for propositional intuitionistic logic are the same as Boolean algebras for
classical propositional logic. Note that in intuitionistic logic, truth is equivalent to provability.
Since by the incompleteness theorem of Godel, there are sentences α in the language of arithmetic
such that α ∨ ¬α is not provable, so in the case of intuitionistic logic, Boolean algebras are not
useful and one must employ the more general frame of Heyting algebras. A Heyting algebra is
a bounded lattice H, such that for all a, b ∈ H, there exists a maximum element x with the
property a ∧ x 6 b. Let’s denote that element x by a→ b. Then, one can see that the following
identities are hold

1) a→ a = 1.

2) a ∧ (a→ b) = a ∧ b.

3) b ∧ (a→ b) = b.

4) a→ (b ∧ c) = (a→ b) ∧ (a→ c).
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So, let L = (∧,∨,→, 1, 0) be the language of bounded lattices extended by adding a new
binary symbol →. Then the variety of Heyting algebras is just the variety axiomatized by the
identities of bounded lattices plus the above four new identities. Let ¬a = a→ 0. It can be shown
that in any Heyting algebra, we have only one of the De Morgan’s laws, namely ¬(a∨b) = ¬a∧¬b,
but the other law ¬(a∧ b) = ¬a∨¬b is not valid, despite the case of Boolean algebras. It is also
true that ¬¬¬a = ¬a and ¬a ∨ ¬¬a = 1. Recall that a complete Heyting algebra is a Heyting
algebra which is also a complete lattice.

An element a in a Heyting algebras H is called regular, if ¬¬a = a. Clearly, both 0 and 1
are regular. Let Hreg be the set of all regular elements of H. It is easy to see that Hreg = ¬H,
the set of all negated elements of H. This set is not a Heyting subalgebra in general, but it is a
Boolean algebra bey the following operations

1) a ∧reg b = a ∧ b.

2) ¬rega = ¬a.

3) a ∨reg b = ¬(¬a ∧ ¬b).

We will use the notation Lreg for the Boolean language (∧,∨reg,¬, 0, 1). This will help us to
apply results of [17] for Heyting algebras.

Note that, despite Boolean algebras, the free Heyting algebra FH(X) is always infinite for
any non-empty set X. For example, if X = {x}, then the free Heyting algebra over X consists
of the following elements

0, x,¬x,¬¬x, x ∨ ¬x,¬x ∨ ¬¬x,¬¬x→ x, (¬¬x→ x) → (x ∨ ¬x), . . .

We focus on the case of equations with coefficients inside H (Diophantine Geometry). It is
known that free groups are equationally Noetherian. Free Boolean algebras of finite rank are
also equationally Noetherian since they are finite. We show that no non-trivial Heyting algebra
is equationally Noetherian.

Proposition 1. Let X be a non-empty set. Then the free Heyting algebra FH(X) is not equa-
tionally Noetherian.

Proof. It is enough to consider the case X = {p}, because subalgebras of equationally Noetherian
algebras are again equationally Noetherian. Consider the following infinite chain

p < ¬¬p < ¬p ∨ ¬¬p < · · · .

Let S be the system {x > p, x > ¬¬p, x > ¬p ∨ ¬¬p, . . .}. It is obvious that VF (S) = {1}.
But, since the above chain is infinite, so for every finite S0 ⊆ S, there are infinitely many
elements in VF (S0). Hence VF (S) 6= VF (S0). This shows that F = FH(X) is not equationally
Noetherian.

Note that in the same time the above argument shows that non-trivial free Heyting algebras
are not qω-compact. This is true because we have VF (S) ⊆ VF (x ≈ 1), but for any finite S0 ⊆ S,
the algebraic set VF (S0) is infinite.

We now, can use the same idea to prove that infinite Heyting algebras are not equationally
Noetherian. It can be also applied for infinite complete Heyting algebras to prove that they are
not qω-compact.

Theorem 3. Let H be a Heyting algebra and K be a subalgebra, which is infinite. Then H is
not K-equationally Noetherian.
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Proof. For simplicity we discuss Diophantine case (K = H). The idea of the proof is taken from
a similar theorem for Boolean algebras (see [6]). Let

b0, b1, b2, . . .

be an infinite set of elements in H. Let L0 = {0, 1} and define Ln by inductions as follows: if
Ln−1 = {a0 = 0, a1, . . . , an−1, an = 1}, and if 0 6 i 6 n, then define

ci+1 = ai ∨ (ai+1 ∧ bn).

For example, we have L0 = {a0 = 0, a1 = 1}. Then we compute

c1 = a0 ∨ (a1 ∧ b1) = b1.

It is clear that 0 6 b1 6 1. Let L1 = {0, a1, 1} and rename its elements as a0 = 0, a1 = b1, a2 = 1.
Now, to find L2, we compute

c1 = a0 ∨ (a1 ∧ b2) = b1 ∧ b2,

and
c2 = a1 ∨ (a2 ∧ b2) = b1 ∨ b2.

We have
0 6 b1 ∧ b2 6 b1 6 b1 ∨ b2 6 1,

so L2 consists of the above elements. Again rename a0 = 0, a1 = b1 ∧ b2, a2 = b1, . . ., and
continue this process. It is clear from the construction that

L0 ⊂ L1 ⊂ L2 ⊂ · · · ,

so the set L = ∪n>0Ln is an infinite chain in H.
Now, we proved that there is an infinite chain a0 < a1 < a2 < · · · in H so we can consider

the following system
S = {x > a0, x > a1, x > a2, . . .}.

For any finite subsystem S0 = {x > a0, x > a1, x > a2, . . . , an}, we have an+1 ∈ VH(S0), while
an+1 does not belong to VH(S). This proves that H is not equationally Noetherian.

Note that if H is complete, then in the above proof we can put a = supi ai. Then VH(S) ⊆
VH(x > a), but for any finite subset S0, it is not true that VH(S0) ⊆ VH(x > a). This shows
that if H is a complete infinite Heyting algebra, then it is not qω-compact. The next theorem
concerns the relation between qω-compactness of a Heyting algebra H and Hreg.

Theorem 4. Let H be qω-compact. Then there is no E0 and E1-systems in the language Lreg

over the Boolean algebra Hreg.

Proof. Assume that S is an Lreg-system of equations with n indeterminate and denote Hreg

for simplicity by R. Let VR(S) ⊆ VR(p ≈ q), where p ≈ q is an Lreg-equation. Note that Rn

is an algebraic set in Hn because it is just the solution set of the system ¬¬x1 ≈ x1,¬¬x2 ≈
x2, . . . ,¬¬xn ≈ xn. Hence we have

VR(S) = VH(S + ¬¬x1 ≈ x1, . . . ,¬¬xn ≈ xn),

and
VR(p ≈ q) = VH(p ≈ q + ¬¬x1 ≈ x1, . . . ,¬¬xn ≈ xn).
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This shows that

VH(S + ¬¬x1 ≈ x1, . . . ,¬¬xn ≈ xn) ⊆ VH(p ≈ q + ¬¬x1 ≈ x1, . . . ,¬¬xn ≈ xn),

and hence
VH(S + ¬¬x1 ≈ x1, . . . ,¬¬xn ≈ xn) ⊆ VH(p ≈ q).

Since H is assumed to be qω-compact, so there is a finite subset S0 ⊆ S+¬¬x1 ≈ x1, . . . ,¬¬xn ≈
xn such that VH(S0) ⊆ VH(p ≈ q). Therefore, VR(S0) ⊆ VR(p ≈ q). Let S′ = S0 \ {¬¬x1 ≈
x1, . . . ,¬¬xn ≈ xn}. Then we have

VR(S′) ⊆ VR(S0) ⊆ VR(p ≈ q),

and this shows that the Boolean algebra R is qω-compact in the Boolean language Lreg. Now,
we can apply the result of [17] to conclude that there are no E0 and E1-systems in the language
Lreg over Hreg.

References
[1] G.Baumslag, A.Myasnikov, V.Remeslennikov, Algebraic geometry over groups I. Algebraic

sets and ideal theory, J. Algebra, 219(1999), 16–79.

[2] E.Daniyarova, A.Myasnikov, V.Remeslennikov, Unification theorems in algebraic geometry,
Algebra and Discrete Mathamatics, 1(2008), 80–112.

[3] E.Daniyarova, A.Myasnikov, V.Remeslennikov, Algebraic geometry over algebraic struc-
tures, II: Fundations, J. Math. Sci., 185(2012), no. 3, 389–416.

[4] E.Daniyarova, A.Myasnikov, V.Remeslennikov, Algebraic geometry over algebraic struc-
tures, III: Equationally noetherian property and compactness, South. Asian Bull. Math.,
35(2011), no. 1, 35–68.

[5] E.Daniyarova, A.Myasnikov, V.Remeslennikov, Algebraic geometry over algebraic struc-
tures. IV: Equatinal domains and co-domains, Algebra and Logic, 49(2011), 483–508.

[6] S.Goncharov, Countable Boolean algebras and decidability, Cousultant Baurou, New York,
1997.

[7] O.Kharlampovich, A.Myasnikov, Tarski’s problem about the elementary theory of free
groups has a psitive solution, E.R.A. of AMS, 4(1998), 101–108.

[8] O.Kharlampovich, A.Myasnikov, Irreducible affine varieties over a free group. I: irreducibility
of quadratic equations and Nullstellensatz, J. Algebra, 200(1998), no. 2, 472–516.

[9] O.Kharlampovich, A.Myasnikov, The elemntary theory of free non-abelian groups, J. Alge-
bra, 302(2006), 451–552.

[10] G.Makanin, Equations in a free group, Math. USSR-Izv., 21(1983), no. 3, 483–546.

[11] P.Modabberi, M.Shahryari, Compactness conditions in universal algebraic geometry, Algebra
and Logic, 55(2016), no. 2, 146–172.

[12] P.Modabberi, M.Shahryari, On the equational Artinian algebras, Siberian Electronic Math-
ematical Reports, 13(2016), 875–881.

[13] B.Plotkin, Seven lectures in universal algebraic geometry, preprints, Arxiv, 2002.

– 420 –



Mahdiyeh Nouri Algebraic Geometry over Heyting Algebras

[14] A.Razborov, On systems of equations in free groups, Math. USSR-Izv., 25(1985), no. 1,
115–162.

[15] Z.Sela, Diophantine geometry over groups IX: Envelopes and Imaginaries, arXiv:0909.0774,
2009.

[16] M.Shahryari, A.Shevlyakov, Direct products, varieties, and compacness conditions, Groups
Complexity Cryptology, 9(2017), no. 2, 159–166.

[17] A.Shevlyakov, Algebraic geometry over Boolean algebras in the language with constants,
J. Math. Sciences, 206(2015), no. 6, 742–757.

Алгебраическая геометрия над гейтинговыми алгебрами
Махдия Нури

Факультет математических наук
Университет Тебриза

Тебриз, Иран

Аннотация. В этой статье мы изучаем алгебраическую геометрию над гейтинговыми алгебрами
и исследуем свойства быть уравновешенно нетеровыми и qω-компактными над такими алгебрами.

Ключевые слова: универсальная алгебраическая геометрия, системы уравнений, радикалы, то-
пология Зарисского, алгебры Гейтинга, нетеровы алгебры уравнений, qω-компактные алгебры.

– 421 –



Journal of Siberian Federal University. Mathematics & Physics 2020, 13(4), 422–430

DOI: 10.17516/1997-1397-2020-13-4-422-430
УДК 519.2

On Estimation of Bivariate Survival Function from Random
Censored Data

Abdurakhim A.Abdushukurov∗

Moscow State University Tashkent Branch
Tashkent, Uzbekistan

Rustamjon S. Muradov†

Namangan Institute of Engineering & Technology
Namangan, Uzbekistan

Received 11.03.2020, received in revised form 08.05.2020, accepted 16.06.2020

Abstract. At present there are several approaches to estimate survival functions of vectors of lifetimes.
However, some of these estimators are either inconsistent or not fully defined in the range of joint survival
functions. Therefore they are not applicable in practice. In this paper three types of estimates of
exponential-hazard, product-limit and relative-risk power structures for the bivariate survival function
are considered when the number of summands in empirical estimates is replaced with a sequence of
Poisson random variables. It is shown that proposed estimates are asymptotically equivalent.
Keywords: bivariate survival function, Poisson random variables, empirical estimates.

Citation: A.A. Abdushukurov, R.S. Muradov, On Estimation of Bivariate Survival Function from Ran-
dom Censored Data, J. Sib. Fed. Univ. Math. Phys., 2020, 13(4), 422–430.
DOI: 10.17516/1997-1397-2020-13-4-422-430.

Introduction
The problem of estimation of multivariate distribution (or survival) function from incomplete

data was considered from the beginning of 1980’s (Campbell (1981), Campbell & Földes (1982),
Hanley & Parnes (1983), Horváth (1983), Tsay, Leurgang & Crowley (1986), Burke (1988),
Dabrowska (1988, 1989), Gill (1992), Huang (2000), Abdushukurov(2004) etc.) (see, [1–20]).
In the special bivariate case there are the numerous examples of paired data that represent
life time of individuals (twins or married couples), the failure times of components of a system
and others which are subject to random censoring. At present there are several approaches to
estimate survival functions of vectors of life times. However, some of these estimators are either
nconsistent or not fully defined in the range of joint survival functions. Hence they are not
applicable in practice. In this work we present estimators for bivariate survival function and
present some sample properties of estimators. We extend some results given in [1–4] to Poisson
random summation. At the end of the paper we present consistent estimators of parameters of
Marshall-Olkin exponential distribution.

1. Random right censoring model
Let X={Xi = (X1i,X2i)}∞i=1 be a sequence of independent and identically distributed (i.i.d.)

two-dimensional random vectors with a common continuous survival function F (s, t) =

∗abdushukurov1710@gmail.com
†rustamjonmuradov@gmail.com

c⃝ Siberian Federal University. All rights reserved
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= P (X11 > s, X21 > t), (s, t) ∈ R
+2

= [0,∞) × [0,∞). This sequence is censored from
the right by sequence Y = {Yi = (Y1i, Y2i)}∞i=1 of i.i.d. random vectors with survival func-
tion G (s, t) = P (Y11 > s, Y21 > t), (s, t) ∈ R

+2
. Let us assume that there is the sample

V(n) = {(Zi, ∆i), 1 6 i 6 n} , where Zi = (Z1i, Z2i), ∆i = (δ1i, δ2i), Zki = min(Xki, Yki),
δki = I (Zki = Xki) , k = 1, 2, and I (·) is the indicator. The problem consist of estimating
F from the sample V(n). Let H (s, t) = P (Z1i > s,Z2i > t) , (s, t) ∈ R

+2
and sequences X

and Y are independent. Then H (s, t) = F (s, t)G (s, t) , (s, t) ∈ R̄+2. In this paper we use
exponential-hazard, product-limit and relative-risk power types functionals in order to construct
the corresponding estimates of three types for F . In the empirical estimates the upper index of
summation n is replaced by the Poisson random variable (r.v.) µn with expectation Eµn = n.
This arises in the insurance business as the size of group insurance payments by an insurance
company to customers in connection with an insured event. Following [2], we introduce some
auxiliary functionals for (x, y) ∈ R̄+2:

M (x, y) = P (Z11 6 x, Z21 > y) , N (x, y) = P (Z11 > x, Z21 6 y) ,

M̄ (x, y) = P (Z11 6 x, Z21 > y, δ11 = 1) , N̄ (x, y) = P (Z11 > x, Z21 6 y, δ21 = 1) ,

Λ1 (x, y) =

∫ x

0

M (ds, y)

H (s−, y)
, Λ2 (x, y) =

∫ y

0

N (x, dt)

H (x, t−)
,

Λ̄1 (x, y) =

∫ x

0

M̄ (ds, y)

H (s−, y)
, Λ̄2 (x, y) =

∫ y

0

N̄ (x, dt)

H (x, t−)
,

Λ (x, y) = Λ1 (x, 0) + Λ2(x, y), Λ̄ (x, y) = Λ̄1 (x, 0) + Λ̄2 (x, y) ,

Λc (x, y) = Λc
1 (x, 0) + Λc

2(x, y), Λ̄c (x, y) = Λ̄c
1 (x, 0) + Λ̄c

2 (x, y) ,

(1.1)

where
Λc
1 (x, y) = Λ1 (x, y) −

∑
s6x

Λ1 (M s, y), Λ1 (M s, y) = Λ1 (s, y) − Λ1 (s−, y) ,

Λc
2 (x, y) = Λ2 (x, y) −

∑
t6y

Λ2 (x,M t), Λ2 (x,M t) = Λ2 (x, t) − Λ2 (x, t−) ,

and similarly defined Λ̄c
1 and Λ̄c

2. To construct estimates for F we estimate functionals (1.1).
Firstly, we introduce the following empirical estimates of the first four probabilities in (1.1) from
the sample V(n):

Hn (x, y) =
1

n

n∑
i=1

I (Z1i > x, Z2i > y) ,

Mn (x, y) =
1

n

n∑
i=1

I (Z1i 6 x, Z2i > y) ,

Nn (x, y) =
1

n

n∑
i=1

I (Z1i > x, Z2i 6 y) ,

M̄n (x, y) =
1

n

n∑
i=1

I (Z1i 6 x, Z2i > y, δ1i = 1) ,

N̄n (x, y) =
1

n

n∑
i=1

I (Z1i > x, Z2i 6 y, δ2i = 1) .

(1.2)

Let {µn, n > 1} be a sequence of Poisson random variables (r.v-s.) with parameter Eµn = n, that
is independent of the pair (X,Y). Along with estimates (1.2), we propose also their analogues
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H∗
n, M

∗
n, N

∗
n, M̄

∗
n, N̄

∗
n obtained from estimates (1.2) by replacing the upper limit of summation

n by r.v. µn. However, it should be noted that these estimates have the disadvantage because
they can be greater than 1. In fact, for example, for

H∗
n (x, y) =

1

n

µn∑
i=1

I (Z1i > x, Z2i > y) ,

we have

P (H∗
n (0, 0) > 1) = P (µn > n) =

∞∑
m=n+1

nme−n

m!
> 0.

To avoid this disadvantage we consider the following truncated versions of estimates
H∗

n, M
∗
n, N

∗
n, M̄

∗
n, N̄

∗
n :

H0
n (x, y) = 1 − (1 −H∗

n (x, y)) I (H∗
n (x, y) 6 1) =

{
H∗

n (x, y) if H∗
n (x, y) 6 1,

0 if H∗
n (x, y) > 1,

and similarly constructed estimates M0
n, N

0
n, M̄

0
n, N̄

0
n. In similar way we construct the corre-

sponding estimates for functionals in (1.1):

Λ1n (x, y) =

∫ x

0

M0
n (ds, y)

H0
n (s−, y)

, Λ2n (x, y) =

∫ y

0

N0
n (x, dt)

H0
n (x, t−)

,

Λ̄1n (x, y) =

∫ x

0

M̄0
n (ds, y)

H0
n (s−, y)

, Λ̄2n (x, y) =

∫ y

0

N̄0
n (x, dt)

H0
n (x, t−)

,

Λn (x, y) = Λ1n (x, 0) + Λ2n (x, y) , Λ̄n (x, y) = Λ̄1n (x, 0) + Λ̄2n (x, y) .

(1.3)

The relative-risk function is

R (x, y) =
Λ̄ (x, y)

Λ (x, y)

and its estimator is

Rn (x, y) =
Λ̄n (x, y)

Λn (x, y)
.

Using estimates (1.3), we propose the following three estimates of F (x, y) for exponential, prod-
uct and power structures

F1n (x, y) = exp
{
−Λ̄n (x, y)

}
= exp

{
−
(
Λ̄1n (x, 0) + Λ̄2n (x, y)

)}
,

F2n (x, y) =
∏
s6x

(
1 − Λ̄1n (M s, 0)

)∏
t6y

(
1 − Λ̄2n (x,M t)

)
,

F3n (x, y) = [Hn (x, y)]
Rn(x,y).

(1.4)

Let ∆n =
[
0, Z

(n)
1

]
×
[
0, Z

(n)
2

]
∩∆, where Z(n)

k =max (Zk1, . . . , Zkn) , ∆=
[
0, T

(1)
Z

]
×
[
0, T

(2)
Z

]
,

T
(k)
Z = inf{t > 0 : P (Zk1 6 t) = 1}, k = 1, 2. The following theorem states the asymptotic

equivalence of estimates (1.4).

Theorem 1.1. For all (x, y) ∈ ∆n :

(I) 0 6 F1n (x, y) − F2n (x, y) = Op

(
1

n

)
.

If the survival function G is also continuous on ∆n then

(II) |F1n (x, y) − F3n (x, y)| = Op

((
log n

n

)1/2
)
.
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One can also obtain from (I) and (II) that

|F3n (x, y) − F2n (x, y)| = Op

((
log n

n

)1/2
)
.

To prove Theorem 1.1 we need the following auxiliary statements.

Lemma 1.1. Let {µn, n > 1}− be a sequence of Poisson r.v-s. with expectation n. Then for
any number ε > 0 and for n such that

n

log n
> ε

8
(

1 +
e

3

)2 , e = exp (1) , (1.5)

the inequality

P

(
|µn − n|

n
>

1

2

(
ε

2
· log n

n

)1/2
)

6 2n−c0 , (1.6)

is true, where c0 = c0 (ε) = ε/16 (1 + e/3) .

Proof. Let γ1, γ2, . . . be a sequence of Poisson r.v.-s with expectation E(γk) = 1 for all k =

= 1, 2, . . . . Then µn − n =
n∑

k=1

(γk − 1) =
n∑

k=1

ξk, where

Eetξk = e−tEetγ1 = e−te−1
∞∑
k=0

(et)k

k!
= exp(et − (t+ 1)).

Using Taylor expansion of et, we have

Eetξk = exp

(
1 + t+

t2

2
+ Ψ(t) − (t+ 1)

)
= exp

(
t2

2
+ Ψ(t)

)
,

where Ψ(t) =
t3

6
exp(θt), 0 < θ < 1. For 0 6 t 6 1,we have t3 6 t2 and consequently

Ψ(t) 6 t3

6
· e 6 e · t

2

6
. From here, for 0 6 t 6 1 we obtain

Eetξk 6 exp

(
t2

2

(
1 +

e

3

))
= exp

(
λk
2

· t2
)
, λk = 1 +

e

3
.

Then using following exponential inequality for nonidentical distributed r.v.-s of Petrov ([22])

P

(∣∣∣∣∣
n∑

k=1

ξk

∣∣∣∣∣ > u

)
6 2 exp

(
−u

2

2

)
, 0 6 u 6 N,

under 0 6 u =
1

2

(ε
2
n log n

) 1
2 6 λkn = N , we obtain (1.6). 2

The following inequality for two-dimensional empirical estimates from [21, p. 292] is used
below. Let C = C (H) = H

(
T

(1)
Z , T

(2)
Z

)
> 0.

Lemma 1.2 ([21]). For all real z > 0

P

(
sup

(x,y)∈ R̄+2

|Hn (x, y) −H (x, y)| > zC2

)
6 Vz ·

(
1 + n2

)2
exp

(
−2nz2 · C4

)
, (1.7)

where Vz = Vz (H) = 4 exp
(
4zC2 + 4z2C4

)
.
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Corollary 1.1. Let z = z0 =
(

4 + ε
2 · log n

n

)1/2
· C−2 in (2.7). Then

P

(
sup

(x,y)∈R̄+2

|Hn (x, y) −H (x, y)| >
(

4 + ε

2
· log n

n

)1/2

· C−2

)
6 qn (ε) , (1.8)

where

qn(ε) = 4 exp

(
4

(
4 + ε

2n
· log n

)1/2
[

1 +

(
4 + ε

2n
· log n

)1/2
])

·
(
n2 + 1

)2
n−(4+ε) = O

(
n−ε

)
.

Therefore, for ε > 1 from (1.8) we have by Borel-Cantelli lemma that

sup
(x,y)∈∆n

|Hn (x, y) −H (x, y)| a.s.= O

((
log n

n

)1/2
)
. (1.9)

In the next lemma we establish an analogue of (1.7) for an empirical estimate H0
n. Let q0n (ε) be

obtained from qn (ε) by replacing 4 + ε with (4 + ε) /4.

Lemma 1.3. Under the conditions of Lemma 1.1

P

(
sup

(x,y)∈∆n

∣∣H0
n (x, y) −H (x, y)

∣∣ > (4 + ε

2
· log n

n

)1/2

· C−2

)
6 2n−c0(ε+4) + q0n (ε) . (1.10)

Proof. For µn 6 n : H0
n (x, y) = H∗

n (x, y) for all (x, y) ∈ R̄+2 and for µn > n we have

sup
(x,y)∈R̄+2

|H0
n(x, y) −H(x, y)| 6 sup

(x,y)∈R̄+2

|H∗
n(x, y) −H(x, y)|.

Using the formula of complete probability, we obtain

P

(
sup

(x,y)∈∆n

∣∣H0
n(x, y) −H(x, y)

∣∣ > z0C

)
6 P

(
sup

(x,y)∈∆n

|H∗
n(x, y) −H(x, y)| > z0C

2

)
6

6 P

(
sup

(x,y)∈∆n

∣∣∣∣∣Hn(x, y) −H(x, y) +
1

n

µn∑
i=n+1

I(Z1i > x,Z2i > y)

∣∣∣∣∣ > z0C
2/µn > n

)
·P (µn > n)+

+P

(
sup

(x,y)∈∆n

∣∣∣∣∣Hn(x, y) −H(x, y) − 1

n

µn∑
i=n+1

I(Z1i > x,Z2i > y)

∣∣∣∣∣ > z0C
2/µn > n

)
P (µn > n) 6

6 P

(
sup

(x,y)∈∆n

|Hn (x, y) −H (x, y)| > 1

2
z0C

2

)
+

+P

 sup
(x,y)∈∆n

∣∣∣∣∣∣ 1n
n∨µn∑

i=n∧µn+1

I(Z1i > x,Z2i > y)

∣∣∣∣∣∣ > 1

2
z0C

2

 6

6 q0n (ε) + P

(
|µn − n|

n
>

1

2
z0C

2

)
6 2n−c0(ε+4) + q0n (ε) ,

where (1.6) and (1.8) are used. 2

Proof of Theorem 1.1. From inequalities (2.4.2) in [2] applied to estimates F1n and F2n we have
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0 6 F1n (x, y) − F2n (x, y) 6 1

2

µn−1∑
i=1

[(
q
(n)
1i (x, 0)

)2
+
(
q
(n)
2i (x, y)

)2]
=

=
1

2n2


µn−1∑
i=1

δ1(i) I
(
Z

(i)
1 6 x

)
(
S0Z
1n

(
Z

(i)
1 −

))2
+

µn−1∑
i=1

δ2(i) I
(
Z

(i)
1 6 x,Z2i 6 y

)
(
H0

n

(
x,Z

(i)
2 −

))2

 6

6 µn

2n2

[
S0Z
1n

(
Z

(µn−1)
1 −

)−2

+
(
H0

n

(
x,Z

(µn−1)
2 −

))−2
]
,

(1.11)

where Z(1)
k 6 . . . 6 Z

(n)
k order statistics are constructed from Zki, k = 1, 2, δk(i) corresponds to

Z
(i)
k and S0Z

1n (x) = H0
n (x; 0). It is known that for n → ∞, Z

(n)
k

p→T
(k)
Z , k = 1, 2. We show that

Z
(µn)
k

p→T
(k)
Z , k = 1, 2 when n→ ∞. For ε > 0, 0 < δ < 1 and k = 1, 2 we have

P
(∣∣∣Z(µn)

k − T
(k)
Z

∣∣∣ > ε
)
6

6 P
(∣∣∣Z(µn)

k − T
(k)
Z

∣∣∣ > ε,
∣∣∣µn

n
− 1
∣∣∣ < δ

)
+ P

(∣∣∣µn

n
− 1
∣∣∣ > δ

)
6

6 P
(∣∣∣Z(µn)

k − T
(k)
Z

∣∣∣ > ε, n (1 − δ) < µn < n (1 + δ)
)

+ P
(∣∣∣µn

n
− 1
∣∣∣ > δ

)
6

6 P
(∣∣∣Z(n)

k − T
(k)
Z

∣∣∣ > ε
)

+ P
(∣∣∣µn

n
− 1
∣∣∣ > δ

)
.

For arbitrary η > 0 there are numbers n1 and ε such that for n > n1

P
(∣∣∣Z(n)

k − T
(k)
Z

∣∣∣ > ε
)
<
η

2
, k = 1, 2. (1.12)

Since P
(∣∣∣µn

n
− 1
∣∣∣ > δ

)
→ 0 when n→ ∞ then for n > n2

P
(∣∣∣µn

n
− 1
∣∣∣ > δ

)
<
η

2
. (1.13)

Then for n > n0 = max(n1, n2) we obtain from (1.12) and (1.13) that

P
(∣∣∣Z(µn)

k − T
(k)
Z

∣∣∣ > ε
)
< η, (1.14)

which is required result. Thus, taking into account (1.13) and (1.14), for n→ ∞ with probability
close to 1 we have

Z
(µn−1)
k ≈ Z

(n−1)
k , k = 1, 2,

µn

n2
= Op

(
1

n

)
.

(1.15)

Taking into account (1.15) and the following relations obtained from (1.10) for (x, y) ∈ ∆n

1

S0Z
1n (x)

6
∣∣S0Z

1n (x) − SZ
1 (x)

∣∣
S0Z
1n (x)SZ

1 (x)
+

1

SZ
1 (x)

=
1

SZ
1 (x)

+ Op

((
log n

n

)1/2
)
,

1

H0
n (x, y)

6
∣∣H0

n (x, y) −H (x, y)
∣∣

H0
n (x, y)H (x, y)

+
1

H (x, y)
=

1

H (x, y)
+ Op

((
log n

n

)1/2
)
,

– 427 –



Abdurakhim A. Abdushukurov, Rustamjon S. Muradov On Estimation of Bivariate Survival Function . . .

we obtain the right estimate in (I). Now according to the inequality |u− v| 6 |log u− log v| , for
0 < u, v 6 1, 0 6 Rn (x, y) 6 1 and (x, y) ∈ ∆n we have

|F1n (x, y) − F3n (x, y)| 6 Λ̄n (x, y)

∣∣∣∣∣−1 +

(
− logH0

n (x, y)
)

Λn (x, y)

∣∣∣∣∣ =

= Rn (x, y)
∣∣(− logH0

n (x, y)
)
− Λn (x, y)

∣∣ 6
6
∣∣− logH0

n (x, y) + logH (x, y)
∣∣+ |(− logH (x, y)) − Λn (x, y)| .

(1.16)

According to Lemma 1.3 and the mean value theorem for (x, y) ∈ ∆n we obtain

∣∣− logH0
n (x, y) + logH (x, y)

∣∣ = Op

((
log n

n

)1/2
)
. (1.17)

Taking into account continuity of G, Lemma 3.4.3, the proof of Theorem 2.4.3 and Remark 2.4.4
in [2] we obtain for (x, y) ∈ ∆n that

|− logH (x, y) − Λn (x, y)| = Op

((
log n

n

)1/2
)
. (1.18)

Now (II) follows from relations (2.16)–(2.18). 2

It was shown in Theorem 2.4.3 in [2] that in the case of continuity of F and G both
exponential-hazard and relative-risk power functionals coincide with the estimated survival func-
tion F . Then, taking into account Theorem 1.1, we can state that all three estimates (1.4) are
consistent estimates of F (see, also [5]).

2. Estimation of parameters of Marshall-Olkin exponential
distribution

Let us consider survival function F (s, t) = P (X11 > s,X21 > t), (s, t) ∈ R
+2

of Marshall-
Olkin exponential form with unknown parameters λ1, λ2, λ12 :

F (s, t) = exp (−λ1s− λ2t− λ12 max(s, t)) , (s, t) ∈ R
+2
. (2.1)

Then corresponding cumulative hazard function is

Λ(s, t) = − logF (s, t) = λ1s+ λ2t+ λ12 max(s, t). (2.2)

Nonparametric estimator of Λ(s, t) from (2.4) is Λn(s, t) = − logF1n(s, t) = Λ1n(s, 0)+Λ2n(s, t).
It is easy to verify from (2.2) that we have the system of equations for s > 0

Λ (s, 0) = λ1s+ λ12s,

Λ (0, s) = λ2s+ λ12s,

Λ (s, s) = λ1s+ λ2s+ λ12s.

(2.3)

From (2.3) we find expressions for unknown parameters λ1, λ2 and λ12 for a fixed point
s = s0 > 0 : 

λ1 =
1

s0
(Λ (s0, s0) − Λ (0, s0)) ,

λ2 =
1

s0
(Λ (s0, s0) − Λ (s0, 0)) ,

λ12 =
1

s0
(Λ (s0, 0) + Λ (0, s0) − Λ (s0, s0)) .

(2.4)
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Now we obtain estimators of parameters from (2.4) by replacing Λ with Λn :

λ
(n)
1 =

1

s0

(
Λn (s0, s0) − Λn (0, s0)

)
,

λ
(n)
2 =

1

s0

(
Λn (s0, s0) − Λn (s0, 0)

)
,

λ
(n)
12 =

1

s0

(
Λn (s0, 0) + Λn (0, s0) − Λn (s0, s0)

)
.

(2.5)

It follows from Theorem 1.1 that Λn(s, t) is consistent estimator of Λ(s, t). Consequently, rela-
tions (2.5) give consistent estimators of corresponding parameters (2.4) of distribution (2.1).
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Об оценивании двумерной функции выживания
по случайно цензурированным данным

Абдурахим А. Абдушукуров
МГУ, Ташкентский филиал

Ташкент, Узбекистан
Рустамжон С.Мурадов

Наманганский инженерно-технический институт
Наманган, Узбекистан

Аннотация. В настоящее время существует несколько подходов к оценке функций выживания
векторов времени жизни. Однако некоторые из этих оценок либо являются несостоятельными, ли-
бо не полностью определены в области функций совместного выживания и поэтому не применимы
на практике. В работе авторами предложены состоятельные оценки совместной функции выжива-
ния экспоненциальной, множительной и степенной структур при случайном пуассоновском объёме
выборки. Показано, что эти оценки асимптотически эквивалентны.

Ключевые слова: двумерная функция выживания, пуассоновские случайные величины, эмпири-
ческие оценки.
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Abstract. The structural and magnetic properties of CoPt-In2O3 nanocomposite films formed by
vacuum annealing of the In/(Co3O4 + Pt)/MgO film system in the temperature range of 100–800 ◦C
have been investigated. The synthesized nanocomposite films contain ferromagnetic CoPt grains with
an average size of 5 nm enclosed in an In2O3 matrix, and have a magnetization of 600 emu/cm3, and a
coercivity of 150 Oe at room temperature. The initiation 200 ◦C and finishing 800 ◦C temperatures of
synthesis were determined, as well as the change in the phase composition of the In/(Co3O4 + Pt)/MgO
film during vacuum annealing.
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Introduction
In recent years, composite nanomaterials have been the subject of numerous studies due to

their novel functional properties that differ from the properties of their components [1]. Compos-
ite ferromagnetic films containing nanoclusters of transition-metal Co, Fe, or Ni in a dielectric or
semiconductor matrix obtained by different physical and chemical methods, including the sol-gel
method, spray pyrolysis, the microemulsion method, magnetron sputtering, pulsed laser deposi-
tion, ion implantation, and joint deposition have been intensively studied [2–9]. The synthesis
of these nanocomposites often passes under equilibrium conditions, but lately there has been a
surge in nonequilibrium processing of ferromagnetic composites using methods like pulsed laser
irradiation [10], pulsed laser deposition [11], ion implantation [12, 13], and the ball-milling pro-
cess [14] and thermite synthesis of materials. Nanocomposites obtained under nonequilibrium
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conditions often have metastable phases and possess unusual magnetic and physicochemical prop-
erties. Recently, a simple and effective method of solid state synthesis of magnetic nanogranular
thin films has been proposed, based on initiating thermite reactions between 3d-metal oxide
films (Fe2O3, Co3O4) and In, Zr, Zn, Al metals, whose oxides are wide-gap semiconductors or
dielectrics [15–19]. Such an approach makes it possible to obtain thin single-layer and multilayer
nanogranular films with a well-controlled size and distribution of magnetic granules over the
thickness of the film [19]. CoPt and FePt alloy films have attracted a great deal of attention
because of their strong perpendicular magnetic anisotropy, which is important for many practical
applications. To date, there have been a small number of studies on the synthesis and investiga-
tion of nanocomposites containing CoPt and FePt nanoparticles in oxide matrices [20–26]. These
investigations are important for applications involving the synthesis of nanocomposites with the
desired magnetic, structural, and transport properties.

In this work, we report the results of the synthesis and investigation of the structure and
magnetic properties of CoPt-In2O3 nanocomposite films. The films were synthesized by a solid-
state reaction in the In/(Co3O4 + Pt)/MgO film system with annealing in a vacuum at 10−6 Torr
in the temperature range of 100 – 800 ◦C. The main synthesis parameters, including the initiation
temperature and the phase composition of the reagents and reaction products, were determined.

Experimental procedures
Fig. 1 shows the scheme for synthesizing CoPt-In2O3 nanocomposite films. First, we prepared

the CoPt(111) ferromagnetic films using the technique described in [20]. This began with the
magnetron sputtering of Pt films with a thickness of ∼ 50 nm in a vacuum at a residual pressure of
10−6 Torr onto a MgO(001) substrate heated to a temperature of ∼ 250 ◦C, which ensured epitax-
ial growth of the Pt(111) plane relative to the substrate surface. Next was the thermal deposition
of a polycrystalline Co film with a thickness of ∼ 70 nm in a vacuum at a residual pressure of
10−6 Torr onto the Pt film at room temperature to prevent a reaction between the layers (the
chosen thicknesses of the reacting layers were ∼70 nm for Co and ∼ 50 nm for Pt, which provided
an equiatomic composition), followed by the annealing of the obtained Co/Pt(111)/MgO bilayer
samples in a vacuum at 10−6 Torr at a temperature of 650 ◦C for 90 min. After annealing the
Co/Pt(111)/MgO samples, the magnetically hard L10-CoPt(111) phase forms in the Co/Pt(111)
film structure based on the oriented Pt(111) layer [20, 27].

Fig. 1. Schematic of the formation of the CoPt-In2O3 nanocomposite films
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Then, the L10-CoPt/MgO films were oxidized in air at a temperature of ∼ 350 ◦C for 3 h.
The oxidation yielded a Co3O4 + Pt film structure containing Pt nanoclusters dispersed in a
Co3O4 matrix. It should be noted that in the method used, the Co was oxidized, while the Pt
remained unoxidized.

The CoPt-In2O3 nanocomposite films were obtained by annealing the initial
In/(Co3O4 + Pt)/MgO(001) samples in a vacuum at 10−6 Torr in the temperature range
of 100 – 800 ◦C with a step size of 100 ◦C and exposure at each temperature for 40 min. Film
magnetization was measured after each annealing. The formations of the Co and CoPt magnetic
phases were detected by the occurrence of magnetization. Through these measurements, the
temperatures of initiation and end of the CoPt-In2O3 nanocomposite synthesis were determined.

The thicknesses of the reacting layers were determined by X-ray fluorescence analysis. The
saturation magnetization Ms was measured with a torque magnetometer in a maximum magnetic
field of 17 kOe. Hysteresis loops in the CoPt-In2O3 film plane and perpendicular to it were
measured on a vibrating sample magnetometer in magnetic fields up to 20 kOe. The phase
composition was investigated by X-ray diffraction using a DRON-4-07 diffractometer in CuKα

radiation (α=0.15418 nm). The analysis of the intensity of the X-ray diffraction reflections were
made using the ICDD PDF 4+ crystallographic database [28].

Results and discussion

Cobalt reduction and the formation of the CoPt ferromagnetic grains were investigated by
measuring the saturation magnetization of the initial In/(Co3O4 + Pt)/MgO(001) samples as a
function of the annealing temperatureMs(T ) (Fig. 2). It can be seen from theMs(T ) dependence
that, below 200 ◦C, Co reduction processes do not occur in the investigated In/(Co3O4 + Pt)
structure and its magnetization is therefore close to zero. The magnetization sharply increases
at T > 400 ◦C and reaches a maximum at T > 700 ◦C. The Ms(T ) (Fig. 2) dependence includes
three portions: near T1 ∼ 200 ◦C, near T2 ∼ 400 ◦C and near T3 ∼ 700 ◦C. It is well known [17] that
T1 is close to the temperature ∼ 200 ◦C of Co reduction from the Co3O4 oxide in the In/Co3O4

film system. At the same time, it is well-known [27] that the L10-CoPt phase starts forming at
a temperature of ∼ 375 ◦C in Pt/Co films. We can conclude that, at T2 ∼ 400 ◦C, the reaction
of the Co reduction from the Co3O4 oxide with the formation of the CoPt and In2O3 phases
continues. At temperatures above 400 ◦C, the magnetization of the film sharply grows, which
indicates the continuation of the solid-state reaction in the In/(Co3O4 + Pt)/MgO(001) film with
the formation of the CoPt and In2O3 phases. Annealing at T > 700 ◦C facilitates the occurrence
of the maximum number of CoPt grains.

Fig. 2. Dependence of the saturation magnetization Ms on the annealing temperature T of the
In/(Co3O4 + Pt)/MgO film
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X-ray measurements performed after the oxidation of the L10-CoPt/MgO films in air at a
temperature of ∼ 350 ◦C for 3 h and the deposition of the In layer showed that the obtained system
consists of the Co3O4 (the space group Fd-3m, lattice constant a = 8.0837 Å, PDF Card # 00-
042-1467), Pt (the space group Fm-3m, lattice constant a = 3.9231 Å, PDF Card # 00-004-0802),
and In (the space group I4/mmm, lattice constants: a = 3.252 Å, c = 4.9466 Å, PDF Card #04-
004-7737) phases (Fig. 3 a). Annealing at a temperature of 400 ◦C (Fig. 3 b) led to the formation
of a small amount of the ordered L10-CoPt tetragonal phase in the reaction products, which
is confirmed by the presence of the (001) superstructural reflection (the space group P4/mmm,
lattice constant a = 2.677 Å, c = 3.685 Å, PDF Card #04-003-4871). The In2O3 reflections
are also present in the diffraction pattern (the space group Ia-3, lattice constant a = 10.118 Å,
PDF Card # 00-006-0416). When annealing at temperatures below 400 ◦C reflections from the
reduced cobalt were not observed because of its high dispersion.

Fig. 3. X-ray diffraction patterns of the In/(Co3O4 + Pt)/MgO film after annealing in a vacuum
in the temperature range of 100 – 800 ◦C

When the sample was heated to 500 ◦C (Fig. 3 c), the reflections from the Pt phase dis-
appear and reflections from the disordered A1-CoPt (the space group Fm-3m, lattice constant

– 434 –



Liudmila E. Bykova . . . Magnetic and Structure Properties of CoPt-In2O3 Nanocomposite Films

a = 3.768 Å, PDF Card # 04-001-0115) and CoPt3 (the space group Pm-3m, lattice constant
a = 3.831 Å, PDF Card #04-004-5243) phases appear. When the sample was annealed to 700 ◦C
(Fig. 3 d), the intensity of the diffraction reflections increased, which is related to reaction relax-
ation processes, including the increase of the size of the CoPt grains and the improvement of the
crystal quality in the insulating In2O3 matrix, but no new phases were formed. Annealing at
T = 800 ◦C (Fig. 3 e) led to the formation of the Co3Pt (the space group Fm-3m, lattice constant
a = 3.668 Å, PDF Card # 01-071-7411) phase.

The CoPt grain size was estimated from the width of the Co3Pt (200) reflections (Fig. 3 e) by
the Scherrer formula d= kλ/β cos θ, where d is the mean crystal grain size, β is the diffrac-
tion maximum width measured at half the maximum, λ is the X-ray radiation wavelength
(0.15418 nm), θ is the diffraction angle corresponding to the maximum of the peak, and k = 0.9.
The obtained calculated size of the crystal grains of CoPt was ∼ 5 nm.

X-ray diffraction allows us to conclude that after annealing the film contains CoPt (A1-CoPt +
CoPt3 + Co3Pt) alloy nanograins surrounded by In2O3. The synthesis of the nanocomposite
includes the following successive solid-state reactions:
1. 200 ◦C→ 8In + 3Co3O4 = 9Co + 4In2O3,
2. 400 ◦C→Co + Pt = L10-CoPt,
3. 500 - 700 ◦C→Co + Pt = A1-CoPt and A1-CoPt + 2Pt = CoPt3,
4. 800 ◦C→A1-CoPt + 2Co = Co3Pt.

When annealing above 400 ◦C, the transition of the cubic CoPt phase to the tetragonal
L10-CoPt phase does not occur and the formed films are low-coercive. Recently, we synthesized
high-coercive CoPt-Al2O3 films under the same synthesis conditions (an equiatomic composition
Co:Pt = 50:50 on an MgO(001) substrate, vacuum annealing) [20, 27]. It’s possible this difference
between the synthesis of CoPt-In2O3 and CoPt-Al2O3 nanocomposite films is due to the fact
that in In/(Co3O4 + Pt)/MgO(001) films the cobalt is restored before (∼ 200 ◦C) the formation
of the L10-CoPt phase (∼ 400 ◦C) and the formed In2O3 phase prevents the transition of the
cubic CoPt phase to the tetragonal L10-CoPt phase. In the synthesis of CoPt-Al2O3 films, in
Al/(Co3O4 + Pt)/MgO(001) films, the formation of the L10-CoPt phase occurs at ∼ 375 ◦C and
the Co is restored from the Co3O4 oxide at ∼ 490 ◦C [20, 27].

Fig. 4. Hysteresis loops in the CoPt-In2O3 nanocomposite film plane and the perpendicular
plane

Fig. 4 presents the hysteresis loops measured in the CoPt-In2O3 film plane and the per-
pendicular plane. They have a coercivity of Hc ∼ 150 Oe, and a saturation magnetization of
Ms ∼ 600 emu/cm3. The relatively large ratio Mr/Ms< 0.3 between the remnant magnetiza-
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tion Mr and saturation magnetization Ms (Fig. 4) shows that the CoPt nanoparticles consist of
randomly oriented grains with a cubic magnetocrystalline anisotropy [29].

Conclusion

The main results of our investigations are as follows. The low-coercivity CoPt-In2O3

nanocomposite films were obtained by annealing the In/(Co3O4 + Pt)/MgO(001) samples in
a vacuum at 10−6 Torr in the temperature range of 100 – 800 ◦C with a step size of 100 ◦C and
exposure at each temperature for 40 min. Comprehensive structural and magnetic investiga-
tions unambiguously indicate that after annealing the film contains CoPt (A1-CoPt + CoPt3 +
Co3Pt) alloy nanograins by the In2O3 layer, with an average size of 5 nm. The synthesized
CoPt-In2O3 film nanocomposites had a magnetization of about 600 emu/cm3 and a coercivity
of about 150Oe at room-temperature. The initiation 200 ◦C and finishing 800 ◦C temperatures
of synthesis and the phase composition of the reaction products were determined. It has been
suggested that the formed In2O3 phase prevents the transition of the cubic CoPt phase to the
tetragonal L10-CoPt phase and, as a result of the synthesis, low-coercive films were formed.
Thus, the solid-state method is promising for synthesizing ferromagnetic nanocomposite thin
films consisting of ferromagnetic nanoparticles.

This study was supported by the Russian Foundation for Basic Research, Government
of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science to the research projects
no. 19-43-240003.
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Магнитные и структурные свойства нанокомпозитных
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Аннотация. Исследованы структурные и магнитные свойства нанокомпозитных пленок CoPt-
In2O3, полученных вакуумным отжигом пленочной системы In/(Co3O4 + Pt)/MgO в интервале
температур 100 – 800 ◦C. Синтезированные нанокомпозитные пленки содержали ферромагнитные
CoPt-кластеры со средним размером 5 nm, заключенные в матрицу In2O3, и имели намагничен-
ность 600 emu/cm3, коэрцитивную силу 150 Oe при комнатной температуре. Определены темпе-
ратуры начала 200 ◦C и окончания 800 ◦C синтеза, а также изменение фазового состава пленки
In/(Co3O4 + Pt)/MgO при вакуумном отжиге.

Ключевые слова: тонкие пленки, ферромагнитные нанокомпозиты, сплав CoPt, оксид In2O3.
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Abstract. Due to the kinetic approach the modelling description of the drop evaporation is offer.
The main equation of the theory received due to the conservation law of dissipative functions of the
vapor – liquid system. The diapason of drop size it’s finding when its stability. It’s comparison of the
results with the famous classical is given. The numerical estimate of the linear size of small disperse

phase when take place usually evaporation (i.e. the Knudsen’s number is a small Kn =
l

R
≪ 1, where l

is a free length path of the molecule and R is an drop radius) are given.
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The task that will be discussed in this article is not new, and has about a century of back-
story. It must be said that for many physical tasks devoted to the study of the properties of
fine environments (fogs, steam, smoke, dust, etc.), it is characteristic that their solution in the
vast majority of cases has an empirical and experimental character. Although the number of
theoretical works in this direction has been growing quite rapidly in recent years, the conclusion
of the main equations is usually based on the dependents obtained purely experimentally. In this
paper, we will move away from the well-established stereotype of problem-solving in this direc-
tion, and use the general principles of the theory of non-equilibrium processes, using as the basic
method of describing the dissipative function Q̇ = T Ṡ, where T is an equilibrium temperature,
S is an entropy, and the "point" under the letter as usually shows the differentiation in the time.

1. The conclusion of the main equation

Let’s write the balance equation taking into account the interaction of gas phase molecules
and molecules in a drop at the edge of their contact in the form of the next amount of dissipative
functions

T
d

dt

∫
V1

s1dV + T
d

dt

∫
V−V1

s2dV +
d

dt

∫
σ

αdσ = 0, (1)

where s1 is an entropy of drop in the unite of its volume, s2 is an entropy is a unit of volume
surrounding the gas phase drop, including molecules of the already evaporated drop matter, V1

∗sglad51@mail.ru
c⃝ Siberian Federal University. All rights reserved
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variable drop volume, V = V1 + V2 = const fullvolume occupied by drop and gas, σ the surface
area of the drop. By performing a simple time-by-time differentiation, we find

T Ṡ1 + Ts1V̇1 + T Ṡ2 − Ts2V̇1 + ασ̇1 = 0. (2)

Introducing here the hidden warmth of steam formation

∆QV = T (s1 − s2) . (3)

Getting out (2)
T Ṡ1 + T Ṡ2 + ∆QV V̇1 + ασ̇1 = 0. (4)

Our task now is to calculate the first two components that are part of the equation (4). According
to the definition of entropy in the language of the distribution function (see [1]), we have

S1 = − 1

Z1

∫
n1 lnn1d

3p, (5)

where n1 is an nonequilibrium function of the distribution of fluid molecules by pulses, and the
rationing multiplier

Z1 =

∫
n̄1d

3p, (6)

where the equilibrium distribution function

n̄1 = exp

(
−ε1(p) − µ1(P, T )

T

)
. (7)

Note here that Boltzmann’s constant in (5) and in (7) and beyond we will believe an equal unit.

Kinetic energy of molecules in liquid is ε1(p) =
p2

2m1
, where µ1(P, T ) is the chemical potential of

a liquid molecules in drop. Similarly

S2 = − 1

Z2

∫
n2 lnn2d

3p, (8)

where Z2 =
∫
n̄2d

3p,

n̄2 = exp

(
−ε2(p) − µ2(P, T )

T

)
, (9)

where ε2(p) =
p2

2m2
is the kinetic energy of gas molecules, and µ2(P, T ) their chemical potential.

Differentiating (5) and (8) on time, we have, lowering the permanent term

Ṡ1 = − 1

Z1

∫
ṅ1 lnn1d

3p, Ṡ2 = − 1

Z2

∫
ṅ2 lnn2d

3p. (10)

In the accordance with Boltzmann’s kinetic equation, we have the right to write down that

ṅ1 = L1(n1, n2), ṅ2 = L2(n2, n1), (11)

where L1(n1, n2) and L2(n2, n1) respectively, the integrals of the collisions of liquid and gas
molecules at the border of their contact. Therefore, with the account of expressions (10) and
(11) the equation (4) will take the form

− T

Z1

∫
L1(n1, n2) lnn1d

3p− T

Z2

∫
L2(n2, n1) lnn2d

3p+ ∆QV V̇1 + ασ̇1 = 0. (12)
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The solution of kinetic equations we will look for in the so-called "tau- approximation", according
to which the integrals of collisions are replaced by the approximation of expression

L1 ≈ −δn1

τ12
, L2 ≈ −δn2

τ21
, (13)

where τ12 the relaxation time of the liquid molecules when they are scattered on gas molecules,
and τ21 the relaxation time of the gas molecules when they are scattered on liquid molecules. It
is clear that these times are different. We will now find amendments δn1,2 to the distribution
function due to the interaction. According to the kinetic equation, we have

ṅ1 =
∂n1

∂t
+ v · ∇n1 + F · ∂n1

∂p
= −n1 − n̄1

τ12
. (14)

As we are looking for a stationary solution
∂n1

∂t
=
∂n2

∂t
= 0. To the rum of that, it should be

considered that strength F = 0. As a result

v · ∇n1 = −n1 − n̄1
τ12

. (15)

And similarly
v · ∇n2 = −n2 − n̄2

τ21
. (16)

We will look for solutions to equations (15) and (16) by the method of successive approximations,
that is, let’s put that

n1 = n̄1 + δn1, n2 = n̄2 + δn2. (17)

That’s why we get

l12 · δn1 + δn1 = −l12 · ∇n̄1,
l21 · δn2 + δn2 = −l21 · ∇n̄2.

(18)

where free-range vectors are introduced l12 = vτ12, l21 = vτ21. The solution of equations (18) is
convenient to look for by decomposition of the desired functions in the integral Fourier. Indeed,
have for arbitrary (yet) function

f(r) =

∫ ∞

−∞
exp (ikr)fk

d3k
(2π)3

, (19)

where by one-dimensional integral we mean three-dimensional integral, fk is the Fourier image
of the function f . Substituting (19) in any of the equations (18), easy find∫

(1 + ikl) δnk
d3k

(2π)3
= −l · ∇

∫
n̄k exp (ikr)

d3k
(2π)3

.

From where
δnk = −i (k · l)n̄k

1 + ik · l
, (20)

where n̄k is Fourier image of the equilibrium function of molecule distribution n̄(r). Substituting
now the solution (20) in the definition (19), find the amendment of interest to the equilibrium
function of distribution

δn = − i

(2π)3

∫
(k · l)n̄k

1 + ik · l
exp (ikr)d3k. (21)
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Here and beyond we simplify the recording of the Integral Fourier, lowering the limits of inte-
gration. To calculate the resulting integral, it is convenient to use the next artificial technique.

Let’s imagine the function
1

1 + ik · l
in the form of an integral

1

1 + ik · l
=

∫ ∞

0

exp (−x(1 + ik · l))dx. (22)

Then from (21) it follows

δn = − i

(2π)3

∫ ∞

0

exp (−x)dx

∫
(k · l) n̄k exp (ik(r − xl))d3k. (23)

Next, as

n̄k =

∫
n̄(r′)exp(−ikr′)d3r′, (24)

then substituting (24) in the solution (23), will have as a result of a simple regrouping of multi-
pliers

δn = − i

(2π)3

∫ ∞

0

exp (−x)dx

∫
n̄(r′)d3r′

∫
(k · l) exp (ik(r − r′ − xl))d3k. (25)

To calculate the internal integral, let’s use the following technique. Let’s write it down as∫
exp (ik(R − lx))(kl)d3k = i

∂

∂x

∫
exp (ik(R − lx))d3k = i(2π)3

∂

∂x
δ(R − lx),

where radius–vector R = r − r′. As a result, from (25) it follows

δn =

∫ ∞

0

exp (−x)dx
∂

∂x

∫
n̄(r′)δ(r − r′ − lx)d3r′ =

∫ ∞

0

exp (−x)dx
∂

∂x
n̄(r − lx)dx.

We will take the resulting integral by means of integration piece by piece. In fact,

δn =

∫ ∞

0

exp (−x)dx
∂

∂x
n̄(r − lx)dx =

∫ ∞

0

exp (−x)n̄(r − lx)dx− n̄(r). (26)

Remembering now the operator of the broadcast, namely the rule

n̄(r − lx) = exp (−xl · ∇)n̄(r).

Find out (26)

δn =

∫ ∞

0

exp (−x(1 + l · ∇))n̄(r) − n̄(r). (27)

Therefore, for the amendments we are in, we get such solutions to equations (18)
δn1 =

∫ ∞

0

exp (−x(1 + l12 · ∇))n̄1(r) − n̄1(r),

δn2 =

∫ ∞

0

exp (−x(1 + l21 · ∇))n̄2(r) − n̄2(r).

(28)

And hence, according to (12) and (13) find

T

Z1

∫
δn1

τ12
ln n̄1d

3p+
T

Z2

∫
δn2

τ21
ln n̄2d

3 + ∆QV V̇1 + ασ̇1 = 0, (29)
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where the amendments δn1, δn2 accurate solutions (28), albeit in tau approximation. By de-
termining the equilibrium functions of distribution (7) and (9) of (29) the dissipative balance
equation follows

− T

Z1

∫
ε1 − µ1

τ12
δn1d

3p− T

Z2

∫
ε2 − µ2

τ21
δn2d

3p+ ∆QV V̇1 + ασ̇1 = 0. (30)

Note that the last (30) is also convenient to present as
∫
αdS = ε̄1N1 = ε̄1

∫
c1dV1, where ε̄1 some

medium energy coming from one particle of liquid, c1 is their concentration. In the accordance
with (28) the solution can be written down in the form of an endless series of

δn =

∫ ∞

0

exp (−x(1 + l · ∇))n̄(r)dx− n̄ =

=

∫ ∞

0

exp (−x)

(
1 − xl · ∇ +

x2

2
(l · ∇)2 − x3

3!
(l · ∇)3 + . . .

)
n̄(r)dx− n̄.

Integrating here each of the material on, we come to the next decision (see [3])

δn =
[
1 − l · ∇ + (l · ∇)2 − (l · ∇)3 + . . .

]
n̄− n̄ =

=
[
−l · ∇ + (l · ∇)2 − (l · ∇)3 + (l · ∇)4 . . .

]
n̄,

(31)

where the shortness of the decision record (28) is presented with a single designation δn and l, i.e.
δn = {δn1, δn2} аnd l = {l12, l21}. If you now put the solution (31) in the balance equation (30),
(l · ∇) then thanks to the integration of momentum all odd degrees will disappear, and instead
(30) we get

− T

Z1

∫
ε1 − µ1

τ12

[
(l12 · ∇)2 + (l12 · ∇)4 + (l12 · ∇)6 . . .

]
n̄d3p−

− T

Z2

∫
ε2 − µ2

τ21

[
(l21 · ∇)2 + (l21 · ∇)4 + (l21 · ∇)6 . . .

]
n̄d3p+ ∆QV V̇1 + ασ̇1 = 0.

(32)

Leaving in (32) only square length of free run components, and given the clear kind of equilibrium
function of molecule distribution (7), (9), as a result of elementary differentiation come to such
an equation

− T − ε1 − µ1

T

l212
τ12

(
∆µ1 +

(∇µ1)2

T

)
−

− T − µ2

T

l221
τ21

(
∆µ2 +

(∇µ2)2

T

)
+ ∆QV V̇1 + αṠ

∣∣∣
r=R

= 0.

(33)

Since at the border of the two phases in the absence of chemical reactions must be met the
condition of continuity of entropy, it is quite clear that there is equality

∆QV = T (s1 − s2)|r=R = 0. (34)

As we can see, this condition is true if the temperature is constant. However, it is quite clear that
the equality of entropy at the border of the contact of the drop and gas mixture does not mean
the equality of their specific heat-intensiveness, because from the point of view of mathematics
equality (34) should be recorded in a slightly different form, namely how

s1|r=R−0 = s2|r=R+0 . (35)
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That is, the limits are taken to the left and right of the contact boundary. Therefore, it is quite
clear that due to the lumpy smoothness of entropy (35) follows and condition for temperature
derivatives from entropy, which just characterizes the heat intensity of both phases. Formally,
this means that there is equality

c1|r=R−0 = c2|r=R+0 + ∆c, (36)

where the heat capacity supplement ∆c means the final spike in heat capacity at the edge of the
section of the two environments, and the isobaric heat intensity is introduced here in accordance

with the generally accepted definition [2] ci = T

(
∂si
∂T

)
P

, where index is i = 1, 2.

As for the physical side of the equation (33), it should be stressed immediately that as soon
as we introduce the concept of variable entropy, we automatically move on to taking into account
the dissipative properties of the matter. That is, in an nonequilibrium case, which is described
by the equation (33), has a condition of increasing entropy (H – Boltzmann’s famous theorem).
As it becomes clear now, taking into account the interaction between molecules of both phases,
that is, the transfer of energy from water molecules to gas molecules and vice versa leads to
the destruction of the weak surface tension of the drop. To analytically describe this process, it
is necessary to focus on the remarkable property of any natural physical phenomenon, like the
hierarchy of relaxation times [4].

Indeed, by the order of magnitude, the free path of molecules in the liquid l12 is much less
than the free path of gas molecules l21, that is, inequality is performed l12 ≪ l21.

This means that in terms of the hierarchy of times by virtue of the condition τ12 ≪ τ21, which
actually follows from a condition n̄1 ≫ n̄2, where n̄1, n̄2 accordingly the average concentrations
of liquid and gas molecules, the basic evaporation process belongs to the first composed (33),
and it is this important fact that allows us to neglect the second term.

Otherwise. The first process, as the fastest, has already occurred and the drop has begun to
evaporate, and the second has not yet had time to begin. This does not mean, however, that it
does not contribute to the evaporation process: in a later period of time, this contribution will
appear. So, given the continuity of entropy at the contact boundary (35) and with all that said,
we get this equation from (33)

−T − ε̄1 − µ1

T

l212
τ12

(
∆µ1 +

(∇µ1)2

T

)
+ αṠ

∣∣∣
r=R

= 0. (37)

Note also that for the chemical potentials of both phases at the border there is a condition of
equilibrium

µ1|r=R = µ2|r=R . (38)

Because Ṡ = 8παRṘ, of (37) find

8παRṘ =
µ1 − ε̄1 − T

T

l212
τ12

(
∆µ1 +

1

T

(
∂µ1

∂R

)2
)
. (39)

Because the distribution of heterogeneous chemical potential in contact between the two media
(see [5]) describing due to the equation

∆µ+
µ

δ2
− ξµ3

δ2T 2
= 0, (40)
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where δ is the length of heterogeneity that satisfies inequality δ ≪ lmin, where lmin =

= min{l12, l21}, and ξ is some coefficient leading to a correct decision (41), then in one-
dimensional case out of (40) we will get

µ(r) =
µ1 + µ2

2
− µ1 − µ2

2
th
(
δr

δ

)
. (41)

Therefore, at the border of contact we have

∂µ

∂r

∣∣∣∣
r=R

=
µ2 − µ1

2δ
. (42)

Thus, the equation (42) takes on the form of

8παRṘ = −µ1 + ε̄1 − T

T

l212µ1

τ12δ2

(
µ1

4T

(
1 − µ2

µ1

)2

+
ξµ2

1

T 2
− 1

)
. (43)

Where do we get a direct integration, taking into account the initial conditions R(0) = R0

R =
√
R2

0 −DT t, (44)

where the diffusion coefficient is

DT =
µ1 + ε̄1 − T

4παT

l212µ1

τ12δ2

(
µ1

4T

(
1 − µ2

µ1

)2

+
ξµ2

1

T 2
− 1

)
. (45)

And hence the time of evaporation of the liquid drop is from here from the condition of equality
of zero subdivided expression, that is,

tevap =
R2

0

DT
. (46)

As to the time of relaxation τ12 it is easy to show that it can be calculated by formula

1

τ12
=

2r22n̄1

3π
√

2π

m2
1µ̄1

(m1 +m2)3

√
m2

T
, (47)

where r2 is a radius of a molecule of the gas, µ̄1 their medium chemical potential, m1 is the mass
of molecule of the water, m2 is the mass of the molecule of the gas, n̄1 is the middle concentration
of molecules of the water. In order of magnitude (47) it follows that τ12 ≈ 10−10 s. A similar
formula has a place for relaxation time τ21. It comes from a formula (47) formally replacing
indices ′′1′′ with ′′2′′. In the order of magnitude τ21 ≈ 10−8 s. Calculating the evaporation time
of the formula (45) also requires substitution of the chemical potential of gas and liquid. Based
on the general definition of the average energy of a large particle statistical system, namely
Ω = µ(P, T )N , where N is a number of particles in the system, for its differential we have

dΩ =

(
∂µ

∂T

)
P

NdT +

(
∂µ

∂P

)
T

NdP + µdN. (48)

According to [2], for example, in the variable (T, P,N) the Helmholtz’s energy differential is

dΦ = −SdT + V dP + µdN. (49)
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From the comparison (48) and (49) we see that

S = −N
(
∂µ

∂T

)
P

, V = N

(
∂µ

∂P

)
T

. (50)

It is known from [2] the one that entropy per particle can be calculated as

s =
S

N
= − 1

Z

∫
n lnnd3p, (51)

where the rationing multiplier Z =
∫
n̄d3p, and

n̄ = exp

(
−ε(p) − µ

T

)
(52)

is the equilibrium Maxwell distribution function, p momentum of molecule. Neglecting in (51)
molecule scattering processes, we have

S = −N
Z

∫
n̄ ln n̄d3p =

N

ZT

∫
(ε− µ) exp

(
−ε− µ

T

)
d3p. (53)

The chemical potentials in the exhibitor indicators under integral in (53) and in the normal
multiplier will be reduced, and as a result of simple calculation we will come to such an answer

S = N

(
3

2
− µ

T

)
. (54)

Remembering now the definition (50), we get the following differential equation to determine of
chemical potential µ (

∂µ

∂T

)
P

=
µ

T
− 3

2
. (55)

Simple integration leads us to the next result

µ(P, T ) = C(P )T − 3

2
T lnT, (56)

where the dependence C(P ) we can easy find due to the second ratio in expr. (50), i.e.

V = N

(
∂µ

∂P

)
T

= NT
dC

dP
. (57)

Since the Clapeyron-Mendeleev equation PV = NT is in place for the ideal gas, we immediately
get that

C(P ) = A+ lnP, (58)

where A is an constant of integration. Assuming that A = 1 and substituting expr. (58) to the
(56), find the dependency we’re going to find

µ(P, T ) = T + T ln

(
P

P0

)
− 3

2
T ln

(
T

T0

)
, (59)

where T0, P0 are the temperature and the pressure at normal condition, i.e. T0 = 300 K,
P0 = 1 atm = 105 Pa. That is, for the gas phase, the chemical potential is determined by (59)
as

µ2 = T + T ln

(
P2

P0

)
− 3

2
T ln

(
T

T0

)
. (60)
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As for the drop of water, it is very problematic to use the gas approximation for it, and in this
case it is necessary to apply the equation of the state of Van-der-Waals. As a result, the chemical
potential can also be calculated analytically, but now we will not stop there, and move on to
the assessment of the time of evaporation, considering for simplicity that µ1 ∼ µ2. Note, by the
way, that this ratio is quite correct. To estimate the evaporation time according to the general
expression (43), we will select the following values of the parameters included in it

α = 70
erg

cm2
, µ1 ∼ µ2 = 6 · 10−14 erg, T = 300 K = 4 · 10−14 erg,

R0 = 5 · 10−1 cm, τ12 = 10−10 c, δ ≈ 10−6 cm.

In the result

tevap = τ12
4παR2

0δ
2(

µ1

4T

(
1 − µ2

µ1

)2

+
ξµ2

1

T 2
− 1

)(
µ1 + ε̄1
T

− 1

)
µ1l212

≈

≈ 10−10 4π · 70 · 25 · 10−2 · 10−12

3 · 6 · 10−14 · 10−10
=

2 · 70 · 25

3
≈ 1.15 · 103 s = 20 min.

(61)

That is, a drop of water with a diameter of five millimeters evaporates in about twenty minutes.
And then there’s. Looking at the equation (39), we clearly see an equation such as a thermal
conductivity equation with a temperature-conductivity factor χ, or a diffusion-type equation
with a diffusion factor D, which is determined by the ratio of the right side of the equation (39),
i.e.

D ∼ χ ∼ l212
τ12

=
v21T τ

2
12

τ12
= v21T τ12. (62)

This remarkable result is evidence that the evaporation process is purely dissipative and in
isotherm conditions is determined by the heterogeneity of chemical potential at the border of
contact between liquid and gas. In light of what has been said, it can be argued that according
to (62) the described evaporation effect is nothing more than isotherm diffusion. In fact, the
assessment (61) of the task of analytical description of the drop evaporation process can be
considered solved.

The theoretical approach described above is worth comparing with the approach outlined, for
example, in the Fuchs’s classic monograph [6]. It is worth noting that this monograph is entirely
based on the interpretation of purely empirical dependencies, that is, dependencies obtained
experimentally. However, the formulas in it allow us to draw some parallel with the theoretical
analysis given a little above. If we enter the Sherwood number according to the formula (see [6, 7])

Sh =
If

2πRD(c0 − c∞)
, (63)

where If is a speed of evaporation, having the dimension
g

s
, D is the diffusion coefficient with the

dimension
sm2

s
, c0 is the concentration of steam in close proximity to the drop (its dimension

is
g

cm3
), c∞ is concentration of steam on infinity with the same dimension, in the case of a

stationary drop, the Sherwood’s number is exactly 2. Using empirical dependence (63) we will
find the dependence of the radius of the evaporating drop from time to time. Assuming that
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If = ṁ, where the mass of the drop is m = ρkV =
4π

3
ρkR

3, and accounting that Sh = 2, we
find from expr. (63),

4πρkR
2Ṙ = 4πRD(c0 − c∞).

Or
RṘ =

D(c0 − c∞)

ρk
. (64)

Where does the solution come from immediately

R(t) =
√
R2

0 −Deff t, (65)

where the effective diffusion coefficient is

Deff =
D(c0 − c∞)

ρk
. (66)

Comparing (65) with our decision (44) we see their full identity. According to the formula (44),
the rate of evaporation behaves like

vvap = |Ṙ(t)| =
DT

2
√
R2

0 −DT t
. (67)

It’s the right place to go, that when the drop size is reduced, its evaporation rate increases
dramatically, which is experimental observe (see an example papers [8, 9]). Dependencies (44)
and (67) are illustrated by drawings in Figs. 1, 2.

Fig. 1. Schematic representation of the time as dependence of the radius drop

However, our diffusion coefficient (45) and the empirical formula (63) according to (66) are
quite different from each other qualitatively. Although in order of magnitude they both give
the correct value of the time of evaporation of the stationary drop at condition that in the
formulae (66) difference c0 − c∞ choose equal 1

g

cm3
, and the diffusion coefficient put equal as

in our theory value D = 5 · 10−5 cm
2

s
. This is, in principle, understandable, since the rigorous

analytical solution to the problem, based on the equation of preserving the amount of dissipative
function (1) and the experimentally obtained dependence (63), is based on different physical
assumptions on which the authors rely.
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Fig. 2. The time as dependence of the evaporation rate drop

Conclusion

In the conclusion, it is worth noting three important points.

1. The theory of evaporation of droplets of fine-dispersed environment, based on the condition
of preservation of dissipative function, has been built (dissipated energy cannot disappear
without a trace, but passes into something).

2. Suggested description of the dynamics of the drop in a high-temperature environment,
taking into account its evaporation.

3. The numerical estimates of the optimal size of the drops and their initial speed in the jet
are.
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К вопросу аналитической оценки времени испарения
капли, проходящей сквозь горячую среду
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Аннотация. С помощью кинетического подхода предложено модельное описание процесса испаре-
ния капли, движущейся в раскаленной среде. Основное уравнение теории получено благодаря ис-
пользованию закона сохранения диссипативных функций системы пар – жидкость. Найден диапа-
зон размеров капли, при которых она устойчива. Дано сравнение полученных результатов с извест-
ными классическими. Приведены численные оценки размеров мелкодисперсной фазы, при которых

имеет место обычное испарение (то есть выполняется условие на число Кнудсена Kn =
l

R
≪ 1, где

l — длина свободного пробега молекулы, а R — радиус капли).

Ключевые слова: диссипативная функция, испарение, длина свободного пробега.
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The most famous and broadly used technology of metal’s chemical deposition from salt so-
lutions is the application of anticorrosion coating upon metallic surfaces, as well as produc-
ing the connecting stripes on printed-circuit boards for the needs of radio electronics. Besides
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these industries, using the chemical technology is very perspective for the purposes of produc-
ing thin magnetic films which are necessary for developing such devices as memory cells for
magnetic/thermomagnetic recording and data storage, as well as creating highly sensitive signal
transmitters. The most interesting, from an applied science’s point of view, is a possibility of
producing materials with various characteristics that is easily performed by changing conditions
of chemical reactions, such as chemical composition and acidity of the deposition’s environment,
a temperature of the deposition and so on. There upon, the magnetic films produced by Co-P
alloying are especially interesting. This alloy, because of high values of some cobalt parameters, is
most usable in terms of practical application. Therefore, the specificity of its producing is a sub-
ject of scientific interest that resulted in a number of publications. The most of them are focused
on the influence of solution acidity upon the films’ structural and magnetic properties. Using
some additional reagents, able to change solutions’ pH, it is possible to improve the morphology
of film’s surface, to change its structure [1–5] and to produce, depending on the pH value, either
highcoercivity or lowcoercivity specimens [6–8]. However, because of the experiment’s multi cen-
tricity and the complexity of describing the redox processes, the technology of metals’ chemical
deposition from water solutions is not properly studied and developed. This is the main factor
barring broad use of chemical deposition for the purposes of producing magnetic films.

This work, based upon experimental data, demonstrates that, within the given range of
the process solution’s concentrations, growth of the solution’s pH follows to a polymorphic phase
transition of the Co crystal lattice from the hcp structure to the fcc one, that results in anomalous
changes of its magnetic properties: coercive force and magnetic anisotropy. Basing on the analysis
of redox processes of the cobalt deposition, the procedure of revealing the pH influence upon the
granular microstructure is proposed.

1. The technology of specimen producing and
the procedure of measurement

The process solution is the water one of cobalt sulphate (CoSO4 · 7H2O) with the concen-
tration of 15 g/l, the solution of sodium hypophosphite (NaH2PO2 · H2O) of 10 g/l, and the
one of sodium citrate (Na3C6H5O7) of 25 g/l. The required pH value is reached by adding
alkaline reagents such as sodium hydro carbonate NaHCO3 or caustic soda NaOH of different
concentrations. The value of solutions’ acidity is measured by the pH-150MI apparatus to an
accuracy of ± 0.05. The deposition goes under the temperature of 1000C and the magnetic-field
strength of H=3 kOe on a cover glass faceplate, previously cleaned, sensitized and activated by
the methods, standard for the technology of dielectrics’ chemical metallization.

The films’ microstructure is analyzed by the methods of transmission electron microscopy,
including revealing the specimens’ elemental composition, using a TEM HT-7700 (Hitachi) with
a X-Flash 6T/60 (Bruker) energy dispersive detector. The values of coercive force and saturation
intensity are revealed by, consequently, the meridional Kerr effect and a SQUID magnetometer
(room temperature). Measuring NMR-signals is performed by a standard spin echo apparatus
within the range of 150–250 MHz.

2. Research results
Fig. 1 shows dependence of the created films’ induced anisotropy constant KU and the coer-

civity HC upon solutions’ acidity.

– 452 –



Sergey A. Podorozhnyak, Anatoly V. Chzhan . . . Structural Changes of Co Caused a Change . . .

Fig. 1. Dependence of HC and KU on the solution’s acidity

Within the range of low pH (7.2÷ 8.5) KU value is ∼ 2.5× 105 erg/cm3. Growing pH follows
to rising anisotropy, and within the range of pH∼ 8.5 KU is ∼ 6 × 105 erg/cm3

.The following
growth of acidity results in a step-like drop of KU by an order, to 5 × 104 erg/cm3. The value of
HCwith pH growing to ∼ 8.5 rises from ∼ 1 kOe to ∼ 1.5 kOe, and later, with the following pH
growth, HC step-likely drops down to few Oes.

As it follows from the data of specimens’ X-ray diffraction analysis, obtained for pH < 8.5
(Fig. 2a), the highly coercivity is characterized by existing a hcp-phase of cobalt. Relatively equal
heights of major peaks reflect presence of the polycrystalline structure with no preferred direction
of the crystallite growth; that may also be derived from the analysis of electron microscopic
(TEM) micrographs of the surfaces, represented by Fig. 2b. Fig. 2c demonstrates a typical
electron diffraction pattern of a highcoercive polycrystalline film.

The transition to lowly coercive conditions with pH > 8.5 corresponds with the film struc-
ture changes, visible at transmission electron microscopic (TEM) micrographs of the surface,
represented by Fig. 3b. X-ray photographs of such specimens show diffused reflexes, typical for
nanocrystalline materials (Fig. 3a). Layers, dividing denser structural formations, are visible
at TEM micrographs as well as it is in the case of highly coercive Co-P films. These electron
diffraction patterns (Fig. 3c) bear witness to the presence of a nanocrystalline structure.

Basing on the analysis of TEM micrographs of the highly anisotropic polycrystalline films
and electron diffraction patterns of the lowly anisotropic polycrystalline ones, the dependence of
the size of granules (of which the films consist) on pH values is revealed (Fig. 4).

Because the X-ray diffraction analysis is poor for obtaining data on the Co atomic environment
in the films with small grains the spin echo NMR method has been used for these purposes [9].
It is well-known that the amplitude of the spin echo NMR signal is determined by the specimen’s
magnetic susceptibility χ, that is inversely proportional to the value of the magnetic anisotropy’s
field (Ae ∼ 1/H). Thus the NMR technology has been used for researching lowly anisotropic
specimens. The integral spin echo spectrum of the studied specimens is a broad curve (within
the range of 185–230 MHz) having a diffused maximum, located near 200 MHz, the signal
intensiveness dropping to zero at the low-frequency left part of the curve and, at the same time,
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Fig. 2. Research data on the highly anisotropic specimens: a — roentgenogram, b — electron
microscopic (TEM) micrograph, c — electron diffraction pattern

certain absorption features at the right part of the spectrum (Fig. 5). This absorption maximum
corresponds with incomplete filling of the first coordination sphere (11 instead of 12) in the
nearest environment of Co atoms within close packing of the fcc-phase. This effect may be a
result of cobalt lattice defects, diamagnetic substitution of a cobalt atom by one of phosphorus,
edge (surface) effects and uncompensated ties on the surface of crystallites. Additional absorption
maxima (216 MHz and 227 MHz) correspond to the high-frequency absorption of Co nuclei for
fcc and hcp structures consequently. This peak looks more intensive for the A-specimen and
more diffused for the B one, that is caused by a greater degree of disordering within the nearest
atomic environment of the fcc lattice. There is an additional peak (227 MHz) for the B-specimen
that corresponds with the influence of the hcp lattice.

3. Discussion

It is well-known that there is close interrelation between the cobalt particles’ sizes and their
crystal structure. Small particles(d < 10 nm) have cubic fcc structure (β-phase), whereas large
ones (d > 40 nm) have hcp structure (α-phase); the intermediary field has a mixture of both [10].
Such transformations of crystal structures are caused by a various degree of dependence of the
α- and β-phase free energy on cobalt particles’ diameters. The structural changes of cobalt
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Fig. 3. Research data on the lowly anisotropic specimens a — roentgenogram, b — electron
microscopic (TEM) micrograph, c — electron diffraction pattern

Fig. 4. Dependence of crystallites sizes on solution’s pH
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Fig. 5. Spectrum of spin echo specimens, created by pH= 8.9 (a) and 9.15 (b)

particles correspond with visible structural variations of the films studied. If pH is low, large
Co particles emerge (up to 70 nm); their stable phase is α-phase. Growing acidity results in the
emergence of smaller Co particles (up to 5 nm) whose stable phase is β-phase. As it follows from
the aforementioned data, the films, created within the environment with low pH values, mostly
have the hcp structure with large crystallites; the latter are diminishing together with growing
acidity and, if pH becomes more than 8.5, the structure of the substance is becoming transformed
into the fcc-modification. In the beginning of this transformation we can see a mixture of the
phases with the dominated influence of hcp-cobalt upon magnetic properties of the substance.
The phase transition ends at pH ≈ 8.7 when the substance’s magnetic properties become to be
determined by cobalt’s β-phase. This transition is diffused because of sufficient dispersion of
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the particles’ sizes in the films that results in their phase heterogeneity. The following acidity
growth leads to subsequent depressing α-phase of cobalt; the substance mostly transforms into
a fcc lattice with an incomplete environment.

4. Conclusion

As it follows from the data obtained, sharp changes of the induced magnetic anisotropy and
the coercive force of Co-P films in the conditions of growing acidity correspond with Co crystal
lattice’s modifications. The films, created in the environment with low pH, have a structure
with large Co crystallites of hcp lattice. The acidity growth leads to decrease of the crystallites’
typical sizes and, as a result, to the polymorphic phase transition with emerging fcc structure.

We are grateful to the Center for the common use of Federal Research Center KSC SB RAS.
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Аннотация. Обсуждаются фазовые превращения решетки Co, которые определяют аномальные
изменения магнитных свойств химически осажденных пленок Co-P, полученных при различных
значениях pH. Коэрцитивная сила пленок, полученных при низких значениях pH, превышает 1 кЭ
и снижается до нескольких единиц Э в пленках, полученных при высоких значениях pH. Показано,
что наблюдаемые изменения магнитных свойств пленок Co-P вызваны переходом кристаллической
решетки кобальта в нанокристаллическое состояние.

Ключевые слова: пленки Co-P, химическое восстановление металлов, наведенная магнитная ани-
зотропия, нанокристаллический материал.
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Abstract. The work is devoted to the study of structural-phase transformations in composite coatings
(Ti-Al)+Ti during mechanical alloying. The data on the structural-phase states of (Ti-Al)-Ti coatings
after mechanical alloying have been obtained, confirming the mechanism of formation of the modified
layer due to deformation compaction of powder particles on the titanium surface under mechanical
action. As a result of mechanochemical fusion, a TiAl3 phase with a bcc lattice (I4/mmm structure) was
detected, which corresponds to the stable state of the TiAl3 alloy. Under conditions of mechanical alloying
of the structure, I4/mmm transforms into the L12 structure, which corresponds to the metastable state
of TiAl3.
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Introduction

Currently, it is known that intermetallics represent a unique class of materials that retain an
ordered structure up to the melting point, i.e., the melting and ordering temperatures coincide.
Long-range order provides a stronger interatomic bond.
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Of the large number of known intermetallic compounds, the greatest attention of both ex-
perimenters and theoreticians is attracted by alloys based on titanium and aluminum.

Alloys of the Ti-Al system retain their structure and strength at high temperatures, have good
anticorrosion and antifriction properties, which are significantly superior to conventional metals.
In addition, alloys of the Ti-Al system have: high melting point, low density, high modulus of
elasticity, resistance to oxidation and fire, high specific heat resistance [1, 2].

Titanium aluminides are considered promising structural materials for high-temperature ap-
plications in modern industries, such as aerospace, automotive, shipbuilding and others.

High values of specific strength of Ti-Al compounds in comparison with nickel superalloys
make titanium aluminides very promising for the production of components of modern aircraft
engines and turbines, however, their corrosion resistance remains lower than desired. In addition,
a balance between the mechanical properties of titanium aluminides and their resistance to
external factors cannot always be achieved.

Recently, processes activated by mechanical action (mechanochemical synthesis, mechanical
activation, mechanical fusion) have become the subject of intensive research in connection with
their promising application in various industries, since they provide the creation of new non-
traditional, environmentally friendly and less costly technologies compared to existing methods
of coating metal surfaces, such as chemical and physical vapor deposition, self-propagating juice
temperature synthesis, thermal spraying, sol-gel method, etc.

The use of mechanical alloying to obtain coatings on a metal surface is a new area of surface
treatment. The idea of this method is to use the impact energy of a moving ball to coat metal
surfaces. This method, due to the solid phase state of the process, has practically no restrictions
on the combinations of the deposited and base metal, does not require special preparation of the
surface of the samples, and has relatively low energy costs for coating [3].

Currently, there are more than dozens of models of mechanochemical interactions; neverthe-
less, up to now, an empirical approach has been used in the development of functional materials,
since existing models cannot explain the entire set of experimental results. This is due to the fact
that mechanochemical fusion (MF) is a complex process, since the dispersion, phase composi-
tion, defective structure, and mechanical properties of the reaction mixture continuously change
during its mechanical processing. In the process of MF, the number of parameters involved is
very large (time, size of grinding media, the ratio of the mass of balls to the mass of powder,
temperature, surrounding atmosphere, amplitude and frequency of oscillations) [4]. The variety
of types of equipment leads to a huge variety of possible machining modes. And therefore, the
identification of the main regularities of the MF process, which serve to predict the state of the
final product of machining, is still an unresolved problem.

The aim of the work is to study the structural-phase transformations in composite coatings
(Ti-Al) + Ti during mechanical alloying.

1. Methodology and discussion of experimental results

The sample for the study was obtained by mechanical alloying on a vibrating unit SVU2. A
mixture of Ti + Al powder under the influence of ball impacts was deposited (welded) on the sur-
face of a substrate of technical pure titanium VT1-0 with dimensions of 7×7×2 mm. The coating
thickness was about 25–30 microns. Powder fraction size: Ti — 45 microns; Al — 5 microns.

X-ray phase studies of the samples were carried out on a DRON-6 diffractometer using CuKα-
radiation. The image capture was carried out in the following modes: tube voltage U = 40 kV;
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tube current I = 20 mA; exposure time 3 s; capture step 0.02◦. Processing and analysis of
experimental data was carried out using the PDWIN4.0 software package (NPP «Burevestnik»
St. Petersburg), using the attached database.

The phase composition and structural parameters of the samples were studied on an XRD-
6000 diffractometer using CuKα-radiation. An analysis of the phase composition was carried
out using PDF4+ databases. The capture was carried out in the following modes: tube voltage
U = 40 kV; tube current I = 30 mA; exposure time 1 s; capture step 0.02◦.

The study of the microstructure and analysis of the chemical composition of the samples was
carried out on a JCXA-733 «Superprobe» electron probe microanalyzer with an INCA Energy
SEM 300 energy-dispersive microanalysis attachment, and on a JSM-6390 scanning electron
microscope with an electronic probe attachment for local microanalysis.

In a vibrating installation SVU2, particles of Ti-Al powder are cold-welded to the surface of
Ti under the influence of ball impacts. The Ti-Al powder particles were subjected to mechanical
grinding and repeatedly repeated deformation, and densification on the Ti surface. Intensive
energy supply by spheres accelerated chemical reactions and solid-phase diffusion, both in the
coating and at the interface, which led to strong adhesion of a metal matrix with particles of
Ti-Al powder.

As a result, a coating was formed on the surface — a layer of composite material having a
nano- and microstructure, which are characterized by very high adhesion.

Figs. 1 and 2 show the results of Ti-Al coatings on the titanium surface obtained inside the
vibration chamber in the light and dark field modes.

Fig. 1 a–c shows that in the cross section of the coating there are dark patches in the light
matrix. This is evidenced by the distribution of elements over the thickness of the coatings.
Under the action of impacts, Al + Ti particles are driven into the Ti matrix, as a result of which
a coating is formed.

This is more clearly evidenced by the images of the contact area between the dark and light
parts of the coating, the substrate with the coating adhering at the top with different increases,
and the image of the transition coating-substrate layer shown in Fig. 2 a–c.

a) b) c)

Fig. 1. Cross section of the coating: a) — general view (there are dark areas in the light matrix),
b) — and c) — an enlarged image of a dark area of the coating

Fig. 3 shows the images of the cross section (a) and the concentration profile of the cross
section of the substrate (b). It is seen that during the formation of coatings, a process of
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a) b) c)

Fig. 2. (a) The contact area of the dark and light areas of the coating. (b) Images of the
substrate with a coating adhering on top at different magnifications. (c) The transition layer is
coating-substrate

conglomeration of particles of Ti and Al powders occurs, particles of a soft element, in our case
Al, envelop Ti particles, forming a plastic matrix on the substrate surface. Under the influence
of ball impacts in the surface layer, a lamellar structure is formed from flattened particles of
powder components. A detailed image indicates the viscous behavior of the material in MF.
The cellular structure in some areas, observed at high magnifications, confirms the flow of the
material during processing (Figs. 1 and 2).

a) b)

Fig. 3. Ti-Al coating on the surface of Ti: a) — cross section, b) — concentration profile

Spectra of energy dispersive analysis were taken from the cross section. The results of the
decoding of the spectra are shown in Fig. 4 a, b.
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a) b)

Fig. 4. Interpretation of spectra from the cross section shown in Fig. 1

Deciphering the microdiffraction pattern from the substrate surface (Fig. 5 a, b) showed that,
as a result of mechanochemical fusion, a TiAl3 phase with a bcc lattice (structure I4/mmm) was
detected. This corresponds to the stable state of the TiAl3 alloy. The presence of reflections of
the atomically ordered structure of L12 was found, which corresponds to the metastable state of
TiAl3. This can be explained by the fact that under mechanical alloying the structure I4/mmm

transforms into the structure L12.
The processes of structural-phase transitions under extreme conditions of mechanochemical

fusion proceed according to the principle of maximum entropy production. As a result, the
entropy of the resulting structures can be negative. This is possible due to the switching of
chemical bonds in the process of mechanochemical reactions that occur in time 120 min, and the
switching time of chemical bonds is from 10−10 − 10−13 s.

It was shown in [5–12] that the formation of cubic Al3Ti (cP4) was detected in thin films de-
posited from vapors [5], mechanically doped [6–9] and rapidly solidified [10] samples. Tetragonal
Al3Ti (Al3Ti (tI16) forms a metastable phase in the temperature range 495–800◦C upon heating
of mechanically doped cubic Al3Ti (cP4) [11]. Above 800◦C, Al3Ti (tI16) transforms into the
equilibrium structure of Al3Ti (tI8). Another form of Al3Ti, is Al3Ti (tI64), which is regarded
as the superstructure of Al3Ti (tI8), which was observed in diffusion pairs [12]. A recent study
of phase equilibria in Al-Ti [10] using bulk alloy samples has not confirmed the stability of this
structure. Therefore, the authors of [1] consider Al3Ti (tI64) as a metastable phase, possibly
stabilized by the action of voltage.

Indeed, the atomic volumes of Al3Ti phases for various modifications are presented in [1],
where it was shown that the volume of the metastable phase with structure L12 is much smaller
than the volume of the stable phase I4/mmm, i.e. the phase with the L12 structure has a higher
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a) b)

Fig. 5. (a) — Microdiffraction pattern of the surface of a titanium substrate treated with particles
of Al + Ti powder. (b) — Scheme of deciphering the diffraction pattern in which superstructural
reflexes are present

specific strength compared to the phase with the I4/mmm structure. In this way, the possibility
of hardening the surface layers (Ti-Al) + Ti by mechanochemical fusion was found in the work.
Hardening is associated with the polymorphic transformation of the stable phase I4/mmm into
the metastable phase L12.
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Иcследование тонкой структуры Ti-Al покрытий
на поверхности Ti, полученных методом механического
сплавления

Жулдыз Б.Сагдолдина
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Риза Б. Абылкалыкова
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Усть-Каменогорск, Казахстан

Аннотация. Работа посвящена исследованию структурно-фазовых превращений в композици-
онных покрытиях (Ti-Al)+Ti при механическом сплавлении. Получены данные о структурно-
фазовых состояниях (Ti-Al)-Ti покрытий после механического сплавления, подтверждающие ме-
ханизм формирования модифицированного слоя за счет деформационного уплотнения частиц по-
рошка на поверхности титана под механическим воздействием. В результате механохимическо-
го сплавления обнаружена фаза TiAl3 с ОЦК-решеткой (структура I4/mmm), что соответствует
стабильному состоянию сплава TiAl3. В условиях механического сплавления структура I4/mmm

переходит в структуру L12, что соответствует метастабильному состоянию TiAl3.

Ключевые слова: структурно-фазовые превращения, композиционные покрытия, механическое
сплавление, твердофазные процессы.
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Abstract. In this paper, we consider the transmission problem for the heat equation on a bounded plane
sector in Lp-Sobolev spaces. By Applying the theory of the sums of operators of Da Prato-Grisvard and
Dore-Venni, we prove that the solution can be splited into a regular part in Lp-Sobolev space and an
explicit singular part.
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1. Introduction and preliminaries
Let B = G×]0, T [, where G is a bounded plane sector constitued of two plane sectors G1, G2

with respective opening ω1 and ω2, separated by an interface Σ.

G1 = {(r cos θ, r sin θ);−ω1 < θ < 0, 0 < r < 1},

G2 = {(r cos θ, r sin θ); 0 < θ < ω2, 0 < r < 1},

Σ = {(r, 0); 0 < r < 1}.

In this paper we study the regularity of the solution of the following transmission problem for
the heat equation

∂tui − ∆ui = gi in Bi = Gi×]0, T [; i = 1, 2, (1)

u1 = u2 on Σ × [0, T ], (2)

α1
∂u1
∂n1

+ α2
∂u2
∂n2

= 0 on Σ × [0, T ], (3)

ui = 0 on (∂Gi \ Σ) × [0, T ]; i = 1, 2, (4)

ui(., 0) = 0 in Gi; i = 1, 2, (5)
∗selma.kouicem@yahoo.fr
†w_chikouche@yahoo.com

c⃝ Siberian Federal University. All rights reserved
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where ni denotes the unit normal vector to Σ× [0, T ] directed outside Bi, ui means the restriction
of u to Bi, g ∈ Lp(B) and α1, α2 are two positive real numbers such that α1 6= α2.

Problem (1)–(5) is a particular case of the abstract Cauchy problem

∂tu(t) +Au(t) = f(t) 0 6 t 6 T, (6)
u(0) = 0, (7)

where f ∈ Lp(]0, T [;X), also considered as a special case of the more general operator equation

(A+B)u = f, (8)

in which B is the derivative operator defined on the interval [0, T ] with values in a Banach
function space.

The study of the abstract equation (8), where A and B are two closed linear operators with
dense domains acting in a complex Banach space X, is based on the theory of sums of operators
in Banach spaces. In [2], G. Da Prato and P.Grisvard proved under appropriate assumptions on
the resolvents of A and B that the sum operator A+B is closable. As an application, problem
(6)–(7) has a strong solution that is a solution in Lp(]0, T [;X). In their famous paper [6], G.Dore
and A. Venni showed under appropriate assumptions on the imaginary powers of A and B and
if the space X is U.M.D. that A + B is closed. As an application, problem (6)–(7) has the Lp

maximal regularity property. We refer to [1, 4, 5, 7–12] for some applications of the theory of
sums of operators.

By analogy with Grisvard [8,9] who studied the heat equation in plane polygonal domains in
Lp-Sobolev spaces and De Coster-Nicaise [5] who extended his results to the weighted Lp-Sobolev
spaces setting, we show that the solution u of problem (1)–(5) is decomposable into a regular
part having the optimal regularity Lp(]0, T [;PW 2,p(G) ∩W 1,p

0 (G)) ∩W 1,p(]0, T [;Lp(G)) and a
finite sum of explicit singular functions. For the sake of simplicity, we restrict ourselves to the
case of two sectors Gi, i = 1, 2 with a common interface Σ. The result of this paper can be easily
extended to the case of more than two sectors using the results from [13].

The paper is organised as follows:
In Section 2, we present the main results of the theory of the sums of operators of Da

Prato-Grisvard [2] and Dore-Venni [6]. Applying this theory requires some results concerning a
transmission problem with complex parameter z. This will be recalled from [1] in Section 3 and
extended for z in a larger part of the complex plane. In Section 4 we apply the strategy of Da
Prato-Grisvard to show existence and uniqueness of a strong solution u of problem (1)–(5) which
admits a decomposition in regular and singular parts. Optimal regularity of the regular part is
obtained in Section 5 by applying a Dore-Venni result.

Let us finish this introduction with some notation used in the whole paper: if D is an
open subset of RN (N = 1 or 2), we denote by Lp(D), (p > 1) the Lebesgue spaces, and by
W s,p(D), s > 0, the standard Sobolev spaces built on. The space W 1,p

0 (D) is defined as usual
by W 1,p

0 (D) :=
{
v ∈ W 1,p(D); v = 0 on ∂D

}
. When p = 2, we use the common notation H1

0 (D)

instead of W 1,p
0 (D).

For any separable Banach space X provided with the norm ‖ · ‖X , we denote by Lp(]0, T [;X)
the space of measurable functions v from ]0, T [ in X such that

‖v‖Lp(]0,T [;X) =

(∫ T

0

‖v(·, t)‖pXdt
) 1

p

< +∞,

and by W 1,p(]0, T [;X) the Sobolev space of functions v in Lp(]0, T [;X) such that ∂tv belongs to
Lp(]0, T [;X).
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2. Sums of linear operators
For an operator P we denote by σ(P ) and ρ(P ) respectively its spectrum and its resolvent

set.

2.1. The first strategy

We recall some results on sums of operators of Da prato-Grisvard taken from [9].
Let E be a complex Banach space and A, B two closed linear operators with dense domains

D(A) and D(B) respectively. Their sum is defined by

Lx = Ax+Bx,

for every x ∈ D(L) = D(A) ∩D(B).

Assumptions
H1 There exist positive numbers MA, MB , R, θA, θB such that θA + θB > π and
ρ(−A) contains the truncated sector

SA = {λ; |λ| > R, | arg λ| 6 θA},

while ρ(−B) contains the truncated sector

SB = {λ; |λ| > R, | arg λ| 6 θB},

and
‖(A+ λ)−1‖ 6 MA

|λ|
, ∀λ ∈ SA,

‖(B + λ)−1‖ 6 MB

|λ|
, ∀λ ∈ SB .

H2 σ(−A) ∩ σ(B) = ∅.
H3 The resolvents of A and B commute, i.e.

(A+ λ)−1(B + µ)−1 = (B + µ)−1(A+ λ)−1,

for every λ ∈ ρ(−A) and every µ ∈ ρ(−B).

Theorem 2.1 (Da Prato-Grisvard [2]). Under the assumptions H1, H2, H3, the closure L of L
is invertible.

An explicit construction of the inverse of L is given by the Dunford integral

(L)−1 =
1

2πi

∫
γ

(A+ λI)−1(λI −B)−1dλ,

where the path γ separates σ(−A) and σ(B) and joins ∞e−iθγ to ∞eiθγ where θγ is chosen so
that π − θB < θγ < θA.

The unique solution v ∈ D(L) of the equation

Lv = (A+B)v = f,

is called the strong solution of Lv = f . This means the existence of a sequence (vn) ⊂ D(L)
such that vn −→ v and Lvn −→ f in E.
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2.2. The second strategy
Here we just recall from [6] an application of the theory of sums of operators of Dore-Venni.

Let X be an U.M.D. complex Banach space and A : D(A) → X a closed linear operator with
dense domain in X satisfying the following assumptions
H4 ρ(A) ⊃] −∞, 0] and there exists MA > 0 such that

‖(A+ t)−1‖ 6 MA

t+ 1
∀t > 0.

H5 A
is ∈ L(X) for all s ∈ R and there exist K > 0, τA such that 0 6 τA <

π

2
and

‖Ais‖ 6 Ke|s|τA ∀s ∈ R,

where Ais are the complex powers of A.
If we also call A the operator induced on E = Lp(]0, T [;X) by the equality (Au)(t) = A(u(t)),

it is obvious that A has the same properties in E as in X. The application of Theorems 2.1 and
3.1 of [6] gives

Theorem 2.2 (Dore-Venni [6]). Under the assumptions H4 and H5, the Cauchy problem (6)–(7)
has the Lp maximal regularity property, that is for each f ∈ Lp(]0, T [;X), 1 < p < ∞, it has a
unique solution u ∈W 1,p(]0, T [;X) ∩ Lp(]0, T [;D(A)).

3. Results on the transmission problem
We consider the following Helmholtz transmission problem with complex parameter z

−∆ui + zui = fi in Gi; i = 1, 2, (9)
ui = 0 on ∂Gi \ Σ; i = 1, 2, (10)
u1 = u2 on Σ, (11)

α1
∂u1
∂n1

+ α2
∂u2
∂n2

= 0 on Σ, (12)

where f ∈ Lp(G), 1 < p < +∞, ni here denotes the normal vector to Σ directed outside Gi and
ui is still the restriction of u to Gi.

Problem (9)–(12) admits the equivalent variational formulation:
Find u ∈ H1

0 (G) such that

az(u, v) =

∫
G

α fv dx ∀v ∈ H1
0 (G), (13)

where

az(u, v) =

∫
G

α

{
2∑

i=1

∂u

∂xi

∂v

∂xi
+ z uv

}
dx,

α(x) = αi > 0 for x ∈ Gi; i = 1, 2, with α1 6= α2.

In what follows, we use the positive constant C to denote a generic constant and may take
different values in different places.

Lemma 3.1. Let θA ∈ ]0, π[. Then problem (13) admits a unique solution u ∈ H1
0 (G) for any

f ∈ Lp(G) and any z ∈ C with | arg z| 6 θA.
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Proof. Since H1
0 (G) ↪→ Lp′

(G) (p′ being the conjugate exponent of p), we can easily see that the
antilinear form

K : H1
0 (G) −→ C

v 7−→
∫
G

α f v dx,

is continuous on H1
0 (G), with the estimate

|K(v)| 6 C‖f‖Lp(G) ‖v‖H1
0 (G), ∀v ∈ H1

0 (G). (14)

It is clear that the sesquilinear form az is continuous on H1
0 (G) ×H1

0 (G). It is also coercive
observing that, for all z ∈ C with | arg z| 6 θA, there exists θ ∈ [0, 2π] such that cos θ > 0 and
<(zeiθ) > 0, which implies thanks to Poincaré’s inequality

<(eiθ az(v, v)) > cos θ

∫
G

α|∇v|2dx > C‖v‖H1
0 (G),

for all v ∈ H1
0 (G). We conclude using the Lax-Milgram lemma.

For R > 0 and θA ∈
]π

2
, π
[

fixed, we define the sets S+ and SA as follows

S+ = {z ∈ C/<(z) > 0},

SA = {z ∈ C/ |z| > R and | arg z | 6 θA}.

Lemma 3.2. Let R > 0 and θA ∈
]π

2
, π
[

be fixed. Let z ∈ S+ ∪ SA and u ∈ H1
0 (G) be the

solution of (13), then u satisfies the estimate

‖u‖Lp(G) 6 C‖f‖Lp(G). (15)

Proof. We proceed as in [3, Lemma 2.4]. By Applying (13) with v = u, we obtain∫
G

α{|∇u|2 + z|u|2} dx =

∫
G

α f u dx. (16)

Taking the real and the imaginary parts of (16) respectively, we obtain using (14)∫
G

α|∇u|2 dx+ <(z)

∫
G

α|u|2 dx 6 C ‖f‖Lp(G)‖u‖H1
0 (G), (17)

and
|=(z)|

∫
G

α|u|2 dx 6 C ‖f‖Lp(G)‖u‖H1
0 (G). (18)

Case 1 : <(z) > 0. Due to (17) and Poincaré’s inequality, we deduce that

‖u‖H1
0 (G) 6 C‖f‖Lp(G),

which gives (15) since H1
0 (G) ↪→ Lp(G) for all 1 < p <∞.

Case 2 : <(z) < 0. In this case z ∈ SA, then <(z) = ρ cos θ, =(z) = ρ sin θ with ρ > R and
|=(z)| > ρ sin θA.
Consequently, from (18) we obtain

‖u‖2L2(G) 6 C
1

ρ
‖f‖Lp(G)‖u‖H1

0 (G). (19)
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As <(z) < 0, the estimate (17) gives

‖∇u‖2L2(G) 6 C(‖f‖Lp(G)‖u‖H1
0 (G) −<(z) ‖u‖2L2(G)).

Due to (19) and Poincaré’s inequality this gives

‖u‖H1
0 (G) 6 C

(
1 −<(z)

1

ρ

)
‖f‖Lp(G).

We conclude using the inequality −<(z) 6 ρ.

For all 1 < p <∞, we consider the operator Ap defined by

DAp
=
{
u ∈ H1

0 (G); ∆ui ∈ Lp(Gi), u1 = u2 and α1
∂u1
∂n1

+ α2
∂u2
∂n2

= 0 on Σ
}
,

Ap : DAp
⊂ Lp(G) −→ Lp(G)

u = (u1, u2) 7−→ (−∆u1,−∆u2).

Note that Lp(G) ≡ Lp(G1) × Lp(G2) and ui = u|Gi
; i = 1, 2.

Theorem 3.1 ([1]). Let f ∈ Lp(G), z ∈ C with <(z) > 0 and u ∈ H1
0 (G) be the solution of (13),

then u satisfies the estimates
<(z) ‖u‖Lp(G) 6 ‖f‖Lp(G),

|=(z)| ‖u‖Lp(G) 6
p

2
‖f‖Lp(G),

and
|z| ‖u‖Lp(G) 6 C‖f‖Lp(G). (20)

Corollary 3.1. −Ap is the infinitesimal generator of a C0 semigroup of contraction T (t) for
t > 0.

As in [3], we can prove the estimate (20) for z in a larger part of the complex plane.

Corollary 3.2. There exists θA ∈
]π

2
, π
[

such that, for all f ∈ Lp(G), all z ∈ C with | arg z| 6
θA and u ∈ H1

0 (G) solution of (13), we have

|z|‖u‖Lp(G) 6 C‖f‖Lp(G). (21)

Proof. By Theorem 3.1, there exists a positif constant c such that, for all σ > 0 and τ ∈ R∗

|σ + iτ |‖(Ap + (σ + iτ)I)−1‖ 6 c,

hence, thanks to Corollary 3.1, we can apply Theorem II-5.2 in [14] to deduce the existence of
δ ∈

]
0,
π

2

[
and M > 0 such that

ρ(−Ap) ⊃ Γ :=
{
z ∈ C/| arg z| < π

2
+ δ
}
∪ {0}, (22)

and, for all z ∈ Γ,
|z|‖(Ap + zI)−1‖ 6M. (23)

This proves (21) with θA = δ′ +
π

2
, where 0 < δ′ < δ.
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In order to present the singular behavior of the variational solution of the transmission prob-
lem (9)–(12), we need the following notations.
For s > 0,

PW s,p(G) := {u ∈ H1(G); ui ∈W s,p(Gi), i = 1, 2},

is the space of piecewise W s,p functions on G.
Let S(m) be the function defined by

S(m) = ηrλmtm(θ), (24)

where η is a radial cut-off function such that η ≡ 1 in a small ball centered at the origin and
η ≡ 0 outside a larger ball of radius strictly less than 1, λm is a nonnegative real number and λ2m,
tm are respectively the eigenvalues and eigenfunctions of the following Sturm-Liouville problem:

−t′′m(θ)=λ2mtm(θ) for θ ∈ [−ω1, ω2], θ 6= 0,

tm(0−)=tm(0+),

α2t
′
m(0−)=α1t

′
m(0+),

tm(−ω1) = tm(ω2) = 0.

Theorem 3.2. If λm 6= 2

p′
for all m ∈ N∗, then there exists θA ∈

]π
2
, π
[

such that, for all

f ∈ Lp(G), all z ∈ S+ ∪ SA, the unique solution u ∈ H1
0 (G) of problem (9)–(12) admits the

decomposition
u = uR +

∑
0<λm< 2

p′

cmψm(z), (25)

where

ψm(z) =


e−r

√
zS(m) if

2

p′
− 1 < λm <

2

p′
,

e−r
√
z(1 + r

√
z)S(m) if λm 6 2

p′
− 1,

(26)

uR ∈ PW 2,p(G) satisfies

‖uR‖PW 2,p(G) + |z| 12 ‖uR‖W 1,p(G) + |z|‖uR‖Lp(G) 6 C‖f‖Lp(G); z 6= 0, (27)

and cm satisfies
|cm| 6 C|z|

λm
2 − 1

p′ ‖f‖Lp(G); z 6= 0, (28)∑
0<λm< 2

p′

|cm|
(
1 + |z|

1
p′ −

λm
2
)
6 C‖f‖Lp(G). (29)

Proof. The proof of this Theorem stays as in [1] until the inequality (28), thanks to Theorem 3.1
and Corollary 3.2. It remains to prove the estimate (29).

From the decomposition (25), we have∑
0<λm< 2

p′

cmψm(z) = u− uR.

By using the estimates (15) and (27), we deduce that∥∥∥ ∑
0<λm< 2

p′

cmψm(z)
∥∥∥
Lp(G)

6 C‖f‖Lp(G).
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As the space VS=span
{
ψm(z); 0 < λm <

2

p′

}
being of finite dimension, we have

∑
0<λm< 2

p′

|cm| 6 C‖
∑

0<λm< 2
p′

cmψm(z)‖Lp(G) 6 C‖f‖Lp(G).

From the previous estimate and inequality (28), we deduce that we have (29).

With the notation introduced above, we can write

u = (Ap + z)−1f,

consequently the decomposition (25) implies a similar decomposition of the resolvent of Ap.
Namely we may write

(Ap + z)−1 = R(z) +
∑

0<λm< 2
p′

Tm(z) ⊗ ψm(z), (30)

where R(z) is the continuous linear operator from Lp(G) into PW 2,p(G) defined by

R(z)f := uR,

and Tm(z) is the continuous linear functional on Lp(G) defined by

< Tm(z), f >:= cm.

Recall that
(Tm(z) ⊗ ψm(z))(f) =< Tm(z), f > ψm(z).

The estimates (27) and (29) imply that

‖R(z)‖Lp(G)→PW 2,p(G) + |z| 12 ‖R(z)‖Lp(G)→W 1,p(G) + |z| ‖R(z)‖Lp(G)→Lp(G) 6 C,

and
‖Tm(z)‖Lp′ (G) 6 C

1

1 + |z|
1
p′ −

λm
2

, (31)

for all z ∈ S+ ∪ SA.

4. Application of the first strategy
In order to apply Theorem 2.1 to problem (1)–(5), we write it as the sum of linear operators

on the Banach space E = Lp(I;Lp(G)) (where I =]0, T [) by setting

Au = −{∆ui}i=1,2,

for u ∈ D(A) = Lp(I;D(Ap)),
Bu = ∂tu = {∂tui}i=1,2,

for u ∈ D(B) = {v ∈W 1,p(I;Lp(G)); v(., 0) = 0}.

Proposition 4.1. The closure L of L = A+B is invertible, i.e. for all g ∈ Lp(I;Lp(G)), there
exists a unique strong solution u ∈ Lp(I;Lp(G)) of (A + B)u = g. In addition u is explicitly
given by

u =
1

2πi

∫
γ

(A+ z)−1(z −B)−1g dz. (32)
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Proof. The properties of A are those of its realization Ap. Thanks to (22) and (23), hypothesis
H1 is fulfilled for the operator A with some θA in

]π
2
, π
[
, while from [2, p. 330–331], it is fulfilled

for the operator B for all θB <
π

2
. So there exists M > 0 such that

‖(B + λI)−1‖ 6 M

|λ|
, (33)

for all λ ∈ SB = {λ ∈ C/|arg(λ)| 6 θB}.
Hence, we conclude that H1 is satisfied with θA in

]π
2
, π
[

and θB =
π

2
− δB with 0 < δB <

δ < θA − π

2
.

On the other hand, it’s clear that ]−∞, 0] ⊂ ρ(B). Thus the assumption H2 is fulfilled since
A has a discrete spectrum that contains only strictly positive eigenvalues (see [1, p. 20–21]).

The commutativity assumption H3 follows from the fact that the variables are separate in
these two operators.

Hence we can apply Theorem 2.1 to conclude.

For each t, we can write

[(A+ zI)−1h](t) = (Ap + z)−1(h(t)).

Using the decomposition (30), the representation formula (32) can be split as follows

u = uR +
∑

0<λm< 2
p′

um, (34)

where
uR =

1

2πi

∫
γ

R(z)[(z −B)−1g]dz, (35)

um =
1

2πi

∫
γ

〈Tm(z), (z −B)−1g〉ψm(z)dz. (36)

Summing up, we have prove the following theorem.

Theorem 4.1. Suppose that λm 6= 2

p′
, then for all g ∈ Lp(I;Lp(G)), the problem (1)–(5) has a

unique strong solution u which is in the form

u = uR +
∑

0<λm< 2
p′

um,

where uR (resp. um) is given by (35)(resp. (36)).

Theorem 4.2. Let p > 2, suppose that λm 6= 2

p′
. Denote σm =

1

p′
− λm

2
, then for all g ∈

Lp(I;Lp(G)), there exist qm ∈Wσm,p(I) and Em such that um defined by (36) can be written as

um = (Em ∗t qm)S(m), (37)

the symbol ∗t means the convolution product in t. Moreover we have

qm =
1

2πi

∫
γ

〈Tm(z), (z −B)−1g〉dz, (38)
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Em(r, t) =


1

2π

∫
R
eiξte−r

√
iξ dξ for λm > 1 − 2

p
,

1

2π

∫
R
eiξt(1 + r

√
iξ) e−r

√
iξ dξ for λm 6 1 − 2

p
,

(39)

and the mappings

U1 : Lp(I;Lp(G)) −→ Wσm,p(I)

g 7−→ qm,

U2 : Wσm,p(I) −→ Lp(I;Lp(Gi))

qm 7−→ (
∂

∂t
− ∆)um,i,

are continuous.

Proof. We proceed as in [9, Proposition 6.2] and [5, Proposition 2.2]. First we consider the
extension of g to G× R, defined by

g̃(x, t) =

{
g(x, t) if t ∈ [0, T ],

0 if t 6∈ [0, T ],

and denote by ũz = (zI −B∞)−1g̃ , the solution of{
zũ− ∂tũ = g̃ in G× R,

ũ(., 0) = 0 in G,

where B∞ is the operator, defined by

B∞u = ∂tu for u ∈ D(B∞) = {v ∈W 1,p(]0,∞[;Lp(G)); v(·, 0) = 0}.

Observe that, by uniqueness of the solution of the Cauchy problem, we have ũz|G×[0,T ] =
= (zI −B)−1g.

Consider the functions

ũm(x, t) =
1

2πi

∫
γ

〈
Tm(z), (zI −B∞)−1g̃

〉
ψm(z) dz, (40)

q̃m(t) =
1

2πi

∫
γ

〈
Tm(z), (zI −B∞)−1g̃(., t)

〉
dz. (41)

We assume that g̃ ∈ D(G × R), a dense subspace of Lp(G × R). Then we can apply partial
Fourier transform in t, to (40) and (41). By Fubini’s theorem, we obtain

Ftũm(x, ξ) =
1

2πi

∫
γ

〈
Tm(z),Ft

(
(zI −B∞)−1g̃

)
(., ξ)

〉
ψm(z) dz =

=
1

2πi

∫
γ

〈
Tm(z),

Ft g̃(., ξ)

z − iξ

〉
ψm(z) dz,

and

Ft q̃m(ξ) =
1

2πi

∫
γ

〈
Tm(z),

Ft g̃(., ξ)

z − iξ

〉
dz.
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The decaly at infinity of Tm(z) and ψm(z) due to (31) and (26) allows us to apply Cauchy’s
foumula. We get

Ftũm(x, ξ) = −〈Tm(iξ),Ft g̃(., ξ)〉ψm(iξ), (42)

and
Ftq̃m(ξ) = −〈Tm(iξ),Ft g̃(., ξ)〉.

According to (26), the identity (42) can be written as follows

Ftũm(x, ξ) =


−〈Tm(iξ),Ft g̃(., ξ)〉 e−r

√
iξ S(m) if λm > 1 − 2

p
,

−〈Tm(iξ),Ft g̃(., ξ)〉 e−r
√
iξ (1 + r

√
iξ)S(m) if λm 6 1 − 2

p
.

(43)

Now we consider the function Em defined by

FtEm(x, ξ) =


e−r

√
iξ if λm > 1 − 2

p
,

e−r
√
iξ (1 + r

√
iξ) if λm 6 1 − 2

p
.

It is clear that Em is given by (39).
Then (43) can be seen as the Fourier transform of a convolution in t. We have

ũm = (Em ∗t q̃m)S(m).

This identity is easily extended from g̃ ∈ D(G × R) to any g̃ ∈ Lp(G × R). The identity (37)

follows by observing that ũm|G×[0,T ] = um and q̃m|[0,T ] =
1

2πi

∫
γ

〈Tm(z), (z − B)−1g〉dz = qm.

Let us underline that we differ from [5] in the definition of A, the operator B being the same
but in Sobolev spaces instead of the weighted Lp-Sobolev spaces. This comes from the fact
that α depends only on the plane variables thus the interface has no effect on the variable t.
Thus, the continuity of the operators U1 and U2 can be shown as done in [5, Theorem 2.3 and
Theorem 3.2].

5. Application of the second strategy
Now we are able to prove the regularity of uR.

From [1, Section 5.2], the following estimate for R(z) (defined in Section 3) is derived thanks to
an interpolation argument.

‖R(z)‖Lp(G)→PW s,p(G) = O

(
1

|z|1− s
2

)
∀s < 2.

With the help of (33), this yields

uR ∈ Lp(I;PW s,p(G)) for every s < 2, (44)

with the estimate
‖uR‖Lp(I;PW s,p(G)) 6 C(s) ‖g‖Lp(I;Lp(G)). (45)

Going back to (34), we have

∂tuR,i − ∆uR,i = gi −
∑

0<λm< 2
p′

(∂tum,i − ∆um,i) := gR,i; i = 1, 2, (46)
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the function gR ∈ Lp(I;Lp(G)) by Theorem 4.2.
We shall apply Theorem 2.2 to study the equation (46) with X = Lp(G), the space E and

the operator A are defined exactly as in Section 4.
By Theorem 3.1 and Lemma 3.2, the assumption H4 is fulfilled. It remains to check H5.

Thanks to [1] there exists τA <
π

2
such that

‖Ais
p ‖ = 0(e|s|τA).

Accordingly Theorem 2.2 may be applied, then we have the existence and the uniqueness of
wR ∈W 1,p

(
]0, T [;Lp(G)

)
∩ Lp

(
]0, T [;D(Ap)

)
solution of{

∂twR +AwR = gR,

wR(., 0) = 0.

wR do not coincide necessarly with uR, so we will prove that wR = uR.
First we show that uR is a strong solution of

∂tuR,i − ∆uR,i = gi −
∑

0<λm< 2
p′

(∂tum,i − ∆um,i) in Bi; i = 1, 2, (47)

uR,1 = uR,2 on Σ × [0, T ], (48)

a1
∂uR,1

∂n1
+ a2

∂uR,2

∂n2
= 0 on Σ × [0, T ], (49)

uR,i = 0 on (∂Gi \ Σ) × [0, T ]; i = 1, 2, (50)
uR,i(., 0) = 0 in Gi; i = 1, 2. (51)

Due to Proposition 4.1, u is a strong solution of

∂tui − ∆ui = gi in Bi; i = 1, 2,

u1 = u2 on Σ × [0, T ],

a1
∂u1
∂n1

+ a2
∂u2
∂n2

= 0 on Σ × [0, T ],

ui = 0 on (∂Gi \ Σ) × [0, T ]; i = 1, 2,

ui(., 0) = 0 in Gi; i = 1, 2,

i.e. there exists (un) ⊂ D(A) ∩ D(B) and (gn) ⊂ E such that (A + B)un = gn, un −→ u and
gn −→ g in E.

Moreover, as in Section 4, for every n, we have

un = un,R +
∑

0<λm< 2
p′

un,m.

Thanks to Theorem 4.2, we have

∂tun,m,i − ∆un,m,i −→ ∂tum,i − ∆um,i,

then
∂tun,R,i − ∆un,R,i −→ gi −

∑
0<λm< 2

p′

(∂tum,i − ∆um,i).

From the estimate (45) it follows that un,R −→ uR in E.
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It is obvious that wR is a strong solution of (47)–(51). Consequently, by applying the first
strategy to (47)–(51), we have by uniqueness of the strong solution that wR = uR.

This implies that uR ∈ Lp
(
I;D(Ap)

)
∩W 1,p

(
I;Lp(G)

)
. With the help of (44), this yields

uR ∈ Lp(I;D(Ap) ∩ PW s,p(G)).

Then, from [1, Lemma 5.4], we deduce that

uR ∈ Lp(I;PW 2,p(G) ∩W 1,p
0 (G)) ∩W 1,p(I;Lp(G)).

Summing up, we have proved the following Theorem.

Theorem 5.1. Let p > 2 , suppose that λm 6= 2

p′
∀m ∈ N∗. Then for every g ∈ Lp(I;Lp(G)),

there exists a unique solution u ∈ Lp(I;Lp(G)) to the transmission problem (1)–(5). Moreover u
admits the decomposition

u = uR +
∑

0<λm< 2
p′

(Em ∗t qm)S(m),

with uR ∈ Lp
(
I;PW 2,p(G)∩W 1,p

0 (G)
)
∩W 1,p

(
I;Lp(G)

)
, where Em

(
resp. qm ∈W−λm

2 +1− 1
p (I)

)
is defined by (39) (resp. (38)) and the singular functions S(m) are given by (24).
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Lp-регулярность решения уравнения теплопроводности
с разрывными коэффициентами

Сельма Кусем
Университет Абдеррахман Мира

Беджая, Алжир

Видед Чикуче
Университет Мохамеда Седдика Бен Яхья

Джиджель, Algeria

Аннотация. В этой статье мы рассмотрим задачу прохождения для уравнения теплопроводности
на ограниченном плоском секторе в пространствах Lp-Соболева. Применяя теорию сумм операто-
ров Да Прато-Грисварда и Доре-Венни, мы доказываем, что решение можно разбить на регулярную
часть в пространстве Lp-Соболева и явную особую часть.

Ключевые слова: уравнение теплопередачи, суммы линейных операторов, сингулярное поведе-
ние, негладкие области.
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Abstract. In this paper, a nonparametric estimation of a generalized regression function is proposed.
The real response random variable (r.v.) is subject to left-truncation by another r.v. while the covariate
takes its values in an infinite dimensional space. Under standard assumptions, the pointwise and the
uniform almost sure convergences, of the proposed estimator, are established.
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1. Introduction and preliminaries

The investigation of the link between a scalar variable of interest Y and a functional covariate
X is among the most famous nonparametric statistical works in the last two decades. We mention
[1] who proposed a new version of the estimator of the regression operator m(x) = E(Y/X = x),
in the case of independent and identically distributed (i.i.d.) observations, and studied its almost
complete convergence. They used the so called local linear method.

In the case of complete data, many works followed this last method. For example, in [9]
the uniform almost-complete convergence of the local linear conditional quantile estimator was
established, while in [8] the case of a generalized regression function with functional dependent
data was considered. The asymptotic normality of the local linear estimator of the conditional
density for functional time series data was studied in [12] and both the pointwise and the uniform
almost complete convergences, of a generalized regression estimate, were investigated in [7].
All these studies were carried in the case of complete data, however in practice, one or more
truncation variables may interfere with the variable of interest and prevent its observation in a
complete manner. In this setting of truncation model, one can find many works such as that
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of [5] where a kernel conditional quantile estimator was proposed and its strong uniform almost
sure convergence established. Similarly, [2] studied the almost complete convergence rate and
the asymptotic normality of a family of nonparametric estimators for the ψ-regression model.
But, as far as we know, the local linear method has not been investigated for truncated data.

Hence, our goal is to propose a generalized regression estimator, when the response variable
is subject to left-truncation, and to establish both its pointwise and its uniform almost sure
convergences.

To this end, this article is ordered as follows. In Section 2, we recall some basic knowledge
of the left -truncation model and we construct our local linear estimator. Section 3 is devoted
to prove its pointwise almost sure convergence. Finally, its uniform convergence is established in
Section 4.

To make things more easier for readers, we give the definition of the almost complete conver-
gence:
Let (Wn)n∈N∗ be a sequence of real random variables r.r.v. . We say that (Wn)n∈N∗ converges
almost completely to some r.r.v. W , and we note Wn −→a.co. W , if and only if ∀ϵ > 0,
∞∑

n=1
P (|Wn −W | > ϵ) <∞. Moreover, let (vn)n∈N∗ be a sequence of positive real numbers going

to zero; we say that the rate of the almost complete convergence of (Wn)n∈N∗ to W is of order

(vn) and we note Wn −W = Oa.co.(vn), if and only if ∃ϵ0 > 0,
∞∑

n=1
P (|Wn −W | > ϵ0vn) <∞. It

is clear, from Borel Cantelli lemma, that this convergence is stronger than the almost-sure one
(a.s.).

2. Estimation
Let (Xi, Yi) for i = 1, . . . , N , be N identical and independent couples distributed as (X,Y )

which takes its values in F × R, where F is a semi metric space endowed with a semi metric d.
The unknown distribution function (d.f.) of Y is denoted by F .

Let T be another r.v. which has unknown d.f. G and (Ti)i=1,...,N be a sample of i.i.d. random
variables that are distributed as T . T is supposed independent of (X,Y ). N is unknown but
deterministic. In the left truncation model, the lifetime Yi and the truncation r.v. Ti are both
observable only when Yi > Ti. We denote (Yi, Ti), i = 1, 2, . . . , n (n 6 N) the actual observed
sample of size n which, as a consequence of truncation, is a binomial r.v. with parameters N
and µ = P(Y > T ). It is clear that if µ = 0, no data can be observed, and therefore, we suppose
throughout this article that µ > 0.

By the strong law of large numbers, we have

µ̂n :=
n

N
→ µ, P− p.s.

We point out that if the original data (Yi, Ti), i = 1, 2, . . . , N are i.i.d., the observed data (Yi, Ti),
i = 1, 2, . . . , n are still i.i.d. (see [6]).

Under random left truncation model, following [10], the d.f.s of Y and T are expressed re-
spectively as,

F ∗(y) = µ−1

∫ y

−∞
G(u)dF (u) and G∗(t) = µ−1

∫ ∞

−∞
G(t ∧ u)dF (u),

where t ∧ u = min(t, u) and are estimated by their empirical estimators,

F ∗
n(y) = n−1

n∑
i=1

1{Yi6y} and G∗
n(t) = n−1

n∑
i=1

1{Ti6t}.
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Define
C(y) := G∗(y) − F ∗(y) = µ−1G(y)(1 − F (y)),

the empirical estimator of C(y) is defined by

Cn(y) = n−1
n∑

i=1

1{Ti6y6Yi}.

The nonparametric maximum likelihood estimators of F and G are given respectively by

Fn(y) = 1 −
∏

i/Yi6y

[
nCn(Yi) − 1

nCn(Yi)

]
and Gn(y) =

∏
i/Ti>y

[
nCn(Ti) − 1

nCn(Ti)

]
.

According to [4], µ can be estimated by

µn = C−1
n (y)Gn(y)(1 − Fn(y)),

which is independent of y.
Our results will be stated with respect to the conditional probability P(.) related to the n-

sample instead of the probability measure P(.) related to the N -sample. We donate by E and E
the respective expectation operators of P(.) and P(.).

For any d.f. L, let aL = inf {y : L(y) > 0} and bL = sup {y : L(y) < 1} be its two endpoints.
The asymptotic properties of Fn, Gn and µn are obtained only if aG 6 aF and bG 6 bF . We
take two real numbers c and d such that [c, d] ⊂ [aF , bF ], we are going to use this inclusion in
the uniform consistency of the distribution law G(.) of the truncated r.v. T which is stated over
a compact set (see Remark 6 in [11]).

Hence, based on the idea of the Nadaraya-Watson kernel smoother, the estimator of the
general regression function mφ(x) defined, for all x ∈ F , by mφ(x) = E (φ(Y )/X = x), where φ
is a known real-valued borel function, is defined by

m̂φ(x) =

∑n
i=1 φ(Yi)K

(
h−1d(Xi, x)

)
G−1

n (Yi)∑n
i=1K (h−1d(Xi, x))G−1

n (Yi)
,

where K is a standard univariate kernel function and the bandwidth h := hn is a sequence of
strictly positive real numbers which plays a smoothing parameter role.

Note that all the sums containing G−1
n (Yi) are taken for i such that Gn(Yi) 6= 0 .

Following [1] and [7], the local linear estimator of mφ in the case of truncated data is obtained
as the solution for a of the following minimization problem

min
(a,b)∈R2

n∑
i=1

(φ(Yi) − a− bβ(Xi, x))
2
K(h−1d(Xi, x))G−1

n (Yi),

where β(., .) is a known operator from F × F into R such that, ∀x ∈ F , β(x, x) = 0.
By a simple calculus, one can derive the following explicit estimator

m̂φ(x) =

∑n
i,j=1Wij(x)φ(Yj)∑n

i,j=1Wij(x)

(
0

0
:= 0

)
,

where
Wij(x) = ∆ij(x)G−1

n (Yi)G
−1
n (Yj),

with
∆ij(x) := β(Xi, x) (β(Xi, x) − β(Xj , x))K(h−1d(Xi, x))K(h−1d(Xj , x)).
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3. Pointwise almost sure corvengence
For any positive real h, let B(x, h) := {y ∈ F�d(x, y) 6 h} be a closed ball in F of center x

and radius h, Φx(h, h′) := P (h 6 d(x,X) 6 h′) and Φx(h) := Φx(0, h).
To establish the asymptotic behaviour of our estimator m̂φ(x) for a fixed point x in F , we

use the following assumptions:
(H1) For any h > 0; Φx(h) > 0.
(H2) There exists b > 0 such that for all x1, x2 ∈ B(x, h); |mφ(x1) −mφ(x2)| 6 Cxd

b(x1, x2)
where Cx is a positive constant depending on x.

(H3) The function β(., .) is such that

∃ 0 < M1 < M2,∀x′ ∈ F ,M1d(x, x′) 6 |β(x, x′)| 6M2d(x, x′).

(H4) The kernel K is a positive and differentiable function on its support [0, 1].

(H5) The bandwidth h satisfies lim
n→∞

h = 0 and lim
n→∞

(√
lnn

nΦx(h)

)
= 0.

(H6) There exists an integer n0, such that

∀n > n0,
1

Φx(h)

∫ 1

0

Φx(zh, h)
d

dz

(
z2K(z)

)
> 0.

(H7) h
∫

B(x,h)

β(u, x)dPX(u) = o

( ∫
B(x,h)

β2(u, x)dPX(u)

)
, where dPX is the distribution of X.

(H8) ∀m > 2; σm : x 7−→ E(|φm(Y )|/X) is a continuous operator on F .

Remark 3.1. Hypotheses (H1)–(H5) are standard in the nonparametric functional regression
setting. The rest of the hypotheses have already been used in the literature, we refer for (H6) and
(H7) to [1] and for (H8) to [7].

Theorem 3.1. Assume that assumptions (H1)–(H8) are satisfied, then

m̂φ(x) −mφ(x) = O(hb) +Oa.s.

(√
lnn

nΦx(h)

)
.

We remark that to prove our theorem we need to define the following pseudo-estimators

rl(x) =
µ2
n

n(n− 1)E (∆12(x))

∑
i ̸=j

G−1
n (Yi)G

−1
n (Yj)∆ij(x)φl(Yj)

and

m̃l(x) =
µ2

n(n− 1)E (∆12(x))

∑
i̸=j

G−1(Yi)G
−1(Yj)∆ij(x)φl(Yj), for l = 0, 1.

Consider the following decomposition

m̂φ(x) −mφ(x) =
r1(x)

r0(x)
−mφ(x) =

=
1

r0(x)
{r1(x) − m̃1(x)}+

1

r0(x)
{m̃1(x) − E(m̃1(x))}+

1

r0(x)
{E(m̃1(x)) −mφ(x)}+

+
mφ(x)

r0(x)
{(m̃0(x) − r0(x)) + (E(m̃0(x)) − m̃0(x)) + (−E(m̃0(x)) + 1)} . (1)
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Moreover, we note for any x ∈ F and for all i = 1, . . . , n

Ki(x) := K
(
h−1d(Xi, x)

)
and βi(x) := β(Xi, x).

To make things easier, we introduce the following lemmas.

Lemma 1. Under the assumptions (H1)–(H8), we have

|rl(x) − m̃l(x)| = Oa.s.

(√
lnn

nΦx(h)

)
.

Proof. For l = 0, 1

|rl(x) − m̃l(x)| =
∣∣∣ µ2

n

n(n− 1)E (∆12(x))

∑
i ̸=j

G−1
n (Yi)G

−1
n (Yj)∆ij(x)φl(Yj) −

− µ2

n(n− 1)E (∆12(x))

∑
i ̸=j

G−1(Yi)G
−1(Yj)∆ij(x)φl(Yj)

∣∣∣ 6
6

[
|µ2

n − µ2|
G2

n(aF )
+ µ2

(
supy∈[c,d] |G2

n(y) −G2(y)|
G2(aF )G2

n(aF )

)]
×

×
∑
i ̸=j

∣∣∣ ∆ij(x)φl(Yj)

n(n− 1)E (∆12(x))

∣∣∣.
From Theorem 3.2 of [4] we have |µn − µ| = Oa.s(n

−1/2), while Remark 6 of [11] gives

|Gn(aF ) −G(aF )| = Oa.s(n
−1/2) which are negligible with respect to O

(√
lnn

nΦx(h)

)
. The rest

of the proof is completed in [7]. Thus, we have |rl(x) − m̃l(x)| = Oa.s.

(√
lnn

nΦx(h)

)
. 2

Lemma 2. Under the assupmtions (H1), (H2) and (H4), we obtain

|E(m̃1(x)) −mφ(x)| = O(hb).

Proof. We have

E(m̃1(x)) = E

 µ2

n(n− 1)E (∆12(x))

∑
i ̸=j

G−1(Yi)G
−1(Yj)∆ij(x)φ(Yj)

 =

=
µ2

E (∆12(x))
E
(

1

G(Y1)G(Y2)
∆12(x)φ(Y2)

)
=

=
µ2

E (∆12(x))
E
[
E
(

∆12(x)φ(Y2)
1{Y1>T1}1{Y2>T2}

µ2G(Y1)G(Y2)
/σ(X1, Y1, X2, Y2)

)]
=

=
1

E (∆12(x))
E (∆12(x)mφ(X2)) .

So we can write, under assumption (H4)

|mφ(x) − E(m̃1(x))| =
1

|E (∆12(x)) |
|E (∆12(x) (mφ(x) −mφ(X2))) | 6

6 sup
x′∈B(x,h)

|mφ(x) −mφ(x′)|.

Using (H2), we obtain |E(m̃1(x)) −mφ(x)| = O(hb). 2
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Lemma 3. i) Under the assumptions (H1)–(H8), we get

m̃1(x) −E(m̃1(x)) = Oa.co

(√
lnn

nΦx(h)

)
.

ii) Under the assumptions (H1), (H3)–(H7), we obtain

m̃0(x) − 1 = Oa.co

(√
lnn

nΦx(h)

)
and

∃ϑ > 0, such that

∞∑
n=1

P
(
m̃0(x) < ϑ

)
<∞.

Proof. Remark that

m̃1(x) = Q(x) [M2,1(x)M4,0(x) −M3,1(x)M3,0(x)] , (2)

where for p = 2, 3, 4 and l = 0, 1

Q(x) =
n2h2Φ2

x(h)

n(n− 1)E (∆12(x))
(3)

and

Mp,l(x) =
1

nΦx(h)

n∑
i=1

µKi(x)βp−2
i (x)φl(Yi)

hp−2G(Yi)
. (4)

So, we have

m̃1(x) − E (m̃1(x)) = Q(x) {M2,1(x)M4,0(x) − E (M2,1(x)M4,0(x))}−

−Q(x) {M3,1(x)M3,0(x) − E (M3,1(x)M3,0(x))} .
(5)

Notice that Q(x) = O(1), see the proof of Lemma (4.4) of [1].
We need to prove that for p = 2, 3, 4 and l = 0, 1

E(Mp,l(x)) = O(1); Mp,l(x) − E(Mp,l(x)) = Oa.co

(√
lnn

nΦx(h)

)
,

E(M2,1(x))E(M4,0(x)) − E(M2,1(x)M4,0(x)) = O

(√
lnn

nΦx(h)

)
,

E(M3,1(x))E(M3,0(x)) − E(M3,1(x)M3,0(x)) = O

(√
lnn

nΦx(h)

)
.

• Using assumptions (H1)–(H4), we can easily have for p = 2, 3, 4 and l = 0, 1

E(Mp,l(x)) = E

(
1

Φx(h)

n∑
i=1

µKi(x)βp−2
i (x)φl(Yi)

hp−2G(Yi)

)
=

= µh2−pΦ−1
x (h)E

[
E
(
K1(x)βp−2

1 (x)φl(Y1)
1{Y1>T1}

µG(Y1)
/σ(X1, Y1)

)]
=

= h2−pΦ−1
x (h)E

(
K1(x)βp−2

1 (x)ml
φ(X1)

)
.

Lemma A.1 (i) in [1] and the condition (H2) allow us to get E(Mp,l(x)) = O(1).
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• Treatment of the term Mp,l(x) − E(Mp,l(x)). We put

Mp,l(x) − E(Mp,l(x)) =
1

n

n∑
i=1

Z
(p,l)
i (x),

where

Z
(p,l)
i (x) =

1

hp−2Φx(h)

{
µKi(x)βp−2

i (x)φl(Yi)

G(Yi)
− E

(
µKi(x)βp−2

i (x)φl(Yi)

G(Yi)

)}
.

The main point is to evaluate asymptotically the mth-order moment of the r.r.v. Z(p,l)
i (x).

By using Lemma A.1 (i) in [1] , we have

E
∣∣∣ {Z(p,l)

i (x)
}m ∣∣∣ = h(−p+2)mΦ−m

x (h)E

∣∣∣∣∣
m∑

k=0

Ck
m(−1)m−k

(
µKi(x)βp−2

i (x)φl(Yi)

G(Yi)

)k

×

×

(
E

[
µKi(x)βp−2

i (x)φl(Yi)

G(Yi)

])m−k ∣∣∣∣∣ =

= O
(

Φ(−m+1)
x (h)

)
.

Finally, it suffices to apply Corollary A.8 (ii) in [3] with a2n = Φ
(−1)
x (h) to get, for

p ∈ {2, 3, 4} and l ∈ {0, 1}

Mp,l(x) − E(Mp,l(x)) = Oa.co

(√
lnn

nΦx(h)

)
.

• Moving to study the term E(M2,1(x))E(M4,0(x)) − E(M2,1(x)M4,0(x)), we have

E(M2,1(x))E(M4,0(x)) − E(M2,1(x)M4,0(x)) =

= n−1h−2Φ−2
x (h)E

(
K1(x)β2

1(x)
)
E (K1(x)φ(Y1)) +O((nΦx(h))−1),

by using similar arguments as previously, we get

E(M2,1(x))E(M4,0(x)) − E(M2,1(x)M4,0(x)) = O((nΦx(h))−1),

which is, under (H5), negligible with respect to O
(√

lnn

nΦx(h)

)
.

• By similar arguments, one can prove that

E(M3,1(x))E(M3,0(x)) − E(M3,1(x)M3,0(x)) = O

(√
lnn

nΦx(h)

)
.

For the second part of the lemma, it’s easy to find that E (m̃0(x)) = 1 and this leads us to get
the last result.

Theorem 3.1 is proved. 2
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4. Uniform almost sure convergence
In this section, we will investigate the uniform almost sure convergence of m̂φ on some subset

SF of F , such that SF ⊂
⋃dn

k=1B(xk, rn), where xk ∈ SF and rn (respectively dn) is a sequence
of positive real (respectively integer) numbers. For this, we need the following assumptions.

(U1) There exist a differentiable function Φ and strictly positive constants C,C1 and C2 such
that

∀x ∈ SF , ∀h > 0; 0 < C1Φ(h) 6 Φx(h) 6 C2Φ(h) <∞

and
∃ η0 > 0, ∀η < η0, Φ′(η) < C,

where Φ′ denotes the first derivative of Φ with Φ(0) = 0.

(U2) The generalized regression function mφ satisfies

∃ C > 0, ∃ b > 0, ∀x ∈ SF , x
′ ∈ B(x, h), |mφ(x) −mφ(x′)| 6 Cdb(x, x′).

(U3) The function β(., .) satisfies (H3) uniformly on x and the following Lipschitz’s condition

∃ C > 0, ∀x1 ∈ SF , x2 ∈ SF , x ∈ F , |β(x, x1) − β(x, x2)| 6 Cd(x1, x2).

(U4) The kernel K fulfils (H4) and is Lipschitzian on [0, 1].

(U5) limn−→∞ h = 0, and for rn = O

(
lnn

n

)
, we have for n large enough

(lnn)2

nΦ(h)
< ln dn <

nΦ(h)

lnn

and
∞∑

n=1

d(1−β)
n <∞ for some β > 1.

(U6) The bandwidth h satisfies ∃ n0 ∈ N, ∃ C > 0, such that

∀n > n0,∀x ∈ SF ,
1

Φx(h)

∫ 1

0

Φx(zh, h)
d

dz
(z2K(z)) > C > 0

and

h

∫
B(x,h)

β(u, x)dPX(u) = o

(∫
B(x,h)

β2(u, x)dPX(u)

)
uniformly on x.

(U7) ∃ C > 0 such that ∀m > 2 : E(|φm(Y )|/X = x) < υm(x) < C < ∞ with υm(.) continuous
on SF .

Remark 4.1. These hypothesis are the uniform version of the assumed conditions in the point-
wise case and have already been used in the literature (see [7]).

Theorem 4.1. Under assumptions (U1)–(U7), we have

sup
x∈SF

|m̂φ(x) −mφ(x)| = O(hb) +Oa.s

(√
ln dn
nΦ(h)

)
.
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The proof of Theorem 4.1 is based on the same decomposition (1) and on the following lemmas

Lemma 4. Under the assumptions (U1)–(U7), we get

sup
x∈SF

|rl(x) − m̃l(x)| = Oa.s.

(√
ln dn
nΦ(h)

)
.

Proof. By following the same steps as the proof of Lemma 1 and using Lemma 2.2 in [7] we get
our result. 2

Lemma 5. Under the assumptions (U1), (U2) and(U4), we obtain that

sup
x∈SF

|E(m̃1(x)) −mφ(x)| = O(hb).

Proof. Poof of Lemma 5 is similar to that of Lemma 2. 2

Lemma 6. i) Under the assumptions (U1)–(U7), we have

sup
x∈SF

|m̃1(x) −E(m̃1(x))| = Oa.co

(√
ln dn
nΦ(h)

)
.

ii) If assumptions (U1), (U3)-(U6) are satisfied, we get

sup
x∈SF

|m̃0(x) − 1| = Oa.co

(√
ln dn
nΦ(h)

)
and

∃ϑ > 0, such that
∞∑

n=1

P
(

inf
x∈SF

m̃0(x) < ϑ

)
<∞.

Proof. By considering the same decompositions and notations (2)–(5), following the same steps
as in the proof of Lemma 3 and using Lemma 6 (i) in [7] instead of Lemma A.1 (i) in [1], we get
under assumptions (U1)–(U4) and (U6)

sup
x∈SF

Q(x) = O(1) and sup
x∈SF

E(Mp,l(x)) = O(1)

uniformly on x, for p = 2, 3, 4 and l = 0, 1,

sup
x∈SF

|E(M2,1(x))E(M4,0(x)) − E(M2,1(x)M4,0(x))| = O

(
1

nΦ(h)

)
and

sup
x∈SF

|E(M3,1(x))E(M3,0(x)) − E(M3,1(x)M3,0(x))| = O

(
1

nΦ(h)

)
,

which is, using hypothesis (U5), equals to O
(√

ln dn
nΦ(h)

)
.

Now we prove that

sup
x∈SF

|Mp,l(x) − E(Mp,l(x))| = Oa.co

(√
ln dn
nΦ(h)

)
.
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To this end, we need the following decomposition.
Let be j(x) = arg min

j∈{1,2,...,dn}
d(x, xj); we have

sup
x∈SF

|Mp,l(x) − E(Mp,l(x))| 6 sup
x∈SF

|Mp,l(x) −Mp,l(xj(x))| +

+ sup
x∈SF

|Mp,l(xj(x)) − E(Mp,l(xj(x)))| +

+ sup
x∈SF

|E(Mp,l(xj(x))) − E(Mp,l(x))|

:= Dp,l
1 +Dp,l

2 +Dp,l
3 .

Using (U1), (U3) and (U4), we get

Dp,l
1 6 Crn

nhΦ(h)
sup
x∈SF

n∑
i=1

|φl(Yi)|1B(x,h)∪B(xj(x),h)(Xi).

Taking

Zi =
Crn
hΦ(h)

|φl(Yi)| sup
x∈SF

1B(x,h)∪B(xj(x),h)(Xi);

The assumption (U7) allows us to write

E|Zm
1 | 6 Crmn

hmΦm−1(h)
. (6)

Using Corollary A.8 (ii) in [3] with a2n =
rn

hΦ(h)
, we get

1

n

n∑
i=1

Zi = E(Z1) +Oa.co

(√
rn lnn

nhΦ(h)

)
.

Applying (6) again (for m = 1), one gets

Dp,l
1 = O

(rn
h

)
+Oa.co

(√
rn lnn

nhΦ(h)

)
.

Combining this last result with assumption (U5) and the second part of the assumption (U1),
we obtain

Dp,l
1 = Oa.co

(√
ln dn
nΦ(h)

)
. (7)

For the term Dp,l
3 , since

Dp,l
3 6 E

(
sup
x∈SF

|Mp,l(x) −Mp,l(xj(x))|
)

thus

Dp,l
3 = Oa.co

(√
ln dn
nΦ(h)

)
. (8)

And finally for the term Dp,l
2 , we have For all η > 0

P

(
Dp,l

2 > η

√
ln dn
nΦ(h)

)
= P

(
max

j∈{1,...,dn}
|Mp,l(xj(x)) − E(Mp,l(xj(x)))| > η

√
ln dn
nΦ(h)

)
6

6 dn × max
j∈{1,...,dn}

P

(
|Mp,l(xj(x)) − E(Mp,l(xj(x)))| > η

√
ln dn
nΦ(h)

)
.
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Taking for p = 2, 3, 4

Υp,i =
1

hp−2Φx(h)

[
µKi(xj(x))β

p−2
i (xj(x))φ

l(Yi)

G(Yi)
− E

(
µKi(xj(x))β

p−2
i (xj(x))φ

l(Yi)

G(Yi)

)]
.

Using the binomial Theorem and hypothesis (U1), (U2) and (U7), we obtain for p = 2, 3, 4

E|Υp,i|m = O(Φ−m+1(h)).

So, we can apply a Bernstein-type inequality as done in the Corollary A.8 (i) in [3], to obtain

P

(
1

n

∣∣∣∣ n∑
i=1

Υp,i

∣∣∣∣ > η

√
ln dn
nΦ(h)

)
6 2 exp

(
−Cη2 ln dn

)
.

Thus, by choosing β such that Cη2 = β, we get

P

(
Dp,l

2 > η

√
ln dn
nΦ(h)

)
6 Cd1−β

n .

Then, hypothesis (U5) allows us to write

Dp,l
2 = Oa.co

(√
ln dn
nΦ(h)

)
. (9)

Finally, the result of lemma (6) follows from the relations (7), (8) and (9).
The second part of the lemma (6) can be directly deduced from the proof of the first one such

that E(m̃0(x)) = 1. For the last part, it comes straightforward that

inf
x∈SF

m̃0(x) <
1

2
⇒ ∃x ∈ SF such that

1 − m̃0(x) >
1

2
⇒ sup

x∈SF

|1 − m̃0(x)| > 1

2
⇒

∞∑
n=1

P
(

inf
x∈SF

m̃0(x) <
1

2

)
<∞.

2

Theorem 4.1 is proved.

The authors would like to thank the Editor and the anonymous reviewer for their valuable
comments.
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[2] S.Derrar, A.Laksaci, E.Ould Säid, Journal of Statistical Theory and Practice, 9(2015), no. 4,
823–849. DOI: 10.1080/15598608.2015.1032455

[3] F.Ferraty, P.Vieu, Nonparametric functional data analysis: theory and practice, Springer
Science & Business Media, 2006.

[4] S.He, G.L.Yang, Estimation of the truncation probability in the random truncation model,
Annals of Statistics, 1998, 1011–1027.

– 490 –



Halima Boudada, Sara Leulmi, Soumia Kharfouch Rate of the Almost Sure Convergence . . .
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Скорость почти надежной сходимости обобщенной
регрессионной оценки на основе усеченных
и функциональных данных

Халима Будада
Сара Леулми

Университет Фрер Мантури
Константине 1, Алжир

Соумиа Харфучи
Университет Салах Бубнидер

Константине 3, Алжир

Аннотация. В этой статье предлагается непараметрическая оценка обобщенной функции регрес-
сии. Случайная переменная реального ответа (r.v.) подвергается усечению влево другим r.v., в
то время как ковариата принимает свои значения в бесконечномерном пространстве. При стан-
дартных предположениях устанавливаются точечные и равномерные почти наверняка сходимости
предлагаемой оценки.

Ключевые слова: функциональные данные, усеченные данные, почти уверенная сходимость, ло-
кальная линейная оценка.
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Abstract. The purpose of this paper is to establish some coupled fixed point theorems for a self mapping
satisfying certain rational type contractions along with strict mixed monotone property in a metric space
endowed with partial order. Also, we have given the result of existence and uniqueness of a coupled fixed
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The existence and uniqueness of a fixed point was given by Banach [1] in 1922, which was
acclaimed as Banach contraction principle and plays an important role in the development of
various results connected with Fixed point Theory and Approximation Theory. The Banach’s
fixed point theorem or the contraction principle concerns certain mappings of a complete metric
space into itself. It lays down conditions; sufficient for the existence and uniqueness of a fixed
point. Besides, this famous classical theorem gives an iteration process through which we can
obtain better approximation to the fixed point. Banach’s fixed point theorem has rendered a
key role in solving systems of linear algebraic equations involving iteration process. Iteration
procedures are used in nearly every branch of applied mathematics, convergence proof and also
in estimating the process of errors, very often by an application of Banach’s fixed point theorem.

After that several mathematicians contributed to the growth of this area of knowledge and
extensively reported in their work by taking various conditions on mappings as well as on spaces
(see [2–11]). Also, numerous generalizations of this theorem have been obtained by weakening
its hypotheses on various spaces like rectangular metric spaces, pseudo metric spaces, fuzzy
metric spaces, quasi metric spaces, quasi semi-metric spaces, probabilistic metric spaces, D-
metric spaces, G-metric spaces, F -metric spaces, cone metric spaces, and so on. More work on
fixed points, common fixed points results in cone metric spaces, partially ordered metric spaces
and others spaces can see from [12–24]. Recently, The existence and uniqueness of coupled fixed
points on ordered sets have been investigated by many authors with various conditions on the
mappings, readers may refer to [25–42] and references therein.
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In this paper, we proved some coupled fixed point results in the frame work of partially
ordered metric space satisfying a generalized contractive condition of rational type with strict
mixed monotone property of the mapping. Also, we presented the existence and uniqueness of
a coupled fixed point result for the mapping. These results generalized many well known results
in partially ordered metric space.

1. Preliminaries
Definition 1. Let (X,6) be a partially ordered set. A self mapping f : X → X is said to be
strictly increasing if f(x) < f(y), for all x, y ∈ X with x < y and is also said to be strictly
decreasing if f(x) > f(y), for all x, y ∈ X with x < y.

Definition 2. Let (X,6) be a partially ordered set and f is a self mapping defined over X is said
to be strict mixed monotone property, if f(x, y) is strictly increasing in x and strictly decreasing
in y as well.

i.e., for any x1, x2 ∈ X with x1 < x2 ⇒ f(x1, y) < f(x2, y) and also

for any y1, y2 ∈ X with y1 < y2 ⇒ f(x, y1) > f(x, y2).

Definition 3. Let (X,6) be a partially ordered set and f : X ×X → X be a mapping. A point
(x, y) ∈ X ×X is said to be a coupled fixed point to f , if f(x, y) = x and f(y, x) = y.

Definition 4. The triple (X, d,6) is called partially ordered metric space if (X,6) is a partially
ordered set together with (X, d) is a metric space.

Definition 5. If (X, d) is a complete metric space, then triple (X, d,6) is called a partially
ordered complete metric space.

Definition 6. A partially ordered metric space (X, d,6) is called an ordered complete (OC), if
for each convergent sequence {xn}∞n=0 ⊂ X, the following one of the condition holds

• if {xn} is a non-decreasing sequence in X such that xn → x then xn 6 x, for all n ∈ N
that is, x = sup{xn} or

• if {xn} is a non-increasing sequence in X such that xn → x then x 6 xn, for all n ∈ N
that is, x = inf{xn}.

2. Main results
In this section, we prove some coupled fixed point theorems for a self mapping satisfying

certain rational contraction condition in ordered metric space.

Theorem 1. Let (X, d,6) be a complete partially ordered metric space. Suppose that a self
mapping f : X × X → X has a strict mixed monotone property on X satisfying the following
condition

d(f(x, y), f(µ, υ)) 6 α
d(x, f(x, y)) [1 + d(µ, f(µ, υ))]

1 + d(x, µ)
+ β

d(x, f(x, y)) d(µ, f(µ, υ))

d(x, µ)

+γ[d(x, f(x, y)) + d(µ, f(µ, υ))] + δ[d(x, f(µ, υ)) + d(µ, f(x, y))]

+λd(x, µ)

(1)

for all x, y, µ, υ ∈ X with x > µ and y 6 υ, where α, β, γ, δ, λ ∈ [0, 1) with 0 6 α+β+ 2(γ+ δ)+
+λ <1. Suppose that either f is continuous or X has an ordered complete property (OC) then f
has a coupled fixed point (x, y) ∈ X×X, if there exists two points x0, y0 ∈ X with x0 < f(x0, y0)
and y0 > f(y0, x0).
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Proof. Suppose f is a continuous map on X. Let x0, y0 ∈ X such that x0 < f(x0, y0) and
y0 > f(y0, x0) then, define two sequences {xn}, {yn} in X as follows

xn+1 = f(xn, yn) and yn+1 = f(yn, xn) for all n > 0. (2)

Next, we have to show that for all n > 0,

xn < xn+1 (3)

and
yn > yn+1 (4)

for this, we use the method of mathematical induction. Suppose n = 0, since x0 < f(x0, y0) and
y0 > f(y0, x0) and from (2), we have x0 < f(x0, y0) = x1 and y0 > f(y0, x0) = y1 and hence
the inequalities (3) and (4) hold for n = 0. Suppose that the inequalities (3) and (4) hold for all
n > 0 and by using the strict mixed monotone property of f , we get

xn+1 = f(xn, yn) < f(xn+1, yn) < f(xn+1, yn+1) = xn+2 (5)

and
yn+1 = f(yn, xn) > f(yn+1, xn) > f(yn+1, xn+1) = yn+2. (6)

Thus, the inequalities (3) and (4) hold for all n > 0 and we obtain that

x0 < x1 < x2 < x3 < · · · < xn < xn+1 < . . . (7)

and
y0 > y1 > y2 > y3 > · · · > yn > yn+1 > . . . . (8)

We know that xn < xn+1, yn > yn+1 for all n then, by (1) and use of (2), we get

d(xn+1, xn) =d(f(xn, yn), f(xn−1, yn−1))

6 α
d(xn, f(xn, yn)) [1 + d(xn−1, f(xn−1, yn−1))]

1 + d(xn, xn−1)

+ β
d(xn, f(xn, yn)) d(xn−1, f(xn−1, yn−1))

d(xn, xn−1)

+ γ[d(xn, f(xn, yn)) + d(xn−1, f(xn−1, yn−1))]

+ δ[d(xn, f(xn−1, yn−1)) + d(xn−1, f(xn, yn))] + λd(xn, xn−1)

which implies that

d(xn+1, xn) 6 α
d(xn, xn+1) [1 + d(xn−1, xn)]

1 + d(xn, xn−1)
+ β

d(xn, xn+1) d(xn−1, xn)

d(xn, xn−1)

+ γ[d(xn, xn+1) + d(xn−1, xn)] + δ[d(xn, xn) + d(xn−1, xn+1)]

+ λd(xn, xn−1).

Finally, we arrive at

d(xn+1, xn) 6
(

γ + δ + λ

1 − α− β − γ − δ

)
d(xn, xn−1). (9)

Similarly by following above, we get

d(yn+1, yn) 6
(

γ + δ + λ

1 − α− β − γ − δ

)
d(yn, yn−1). (10)
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So, from equations (9) and (10), we have

d(xn+1, xn) + d(yn+1, yn) 6
(

γ + δ + λ

1 − α− β − γ − δ

)
[d(xn, xn−1) + d(yn, yn−1)] .

Now, let us define a sequence {Sn} in X as {Sn} = {d(xn+1, xn) + d(yn+1, yn)}. Therefore, by
induction we get

0 6 Sn 6 kSn−1 6 k2Sn−2 6 k3Sn−3 6 . . . 6 knS0,

where k =
γ + δ + λ

1 − α− β − γ − δ
< 1 and hence, we obtain

lim
n→+∞

Sn = lim
n→+∞

[d(xn, xn+1) + d(yn, yn+1)] = 0.

Consequently, we get lim
n→+∞

d(xn, xn+1) = 0 and lim
n→+∞

d(yn, yn+1) = 0. By using triangular

inequality for m > n, we get

d(xm, xn) 6 d(xm, xm−1) + d(xm−1, xm−2) + · · · + d(xn+1, xn)

and

d(ym, yn) 6 d(ym, ym−1) + d(ym−1, ym−2) + · · · + d(yn+1, yn).

Therefore,

d(xm, xn) + d(ym, yn) 6 Sm−1 + Sm−2 + · · · + Sn

6
(
km−1 + km−2 + · · · + kn

)
S0

6 kn

1 − k
S0.

Letting limit as n,m → ∞ in the above inequality, we obtain that d(xm, xn) + d(ym, yn) → 0.
Consequently, the sequences {xn} and {yn} are Cauchy sequences in X and by completeness
of X, there exists a point (x, y) ∈ X × X such that xn → x and yn → y. And also from the
continuity of f , we have

x = lim
n→∞

xn+1 = lim
n→∞

f(xn, yn) = f( lim
n→∞

xn, lim
n→∞

yn) = f(x, y),

and

y = lim
n→∞

yn+1 = lim
n→∞

f(yn, xn) = f( lim
n→∞

yn, lim
n→∞

xn) = f(y, x).

Therefore, we have x = f(x, y) and y = f(y, x), i.e., f has a coupled fixed point in X ×X.
Another way, supposeX has an ordered complete property (OC). From above discussion there

is an increasing Cauchy sequence {xn} in X converges to x ∈ X. Then from (OC) property of
X, we have x = sup{xn}, i.e., xn 6 x, for all n ∈ N. Therefore, we conclude that xn < x, for all
n otherwise there exists a number n0 ∈ N such that xn0 = x, and hence x < xn0 6 xn0+1 = x
which is wrong. Thus, from the strict monotone increasing of f over the first variable, we get

f(xn, yn) < f(x, yn). (11)

Similarly, from above there is a decreasing Cauchy sequence {yn} in X, which converges to a
point y ∈ X. Thus, by (OC) property of X, we have y = inf{yn}, i.e., yn > y, for all n ∈ N.
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As from similar argument above, we have yn > y, for all n ∈ N. Also, from the strict monotone
decreasing of f on the second variable, we get

f(x, yn) < f(x, y). (12)

Therefore, from equations (11) and (12), we obtain

f(xn, yn) < f(x, y) ⇒ xn+1 < f(x, y), for all n ∈ N. (13)

Since xn < xn+1 < f(x, y), for all n ∈ N and x = sup{xn}, then we obtain x 6 f(x, y).
Now, let z0 = x and zn+1 = f(zn, yn) then, by similar argument above the sequence {zn} is a
nondecreasing Cauchy sequence, since z0 6 f(z0, y0) and converges to a point z in X, implies
that z = sup{zn}.

Since for all n ∈ N, xn 6 x = z0 6 f(z0, y0) 6 zn 6 z then from (1), we have

d(xn+1, zn+1) = d(f(xn, yn), f(zn, yn))

6 α
d(xn, f(xn, yn)) [1 + d(zn, f(zn, yn))]

1 + d(xn, zn)

+ β
d(xn, f(xn, yn)) d(zn, f(zn, yn))

d(xn, zn)

+ γ[d(xn, f(xn, yn)) + d(zn, f(zn, yn))]

+ δ[d(xn, f(zn, yn)) + d(zn, f(xn, yn))] + λd(xn, zn).

On taking limit as n→ ∞ in the above inequality, we get

d(x, z) 6 (2δ + λ)d(x, z),

but 2δ + λ < 1, then we obtain that d(x, z) = 0. Hence x = z = sup{xn}, implies that
x 6 f(x, y) 6 x. Thus, x = f(x, y). Again following the similar above argument, we obtain that
y = f(y, x). Hence, f has a coupled fixed point in X ×X.

For the existence and uniqueness of a coupled fixed point of f over a complete partial ordered
metric space X, we furnish the following partial order relation.

(µ, υ) 6 (x, y) ⇔ x > µ, y 6 υ, for any (x, y), (µ, υ) ∈ X ×X.

Theorem 2. Along the hypothesis stated in Theorem 1 and suppose that for every (x, y), (r, s) ∈
X ×X, there exists (u, v) ∈ X ×X such that (f(u, v), f(v, u)) is comparable to (f(x, y), f(y, x))
and (f(r, s), f(s, r)), then f has a unique coupled fixed point in X ×X.

Proof. As we know from Theorem 1, the set of coupled fixed points of f is non empty. Suppose
that (x, y) and (r, s) are two coupled fixed points of the mapping f , then x = f(x, y), y = f(y, x),
r = f(r, s) and s = f(s, r). Now, we have to show that x = r, y = s for the uniqueness of a
coupled fixed point of f .

From hypotheses, there exists (u, v) ∈ X × X such that (f(u, v), f(v, u)) is comparable to
(f(x, y), f(y, x)) and (f(r, s), f(s, r)). Put u = u0, v = v0 then choose u1, v1 ∈ X such that
u1 = f(u0, v0) and v1 = f(v0, u0). Thus, following the proof of Theorem 1, we construct two
sequences {un}, {vn} from un+1 = f(un, vn) and vn+1 = f(vn, un) for all n ∈ N. Similarly, define
the sequences {xn}, {yn}, {rn} and {sn} by setting x = x0, y = y0, r = r0 and s = s0. As form
Theorem 1, we have xn → x = f(x, y), yn → y = f(y, x), rn → r = f(r, s) and sn → s = f(s, r)
for all n > 1. But (f(x, y), f(y, x)) = (x, y) and (f(u0, v0), f(v0, u0)) = (u1, v1) are comparable
and then we have x > u1 and y6v1. Next to show that (x, y) and (un, vn) are comparable, i.e.,
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to show that x > un and y6vn for all n ∈ N. Suppose the inequalities hold for some n > 0,
then from strict mixed monotone property of f , we have un+1 = f(un, vn) 6 f(x, y) = x and
vn+1 = f(vn, un) > f(y, x) = y. Therefore, we have x > un and y6vn for all n ∈ N.

Again from (1), we have

d(x, un+1) = d(f(x, y), f(un, vn))

6 α
d(x, f(x, y)) [1 + d(un, f(un, vn))]

1 + d(x, un)
+ β

d(x, f(x, y)) d(un, f(un, vn))

d(x, un)

+ γ[d(x, f(x, y)) + d(un, f(un, vn))] + δ[d(x, f(un, vn)) + d(un, f(x, y))] + λd(x, un)

which implies that

d(x, un+1) 6
(
γ + δ + λ

1 − γ − δ

)
d(x, un).

Similarly, we can obtain

d(y, vn+1) 6
(
γ + δ + λ

1 − γ − δ

)
d(y, vn).

Suppose D =
γ + δ + λ

1 − γ − δ
< 1, then from above equations, we have

d(x, un+1) + d(y, vn+1) 6 D [d(x, un) + d(y, vn)]

6 D2 [d(x, un−1) + d(y, vn−1)]

. . . . . . . . . . . . . . . . . .

6 Dn [d(x, u0) + d(y, v0)] .

Taking limit as n → +∞ to the above inequality, we get lim
n→+∞

d(x, un+1) + d(y, vn+1) = 0.

Consequently, we obtain lim
n→+∞

d(x, un+1) = 0 and lim
n→+∞

d(y, vn+1) = 0. Similarly, one can

prove that lim
n→∞

d(r, un) = 0 and lim
n→∞

d(s, vn) = 0.
Further form triangular inequality, we obtain that

d(x, r) 6 d(x, un) + d(un, r) and d(y, s) 6 d(y, vn) + d(vn, s).

On taking limit as n→ ∞ to the above inequalities, we obtain that d(x, r) = 0 = d(y, s), implies
that x = r and y = s. Hence, f has a unique coupled fixed point in X ×X. This completes the
proof.

Theorem 3. Along the hypotheses stated in Theorem 1 and if x0, y0 are comparable then f has
a coupled fixed point in X ×X.

Proof. Suppose (x, y) is a coupled fixed point of f , then from Theorem 1, there exists two
sequences {xn} and {yn} such that xn → x and yn → y in X.

Assume that x0 6 y0, then we have to show that xn 6 yn, for all n > 0. Suppose it hods
for some n > 0. So, by the strict mixed monotone property of f , we get xn+1 = f(xn, yn) 6
f(yn, xn) = yn+1. Then, from the contraction condition (1), we get

d(xn+1, yn+1) = d(f(xn, yn), f(yn, xn))

6 α
d(xn, f(xn, yn)) [1 + d(yn, f(yn, xn))]

1 + d(xn, yn)

+ β
d(xn, f(xn, yn)) d(yn, f(yn, xn))

d(xn, yn)

+ γ [d(xn, f(xn, yn)) + d(yn, f(yn, xn))]

+ δ [d(xn, f(yn, xn)) + d(yn, f(xn, yn))] + λd(xn, yn).
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On taking limit as n→ ∞, we get

d(x, y) 6 (2δ + λ) d(x, y)

which is a contradiction, since 2δ + λ < 1. Thus, d(x, y) = 0. Therefore, we have f(x, y) =
= x = y = f(y, x). Similarly, we can also show that f(x, y) = x = y = f(y, x) by considering
y0 6 x0. Hence, (x, y) is a coupled fixed point of f in X ×X.

Remarks:

1. If α = γ = δ = 0, in above Theorems, we obtain Theorems 2.1 and Theorem 2.2 of Ciric
et al. [30].

2. If α = 0 in above Theorems, we can get Theorem 2.1–Theorem 2.3 of Chandok et al. [38].

3. Banach [1] type contraction in partially ordered metric spaces can get by taking α = β =
= γ = δ = 0.

4. Kannan [7] type contraction for coupled fixed point theorem in partially ordered metric
spaces can get by putting α = β = δ = λ = 0 in above Theorem 2.1–Theorem 2.3.

5. Chatterjee [3] type contraction for coupled fixed point theorem in partially ordered metric
spaces can obtain by giving α = β = γ = λ = 0 in above Theorem 2.1–Theorem 2.3.

6. Singh and Chatterjee [9] type contraction for coupled fixed point theorem in partially
ordered metric spaces can get by giving α = γ = 0 in above Theorem 2.1–Theorem 2.3.

3. Applications
In this section, we state some applications of the main result to a self mapping involving an

integral type contractions.
Let us consider the set of all functions χ defined on [0,∞) satisfying the following conditions:

1. Each χ is Lebesgue integrable mapping on each compact subset of [0,∞).

2. For any ϵ > 0, we have
ϵ∫
0

χ(t)dt > 0.

Theorem 4. Let (X, d,6) be a complete partially ordered metric space. Suppose that a self
mapping f : X × X → X has a strict mixed monotone property on X satisfying the following
condition∫ (d(f(x,y),f(µ,υ))

0

φ(t)dt 6 α

∫ d(x,f(x,y))[1+d(µ,f(µ,υ))]
1+d(x,µ)

0

φ(t)dt+ β

∫ d(x,f(x,y)) d(µ,f(µ,υ))
d(x,µ)

0

φ(t)dt

+ γ

∫ d(x,f(x,y))+d(µ,f(µ,υ))

0

φ(t)dt+ δ

∫ d(x,f(µ,υ))+d(µ,f(x,y))

0

φ(t)dt

+ λ

∫ d(x,µ)

0

φ(t)dt

(14)

for all x, y, µ, υ ∈ X with x > µ and y 6 υ, φ(t) is a function satisfies the above conditions
defined on [0,∞) and α, β, γ, δ, λ ∈ [0, 1) with 0 6 α+ β + 2(γ + δ) + λ < 1. Suppose that either
f is continuous or X has an ordered complete property (OC) then f has a coupled fixed point
(x, y) ∈ X ×X, if there exists two points x0, y0 ∈ X with x0 < f(x0, y0) and y0 > f(y0, x0).
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Similarly, we can obtain the following coupled fixed point results in partially ordered metric
space, by taking γ = δ = 0, β = 0, β = γ = 0 and β = δ = 0 in Theorem 4.

Theorem 5. Let (X, d,6) be a complete partially ordered metric space. Suppose that a self
mapping f : X × X → X has a strict mixed monotone property on X satisfying the following
condition∫ (d(f(x,y),f(µ,υ))

0

φ(t)dt 6 α

∫ d(x,f(x,y))[1+d(µ,f(µ,υ))]
1+d(x,µ)

0

φ(t)dt+ β

∫ d(x,f(x,y)) d(µ,f(µ,υ))
d(x,µ)

0

φ(t)dt

+ λ

∫ d(x,µ)

0

φ(t)dt

(15)

for all x, y, µ, υ ∈ X with x > µ and y 6 υ, φ(t) is a function satisfies the above conditions
defined on [0,∞) and α, β, λ ∈ [0, 1) with 0 6 α+β+λ < 1. Suppose that either f is continuous
or X has an ordered complete property (OC) then f has a coupled fixed point (x, y) ∈ X ×X, if
there exists two points x0, y0 ∈ X with x0 < f(x0, y0) and y0 > f(y0, x0).

Theorem 6. Let (X, d,6) be a complete partially ordered metric space. Suppose that a self
mapping f : X × X → X has a strict mixed monotone property on X satisfying the following
condition∫ (d(f(x,y),f(µ,υ))

0

φ(t)dt 6 α

∫ d(x,f(x,y))[1+d(µ,f(µ,υ))]
1+d(x,µ)

0

φ(t)dt+ γ

∫ d(x,f(x,y))+d(µ,f(µ,υ))

0

φ(t)dt

+ δ

∫ d(x,f(µ,υ))+d(µ,f(x,y))

0

φ(t)dt+ λ

∫ d(x,µ)

0

φ(t)dt

(16)

for all x, y, µ, υ ∈ X with x > µ and y 6 υ, φ(t) is a function satisfies the above conditions
defined on [0,∞) and α, γ, δ, λ ∈ [0, 1) with 0 6 α + 2(γ + δ) + λ < 1. Suppose that either
f is continuous or X has an ordered complete property (OC) then f has a coupled fixed point
(x, y) ∈ X ×X, if there exists two points x0, y0 ∈ X with x0 < f(x0, y0) and y0 > f(y0, x0).

Theorem 7. Let (X, d,6) be a complete partially ordered metric space. Suppose that a self
mapping f : X × X → X has a strict mixed monotone property on X satisfying the following
condition∫ (d(f(x,y),f(µ,υ))

0

φ(t)dt 6 α

∫ d(x,f(x,y))[1+d(µ,f(µ,υ))]
1+d(x,µ)

0

φ(t)dt+ δ

∫ d(x,f(µ,υ))+d(µ,f(x,y))

0

φ(t)dt

+ λ

∫ d(x,µ)

0

φ(t)dt

(17)

for all x, y, µ, υ ∈ X with x > µ and y 6 υ, φ(t) is a function satisfies the above conditions
defined on [0,∞) and α, δ, λ ∈ [0, 1) with 0 6 α+2δ+λ < 1. Suppose that either f is continuous
or X has an ordered complete property (OC) then f has a coupled fixed point (x, y) ∈ X ×X, if
there exists two points x0, y0 ∈ X with x0 < f(x0, y0) and y0 > f(y0, x0).

Theorem 8. Let (X, d,6) be a complete partially ordered metric space. Suppose that a self
mapping f : X × X → X has a strict mixed monotone property on X satisfying the following
condition∫ (d(f(x,y),f(µ,υ))

0

φ(t)dt 6 α

∫ d(x,f(x,y))[1+d(µ,f(µ,υ))]
1+d(x,µ)

0

φ(t)dt+ γ

∫ d(x,f(x,y))+d(µ,f(µ,υ))

0

φ(t)dt

+ λ

∫ d(x,µ)

0

φ(t)dt

(18)
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for all x, y, µ, υ ∈ X with x > µ and y 6 υ, φ(t) is a function satisfies the above conditions
defined on [0,∞) and α, γ, λ ∈ [0, 1) with 0 6 α+2γ+λ < 1. Suppose that either f is continuous
or X has an ordered complete property (OC) then f has a coupled fixed point (x, y) ∈ X ×X, if
there exists two points x0, y0 ∈ X with x0 < f(x0, y0) and y0 > f(y0, x0).
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Обобщенные сжатия для связанных теорем
о неподвижных точках в частично упорядоченных
метрических пространствах

Н.Сешагири Рао
Научно-технический университет Адамы

Адама, Эфиопия
Карусала Каляни

Фонд науки, технологий и исследований Вигнан
Прадеш, Индия

Аннотация. Цель этой статьи — установить некоторые связанные теоремы о неподвижной точ-
ке для самопредставления, удовлетворяющего определенным рациональным сокращениям типов
наряду со строго смешанной монотонной собственностью в метрическом пространстве, снабжен-
ном частичным порядком. Также мы дали результат существования и единственности связанной
неподвижной точки для отображения. Этот результат обобщает и расширяет несколько хорошо
известных в литературе результатов.

Ключевые слова: частично упорядоченные метрические пространства, рациональные сокраще-
ния, связанная фиксированная точка, монотонная собственность.
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Abstract. We provide new sharp decomposition theorems for multifunctional Bergman spaces in the
unit ball and bounded pseudoconvex domains with smooth boundary expanding known results from the
unit ball.

Namely we prove that
m∏

j=1

||fj ||Xj ≍ ||f1 . . . fm||Ap
α

for various (Xj) spaces of analytic functions in

bounded pseudoconvex domains with smooth boundary where f, fj , j = 1, . . . ,m are analytic functions
and where Ap

α, 0 < p < ∞, α > −1 is a Bergman space. This in particular also extend in various
directions a known theorem on atomic decomposition of Bergman Ap

α spaces.
Keywords: pseudoconvex domains, unit ball, Bergman spaces, decomposition theorems, Hardy type
spaces.
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Introduction and preliminaries

The problem we consider is well-known for functional spaces in Rn (the problem of equivalent
norms) (see, for example, [1]).

Let X, (Xj) be a function space in a fixed domain D in Cn (normed or quazinormed) we wish
to find equivalent expression for ||f1 . . . fm||X ; m ∈ N. Note these are closely connected with
spaces on product domains since

f(z1, . . . , zm) =

m∏
j=1

fj(zj), ||f ||X =

m∏
j=1

||fj ||Xj
, zj ∈ D; j = 1, . . . ,m.

These our results also extend some well-known assertions on atomic decomposition of
Bergman Ap

α type spaces as we will see below. For m = 1 Hardy space case (see, for exam-
ple, [2–4]).

To study such group of functions it is natural, for example, to ask about structure of each
{fj}mj=1 of this group.

This can be done for example if we turn to the following question find conditions on

{f1, . . . , fm}, so that ||f1, . . . , fm||X ≍
m∏
j=1

||fj ||Xj
sharp (R) decomposition is valid. In this

case for example we have if for some positive constant c;
∗rsham@mail.ru
†tomele@mail.ru

c⃝ Siberian Federal University. All rights reserved

– 503 –



Romi F. Shamoyan, B. Tomashevskaya On New Decomposition Theorems in some Analytic . . .

m∏
j=1

||fj ||Xj
6 c||f1, . . . , fm||X ;

then we have each fj , fj ∈ Xj ; j = 1, . . . ,m, where Xj is a new normed (or quazinormed)
function space in D domain and we can easily now provide properties of fj based on facts of
already known one functional function space theory. (For example to use known theorems for
each fj ∈ Xj ; j = 1, . . . ,m on atomic decompositions). This idea was used for Bergman spaces in
the unit ball then in bounded pseudoconvex domains with smooth boundary in recent papers [5]
and [6]. In this paper we extend these results in various directions using modification of known
proof.

We refer to [5, 6] for a complete and not difficult proof of a basic known "purely Ap
α" case

then in this paper show in details how to modify it to get new results. The old known proof
is simple and very flexible as it turns out and we can easily get, as we can see below, various
new interesting results from it directly. This remark is leading us to provide only some sketchy
arguments sometimes below of proofs when we deal with new theorems , since the core of all
proofs is basically the same in all our theorems. Here is partially the transparent proof of the
classical case of the Bergman space Ap

α case in the unit ball Bn of Cn. The case of Ap
α Bergman

space in more general bounded pseudoconvex domain can be seen in our recent paper [6].
We define Ap

α space as usual

Ap
α =

{
f ∈ H(B) : ||f ||p

Ap
α

=

∫
B

∣∣∣f(z)
∣∣∣p(1 − |z|)αdv(z) <∞

}
,

dv is a Lebeques measure on B, fj is analytic in B, 0 < p <∞, α > −1, j = 1, . . . ,m and where
H(B) is a class of all analytic functions in the unit ball B.

We see in [6] that ||f1 . . . fm||Ap
τ
≍

m∏
j=1

||fj ||Ap
α

is valid under certain integral (A) condition if

p 6 1 and if τ = τ(p, α1, . . . , αm,m).
We denote constants as usual by C,C1, C2, . . .
Note from our discussion above the only interesting part is to show that

m∏
j=1

||fj ||Ap
αj

(Bn) 6 c1||f1 . . . fm||Ap
τ (Bn), (S)

since the reverse follows directly from the uniform estimate (see [6, 7]).

|f(z)|(1 − |z|)
αj+n+1

p 6 c||f ||Ap
αj

; 0 < p <∞, αj > −1, j = 1, . . . ,m

and ordinary induction. This also lead easily to the fact that τ can be calculated

τ = (n+ 1)(m− 1) +

m∑
j=1

αj ; αj > −1; 0 < p <∞.

Note similar very simple proof based only on various known uniform estimates can be used
in all our proofs below in similar inequalities for various spaces. So we mainly concentrate on
reverse to (S) estimates. Let further Hp be a usual Hardy Hp space in Bn (see [7, 8]).

Note further if α0 is large enough and if

m∏
i=1

fi(ωi) = cα

∫
B

m∏
i=1

fi(z)(1 − |z|)αdv(z)

m∏
i=1

(1 − z̃ωi)
n+1+α

m

, ωj ∈ B, j = 1, . . . ,m, α > α0,
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then we have easily using directly well-known estimates (see [7]) from last equality for p 6 1 (we
refer to [6] for details in more general situation).

I =

m∏
i=1

∫
B

|fk(zk)|p(1 − |zk|2)αkdv(zk) =

∫
B

· · ·
∫
B

m∏
k=1

|fk(zk)|p ·
m∏

k=1

(1 − |zk|2)αk ·
m∏

k=1

dv(zk) 6

6 c

∫
B

m∏
k=1

|fk(z)|p(1 − |zk|2)τdv(z) ×
∫
B

· · ·
∫
B

m∏
k=1

(1 − |zk|2)αk

m∏
k=1

dv(zk)

m∏
k=1

|1 − z̃zk|( n+1+α
m )p

;

where αk > −1, k = 1, . . . ,m, τ = (n + 1 + α)p − (n + 1) > −1, α > α0 = α0(p, α⃗, n,m). And
hence we have finnally

c1

∫
B

m∏
k=1

|fk(z)|p(1 − |zk|2)τ1dv(z) <∞,

where 0 < p 6 1; τ1 = (m− 1)(n+ 1) +
m∑

k=1

αk; and αk > −1, τ1 > −1, α > α0.

This result is valid also for p > 1 (see [5]). We will repeat this type simple argument several
times below.

The same more general problem which we consider in bounded pseudoconvex domain D is
the following. To find equivalent expressions for ||f1 . . . fm||X ; fj ∈ H(D), j = 1, . . . ,m. Can
we also say that each fi can be decomposed into "atoms" (BMOA atoms, Bloch atoms, Hardy
atoms, Bergman atoms (see [2–4,6, 7, 9, 10])) if∫

D

∣∣∣ m∏
j=1

fj(z)
∣∣∣pδτ (z)dv(z) <∞, 0 < p <∞, τ > −1; δ(z) = dist(z, ∂D)

and dv is a Lebeques measure on D. Only for m = 1 Ap
α Bergman class the answer is well known

in the unit ball and in bounded pseudoconvex domains (see [5–7,11]).
For m > 1 the answer is known only partially each (fj) can be decomposed into Ap

αj
atoms

for some αj see [5,6]. For m = 1 Hardy space and other spaces (see [2–4,7]) and references there.
We extend these known results in various directions below. It is easy to note that in our

proof at least one fj must be decomposed into Ap
α atoms.

Let us remark the following typical for this paper fact in bounded pseudoconvex D domains
an extension of a classical result namely the following result is valid (note same result with
the same proof even can be provided with the same proofs in unbounded tube domains over
symmetric cones). This will be studied in our next papers. Let Hp and Ap

α, 0 < p <∞, α > −1
be Bergman and Hardy space in D domain (see [6, 8, 12,13]) and definitions below.

Note since proofs are rather simple some arguments have sketchy forms and can be easily
recovered by readers (see [6, 13]).

We denote by Cβ Bergman representation constant below.

Theorem 1. Let fi ∈ Api
αi
, i = 1, . . . , k; fi ∈ Hpi ; i = k + 1, . . . ,m, pi 6 1, i = 1, . . . ,m,

αj > −1, j = 1, . . . , k, τ = n(m− k) + (n+ 1)(k − 1) +
k∑

j=1

αj, then

∫
D

m∏
j=1

∣∣∣fj∣∣∣pj

δ(z)
n(m−k)+

(
k∑

j=1
αj

)
+(n+1)(k−1)

dv(z) 6 C

m∏
j=k+1

∣∣∣∣∣∣fi∣∣∣∣∣∣pi

Hpi

k∏
j=1

∣∣∣∣∣∣fi∣∣∣∣∣∣pi

A
pi
αi

; (Ã)

and for cases when pi = p, j = 1, . . . ,m the reverse is also true and we have a new sharp result
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I(f⃗) =

∫
D

m∏
j=1

∣∣∣fj(z)
∣∣∣pδ(z)

n(m−k)+

(
k∑

j=1
αj

)
+(n+1)(k−1)

dv(z) ≍
m∏

j=k+1

∣∣∣∣∣∣fi∣∣∣∣∣∣p
Hp

k∏
j=1

∣∣∣∣∣∣fj∣∣∣∣∣∣p
Ap

αj

; (
˜̃
A)

if
m∏
j=1

fi(wi) = Cβ

∫
D

( m∏
j=1

fj(z)
)
×

m∏
j=1

K β+n+1
m

(z, wj)δ
β(w)dv(w);

β > β0, wj ∈ Dj , j = 1, . . . , k,
wj ∈ D, j = k + 1, . . . ,m. (T )

This Theorem 1 is probably true also for pi > 1 (see [5,6] for proof in this case based only on
Holder inequality) we give also very similar same type result for analytic A∞,p

α weighted Hardy
class below.

Remark 1.
1) Note for m = 1 (T ) integral condition vanishes (see [12]) and we have an obvious relation.

and hence f1 can be decomposed into atoms, f1 ∈ Ap
α (see [6, 7]).

2) Our result as a root has the following simple estimate in the unit disk which can be easily
checked.∫

U

k∏
i=1

∣∣∣fi(z)
∣∣∣pi

δ(z)k−1dv(z) 6 C

k∏
i=1

∣∣∣∣∣∣fi∣∣∣∣∣∣pi

Hpi
, pi ∈ (0,∞), fi ∈ Hpi , i = 1, . . . , k, k ∈ N.

Remark 2.
Note for m > 1 we can hence using (

˜̃
A) decompose if I(f⃗) < ∞ each function (fj) to Hp

atoms and (or) Ap
α atoms using well-known one functional results. Note for m = 1 (T ) vanish

and we obtain Ap
α atomic decomposition classical result.

We refer to [14] for other new interesting sharp results in mulifunctional Bergman spaces.

1. Main results
We provide our main results in this section. Throughout this paper H(D) denotes the space

of all holomorphic functions on an open set D ⊂ Cn.
We follow notation from [11]. Let D be a bounded strictly pseudoconvex domain in Cn with

smooth boundary, let d(z) = dist(z, ∂D).
Then there is a neighborhood U of D̄ and ρ ∈ C∞(U) such that D = {z ∈ U : ρ(z) > 0},

| ▽ ρ(z)| > c > 0 for z ∈ ∂D, 0 < ρ(z) < 1 for z ∈ D and −ρ is strictly plurisubharmonic in a
neighborhood U0 of ∂D. Note that d(z) ≍ ρ(z), z ∈ D. Then there is an r0 > 0 such that the
domains Dr = {z ∈ D : ρ(z) > r} are also smoothly bounded strictly pseudoconvex domains
for all 0 > r > r0. Let dσr be the normalized surface measure on ∂Dr and dv the Lebesgue
measure on D. The following mixed norm spaces were investigated in [11]. For 0 < p < ∞,
0 < q 6 ∞, δ > 0 and k = 0, 1, 2, . . . set

||f ||p,q,δ;k =

∑
|α|6k

∫ r0

0

(
rδ
∫
∂Dr

|Dαf |pdσr
)q/p

dr

r

1/q

, 0 < q <∞

and weighted Hardy space (Ap,∞
0 = Hp)

||f ||p,∞,δ;k = sup
0<r<r0

∑
|α|6k

(
rδ
∫
∂Dr

|Dαf |pdσr
)1/q

, 0 < q <∞,
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where Dα is a derivative of f (see [11]) The corresponding spaces Ap,q
δ;k = Ap,q

δ;k(D) = {f ∈ H(D) :
||f ||p,q,δ;k<∞} are complete quasi normed spaces, for p, q > 1 they are Banach spaces. We mostly
deal with the case k = 0, when we write simply Ap,q

δ and ||f ||p,q,δ. We also consider this spaces
for p = ∞ and k = 0, the corresponding space is denoted by A∞,p

δ = A∞,p
δ (D) and consists of all

f ∈ H(D) such that

||f ||∞,p,δ =

(∫ r0

0

(sup
∂Dr

|f |)prδp−1dr

)1/p

<∞.

Also, for δ > −1, the space A∞
δ = A∞

δ (D) consist of all f ∈ H(D) such that

||f ||A∞
δ

= sup
z∈D

|f(z)|ρ(z)δ <∞,

and the weighted Bergman space Ap
δ = Ap

δ(D) = Ap,p
δ+1(D) consists of all f ∈ H(D) such that

||f ||Ap
δ

=

(∫
D

|f(z)|pρδ(z)dv(z)

)1/p

<∞.

We denote by Kβ the weighted Bergman kernel on D (see [6, 12]).
Since |f(z)|p is subharmonic (even plurisubharmonic) for a holomorphic f , we have Ap

s(D) ⊂
A∞

t (D) for 0 < p < ∞, sp > n and t = s. Also, Ap
s(D) ⊂ A1

s(D) for 0 < p 6 1 and Ap
s(D) ⊂

A1
t (D) for p > 1 and t sufficiently large. Therefore we have an integral representation

f(z) = Cβ

∫
D

f(ξ)K(z, ξ)ρt(ξ)dv(ξ), f ∈ A1
t (D), z ∈ D, (∗)

where K(z, ξ) is a kernel of type t, that is a smooth function on D × D such that |K(z, ξ)| 6
C|Φ̃(z, ξ)|−(n+1+t), where Φ̃(z, ξ) is so called Henkin-Ramirez function for D. Note that (*)
holds for functions in any space X that embeds into A1

t . We review some facts on Φ̃ and refer
reader to [15] for details. This function is C∞ in U × U , where U is a neighborhood of D, it is
holomorphic in z, and Φ̃(ζ, ζ) = ρ(ζ) for ζ ∈ U . Moreover, on D × D it vanishes only on the
diagonal (ζ, ζ), ζ ∈ ∂D. Locally, it is up to a non vanishing smooth multiplicative factor equal
to the Levi polynomial of ρ. From now on the work with a fixed Henkin-Ramirez function Φ̃.

The proof of the following theorem is very similar to the proof of the Theorem 1.

Theorem 2. Let fi ∈ A∞
βi
, i = 1, . . . , k and fi ∈ Api

αi
, i = k + 1, . . . ,m.

Let βj > 0, j = 1, . . . ,m, let also pi 6 1, let αj > −1; j = 1, . . . ,m; then we have

∫
D

m∏
j=1

∣∣∣fj∣∣∣pi

·δ(z)

k∑
j=1

(
βjpj

)
+(n+1)(m−k−1)+

m∑
i=1

αi

dv(z) 6 C

m∏
i=k+1

∣∣∣∣∣∣fi∣∣∣∣∣∣pi

A
pi
αi

×
k∏

i=1

∣∣∣∣∣∣fi∣∣∣∣∣∣pi

A∞
βi

; (K)

and if pi = p, i = 1, . . . ,m we have a sharp result (the reverse of (K) is valid) if
m∏
i=1

fi(wi) = Cβ

∫
D

m∏
j=1

fj(z) ×K β+n+1
m

(z, wj)δ
β(z)dv(z); β > β0; wj ∈ D, j = 1, . . . ,m.

The same type results with very similar proof is valid not only for A∞
β but also for weighted

Hardy space

Ap,∞
α =

{
f ∈ H(D) : sup

ε>0

(∫
∂Dε

∣∣∣f(ξ)
∣∣∣pσ̃(ξ)

) 1
p

× εα <∞; α > 0; 0 < p <∞

}
where ∂Dε = {z : ρ(z) = ε}, σ̃(ξ) is a Lebeques measure on ∂Dε (see [11] for these analytic
Hardy type spaces).
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Theorem 2 can be also viewed similarly (as Theorem 1) as another direct extension of a known
theorem on atomic decomposition of classical Bergman space Ap

α in the D domain. Indeed we
can easily see that (see [7, 12]) for m = 1 in the ball (T) integral condition vanishes and we
have Ap

α known atomic decomposition result. For m > 1 taking into account known atomic
decomposition theorems (see [9]) for Ap

α and A∞
β in D, each fj , j = 1, . . . ,m from Theorem 2

can be decomposed into A∞
β or Ap

α atoms.
The same type result is valid for some Herz type spaces in bounded pseudoconvex domains

and BMOA type spaces in the unit ball instead of A∞
β .

We refer to [16] for some interesting results in such type analytic function spaces.
Namely, let B(z, r) be a Kobayashi ball in D, z ∈ D, r > 0 (see [11]).
Let also Bpq

α , B̃pq
α , p, q ∈ (0,∞), α > −1, be Herz type spaces in pseudoconvex D domain

Bp,q
α (D) =

{
f ∈ H(D) :

∫
D

(∫
B(z,r)

∣∣∣f(w)
∣∣∣qδα(w)dv(w)

) p
q

dv(z) <∞

}
,

B̃p,q
α (D) =

{
f ∈ H(D) :

∑
k>0

(∫
B(ak,r)

∣∣∣f(w)
∣∣∣q × δα(w)dv(w)

) p
q

<∞

}
,

where {ak} is known r-lattice in D (see [13]).
Let also

BMOAp
s,β,t(Bn) =

{
f ∈ H(Bn) : sup

w∈B

∫
B

|f(z)|p × (1 − |z|)sdv(z)

|1 − w̄z|β
(1 − |w|)t <∞

}
,

be BMOA type space in the unit ball (see also [7, 17,18]), where 0< p, q <∞; s >−1, β, t>0.
Uniform estimates for BMOA in the unit ball can be seen in [7], for Bp,q

α and B̃p,q
α Herz type

spaces they can be easily obtained also based on elementary known estimates (see [12,13])∣∣∣f(z)
∣∣∣p 6 C̃

(∫
B(z,r)

∣∣∣f(w)
∣∣∣pdv(w)

)
· δ−(n+1)(z); z ∈ D, 0 < p <∞.

As a result we immediately have that∫
D

m∏
k=1

∣∣∣fk∣∣∣pi

× δ(z)sdv(z) 6 C

t∏
k=1

∣∣∣∣∣∣fk∣∣∣∣∣∣pk

A
pk
βk

×
m∏

k=t+1

∣∣∣∣∣∣fk∣∣∣∣∣∣l̃k
B

p̃k,q̃k
αk

, (A3)

for some s = s
(
p⃗, n,m, α⃗, β⃗, ⃗̃p,⃗̃q

)
and the same type estimate obviously is valid for B̃p,q

α (D) and

BMOAp
s,β,t(Bn) (We simply replace

m∏
k=t+1

∣∣∣∣∣∣fk∣∣∣∣∣∣
Bp̃k,q̃k

by quazinorms of these spaces).

For particular values of parameters we under integral condition (T) can again show similarly
that this (A3) estimate is sharp, so each fk can be decomposed into BMOA and B̃p,q

α

(
Bp,q

α

)
atoms if only

m∏
i=1

|fi|p ∈ L1
s(D), 0 < p 6 1 for some s.

These results in details will be given in another our paper.

Proof of Theorem 1.
The ( ˜̃A) estimate follows from two known uniform estimates directly∣∣∣f(z)

∣∣∣(1 − |z|
) n

pi 6 C
∣∣∣∣∣∣f ∣∣∣∣∣∣pi

Hpi
, z ∈ D

and ∣∣∣f(z)
∣∣∣(1 − |z|

)n+1+αi
pi 6 C1

∣∣∣∣∣∣f ∣∣∣∣∣∣pi

A
pi
αi

, z ∈ D, αi > −1, 0 < p <∞
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(see [6, 7, 11,13,19]). The (A3) can be shown similarly. To get the reverse estimate we must use
first that for p 6 1 (see [6]) we have(∫

D

∣∣∣f(w)
∣∣∣ · m∏

j=1

∣∣∣Kτ (zj , w)
∣∣∣δα(w)dv(w)

)p

6 C

∫
D

∣∣∣f(w)
∣∣∣p · ∣∣∣Kτ (z, w)

∣∣∣pδαp+(n+1)(p−1)(w)dv(w),

τ > 0, α > −1, p 6 1 and also the following known lemma (see [6,12,13,19,20]). (Forelly-Rudin
type estimates).

Lemma 1. Let α̃, β > −1, s > 0, y ∈ D, 0 < t < t0 = t0(λ, r) then∫
{x:r(x)=t}

∣∣∣Kα(x, y)
∣∣∣sdσ(x) ≍

[
r(y) + t

]n−q

, n < q,

and

sup
w∈D

∣∣∣Kα(z, w)
∣∣∣δv(z) 6 Cδ−α̃+v(z); (S)

v > 0, v − α̃ < 0 and∫
D

∣∣∣Kα(x, y)
∣∣∣s(r(x)

)β
dv(x) ≍

(
r(y)

)n−q+β+1

, n− q + β + 1 < 0,

and r(y) ≍ δ(y), y ∈ D; q = αs.

Indeed using (T ) and mentioned estimates we have the following chain of inequalities

k∏
j=1

(∫
D

∣∣∣fj(wj)
∣∣∣pδαj (wj)dv(wj)

)
·

m∏
j=k+1

sup
ε>0

∫
∂Dε

∣∣∣fj(ξ)∣∣∣pdσ(ξ) =

= C

k∏
j=1

∣∣∣∣∣∣fi∣∣∣∣∣∣pi

A
pi
αi

·
m∏

j=k+1

∣∣∣∣∣∣fj∣∣∣∣∣∣pi

Hpi
6

6 C

∫
X

∫
D

m∏
j=1

∣∣∣fs(z)
∣∣∣p · ∣∣∣Ks(z, wj)

∣∣∣p · δβp+(n+1)(p−1)(z)dv(z)dṽ(x),

where
s =

β + n+ 1

m
;∫

X

dṽ(x) =
( k∏

j=1

∫
D

δαj (wj)dv(wj)
)
·
( m∏

j=k+1

sup
ε>0

∫
∂Dε

dσ(ξ)
)
.

Applying Lemma 1 we have after small calculations that

I 6 C̃

∫
D

m∏
j=1

(∣∣∣fj(w)
∣∣∣pδτ (w)dv(w)

)
.

Theorem 1 is proved.
The proof of Theorem 2 is almost the same. We omit easy details.
Put

BMOAp
t,v,s =

{
f ∈ H(B) : sup

z∈B

∫
B

∣∣∣f(w)
∣∣∣p(1 − |w|)t

|1 − z̄w|v
dv(w) × (1 − |z|)s <∞

}
,
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v, s > 0, p > 0, t > −1.
For p > 1 this is a Banaсh space and complete metric space for p < 1. Obviously based on

properties of r-lattices (the same result with same proof is valid in pseudoconvex domains) based
on vital estimate from below of Bergman Kernel on Bergman ball (see [6, 13]),∣∣∣∣∣∣f ∣∣∣∣∣∣

BMOAp
t,vs

> C sup
z∈B

∣∣∣f(z)
∣∣∣(1 − |z|)s+t−v+n+1,

v, s > 0, p > 0, t > −1.
This uniform estimate leads immediately to next theorem.

Theorem 3. Let fi ∈ Ap
αi
, i = 1, . . . ,m and fj ∈ BMOAp

tj ,sj ,vj , j = m+ 1, . . . ,m+ k.
Let 0 < p 6 1, sj > 0 and also tj > −1, vj > 0, j = m+1, . . . ,m+k, αk > −1, k = 1, . . . ,m;

let vj − sj − tj < n+ 1,

β + n+ 1

m+ 1
p < tj + n+ 1 <

β + n+ 1

m+ 1
p+ vj − sj ,

j = m+ 1, . . . ,m+ k, β > β0, n ∈ N, m > 1, m ∈ N.
Then for δ(z) = 1 − |z|, z ∈ B, we have∫

B

m+k∏
j=1

∣∣∣fj(z)
∣∣∣pδ(z)τdv(z) ≍

m∏
k=1

∣∣∣∣∣∣fk∣∣∣∣∣∣p
Ap

αk

×
m+k∏

j=m+1

∣∣∣∣∣∣fj∣∣∣∣∣∣p
BMOAp

tj,sj ,vj

if
m+k∏
j=1

fj(zj) = Cβ

∫
B

m+k∏
j=1

fj(w)
1

(1 − zw̄)
β+n+1
m+k

δβ(w)dv(w),

β > β0, zj ∈ B, j = 1, . . . ,m+ k; β0 is large enough

τ = (m− 1)(n+ 1) +

m∑
k=1

αk +

m+k∑
j=m+1

(tj + sj − vj) + (n+ 1)k.

Remark 3. A third group with
k∏

j=1

∣∣∣∣∣∣fj∣∣∣∣∣∣p
Hp

can also be added in mentioned relation of Theorem

3 with similar proof. One part of theorem (estimate from above) can be even given with group

of more general
m∏
i=1

∣∣∣∣∣∣fi∣∣∣∣∣∣pi

A
pi
αi

form with almost same proof.

Proof of Theorem 3.
Proof of Theorem 3 we have as in previous theorems. The proof is based on uniform estimate

for BMOA we provided above, arguments of proof of previous theorem and the following Lemma.

Lemma A (See [21]). Let s > −1, r, t > 0, r + t− s < n+ 1 then∫
B

(1 − |z|)sdv(z)

|1 − z̄w|r|1 − z̄w1|t
6 C̃

|1 − ww̄1|r+t−s−n−1
, w, w1 ∈ B; r − s, t− s < n+ 1,

for some constant C̃ > 0.

We omit easy details leaving some calculations with indexes to interested readers. Even more
for other restriction to parameters this theorem is valid in bounded pseudoconvex domain with
smooth boundary D. We’ll discuss in other our papers this in more detail.

We will formulate that interesting result also below. The proof (in BMOA spaces in bounded
pseudoconvex domains) is the same as in theorem above, but is based on new Lemma (see [17]).
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We will below provide proofs of unit ball case in D the proof is practically the same.

Lemma B. Let t− s < n+ 1 < r − s, s > −1, r, t > 0, r + t− s > n+ 1∫
D

(
δs(z)|Kr(z, w)| · |Kt(z, w1)|

)
dv(z) 6 C

(δ(w))r−s−n−1
|Kt(w,w1)|,

where w,w1 ∈ D.

The rest is the simple repetition of arguments of previous theorems.
We first consider model case of the unit ball. The proof of general case is the same. We have

(when one BMOA is in chain) the general case with several functions from BMOA is the same.

∣∣∣m+1∏
j=1

fj(wj)
∣∣∣p = Cβ

∫
B

∣∣∣m+1∏
j=1

fj(z)
∣∣∣p × (1 − |z|)βp+(n+1)(p−1)dv(z)∣∣∣m+1∏

j=1

1 − z̄wj

∣∣∣ β+n+1
m+1

.

Then using Lemma A and well-known Forell-Rudin type estimate (see [7])

J 6 C1

∫
X

∫
B

m+1∏
j=1

∣∣∣fj(z)
∣∣∣p × (1 − |z|)βp+(n+1)(p−1)dv(z)

m+1∏
j=1

∣∣∣1 − z̄wj

∣∣∣ β+n+1
m+1

,

where ∫
X

= sup
w̃

∫
B

· · ·
∫
B

m∏
j=1

(1 − |wj |)αjdv(wj) ×
(1 − |wm+1|)t · (1 − (w̃))s

|1 − wm+1w̃|v
dv(wm+1).

Hence

J 6 C

∫
B

m+1∏
j=1

∣∣∣fj(z)
∣∣∣p(1 − |z|)τdv(z); τ = (1 + n)(m− 1) +

m∑
k=1

αk + s+ t− v + n+ 1;

as easy calculation with indexes shows.

Indeed, we have of our Theorem 3 that k =

(
β + n+ 1

m+ 1

)
p;

sup
w̃∈B

∫
B

(1 − |w|)tdv(w)(1 − |w̃|)s

|1 − ww̃|v|1 − zw|k
6 sup

˜w∈B

∫
B

(1 − |w|)tdv(w)

|1 − ww̃|v−s · |1 − zw̄|k
6

6 sup
w∈B

1

|1 − wz|v−s+k−t−(n+1)
6

˜̃C

(1 − |z|)r
; r = v − s+ k − t− (n+ 1),

if t > −1, v − s− t < n+ 1, k − t < n+ 1, v − s+ k − t− (n+ 1) > 0.
This finished the proof of our theorem for the case of the unit ball.
Now we consider the case of pseudoconvex domains, the proof is a repetition of unit ball case

so we again fix our attention to the unit ball case in Cn.
We have the following chain of estimates now based on Lemma from [6] (see also above). The

only change for generalD pseudoconvex domain is to replace (1−|z|)α be δ(z) and
1

|1 − zw|α+n+1

by Kα(z, w).

J =

∫
X

m∏
j=1

∣∣∣fj∣∣∣p 6 C

∫
X

∫
B

m∏
j=1

∣∣∣fj∣∣∣p × (δ(z))βp+(n+1)(p−1)

m∏
j=1

∣∣∣1 − z̄wj

∣∣∣ β+n+1
m p

dv(z),
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where ∫
X

= sup
˜w∈B

∫
B

· · ·
∫
B

m−1∏
j=1

(1 − |wj |)αj × (1 − |wm|)t · (1 − |w̃|)sdv(wj)

|1 − w̄mw̃|v
.

Taking into account Lemma B we obtain

J 6 C

∫
B

m∏
j=1

∣∣∣fj(z)
∣∣∣(1 − |z|)τdv(z),

where τ was defined in our previous theorem.
Indeed, for w1, . . . , wm−1 variables we must use Forelly-Rudin estimates∫

B

(1 − |wj |)αjdv(wj)∣∣∣1 − zwj

∣∣∣ β+n+1
m

6 C · (1 − |z|)αj− β+n+1
m +n+1, z ∈ B.

These estimates are valid also in bounded pseudoconvex domains (see [6, 13]).
Then by Lemma B we have

M = sup
w̃∈B

(∫
B

(1 − |wm|)t

|1 − w̄mw̃|v|1 − zwm| β+n+1
m p

dv(wm)

)
(1 − |w̃|)s 6 sup

w̃∈B

C

|1 − zw̃|v−s · |1 − |z|)u

for v − s < n + 1,
β + n+ 1

m
p − t > n + 1, −s + v +

β + n+ 1

m
p − t − (n + 1) > 0, where

u =
β + n+ 1

m
p− t− (n+ 1);

M 6 C̃ (1 − |z|)−v+s−u
.

Our last general Theorem is the following.
Let(

BMOAp
τ,v,s

)
=

{
f ∈ H(D) : sup

w∈D

∫
D

∣∣∣f(z)
∣∣∣pδ(z)t ·

∣∣∣Kv(z, w)
∣∣∣dv(z) · (δs(w)) <∞

}
,

0 < p < ∞, v > 0, t > −1, s > 0 is a BMOA-type space in a bounded pseudoconvex domain
with smooth boundary in Cn. BMOA type spaces in such domains were studied in [17].

Theorem 4. Let p 6 1, let vj − sj < n+ 1,
β + n+ 1

m
p− tj > n+ 1, −sj + vj +

β + n+ 1

m
p−

−tj − (n+ 1) > 0, j= m+ 1, . . . , k, β> β0, n ∈ N, m > 1, m ∈ N and αj > −1, j = 1, . . . ,m
then if sj > 0, tj > −1, vj > 0, j = m + 1, . . . ,m + k then the assertion of previous theorem is

valid if we replace
1

(1 − zw)τ
by Kτ (z, w) for τ > 0 in pseudoconvex domains for BMOAp

τ,v,s(D)

spaces and for Bergman Ap
α spaces in same type domains.

Hence each (fj) can be represented as Ap
α or BMOA atoms (see [7]) if

m+k∏
i=1

|fi|p ∈ L1
u, for

some parameter u and m, k ∈ N . These results again coincide for m = 1 with known results on
atomic decomposition of Ap

α Bergman class theorems (see [6]).

Remark 4. Let us stress in all these assertion is vital in main estimate to keep at least one
component

∣∣∣∣∣∣fi∣∣∣∣∣∣
A

pi
αi

(Bergman space component) in right side of the main estimates.

Concerning groups without
m∏
i=1

||fi||Api
αi

like
k∏

i=1

∣∣∣∣∣∣fi∣∣∣∣∣∣p
Hp

×
m∏

i=k+1

∣∣∣∣∣∣fi∣∣∣∣∣∣
BMOA

our methods don’t

work other approached here must be invented, based maybe on other integral representations.
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The p > 1 case can be probably covered similarly we refer to [6] for "pure" Ap
α case with

m∏
i=1

||fi||Ap
αi

groups (p > 1) based purely on Holders inequality.

Our methods also covers cases when at least one component is our product is Herz-type
spaces. This will be treated in our other papers, so we can similarly also consider the following
products

m∏
i=1

∣∣∣∣∣∣fi∣∣∣∣∣∣
Bp,q

αj

×
N∏

i=m+1

∣∣∣∣∣∣fi∣∣∣∣∣∣p
Hp

or
m∏
i=1

∣∣∣∣∣∣fi∣∣∣∣∣∣p
B̃p,q

α

×
N∏

i=m+1

∣∣∣∣∣∣fi∣∣∣∣∣∣p
BMOA

with some restrictions on indexes
or
m∏
i=1

∣∣∣∣∣∣fi∣∣∣∣∣∣
Bp,q

αj

×
N∏

i=m+1

∣∣∣∣∣∣fi∣∣∣∣∣∣
Ãp

βj

or
m∏
j=1

∣∣∣∣∣∣fj∣∣∣∣∣∣p
B̃p,q

αj

×
N∏

j=m+1

∣∣∣∣∣∣fj∣∣∣∣∣∣
Ãp

βj

with some restrictions on indexes.
These cases will be considered in our other papers, though methods of this and those papers

will be rather similar.
Note all results of this paper have direct analogues also in analytic spaces in unbounded

tubular domains over symmetric cones. Proofs of such type results can be obtained by simple
substitution of our estimates we used in our proofs in pseudoconvex domains to parallel known
estimates in tube domains and on some parallel known related facts on Bergman represenation
formula in tubular domains (see for example [22] and references there).

The only additional condition is on Bergman Kernel in tube domains over symmetric cones
is Lemma B, which is probably also valid.in tube domains also.
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О новых теоремах разложения в некоторых пространствах
аналитических функций в ограниченных псевдовыпуклых
областях

Роми Ф. Шамоян
Елена В. Томашевская

Брянский государственный университет
Брянск, Российская Федерация

Аннотация. Мы даем новые точные теоремы разложения для многофункциональных пространств
Бергмана в единичном шаре и ограниченных псевдовыпуклых областей с гладкой границей, рас-
ширяющей известные результаты из единичного шара.

А именно мы докажем, что
m∏

j=1

||fj ||Xj ≍ ||f1 . . . fm||Ap
α

для различных (Xj) пространства ана-

литических функций в ограниченных псевдовыпуклых областях с гладкой границей, где f, fj ,
j = 1, . . . ,m — аналитические функции, а Ap

α, 0 < p < ∞, α >−1 — пространство Бергмана. Это,
в частности, также расширяет в разных направлениях известную теорему об атомном разложении
пространств Ap

α Бергмана.

Ключевые слова: псевдовыпуклые области, единичный шар, пространства Бергмана, классы
типа Харди, теоремы декомпозиции.
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