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Abstract. In the work the 3D two-layer motion of liquids, the velocity field of which has a special form,
is considered. The arising conjugate initial boundary value problem for the Oberbek–Boussinesq model
is reduced to a system of ten integrodifferential equations with full conditions on a flat interface. It is
shown that for small Marangoni numbers the stationary problem can have up to two solutions. The case
when the stationary flow arises due to a change in the internal interphase energy is analyzed separately.

Keywords: Oberbek-Boussinesq model, interphase energy, creeping flow, inverse problem.
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1. Statement of the problem and basic equations

Suppose that two viscous heat-conducting fluids with a common interface z = l1 < l2 move
in a layer |x| < ∞, |y| < ∞, 0 < z < l2, lj are constants. The fluid " 1 " occupies the region
0 < z < l1 and fluid " 2 " occupies the region l1 < z < l2. The planes z = 0 and z = l2 are solid
fixed walls, the force of gravity is directed perpendicular to the layers. Oberbeck-Boussinesq
equations are used as a mathematical model of fluid motion. Solutions are sought in a special
way

uj(x, y) = (fj(z, t) + hj(z, t))x, vj(x, y) = (fj(z, t)− hj(z, t))y, wj = −2
∫ z

z0

fj(ξ, t) dξ, (1)

1

ρj
pj = bj(z, t)x

2 + dj(z, t)y
2 + qj(z, t), (2)

Tj = aj(z, t)x
2 + cj(z, t)y

2 + θj(z, t), (3)

where uj(x, y, z, t), vj(x, y, z, t), wj(x, y, z, t) are projections of velocity vectors on the x, y, z
axis, respectively; pj(x, y, z, t) are pressures; ρj are constants of density; Tj(x, y, z, t) are absolute
temperatures, j = 1, 2. The functions fj , hj , bj , dj , qj , aj , cj , θj are new unknown function.

Substitution of the formulas (1)–(3) in the systems of Oberbeck-Boussinesq equations leads
to the following systems

fjt + f2j + h2j − 2fjz

∫ z

z0

fj(ξ, t) dξ + gβj

∫ z

z0

(aj(ξ, t) + cj(ξ, t)) dξ = νjfjzz + nj1(t), (4)

∗andr@icm.krasn.ru
c⃝ Siberian Federal University. All rights reserved
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hjt + 2fjhj − 2hjz

∫ z

z0

fj(ξ, t) dξ + gβj

∫ z

z0

(aj(ξ, t)− cj(ξ, t)) dξ = νjhjzz + nj2(t), (5)

ajt + 2aj(fj + hj)− 2ajz

∫ z

z0

fj(ξ, t) dξ = χjajzz, (6)

cjt + 2cj(fj − hj)− 2cjz

∫ z

z0

fj(ξ, t) dξ = χjcjzz, (7)

θjt − 2θjz

∫ z

z0

fj(ξ, t) dξ = χjθjzz + 2χj(aj + cj). (8)

Here νj > 0, χj > 0, βj > 0 are constants of kinematic viscosities, thermal diffusivities and
thermal expansion coefficients of liquids; nj1(t), nj2(t) are arbitrary functions of time. By the
known functions aj , cj the functions bj , dj are determined by quadratures

bj(z, t) = gβj

∫ z

z0

aj(ξ, t) dξ − nj1(t), dj(z, t) = gβj

∫ z

z0

cj(ξ, t) dξ − nj2(t). (9)

In the integral terms, the constant z0 is equal to "0" for the first fluid (j = 1) and l1 for the
second fluid (j = 2). It can be verified that pressures in liquids are determined as follows

1

ρj
pj =

[
gβj

∫ z

z0

aj(ξ, t) dξ − nj1(t)
]
x2 +

[
gβj

∫ z

z0

cj(ξ, t) dξ − nj2(t)
]
y2 − 2νjfj − gz+

+ gβj

∫ z

z0

θj(ξ, t) dξ + 2

∫ z

z0

(z − ξ)fjt(ξ, t) dξ + 2

(∫ z

z0

f(ξ, t) dξ

)2

+ qj0(t),

(10)

with arbitrary functions qj0(t).

Remark 1. The velocity field (1), proposed in [1] is a special case of the velocity field for the
Navier-Stokes equations [2].

2. Boundary and initial conditions

On solid boundaries, the sticking conditions for the velocities are satisfied, which implies
equalities

f1(0, t) = h1(0, t) = 0, f2(l2, t) = h2(l2, t) =

∫ l2

l1

f2(ξ, t) dξ = 0 (11)

And the temperature is set

a1(0, t) = a0(t), c1(0, t) = c0(t), θ1(0, t) = θ1(t),

a2(l2, t) = a2(t), c2(l2, t) = c2(t), θ2(l2, t) = θ2(t).
(12)

The top wall can also be thermally insulated

a2z(l2, t) = c2z(l2, t) = θ2z(l2, t) = 0, (13)

To formulate the conditions on the undeformed interface z = l1, we assume that the surface
tension depends linearly on temperature

σ(T ) = σ0 − æ(T − T0), (14)

– 662 –
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whereσ0, æ, T0 are given positive constants, T (x, y, l1, t) is temperature on this border.
On the interface z = l1 there are equalities of velocities and temperatures. Taking into

account the representation (1), (3) we get [3]

f1(l1, t) = f2(l1, t), h1(l1, t) = h2(l1, t), a1(l1, t) = a2(l1, t),

c1(l1, t) = c2(l1, t), θ1(l1, t) = θ2(l1, t).
(15)

Tangential stresses are reduced to two relations

µ2f2z(l1, t)− µ1f1z(l1, t) = −æ(a1(l1, t) + c1(l1, t)),

µ2h2z(l1, t)− µ1h1z(l1, t) = −æ(a1(l1, t)− c1(l1, t)),
(16)

where µj = ρjνj are dynamic viscosity of liquids.
The kinematic condition for a fixed and non-deformable interface (w1(l1, t) = w2(l1, t) = 0)

is equivalent to the integral equality ∫ l1

0

f1(ξ, t) dξ = 0. (17)

The energy condition [3], taking into account the assumptions (8), can be written as

k2T2z(x, y, l1, t)− k1T1z(x, y, l1, t) = æT (x, y, l1, t)divΓu. (18)

where kj are constant coefficients of thermal conductivity of liquids; divΓu is surface divergence of
the velocity vector; T (x, y, l1, t) = T1(x, y, l1, t) = T2(x, y, l1, t). Since in our case divΓu = ux+vy,
then using the formulas (1), (3) from (18) we derive the relations

k2a2z(l1, t)− k1a1z(l1, t) = 2æa1(l1, t)f1(l1, t),

k2c2z(l1, t)− k1c1z(l1, t) = 2æc1(l1, t)f1(l1, t),

k2θ2z(l1, t)− k1θ1z(l1, t) = 2æθ1(l1, t)f1(l1, t).

(19)

The relation order of equation right-hand side (18) to the first terms of its left-hand side is
estimated by the parameter E = æ2θ∗/µ2k2 (for the second term µ1k1), where θ∗ is the charac-
teristic temperature on the interface [3]. These parameters for ordinary liquid media are small
and instead of (18) the equality of heat fluxes is used. However, for low-viscosity liquids and
small kj the right-hand side in (18) (right-hand sides in (19)) must be taken into account, for
example, for cryogenic media [3].

At the initial moment of time, all functions are set

fj(z, 0)= fj0(z), hj(z, 0)= hj0(z), aj(z, 0)= aj0(z), cj(z, 0)= cj0(z), θj(z, 0)= θj0(z), (20)

that satisfy the conditions of agreement with (12), (13), (15)–(17), (19). For example, f10(l1) =
= f20(l1) etc.

Remark 2. The formulated initial-boundary value problem (4)–(9), (11)–(17), (19), (20) is the
inverse, since the functions nj1(t), nj2(t) must be found along with its solution. For a complete
statement of this problem, two more conditions must be set∫ l1

0

h1(ξ, t) dξ = 0,

∫ l2

l1

h2(ξ, t) dξ = 0, (21)

which together with the integral equalities (11), (17) mean closedness of motion.

– 663 –



Viktor K. Andreev On a Creeping 3D Convective Motion of Fluids with an Isothermal Interface

3. Dimensionless variables
We introduce dimensionless variables and parameters

τ =
χ1

l21
t, ξ =

z

l2
, χ =

χ1

χ2
, Pj =

νj
χj
, µ =

µ1

µ2
, k =

k1
k2
, l =

l1
l2
< 1,

Gj=
a∗l2l

4
1gβj
χ2
1

, εj=
χj

χ1
, M =

æa∗l21l2
µ2χ1

, Fj(ξ, τ)=
l21
χ1M

fj(z, t),

Hj(ξ, τ)=
l21
χ1M

hj(z, t), Aj(ξ, τ) =
aj(z, t)

a∗M
, Cj(ξ, τ) =

cj(z, t)

a∗M
,

Nj(τ) =
l41nj(t)

χ2
1M

, Qj(ξ, τ) =
θj(z, t)

a∗l21M
.

(22)

Here Pj are Prandtl numbers, Gj are Grashof numbers, M is Marangoni number. It is fur-
ther believed that a∗ = max

t>0
|a1(t)| > 0 and the characteristic temperature at the interface is

θ∗ = a∗l21.
In the new variables, the system (4)–(8) will be rewritten as follows

Fjτ + M
[
F 2
j +H2

j − 2Fjξ

∫ ξ

z0/l2

Fj(ζ, τ) dζ
]
+ Gj

∫ ξ

z0/l2

(Aj(ζ, τ) + Cj(ζ, τ)) dζ =

= Pj l
2εjFjξξ +Nj1(τ),

(23)

Hjτ − 2M
[
FjHj − 2Hjξ

∫ ξ

z0/l2

Fj(ζ, τ) dζ
]
+ Gj

∫ ξ

z0/l2

(Aj(ζ, τ)− Cj(ζ, τ)) dζ =

= Pj l
2εjHjξξ +Nj2(τ),

(24)

Ajτ + 2MAj(Fj +Hj)− 2MAjξ

∫ ξ

z0/l2

Fj(ζ, τ) dζ = l2εjAjξξ, (25)

Cjτ + 2MCj(Fj −Hj)− 2MCjξ

∫ ξ

z0/l2

Fj(ζ, τ) dζ = l2εjCjξξ, (26)

Qjτ − 2MQjξ

∫ ξ

z0/l2

Fj(ζ, τ) dζ = l2εjQjξξ + 2εj(Aj + Cj). (27)

In integral expressions for j = 1 the z0 = 0 and at j = 2 we have z0 = l1, so that 0 < ξ < l in
the first layer and l < ξ < 1 in the second layer.

The boundary conditions (11)–(13), (15)–(17), (19), (21) are rewritten as

F1(0, τ) = H1(0, τ) = 0, F2(1, τ) = H2(1, τ) =

∫ 1

l

F2(ξ, τ) dξ = 0, (28)

A1(0, τ) = A1(τ), C1(0, τ) = C1(τ), Q1(0, τ) = Q1(τ),

A2(1, τ) = A2(τ), C2(1, τ) = C2(τ), Q2(1, τ) = Q2(τ),
(29)

A2ξ(1, τ) = C2ξ(1, τ) = Q2ξ(1, τ) = 0, (30)

F1(l, τ) = F2(l, τ), H1(l, τ) = H2(l, τ), A1(l, τ) = A2(l, τ),

C1(l, τ) = C2(l, τ), Q1(l, τ) = Q2(l, τ),
(31)

F2ξ(l, τ)− µF1ξ(l, τ) = −M(A1(l, τ) + C1(l, τ)),

H2ξ(l, τ)− µH1ξ(l, τ) = −M(A1(l, τ)− C1(l, τ)),
(32)
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∫ l

0

F1(ξ, τ) dξ = 0, (33)

A2ξ(l, τ)− kA1ξ(l, τ) = 2EA1(l, τ)F1(l, τ),

C2ξ(l, τ)− kC1ξ(l, τ) = 2EC1(l, τ)F1(l, τ),

Q2ξ(l, τ)− kQ1ξ(l, τ) = 2EQ1(l, τ)F1(l, τ),

(34)

∫ l

0

H1(ξ, τ) dξ = 0,

∫ 1

l

H2(ξ, τ) dξ = 0. (35)

The initial data (20) will be of the form

Fj(ξ, 0) = Fj0(ξ), Hj(ξ, 0) = Hj0(ξ), Aj(ξ, 0) = Aj0(ξ),

Cj(ξ, 0) = Cj0(ξ), Qj(ξ, 0) = Qj0(ξ).
(36)

4. Stationary creeping flow with an isothermal interface

In this case, the right-hand sides (32) must be zero. It means that A1(l, τ) = C1(l, τ) = 0

and the task set above will be redefined. Here we consider the creeping motion (M ≪ 1). It
is necessary to assume that the initial initial data are of the order M. Let M → 0, then the
equations (23)–(27) will be linear and the right-hand sides of the boundary conditions are equal
to zero. However, the relations (34) remain nonlinear.
Remark 3. If, assume that Aj(ξ, τ) = 0, Cj(ξ, τ) = 0, then the interface will be isothermal:
T1(x, y, l, τ) = T2(x, y, l, τ) = θ1(l, τ) = θ2(l, τ) = 0.

In this paragraph, we assume that the upper plane is thermally insulated and conditions (30)
are satisfied on it; initial data (36) are omitted. Let As

1, Cs
1 , Qs

1 are specified stationary values of
boundary conditions (29). Not complicated, but rather long calculations lead to representations

A1(ξ) = α1ξ +As
1, A2(ξ) = α2 ≡ α1l +As

1,

C1(ξ) = γ1ξ + Cs
1 , C2(ξ) = γ2 ≡ γ1l + Cs

1 ,

F1(ξ) =
1

P1l2

[
G1

(
α1 + γ1

24
ξ4 +

As
1 + Cs

1

6
ξ3
)
− N11ξ

2

2

]
+D1ξ,

F2(ξ) =
χ

P2l2

[
G2(α2 + γ2)

(
ξ3 − 1

6
− l

2
(ξ2 − 1)

)
− N21

2
(ξ2 − 1)

]
+D2(ξ − 1),

(37)

H1(ξ) =
1

P1l2

[
G1

(
α1 − γ1

24
ξ4 +

As
1 − Cs

1

6
ξ3
)
− N12ξ

2

2

]
+D3ξ,

H2(ξ) =
χ

P2l2

[
G2(α2 − γ2)

(
ξ3 − 1

6
− l

2
(ξ2 − 1)

)
− N22

2
(ξ2 − 1)

]
+D4(ξ − 1).

(38)

The constants D1, . . . , D4 are found from the integral equalities (28), (33), (35):

D1 =
1

3P1l

[
N11 −G1

(
(α1 + γ1)l

2

20
+

(As
1 + Cs

1)l

4

)]
,

D2 =
χ

P2l2

[
N21(l + 2)

3
+

G2(α2 + γ2)(l
2 + 2l − 1)

4

]
,

D3 =
1

3P1l

[
N12 −G1

(
(α1 − γ1)l2

20
+

(As
1 − Cs

1)l

4

)]
,

D4 =
χ

P2l2

[
N22(l + 2)

3
+

G2(α2 − γ2)(l2 + 2l − 1)

4

]
.

(39)
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By virtue of (37),

α2 + γ2 = (α1 + γ1)l +As
1 + Cs

1 , α2 − γ2 = (α1 − γ1)l +As
1 − Cs

2 . (40)

To determine the remaining unknowns α1, γ1, N11, N21, N12, N22, there are relations

F1(l) = F2(l), F2ξ(l) = µF1ξ(l), H1(l) = H2(l), H2ξ = µH1ξ,

A2ξ(l)− kA1ξ(l) = 2l−2EA1(l)F1(l), C2ξ(l)− kC1ξ(l) = 2l−2EC1(l)F1(l),
(41)

where

F1(l) =
1

P1

[
−1

6
N11 + G1

(
(α1 + γ1)l

2

40
+

(As
1 + Cs

1)l

12

)]
,

A1(l) = α1l +As
1, C1(l) = γ1l + Cs

1 .

(42)

Further,

F2(l) = −
χ(l − 1)2

6P2l2

[
G2(α2 + γ2)(l − 1)

2
+N21

]
,

H1(l) =
1

2P1

[
−G1(α1 − γ1)l2

20
+

G1(A
s
1 − Cs

1)l

6
− N12

3

]
,

H2(l) = −
χ(l − 1)2

6P2l2

[
G2(α2 − γ2)(l − 1)

2
+N22

]
,

F1ξ(l) =
1

P1l

[
−2

3
N11 +

3

20
G1(α1 + γ1)l

2 +
5G1

12
(As

1 + Cs
1)l

]
,

F2ξ(l) = −
χ(l − 1)

P2l2

[
2

3
N21 +

G2(α2 + γ2)(l − 1)

4

]
,

H1ξ(l) =
1

P1l

[
−2

3
N12 +

3

20
G1(α1 − γ1)l2 +

5G1

12
(As

1 − Cs
1)l

]
,

H2ξ(l) = −
χ(l − 1)

P2l2

[
2

3
N22 +

G2(α2 − γ2)(l − 1)

4

]
.

(43)

Now from the first two equalities (41) we find N11 and N21; from the last two equalities (41) we
find N12 and N22; from the last two equalities, taking into account the formulas (40), we define
α1+γ1, α1−γ1, and therefore α1, γ1. Below we find the indicated values for As

1 = Cs
1 . This is the

case of radial heating of the substrate. Here α2+γ2 = (α1+γ1)l+2As
1, α2−γ2 = (α1−γ1)l. Let’s

consider the simplest option: α1 = γ1 (A1(ξ) = C1(ξ)). Then α2 + γ2 = 2(α1 + As
1), α2 = γ2

and the formulas (37)–(43) are greatly simplified. Unknown will be α1, N11, N21, N12, N22.

Calculations show that in the general case

N12 = N22 = 0, N11 = K1α1 +K2A
s
1, N21 = K3α1 +K4A

s
1, (44)

where

K1 =
G1l

2

20
− 1

6(l + µ(1− l))

[
3G1l

3

10

(
1 +

3µ

2l
(1− l)

)
+

G2ν

4
(l − 1)3

]
,

K2 =
G1l

6
− 1

6(l + µ(1− l))

[
G1l

2

(
1 +

5µ

4l
(1− l)

)
+

G2ν

4l
(l − 1)3

]
,

K3 =
ρl2

(1− l)(l + µ(1− l))

[
3G1l

2

20
+

G2(l − 1)2

ρl

(
3l

4
+ µ(1− l)

)]
,

K4 =
ρl2

(1− l)(l + µ(1− l))

[
G1l

4
+

G2(l − 1)2

ρl

(
3l

4
+ µ(1− l)

)]
, ρ =

ρ1
ρ2
.

(45)
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The constant α1 is the solution of the quadratic equation

EK1α
2
1 +

(
kP1l

2
+ EAs

1(K2 +K1l
−1)

)
α1 + EK2A

s
1l

−1 = 0. (46)

If the quantity

δ =

(
kP1l

2
+ EAs

1(K2 +K1l
−1)

)2

− 4E2K1K2A
s
1l

−1 (47)

is positive, then there are two solutions of the equation (46), which means that there are two
stationary solutions to the two-layer system. For δ = 0 there is one stationary solution, and for
δ < 0 there are no solutions.

Remark 4. Fpr l = µ(1 + µ)−1 we get N22 = 1, N12 = (1 − l)(ρl)−1, and the formulas (44),
(45) retain their form with the replacement of µ by µ = l(1− l)−1.

As for the functions Qj(ξ), they are determined by the formulas

Q1(ξ) = Qs
1 + aξ − 2

l2

(
α1ξ

3

3
+As

1ξ
2

)
, 0 6 ξ 6 l,

Q2(ξ) = b+
2

l2
(α1l +As

1)(2ξ − ξ2), l 6 ξ 6 1,

(48)

where

a =
4

l2

[
k +

2EF1(l)

l2

]−1 [
(k + l − l2)(α1l +As

1) +
2EF1(l)

l

(
α1l

2
+As

1

)]
,

b = Qs
1 + a1l +

2

3
(l − 6)α1 − 2As

1(l + 2)l−1.

(49)

In (48), (49) Qs
1 is the dimensionless temperature on the substrate at the origin of coordinates,

and F1(l) is given by the equality (42) at α1 = γ1, α2 = γ2 = α1l + As
1, As

1 = Cs
1 , and α1 is a

solution to the equation (46).

Fig. 1. Dependence δ(E) for various Grashof numbers G1; As
1 = 0.1

Figs. 1–3 shows the dependences δ(E) for various values of dimensionless parameters. All
calculations are given for the transformer oil – formic acid system. The dimensionless parameters
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of the physical system are as follows: ρ = 0.74, ν = 15.41, χ = 0.71, k = 0.41, β = β1/β
−1
1 = 1.46,

P1 = 308.2, P2 = 14.2. Fig. 1 represent the dependence δ(E) or various Grashof numbers G1,
G2 = βG1. It can be seen that as G1 grows, the region of existence of two solutions decreases.

Fig. 2 illustrates the dependence δ(E) for various values of the dimensionless parameter As
1.

Here, for certain values of the parameter E, as As
1 grows, the region where there are no solutions

increases. In the case when As
1 6 0 there are always two solutions. Fig. 3 shows the dependence

δ(E) from the geometric parameter l = l1l
−1
2 < 1. In this case, with an increase in the thickness

of the lower layer, the region of existence of two solutions increases.

Fig. 2. Dependence δ(E) for various parameter values As
1

Fig. 3. Dependence δ(E) for various values of the geometric parameter l
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Conclusion

In the article, the problem of three-dimensional two-layer motion with a special velocity field
is reduced to the inverse conjugate problem for a system of one-dimensional integro-differential
equations. In the case of a stationary flow at low Marangoni numbers, the solution is obtained in
the analytical form. It is shown that, depending on the physical and geometric parameters, two
stationary modes can exist. For the transformer oil - formic acid system, the effect of changes in
interfacial internal energy on the number of stationary solutions has been studied.

This research was supported by the Russian Foundation for Basic Research (20-01-00234) and
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Об одном ползущем трехмерном конвективном движении
жидкостей с изотермической границей раздела

Виктор К. Андреев
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация

Аннотация. В работе рассматривается двухслойное трехмерное движение жидкостей, поле ско-
ростей которых имеет специальный вид. Возникающая сопряжённая начально-краевая задача для
модели Обербека–Буссинеска сведена к системе десяти интегродифференциальных уравнений с
полными условиями на плоской поверхности раздела. Показано, что для малых чисел Марангони
её стационарный аналог может иметь до двух решений, которые находятся в явном виде. Отдель-
но проанализирован случай, когда стационарное течение возникает за счет изменения внутренней
межфазной энергии.

Ключевые слова: модель Обербека-Буссинеска, межфазная энергия, ползущее течение, обратная
задача.

– 669 –



Journal of Siberian Federal University. Mathematics & Physics 2020, 13(6), 670–677

DOI: 10.17516/1997-1397-2020-13-6-670-677
УДК 532.542

Three-Dimensional Simulation of a Tank Filling With
a Viscous Fluid Using the VOF Method

Evgeny I. Borzenko∗

Efim I.Hegaj†
Tomsk State University

Tomsk, Russian Federation

Received 13.06.2020, received in revised form 04.09.2020, accepted 04.10.2020

Abstract. This paper presents the results of 3D modeling of a Newtonian fluid flow with a free surface.
The PLIC-VOF algorithm, which is developed to solve the problems of two-dimensional fluid flows with
a free surface, is generalized to the case of three-dimensional flows. Efficiency of the developed algorithm
and reliability of the obtained results are justified by comparing with available data in literature and by
testing approximation convergence.

Parametric calculations of a rectangular channel filling show that the free surface assumes a steady
convex shape over time and then moves along the channel at a constant velocity. As a result of parametric
studies, the dependences of geometric characteristics of the free surface shape on problem parameters
have been plotted.
Keywords: Newtonian fluid flow, filling of a rectangular channel, free surface, 3D modeling, numerical
simulation, VOF method, flow structure.
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Introduction
Technological processes associated with casting of items, filling of tanks or draining of poly-

mer compounds are characterized by the presence of a free surface in a fluid flow. Adequate
engineering for such processes requires a detailed study of the flow features and free surface
behavior [1].

Tracking of free surface evolution in a fluid flow is known as a complex problem in hy-
dromechanics [2]. One of the first successful attempts to determine free surface dynamics in
the two-dimensional approximation has been made in [3]. In this paper, a numerical method
based on the VOF (Volume of Fluid) approach is proposed, which allows one to determine a
free surface position at any time instant using a scalar function defined in the cells of a regular
grid. Moreover, at a discrete level, the free boundary in a control volume is represented as a
segment, which is parallel to one of the volume’s faces. The method was further developed in [4].
A modification of the method, namely PLIC-VOF (Piecewise-Linear Interface Calculation), is
proposed, according to which a free surface in a control volume is represented as a set of arbitrary
oriented segments. The PLIC-VOF method has been successfully applied for two-dimensional
flows in [5–10].

Many fluid flow features cannot be taken into account nor adequately assessed when modeling
the process in the plane or axisymmetric approximation. Two-dimensional problem formulations
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allow one to study flow mechanics only for some channel designs. However, most of the real
pipelines have complex three-dimensional geometry. Therefore, there is a need to develop algo-
rithms for calculating and modeling fluid flows in a full three-dimensional formulation.

In this work, testing of a modified VOF method on the three-dimensional fluid flow modeling
is implemented.

1. Formulation of the problem
A three-dimensional flow, which occurs when a vertical rectangular channel is being filled in

a gravity field, is considered. A solution domain is schematically shown in Fig. 1 a. In this case,
the fluid is supplied from the bottom through the inlet section at given constant flow rate.

At the initial time instant, the channel is partially filled with a fluid, and the free surface is
represented as a plane z = const confined by the walls.

When filling the channel, the free surface becomes curved and assumes a convex shape. The
maximum height of the free surface, χ (Fig. 1 b), is taken as convexity characteristics, which is
determined by the values of the parameters Re and W.

Fig. 1. Solution domain (a) at the initial time instant and (b) during the filling process

Mathematical formulation of the problem includes the Navier-Stokes and continuity equations
written in a dimensionless form as

Re

(
dUx

dt
+ Ux

dUx

dx
+ Uy

dUx

dy
+ Uz

dUx

dz

)
= −dP

dx
+

(
d2Ux

dx2
+
d2Ux

dy2
+
d2Ux

dz2

)
Re

(
dUy

dt
+ Ux

dUy

dx
+ Uy

dUy

dy
+ Uz

dUy

dz

)
= −dP

dy
+

(
d2Uy

dx2
+
d2Uy

dy2
+
d2Uy

dz2

)
Re

(
dUz

dt
+ Ux

dUz

dx
+ Uy

dUz

dy
+ Uz

dUz

dz

)
= −dP

dz
+

(
d2Uz

dx2
+
d2Uz

dy2
+
d2Uz

dz2

)
−W

(1)

dUx

dx
+
dUy

dy
+
dUz

dz
= 0 (2)

No-slip conditions are assigned on the solid walls. On the free surface, the continuity condi-
tions for normal and shear stresses are used. The fluid is supplied through the inlet section at a
velocity equal to unity.

The following quantities are used as length, velocity, time, and pressure scales: L (a char-
acteristic size of the channel), U0 (an average velocity at the inlet section), and the complexes
of L/U0 and µU0/L, respectively. The problem formulation includes dimensionless criteria: the
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Reynolds number Re = ρU0L/µ and the parameter W = ρL2g/µU0 = Re/Fr, which is equal to
the ratio of the Reynolds and Froude numbers.

2. Method of solving
The formulated problem is solved numerically using the finite volume method implemented

on a staggered grid. Kinematic and dynamic characteristics of the flow are determined using the
SIMPLE algorithm [11]. In this case, to approximate of convective and non-stationary term, an
exponential scheme was used. Tracking of the free surface evolution is carried out by a modified
VOF method, which is generalized to the three-dimensional case with account for an arbitrary
inclination of the free surface in a control volume.

The VOF method implies introducing of a scalar function F , whose value is equal to unity
at all points occupied by the fluid and equal to zero at the rest of the points. At a discrete
level, when averaging over the control volume, the value of F is equal to a volume fraction of the
control volume occupied by the fluid. In particular, when the control volume is entirely filled
with a fluid, F = 1, and when the control volume does not contain any fluid, F = 0. If there is
a free surface in the control volume, 0 < F < 1. The values of this function can be determined
from the equality to zero of the total derivative of F with respect to time, which reflects the law
of conservation of mass

dF

dt
+ Ux

dF

dx
+ Uy

dF

dy
+ Uz

dF

dz
= 0 (3)

When integrating this equation over the control volume, it is necessary to determine the
fluxes through the faces, which are calculated using the obtained velocity values on these faces
and the orientation of the free surface in the control volume.

It is assumed that at a discrete level, the free surface in the control volume represents a
cutting plane, whose position is determined by its normal and by the fraction of the volume
filled with the fluid. In the three-dimensional case, there are eight options for the free surface
to cross the control volume (Fig. 2), which are characterized by positive components of the
normal vector. The normal to the free surface is assumed to be directed along the gradient of
the function F . When the value of F and the direction of the normal to the free surface are
known, the plane approximating the free surface can be drawn in the boundary control volume.
Therefore, in addition to the boundary control volume tracking, the function F is used to detect
the fluid location inside the volume.

Fig. 2. Possible locations for the free surface inside the control volume

Other possible free surface locations are reduced to those shown in Fig. 2 by rotating the
control volume and / or by reflecting in coordinate planes.

Variation of the function F with time is determined by equation (3), which can be solved
numerically after calculating its fluxes through the control volume faces. An illustration of the
method in use is shown in Fig. 3. Two adjacent control volumes are considered, where the fluid
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flows through a common side. The velocity U on the adjacent face determines which one is a
donor and which is an acceptor. Afterwards, a plane, which is parallel to the common side, is
plotted at a distance of U∆t. The fluid fraction in the donor cell ∆F , which is enclosed between
the plotted plane and the adjacent face, is transferred to the acceptor. The value of this fluid
fraction (∆F ) is calculated by analytical formulas for polyhedra volume.

Fig. 3. Illustration of the VOF method operation

The fluxes through the other five faces of the control volume are determined similarly.

3. Verification of numerical method
To verify operational capability of the developed algorithm and reliability of the obtained

results, the approximation convergence is tested on a sequence of grids.
The calculations show that at a time instant of t = 2 in a cross section of z = 2, the absolute

value of the maximum transverse velocity is of the order of 10−6. It is supposed that the inlet
boundary and the free surface do not affect the flow in this section, where a steady-state flow is
observed. Thus, to verify the obtained velocity distributions, a well-known solution is used [12]:

Ũz = 3.665

∞∑
n=0

(−1)n

(2n+ 1)
3

1− ch
(2n+ 1)π (2y − 1)

2

ch
(2n+ 1)π

2

 cos
(2n+ 1)π (2x− 1)

2
. (4)

The velocity error can be calculated as

∆Uz = max

∣∣∣∣∣ Ũz − Uz=2

Ũz

∣∣∣∣∣ 100%. (5)

Since the fluid velocity is equal to unity in the inlet section, at a time instant of t = 2, the
volume of the inflowed fluid should equal V = 2. The error in the calculation of the volume is
determined by formula

∆V = max

∣∣∣∣2− Vt=2

2

∣∣∣∣ 100%. (6)

To show the approximation convergence, a velocity profile along a straight line of y = 0.5 at
z = 2 (Fig. 4 a) and a free surface shape in a cross section of y = 0.5 (Fig. 4 b) are calculated at
different grid steps.

According to Fig. 4 b, a maximal difference in the free surface shapes is observed on the solid
walls. Therefore, to control the approximation convergence, a parameter H (the free surface
height at the point of x = 0, y = 0.5) is introduced.

Thus, the errors in the calculations of the fluid velocity, fluid volume, and free surface height
on the solid wall H are selected as controlled characteristics in the computational method veri-
fication.
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Fig. 4. (a) Velocity distribution along a straight line of y = 0.5 at z = 2 and (b) the free surface
shape in a cross section of y = 0.5 at a time instant of t = 2 for Re = 0.1 and W = 32: h = 0.1
(the dashed line), h = 0.05 (the dotted and dashed line), and h = 0.025 (the solid line)

The obtained results presented in Tab. 1 demonstrate the approximation convergence for the
selected characteristics.

Table 1. Dependence of the values of the controlled characteristics on the grid step at t = 2,
Re = 0.1, W = 32

h ∆Uz,% ∆V,% H
0.1 2.53 0.42 3.944
0.05 2.15 0.41 3.915
0.025 2.01 0.40 3.900

4. Results of calculations

The initially flat free surface becomes curved over time and assumes a convex shape, which
then moves upward along the channel and remains unchanged. Fig. 5 shows the evolution of the
free surface shape.

Fig. 5. Free surface shapes for Re = 0.1, W = 32 at various time instants: (a) t = 0, (b) t = 0.2,
(c) t = 0.5, (d) t = 1, (e) t = 2, and (f) t = 3
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Fig. 6 demonstrates distributions of the velocities and pressure in a longitudinal section of the
channel y = 0.5 for Re = 0.1 and W = 32 at a time instant of t = 2. A fountain flow is observed
in the section under consideration. Three zones can be distinguished in the flow: a hydrodynamic
flow stabilization zone near the inlet section; a fountain flow zone near the free surface; and a
one-dimensional flow zone. The calculations showed that the lengths of the stabilization and
fountain flow regions are less than unity for the selected values of the dimensionless criteria.

Fig. 6. Distribution of the kinematic characteristics along the channel for Re = 0.1, W = 32
at a time instant of t = 2 in a cross section of y = 0.5: (a) velocity Ux, (b) velocity Uz, and
(c) pressure

In the other longitudinal sections, distributions of the kinematic characteristics qualitatively
coincide with those presented in Fig. 6. In the section of x = y, velocity distributions (Ux and
Uy) coincide with each other, which also confirms the efficiency of the computational algorithm.

The obtained results are compared with those of other authors. In particular, the results of
studying of a channel filling in the creeping flow approximation are presented in [12]. Fig. 7 a
shows the calculated values of the free surface height as a function of the parameter W presented
in [13] (the solid line) and the results obtained by the VOF method (the dots).

Fig. 7 b illustrates a difference in the free surface convexity depending on the parameter W.

Fig. 7. (a) Comparison of the dependence of free surface convexity on the parameter W in the
current work (the dots) and in [13] (the solid line); (b) free surface shapes in a cross section of
y = 0.5 for Re = 0.1 at the same time instant: 1 — W = 0, 2 — W = 10, and 3 – W = 100
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The maximal difference in the calculated results does not exceed 3%. As a result of compar-
ison, qualitative agreement and little quantitative deviations are observed.

Conclusion

In this work, testing of a modified VOF method on the three-dimensional fluid flow modeling
is implemented. In particular, the PLIC-VOF algorithm, which is developed to solve the problems
of two-dimensional fluid flows with a free surface, is generalized to the case of three-dimensional
flows. Comparing with available data in literature and by testing approximation convergence are
justified by efficiency of the developed algorithm. As a demonstration of the operation of the
calculation program, the results of a study on filling a rectangular channel are given. Parametric
calculations show that the free surface assumes a steady convex shape over time and then moves
along the channel at a constant velocity.

The research is implemented at the expanses of the Russian Science Foundation (project
no. 18-19-00021).
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Моделирование пространственного заполнения емкости
вязкой жидкостью с использованием VOF-метода

Евгений И. Борзенко
Ефим И. Хегай

Томский государственный университет
Томск, Российская Федерация

Аннотация. В настоящей работе представлены результаты моделирования пространственного те-
чения ньютоновской жидкости со свободной поверхностью. Алгоритм PLIC VOF, предназначен-
ный для решения задач о течении жидкостей со свободной поверхностью в двумерной постановке,
обобщен на случай пространственных потоков. Работоспособность разработанного алгоритма и
достоверность получаемых результатов продемонстрированы путем сравнения с литературными
данными и проверкой аппроксимационной сходимости.

Параметрические расчеты заполнения канала с прямоугольным сечением показали, что с те-
чением времени свободная поверхность принимает установившуюся выпуклую форму, которая пе-
ремещается вдоль канала с постоянной скоростью. В результате параметрического исследования
построены зависимости геометрических характеристик формы свободной поверхности от парамет-
ров задачи.

Ключевые слова: течение ньютоновской жидкости, заполнение прямоугольного канала, свобод-
ная поверхность, трехмерное моделирование, численное моделирование, VOF-метод, структура по-
тока.
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Abstract. We analyze the dynamical behavior of the N -soliton train in the adiabatic approximation of
the Manakov model. The evolution of Manakov N -soliton trains is described by the complex Toda chain
(CTC) which is a completely integrable dynamical model. Calculating the eigenvalues of its Lax matrix
allows us to determine the asymptotic velocity of each soliton. So we describe sets of soliton parameters
that ensure one of the two main types of asymptotic regimes: the bound state regime (BSR) and the free
asymptotic regime (FAR). In particular we find explicit description of special symmetric configurations of
N solitons that ensure BSR and FAR. We find excellent matches between the trajectories of the solitons
predicted by CTC with the ones calculated numerically from the Manakov system for wide classes of
soliton parameters. This confirms the validity of our model.
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1. Introduction and preliminaries

The solitons and their interactions find numerous applications of in many areas of today
nonlinear physics, such as hydrodynamics, nonlinear optics, Bose-Einstein condensates, etc.
[1–3,7, 27,28,34]. This explains why it is important to study their interactions. The first results

on soliton interactions were obtained by Zakharov and Shabat [35, 36]. There they proved that
the nonlinear Schrödinger equation

iut +
1

2
uxx + |u|2u(x, t) = 0. (1)
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can be integrated by the inverse scattering method (ISM). Then they constructed the N -soliton
solution of (1) and calculated their limits for t → ∞ and t → −∞, assuming that all solitons
have different velocities. Comparing the asymptotics they concluded that the soliton interactions
are purely elastic, i.e., no new solitons can be created. In addition the solitons preserve their
amplitudes and velocities, and the only effect of the interactions are relative shifts of the center
of masses and phases.

Later Karpman and Solov’ev proposed another approach to the soliton interactions based on
the adiabatic approximation [25, 26]. They proposed to model the N -soliton trains of the NLS
eq. (1). By N -soliton train they meant a solution of the NLS eq. with initial condition:

u(x, t = 0) =
N∑

k=1

u⃗k(x, t = 0), uk(x, t) =
2νke

iϕk

cosh(zk)
,

zk = 2νk(x− ξk(t)), ξk(t) = 2µkt+ ξk,0,

ϕk =
µk

νk
zk + δk(t), δk(t) = 2(µ2

k + ν2k)t+ δk,0.

(2)

The adiabatic approximation holds true if the soliton parameters satisfy [26]:

|νk − ν0| ≪ ν0, |µk − µ0| ≪ µ0, |νk − ν0||ξk+1,0 − ξk,0| ≫ 1, (3)

where ν0 =
1

N

N∑
k=1

νk, and µ0 =
1

N

N∑
k=1

µk are the average amplitude and velocity respectively.

In fact we have two different scales:

|νk − ν0| ≃ ε1/20 , |µk − µ0| ≃ ε1/20 , |ξk+1,0 − ξk,0| ≃ ε−1
0 .

In this approximation the dynamics of the N -soliton train is described by a dynamical system
for the 4N soliton parameters. What Karpman and Solov’ev did was to derive the dynamical
system for the two soliton interactions: a system of 8 equations for the 8 soliton parameters.
They were able also to solve it analytically.

Later their results were generalized to N -soliton trains [16,17,24]. The corresponding model
can be written down in the form :

dλk
dt

= −4ν0
(
eQk+1−Qk − eQk−Qk−1

)
,

dQk

dt
= −4ν0λk,

(4)

where λk = µk + iνk and

Qk = −2ν0ξk + k ln 4ν20 − i(δk + δ0 + kπ − 2µ0ξk),

ν0 =
1

N

N∑
s=1

νs, µ0 =
1

N

N∑
s=1

µs, δ0 =
1

N

N∑
s=1

δs.
(5)

Obviously the system (4) becomes the Toda chain with free ends for the complex variables Qk:

d2Qk

dt2
= −4ν0

dλk
dt

= 16ν20
(
eQk+1−Qk − eQk−Qk−1

)
k = 2, . . . , N − 1,

d2Q1

dt2
= 16ν20e

Q2−Q1 ,
d2QN

dt2
= −16ν20eQN−QN−1 .

(6)
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which is known as the complex Toda chain (CTC).
It is well known that the standard (real) Toda chain is an integrable system [9, 28, 31]. In

the case of (6), which is known as Toda chain with open ends, it was possible to write down its
solutions explicitly [31]. An important fact is that these solutions depend analytically on their
parameters and can be easily generalized to the CTC.

In fact some time ago a special configurations of soliton trains that are modeled by the real
Toda chain [4, 5] were found. For them we must choose solitons with equal amplitudes (i.e.,
νk = ν0), vanishing initial velocities (µk = 0), and out-of phase δk+1 − δk = π. It is easy to see
that under these assumptions Qk become real valued and (6) become the standard Toda chain.

The adiabatic approach of Karpman and Solov’ev has a drawback: it is an approximate
method whose precision is determined by ε0. On the other hand it has the advantages: first,
it is not limited only to solitons with different velocities, and second, it can take into account
possible perturbations of the NLS [16,17,24].

Another important generalization of the NLS equation is known as the Manakov model [28]
(vector NLS):

iu⃗t +
1

2
u⃗xx + (u⃗†, u⃗)u⃗(x, t) = 0. (7)

The corresponding vector N -soliton train is determined by the initial condition:

u⃗(x, t = 0) =
N∑

k=1

u⃗k(x, t = 0), u⃗k(x, t) =
2νke

iϕk

cosh(zk)
n⃗k,

zk = 2νk(x− ξk(t)), ξk(t) = 2µkt+ ξk,0,

ϕk =
µk

νk
zk + δk(t), δk(t) = 2(µ2

k + ν2k)t+ δk,0,

(8)

where the constant polarization vector n⃗k is normalized by

n⃗k =

(
cos(θk)e

iγk

sin(θk)e
−iγk

)
, (n⃗†k, n⃗k) = 1,

n∑
s=1

arg n⃗k;s = 0.

Therefore each Manakov soliton is parametrized by 6 parameters.
It was natural to extend the Karpman-Solov’ev method to the Manakov model. The result is

known as the generalized CTC (GCTC) [10–12,14]. Of course later the GCTC was also adapted
to treat the effects of several types of perturbations on solitons [8, 13,19,30,32,33].

The advantage of the integrability of the CTC and GCTC is in the fact that knowing the initial
set of soliton parameters one can predict the asymptotic regime of the soliton train [16, 17, 24].
On the other hand it is possible to find the set of constraints on the soliton parameters that
would ensure given asymptotic regime. These constraints were derived and analyzed for 2 and 3-
soliton trains; for larger number of solitons only fragmentary results such as the quasi-equidistant
propagation of solitons [16] are known.

The aim of the present paper is to reinvestigate these results and to demonstrate several
configuration of multisoliton trains for which one can predict that they will go into bound state
regime (BSR) or into free asymptotic regime (FAR). In Section 2 we outline the derivation of
the GCTC model, see eq. (16) below which now depends also on the polarization vectors n⃗k

and models the behavior of the N -soliton train of the vector NLS. We also formulate the Lax
representation for the GCTC and explain how it can be used to determine the asymptotic regime
of the soliton train. In Section 3 we formulate two classes of explicit constraints on the soliton
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parameters that are responsible for BSR and FAR. The first class are generic conditions that
ensure that the Lax matrix becomes either real or purely imaginary. The second class are based
on special explicit constraints on the soliton parameters that make the eigenvalues of the Lax
matrix proportional to each other, so it is easier to establish if they are real or purely imaginary.

2. Preliminaries

2.1. Variational approach and generalized CTC

The Lagrangian of the vector NLS perturbed by external potential is:

L[u⃗] =
∫ ∞

−∞
dt

i

2

[
(u⃗†, u⃗t)− (u⃗†t , u⃗)

]
−H, H[u⃗] =

∫ ∞

−∞
dx

[
−1

2
(u⃗†x, u⃗x) +

1

2
(u⃗†, u⃗)2

]
. (9)

Then the Lagrange equations of motion:

d

dt

δL
δu⃗†t
− δL
δu⃗†

= 0, (10)

coincide with the vector NLS with external potential V (x).

Next we insert u⃗(x, t) =
N∑

k=1

u⃗k(x, t) (see eq. (8)) and integrate over x neglecting all terms of

order ϵ and higher. In doing this we assume that ξ1 < ξ2 < · · · < ξN at t = 0 and use the fact,
that only the nearest neighbor solitons will contribute. All integrals of the form:∫ ∞

−∞
dx (u⃗†k,x, u⃗p,x),

∫ ∞

−∞
dx (u⃗†k, u⃗p), (11)

with |p− k| > 2 can be neglected. The same holds true also for the integrals∫ ∞

−∞
dx (u⃗†k, u⃗p)(u⃗

†
s, u⃗l),

where at least three of the indices k, p, s, l have different values. In doing this key role play the
following integrals:

J2(a) =
∫ ∞

−∞

dz eiaz

2 cosh2 z
=

πa

2 sinh aπ
2

,

K(a,∆) ≡
∫ ∞

−∞

dz eiaz

2 cosh z cosh(z +∆)
=

π(1− e−ia∆)

2i sinh(∆) sinh(πa/2)
,

(12)

Thus after long calculations we obtain:

L =

N∑
k=1

Lk +

N∑
k=1

∑
n=k±1

L̃k,n, Lk,n = 16ν30e
−∆k,n(Rk,n +R∗

k,n),

Rk,n = ei(δ̃n−δ̃k)(n⃗†
kn⃗n), δ̃k = δk − 2µ0ξk,

∆k,n = 2sk,nν0(ξk − ξn)≫ 1, sk,k+1 = −1, sk,k−1 = 1,

(13)

where

Lk = −2iνk
(
(n⃗†k,t, n⃗k)− (n⃗†

k, n⃗k,t)
)
+ 8µkνk

dξk
dt
− 4νk

dδk
dt
− 8µ2

kνk +
8ν3k
3

(14)
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The equations of motion are given by:

d

dt

δL
δpk,t

− δL
δpk

= 0, (15)

where pk stands for one of the soliton parameters: δk, ξk, µk, νk and n⃗†k. The corresponding
system is a generalization of CTC:

dλk
dt

= −4ν0
(
eQk+1−Qk(n⃗†k+1, n⃗k)− e

Qk−Qk−1(n⃗†
k, n⃗k−1)

)
,

dQk

dt
= −4ν0λk,

dn⃗k
dt

= O(ϵ),
(16)

where again λk = µk + iνk and the other variables are given by (5). Now we have additional
equations describing the evolution of the polarization vectors. But note, that their evolution is
slow, and in addition the products (n⃗†k+1, n⃗k) multiply the exponents eQk+1−Qk which are also
of the order of ϵ. Since we are keeping only terms of the order of ϵ we can replace (n⃗†k+1, n⃗k) by
their initial values

(n⃗†
k+1, n⃗k)

∣∣∣
t=0

= m2
0ke

2iσk , k = 1, . . . , N − 1. (17)

We will consider most general form of the polarization vectors:

|n⃗k⟩ =
(

cos(θk)e
iγk

sin(θk)e
−iγk

)
,

⟨n⃗†
k+1|n⃗k⟩ = cos(θk+1 cos(θk)e

−i(γk+1−γk) + sin(θk+1 sin(θk)e
i(γk+1−γk) = ρke

iσk ,

ρ2k = cos2(γk+1 − γk) cos2(θk+1 − θk) + sin2(γk+1 − γk) cos2(θk+1 + θk).

σk = − arctan

(
tan(γk+1 − γk)

cos(θk+1 + θk)

cos(θk+1 − θk)

)
,

ak =
ν0
2
ρ2k exp(−ν0(ξk+1 − ξk)) exp(−i(δk+1 − δk − σk + π)/2).

(18)

In our previous papers we considered configurations for which |n⃗k⟩ are real, i.e., γk = 0. Note
that the effect of the polarization vectors could be viewed as change of the distance between the
solitons and between the phases.

The system (16) was derived for the Manakov system n = 2 by other methods in [18].
There the GCTC model was tested numerically and found to give very good agreement with the
numerical solution of the Manakov model. However the tests were done only for real values of
the polarization vectors, i.e., all γk = 0, k = 1, . . . , N . Below we will take into account the effect
of γk onto the dynamical regimes of the solitons.

2.2. Asymptotic regimes: general approach

We first briefly remind the main results concerning the CTC model [14,16–18,24]. The CTC
is completely integrable model; it allows Lax representation Lt = [A.L], where:

L =
N∑
s=1

(bsEss + as(Es,s+1 + Es+1,s)) , A =
N∑
s=1

(as(Es,s+1 − Es+1,s)) , (19)
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where as = exp((Qs+1 − Qs)/2), bs = µs,t + iνs,t and the matrices Eks are determined by
(Eks)pj = δkpδsj . The eigenvalues of L are integrals of motion and determine the asymptotic
velocities.

The GCTC derived in [10–12, 14, 18] is also a completely integrable model. It allows Lax
representation just like the standard real Toda chain [9, 29,31] L̃t = [Ã.L̃], where:

L̃ =
N∑
s=1

(
b̃sEss + ãs(Es,s+1 + Es+1,s)

)
, A =

N∑
s=1

(ãs(Es,s+1 − Es+1,s)) , (20)

where ãs = m0se
iσsas, bs = µs+ iνs. Like for the scalar case, the eigenvalues of L̃ are integrals of

motion. If we denote by ζs = κs+iηs (resp. ζ̃s = κ̃+iη̃s) the set of eigenvalues of L (resp. L̃) then
their real parts κs (resp. κ̃s) determine the asymptotic velocities for the soliton train described
by CTC (resp. GCTC). Thus, starting from the set of initial soliton parameters we can calculate
L|t=0 (resp. L̃|t=0), evaluate the real parts of their eigenvalues and thus determine the asymptotic
regime of the soliton train.

Regime (i). κk ̸= κj (resp. κ̃k ̸= κ̃j) for k ̸= j, i.e., the asymptotic velocities are all different.
Then we have asymptotically separating, free solitons, see also [4, 16,17,24].

Regime (ii). κ1 = κ2 = · · · = κN = 0 (resp. κ̃1 = κ̃2 = · · · = κ̃N = 0), i.e., all N solitons move
with the same mean asymptotic velocity, and form a "bound state."

Regime (iii). A variety of intermediate situations when one group (or several groups) of parti-
cles move with the same mean asymptotic velocity; then they would form one (or several)
bound state(s) and the rest of the particles will have free asymptotic motion.

Remark 1. The sets of eigenvalues of L and L̃ are generically different. Thus varying only the
polarization vectors one can change the asymptotic regime of the soliton train.

Let us consider several particular cases.

Case 1. n⃗1 = · · · = n⃗N . Since the vector n⃗1 is normalized, then all coefficients mok = 1 and
σk = 0. Then the interactions of the vector and scalar solitons are identical.

Case 2. (n⃗†s+1, n⃗s) = 0. Then the GCTC splits into two unrelated GCTC: one for the solitons
{1, 2, . . . , s} and another for {s + 1, s + 2, . . . .N}. If the two sets of soliton parameters
are such that both groups of solitons are in bound state regimes, then we have two bound
states.

Case 3. ⟨n†k+1|n⃗k⟩ = m0e
iφ0 — effective change of distance and phases of solitons. In this case

we can rewrite ãs = exp((Q̃s+1 − Q̃s)/2), where:

Q̃s+1 − Q̃s = Qs+1 −Qs + lnm0 + iφ0, (21)

i.e., the distance between any two neighboring vector solitons has changed by ln(m0/2ν0);
similar changes have the phases.
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3. Asymptotic regimes for N-soliton trains with N > 4

The asymptotic regimes for scalar solitons and for small values of N are known for long
time now, see [16, 17, 24]. Obviously for N = 2 we have only two possibilities: BSR and FAR.
For N = 3 for the first time there appears MAR when two of the solitons form a bound state
while the third one goes away off them. For N > 3 there were only fragmentary results, see the
quasi-equidistant propagation of solitons in [16].

For the Manakov solitons formally the method is the same. The idea to use the integrability
of CTC in order to develop a tool for the analysis of asymptotic behavior of N -soliton trains was
developed in [10, 12, 14, 18]. Roughly speaking we have to use the characteristic polynomial of
LN whose generic form is:

P (z) = det(LN − z11) =
N∑

k=0

pk (⃗a, b⃗)z
k =

N∏
k=1

(z − zk). (22)

Next we have to analyze the roots zk and formulate the conditions on the soliton parameters for
which

i) Re zk = 0; ii) Im zk = 0. (23)

Formally condition i) in (23) ensures the BSR, while condition ii) in (23) is responsible for the
FAR.

However each soliton now has 6 parameters, so 3, 4 and 5 solitons will be parametrized
by 18, 24 and 30 parameters respectively. The large number of parameters makes it difficult
to derive explicit analytical results, or to do an exhaustive numerical studies. Of course some
configurations of Manakov solitons behave just like the scalar ones. This happens if all n⃗k are
equal. Naturally our aim is consider more interesting cases and demonstrate the important
role that the polarization vectors play for the soliton interactions. Indeed m0k in (17) take
any value from 0 to 1, i.e., they ‘regulate’ the strength of the interaction. In particular, if the
polarization vectors of two neighboring solitons are orthogonal, then they do not interact. In
addition the phases σk modify the phase difference of the solitons which is a substantial factor
in their interaction.

Situations when we have 2, 3 and 4 solitons are easier because we can write down explicit
formulae for zk in terms of the soliton parameters in the generic case. For two and three solitons
most of this analysis for scalar solitons were done [16,17,24]. For bigger values of N such formulas
are not done even for the scalar case, in which the number of the soliton parameters are 4N .
For N = 4 already the formulae for zk are involved; in addition the number of the parameters
is 4N = 16. Therefore for N > 4 even for the scalar case only special configurations of soliton
parameters are known. They are related to special choices of the soliton parameters that simplify
the characteristic polynomial so that it reduces to, say a biquadratic equation. In addition, when
it comes to Manakov solitons, the number of the parameters becomes 6N .

Our aim here will be: first to revisit the particular cases considered before and, second,
to propose special soliton configurations responsible for the BSR and FAR for any number of
solitons. We will illustrate our results by several figures.

3.1. Asymptotic regimes for Manakov solitons

Let us now outline some effective ways of choosing soliton parameters that would ensure given
asymptotic behavior of the solitons. The soliton parameters of the Manakov N -soliton train are
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6N and detailed study of the regions in which the solitons will develop given asymptotic regime
does not seem possible. However we will outline several ways to effectively pick up configurations
ensuring BSR or FAR asymptotic regimes.

Let us also remind several important issues that one needs to consider. First we need to
specify what we will consider as asymptotic state. Obviously we need a criterium that would
ensure us that we are in the asymptotic region. In our case we have two scales: ϵ1/2 and ϵ that
are fundamental for the adiabatic approximation. It is reasonable to assume that the asymptotic
times must be of the order of 1/ϵ. Our choices of soliton parameters are such that ϵ ≃ 10−2. So
one could expect that the asymptotic times would be of the order of ϵ−1 ≃ 100. At the same
time we extend our numerics to about tas ≃ 1000 and in most cases we find good match between
the CTC prediction and the numerics of Manakov model during all that period. This means that
CTC models the Manakov model much better that we can expect. We can see from the figures
presented here and from many others that we have done that the match could be much better.

Indeed, let us assume that we know how to split the 30-dimensional space of our soliton
parameters into regions that correspond to the different asymptotic regimes. Obviously, if we
choose the soliton parameters to be close to the ‘border’ between two different regimes we can
expect that we would have a ‘transition’ area between the regimes, so the deviation from the
CTC model will come up sooner than 1000. This is what we can see in Figs. 1, 2. In the right
panel of Fig. 3 for t ≫ 300 we see that the bound state of 5 solitons in fact transforms into a
MAR. It ‘peels off’ the first and the fifth solitons that go freely away, and the other three still
stay in a BSR. It seems that choosing the difference between the amplitudes stabilizes the BSR.

The general criterium that ensures FAR or BSR is based on the following well known propo-
sition coming from linear algebra.

Proposition 1. Let L0 be symmetric L0 = LT
0 matrix with real-valued matrix elements. Then

its eigenvalues z0j will be real and different, i.e., z0j ̸= z0k for k ̸= j.

Corollary 1. Let L1 be symmetric (not hermitian) L1 = LT
1 matrix with purely imaginary

matrix elements. Then its eigenvalues z1j will be purely imaginary and different, i.e., z1j ̸= z1k
for k ̸= j.

Proof. Follows directly from the Proposition if we consider L1 = iL0.

In addition below we will assume that ν0 = 0.5 and µ0 = 0.

3.2. Generic FAR configurations

These configurations are characteristic for the real Toda chain solved by Moser [9, 29,31].
In what follows we choose the polarization vectors n⃗k by setting:

θk =
kπ

13
, γk =

kπ

g0
. (24)

where g0 = 8, or g0 = 9.
For the CTC using the Proposition we obtain:

Im bk|t=0 = 0, Im ak|t=0 = 0, (25)
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Fig. 1. Left panel: FAR with initial conditions r0 = 7.0, µ00 = 0.01, ν00 = 0.0, g0 = 9; Right
panel: BSR for t up to 600 and MAR for t > 700 with initial conditions r0 = 8.0, µ00 = 0.0,
ν00 = 0.05, g0 = 9. The rest of the parameters are defined by eqs. (26) and (28) respectively

which means that

νk|t=0 = 0.5, bk|t=0 = µk|t=0 = µ0k, θk =
kπ

13
, γk =

kπ

g0
,

ξ0k = (k − 3)r0, µ0k = (k − 3)µ00, ν0k = 0.5 + (k − 3)ν00,

δ0,1 = 0, δ0,k+1 − δ0,k = σk.

(26)

Indeed, from the Proposition the eigenvalues of L will be real and different, which is FAR.
A particular case of (26) as configuration ensuring FAR for scalar solitons was noticed long
ago, namely choosing solitons with equal amplitudes (i.e., ∆νk = 0) and and out-of phase
δk+1 − δk = π [4]. However, eq. (26) provides more general configurations, in which the solitons
may have non-vanishing initial velocities, see Fig. 1.

3.3. Generic BSR configurations

Here we use the Corollary and impose on L the conditions:

Re bk|t=0 = 0, Re ak|t=0 = 0, (27)

which means that

bk|t=0 = iνk|t=0 = iν0k, θk =
kπ

13
, γk =

kπ

g0
,

ξ0k = (k − 3)r0, µ0k = 0.0, ν0k = 0.5 + (k − 3)ν00,

δ0,1 = 0, δ0,k+1 − δ0,k = σk + π,

(28)

This is also rather general and simple condition on the soliton parameters that fixes the initial
velocities to be 0, but does not put restrictions (except the adiabatic ones) on the amplitudes
and on the initial positions of the solitons.
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Fig. 2. Left panel: FAR with initial conditions r0 = 8.0, µ00 = 0.02, ν00 = 0.0, g0 = 4; Right
panel: BSR for t up to 300 and MAR for t > 500 with initial conditions r0 = 8.0, µ00 = 0.0,
ν00 = 0.03, g0 = 4. The rest of the parameters are defined by eqs. (26) and (28) respectively

3.4. Symmetric configurations of soliton parameters

In addition to these we find other configurations of soliton parameters that provide FAR or
BSR. To this end we use special symmetric constraints on L described below. These constraints
will leave only one of ν0k and a0k independent. As a result the characteristic polynomial of L
will factorize and we will find that all roots are proportional to each other.

Let us give few examples of them. We will provide the corresponding Lax matrix, its charac-
teristic polynomial and eigenvalues.

• N = 3, P3 = z(z2 − 4(a2 + b2)):

L3 =

 b
√
2a 0√

2a 0
√
2a

0
√
2a −b

 ,

z1,2 = ±2
√
a2 + b2, z3 = 0;

(29)

• N = 4, P4 = (z2 − a2 − b2)(z2 − 9(a2 + b2))

L4 =


3b
√
3a 0 0√

3a b 2a 0

0 2a −b
√
3a

0 0
√
3a −3b

 ,

z1,2 = ±
√
a2 + b2, z3,4 = ±3

√
a2 + b2;

(30)
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• N = 5, P5 = z(z2 − a2 − b2)(z2 − 4(a2 + b2))

L5 =


2b
√
3a 0 0 0√

2a b 2a 0 0

0 2a 0
√
3a 0

0 0
√
3a −b

√
2a

0 0 0
√
2a −2b


z1,2 = ±

√
a2 + b2, z3,4 = ±2

√
a2 + b2, z5 = 0;

(31)
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Fig. 3. Left panel: FAR with initial conditions µ00 = 0.02, ν00 = 0.0, g0 = 4; Right panel: BSR
for t up to 300 and MAR for t > 400 with initial conditions µ00 = 0.0, ν00 = 0.03, g0 = 4. The
rest of the parameters are defined by eqs. (37) and (38) respectively

• N = 6, P6 = (z2 − a2 − b2)(z2 − 9(a2 + b2))(z2 − 25(a2 + b2)):

L6 =



5b
√
5a 0 0 0 0√

5a 3b
√
3a 0 0 0

0
√
8a b 3a 0 0

0 0 3a −b
√
8a 0

0 0 0
√
8a −3b

√
5a

0 0 0 0
√
5a −5b


,

z1,2 = ±
√
a2 + b2, z3,4 = ±3

√
a2 + b2, z5,6 = ±5

√
a2 + b2.

(32)

Such examples can be found for any value of N ; from algebraic point of view they are related to
the the maximal embedding of sl(2) as a subalgebra of sl(N).

In order to ensure FAR or BSR we need to impose on a and b the condition that

FAR a2 + b2 > 0, BSR a2 + b2 < 0. (33)
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Initial conditions for BSR of 5 scalar solitons:

ξ1 = −2r0 +
ln 6

2ν0
, ξ2 = −r0 +

ln 3

2ν0
, ξ3 = 0, ξ4 = r0 −

ln 3

2ν0
, ξ5 = 2r0 −

ln 6

2ν0
,

νk = 0.5 + (3− k)ν00, µk = 0, δk = kπ, k = 1, . . . , 5.
(34)

Initial conditions for FAR of 5 scalar solitons:

ξ1 = −2r0 +
ln 6

2ν0
, ξ2 = −r0 +

ln 3

2ν0
, ξ3 = 0, ξ4 = r0 −

ln 3

2ν0
, ξ5 = 2r0 −

ln 6

2ν0
,

νk = 0.5, µk = (3− k)µ00, δk =
kπ

2
, k = 1, . . . , 5.

(35)

For Manakov solitons the initial positions are determined by:

ξ10 = −2r0 −
1

2ν0
ln
m01m02m03m04

6
, ξ20 = −r0 −

1

2ν0
ln
m02m03m04

3m01
,

ξ30 = − 1

2ν0
ln
m03m04

m01m02
,

ξ40 = r0 +
1

2ν0
ln
m01m02m03

3m04
, ξ50 = 2r0 +

1

2ν0
ln
m01m02m03m04

6
.

(36)

For the numerics we again fix the polarization vectors as in (24) and evaluate ξ0k by the
formula (36). The result are given in Tab. 1 and 2 below.

In order to have FAR we choose the amplitudes, velocities and the phases of the solitons by:

νk = 0.5, µk = (k − 3)µ00, k = 1, 2, . . . , 5,

δ10 = 0, δ20 = δ10 + σ1 + π, δ30 = δ10 + σ1 + σ2 + π,

δ40 = δ30 + σ1 + σ2 + σ3 + π, δ50 = δ40 + σ1 + σ2 + σ3 + σ4 + π.

(37)

For the BSR we choose the amplitudes, velocities and the phases of the solitons by:

νk = 0.5 + (k − 3)ν00, µk = 0, k = 1, 2, . . . , 5,

δ10 = 0, δ20 = δ10 + σ1, δ30 = δ10 + σ1 + σ2,

δ40 = δ30 + σ1 + σ2 + σ3, δ50 = δ40 + σ1 + σ2 + σ3 + σ4.

(38)

3.5. Numeric values for the intial parameters

In Tabs. 1 and 2 we list the numeric values for m0k and σk for the two typical choices of θk
and γk used above.

Table 1. Initial phases for Fig. 1 and Fig. 2

δ0k left panel right panel
k = 1 0.0 0.0
k = 2 2.868037 –0.273554
k = 3 –0.405708 –0.405708
k = 4 2.781038 –0.360554
k = 5 –0.150741 –0.150741

δ0k left panel right panel
k = 1 0.0 0.0
k = 2 2.484841 –0.656751
k = 3 –1.006917 –1.006917
k = 4 2.258187 –0.883405
k = 5 –0.354039 –0.354039
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Table 2. Initial phases and positions for Fig. 3

left panel right panel
δ0k ξ0k δ0k ξ0k

k = 1 0.0 –15.154654 0.0 –15.154654
k = 2 2.484841 –7.133487 –0.656751 –7.133487
k = 3 –1.006917 0.140982 –1.006917 0.140982
k = 4 2.258187 7.305540 –0.883405 7.305540
k = 5 –0.354039 15.154654 –0.354039 15.154654

4. Conclusions and discussion

The above analysis can be extended to any number of solitons. As we mentioned above,
the symmetric Lax matrices are realizations of the maximal embedding of the sl(2) algebra
as a subalgebra of sl(N). In this case we effectively reduce the N -soliton interactions to an
effective 2-soliton interactions. Therefore the symmetric configurations studied above allow only
two asymptotic regimes: BSR and FAR. We make the hypothesis that it would be possible to
construct more general symmetric Lax matrices that would be responsible for effective 3-soliton
interactions. In this paper we included numerical tests only for 5 soliton interactions. However
previously we have run test starting with 2-solitons and ending with 9-soliton configurations.
Our results are that the CTC models adequately not only the purely solitonic interactions, but
also the effects of external potentials and other perturbations on them.

An interesting question is how long should we wait for the asymptotic regime. This question
is directly related to the other one: What are the limits of applicability of CTC? In our simula-
tions we have chosen ε0 ≃ 0.01 which means that the asymptotic time must be of the order of
1/ε0 ≃ 100. At the same time in a number of cases we find good match between the CTC and
the numeric solutions of Manakov model even until 1 000. This is what we see in our tests in
this paper for the free asymptotic regimes (left panels of all figures). The situation is different
for the bound state regimes. While in Fig. 1 we see good match until about 700, in Figs. 1 and 3
the good match goes until 300. After that the trajectories of CTC keep to the BSR, but some of
the real solitons ‘escape away‘ after that. However in all cases we find that CTC provides good
descriptions until times about three times larger than the asymptotic one.

MDT was supported by Fulbright – Bulgarian-American Commission for Educational Ex-
change under Grant No 19-21-07.
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Об асимптотическом поведении N-солитонных
последовательностей Манакова в адиабатическом
приближении

Владимир С. Герджиков
Национальный исследовательский ядерный университет "МИФИ"

Москва, Российская Федерация
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София, Болгария
Институт перспективных физических исследований, Новый болгарский университет

София, Болгария
Михаил Д. Тодоров
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Аннотация. Мы анализируем динамическое поведение N -солитонных последовательностей Ма-
накова в адиабатическом приближении. Эволюция этих солитонных последовательностей модели-
руется комплексной цепочкой Тода (КЦТ), которая является вполне интегрируемой динамической
системой. Вычисляя собственные значения ее матрицы Лакса мы можем определить асимптоти-
ческую скорость каждого из солитонов. Это позволяет нам описать конфигурации солитонных
параметров при которых солитонная последовательность переходит в каждом из двух основных
ясимптотических режимов: (а) режим связанного состояния и (б) режим асимптотически свободно-
го поведения. В частности мы нашли явное описание специальных симметрических конфигураций
N солитонов которые обеспечивают как, режим связанного состояния, так и режим асимптотически
свободного поведения. Мы установили отличное совпадение между траекториями, предсказывае-
мых КЦТ с теми, которые получаются при численном решении модели Манакова для широкого
класса солитонных параметров. Это подтверждает справедливость нашей модели.

Ключевые слова: модель Манакова, солитонные взаимодействия, адиабатическое приближение,
комплексная цепочка Тода.
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Abstract. The construction of solutions to the problem with a free boundary for the non-linear heat
equation which have the heat wave type is considered in the paper. The feature of such solutions is that
the degeneration occurs on the front of the heat wave which separates the domain of positive values of
the unknown function and the cold (zero) background. A numerical algorithm based on the boundary
element method is proposed. Since it is difficult to prove the convergence of the algorithm due to the
non-linearity of the problem and the presence of degeneracy the comparison with exact solutions is used
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Introduction

We consider the non-linear parabolic heat equation [1] with a source (sink)

Tt = ∆Ψ(T ) + Φ(T ), (1)

which is also called the generalized porous medium equation [2]. If Ψ(0) = 0 and Φ(T ) is power
function Eq. (1) can be written as

ut = u∆u+ γ(∇u)2 + αuβ . (2)
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Here, γ > 0, α, β ̸= 0 are constants, α > 0 means the presence of a source and α < 0 corresponds
to a sink. In what follows Cartesian coordinates are used.

Various forms of equation (2) are used to describe processes in continuum mechanics [2, 3],
plasma physics [1], etc. This mathematical object has a distinctive property related to the
propagation of perturbations with finite velocity, which is not typical for parabolic equations.

For equation (2) the problem of initiating a heat wave is considered. The heat wave is a
construction consisting of two hypersurfaces: u(t,x) > 0 and u(t,x) ≡ 0 that continuously
joined along some sufficiently smooth manifold Γ(t,x) = 0. The latter determines the front of
the heat wave. Since the front is unknown in advance and it is determined simultaneously with
the construction of the unknown function, we have a special problem with a free boundary [3],
where u|Γ(t,x)=0 = 0. The boundary conditions have the form

u|b(x)=0 = f(t,x), f(0,x) = 0, (3)

where b(x), f(t,x) are sufficiently smooth functions.
Previously, problem (2), (3) was already considered in the case α = 0, i.e., without a source

(sink). Solutions were constructed both in the form of special series [4] and with the use of the
boundary element method (BEM) [5]. In this paper, we propose an approximate method for
constructing solutions to the problem of heat wave initiation based on the BEM.

There are various approaches to solve boundary value problems for parabolic equations using
the BEM. The most natural one is to use the BEM based on time-dependent fundamental
solutions [6]. This method is not suitable for solving problem (2), (3) because of the non-
linearity of the right-hand side and because of the presence of a movable boundary (the heat
wave front). Therefore, it is preferable to use a time-stepping BEM [7], where the boundary
value problem for the elliptic equation is considered at each step, and the fundamental solution
of the Laplace equation is used. In addition to the classical BEM, it is used in the method of
fundamental solutions (MFS) [8], as well as in the interior field method (IFM) [9] and the null
field method (NFM) [10] in annular domains for the case of circular symmetry. For problem (2),
(3), we obtain the Poisson equation with a non-linear right-hand side at each time step. The dual
reciprocity boundary element method (DRBEM) [11] is most suitable for solving this equation.

We did not establish the convergence of the developed method. Therefore, to verify numerical
results exact solutions in the form of travelling wave are used [2]. Construction of exact solutions
is reduced to the solution of the Cauchy problem for a second-order ordinary differential equation
with a singularity.

Finding exact solutions of non-linear partial differential equations is an important field of
modern mathematics. There is a wide variety of methods to find exact solutions. Among
these methods we emphasize the group analysis method that was proposed and developed by
L.V. Ovsiannikov and his colleagues [12, 13]. A review of methods for constructing exact solutions
to equations of mathematical physics can be found, for example, in handbook [14]. Various
generalizations and modifications of the method of separation of variables [15, 16] are especially
often used to construct exact solutions of non-linear parabolic equations having the form (1).

1. Formulation of the problem

In the case of one spatial variable, equation (2) can be written as

ut = uuρρ + γu2ρ +
νuρ
ρ

+ αuβ . (4)
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Here, ν = 0, 1, 2 corresponds to Cartesian, cylindrical and spherical coordinate systems, respec-

tively; ρ =

√
ν+1∑
i=1

x2i , where xi are the Cartesian coordinates. Condition (3) has the form

u|ρ=R = f(t), f(0) = 0, (5)

where R > 0 is some constant which must obviously be positive for ν ̸= 0.
The cases ν = 0 and ν = 1 are considered here. It follows from previous results [17] that

for Cartesian and cylindrical coordinate systems problem (4), (5) has unique analytical heat-
wave type solution (in the form of a convergent Taylor series). The coefficients of the series are
determined from the solution of systems of linear algebraic equations. However, the radius of
convergence of the series is usually small, and it can be estimated only in some spacial cases. To
solve this problem and obtain an approximate solution to the problem of heat wave initiating
at a given time interval [0, t∗], we usually use a step-by-step method based on the boundary
element approach [5]. We also note that presence of additional term (source) requires significant
modification of the previously developed approach.

2. Solution algorithm based on BEM

Problem (4), (5) is solved in the specified time interval t ∈ [0, t∗] by a step-by-step method
based on the BEM. At each time step tk = kh, where h is the step size, we solve the spatial
problem obtained from (4), (5) with t = tk. The solution domain where the unknown function u
is positive is the interval ρ ∈ [0, a(tk)), and ρ = a(t) is the equation of motion of the heat wave
front, u(tk, a(tk)) = 0.

For certainty, it is assumed that the heat wave front moves from the origin. Since a(tk) is
unknown in advance, the solution domain is also unknown at the moment t = tk. That is why, we
interchange the desired function and the spatial variable ρ [5]. Equation (4) takes the following
form

ρtρ
2
u = uρuu − γρu −

νuρ2u
ρ

+ αuβρ3u. (6)

We rewrite equation (6) in the form of the Poisson equation and obtain at t = tk the boundary
value problem

ρuu = F (u, ρ, ρt, ρu), ρ|u=L = R, (7)

where F (u, ρ, ρt, ρu) = (ρtρ
2
u + γρu)/u+ νρ2u/ρ+αuβ−1ρ3u, ρ = ρ(tk, u) is the unknown function

and L = f(tk). The unknown heat wave front for the original problem is defined by the condition
ρ|u=0 = a(tk).

At the front of the heat wave we have [18]

q(ρ)|u=0 =
∂ρ

∂n

∣∣∣∣
u=0

=
γ

a′(tk)
, (8)

where q(ρ) is the flow of ρ(tk, u), n is the external normal to the boundary of the solution domain,
n(0) = −1, n(L) = 1. It follows from the results presented in [17] that a′(tk) ̸= 0.

Thus, we arrive to the boundary value problem (7), (8) in the domain u ∈ [0, L]. Using the
boundary element method, we write the solution of this problem in the following form

ρ(v) = q
(ρ)
1k u

∗(v, 0) + q
(ρ)
2k u

∗(v, L)− ρ1kq∗(v, 0)−Rq∗(v, L)−
∫ L

0

F (u, ρ, ρt, ρu)u
∗(v, u)du. (9)
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Here, v ∈ (0, L), ρ1k = ρ(tk, 0), ρ2k = ρ(tk, L) = R, q(ρ)1k = q(ρ)(tk, 0), q
(ρ)
2k = q(ρ)(tk, L), u∗(v, u)

is the fundamental solution of the one-dimensional stationary problem, q∗(v, u) = ∂u∗(v, u)/∂n

[6]. Values of ρ1k, q
(ρ)
1k and q

(ρ)
2k are not specified by the boundary conditions and should be

determined.
Taking the limits v → 0 and v → L in equation (9), we obtain the system of two boundary

integral equations
ρ1k − q(ρ)1k L = Q1, ρ1k + q

(ρ)
2k L = Q2, (10)

where Q1 = R−
L∫
0

F (u, ρ, ρt, ρu)u
∗(0, u)du, Q2 = R+

L∫
0

F (u, ρ, ρt, ρu)u
∗(L, u)du.

Using quadratic approximation of the function ρ(t, 0) = a(t) on the interval [tk−1, tk], one
can write condition (8) in the following approximate form

ρ1k − ρ1(k−1) =
γh
(
q
(ρ)
1k + q

(ρ)
1(k−1)

)
2q

(ρ)
1k q

(ρ)
1(k−1)

. (11)

Expressing ρ1k from (11) and substituting it into the first equation (10), we obtain an equation
in the unknown q(ρ)1k

L
(
q
(ρ)
1k

)2
+

Q1 − ρ1(k−1) −
γh

2q
(ρ)
1(k−1)

 q
(ρ)
1k +

γh

2
= 0. (12)

Since the derivative of the unknown function in (4), (5) is negative along the front uρ|ρ=a(t) <

0 (for chosen direction of the movement of the heat wave front), the inverse function obeys the
inequality ρu|u=0 = 1/(uρ|u=0) < 0. Therefore, q(ρ)1k = n(0)ρu|u=0 = −ρu|u=0 > 0, and a suitable
solution of equation (12) has the form

q
(ρ)
1k =

1

2L

ρ1(k−1) −Q1 +
γh

2q
(ρ)
1(k−1)

+

√√√√√Q1 − ρ1(k−1) −
γh

2q
(ρ)
1(k−1)

2

+ 2γhL

 . (13)

Substituting (13) into (10), we can find ρ1k and q(ρ)2k :

ρ1k = q
(ρ)
1k L+Q1, q

(ρ)
2k =

Q2 − ρ1k
L

. (14)

Since function F (u, ρ, ρt, ρu) in (7) depends on the unknown function and its derivatives, we use
the following iterative procedure to solve problem (7), (8). Let us take ρ(0) ≡ R and Q1 = 0,
Q2 = 0 as the initial values. Then the i-th iteration of the solution has the form

ρ(i)(v) = q
(ρ)(i)
1k u∗(v, 0) + q

(ρ)(i)
2k u∗(v, L)−

−ρ(i)1k q
∗(v, 0)−Rq∗(v, L)−

∫ L

0

F (u, ρ(i−1), ρ
(i−1)
t , ρ(i−1)

u )u∗(v, u)du.
(15)

The boundary values of the unknown function and flow can be found according to (13), (14)
as

q
(ρ)(i)
1k =

1

2L

ρ1(k−1) −Q
(i−1)
1 +

γh

2q
(ρ)
1(k−1)

+

√√√√√Q(i−1)
1 − ρ1(k−1) −

γh

2q
(ρ)
1(k−1)

2

+ 2γhL

 ,
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ρ
(i)
1k = q

(ρ)(i)
1k L+Q

(i−1)
1 , q

(ρ)(i)
2k = (Q

(i−1)
2 − ρ(i)1k )/L.

Here, Q(i−1)
1 , Q(i−1)

1 are calculated from the previous iteration:

Q
(i−1)
1 = R−

∫ L

0

F (i−1)u∗(0, u)du, Q
(i−1)
2 = R+

∫ L

0

F (i−1)u∗(L, u)du, (16)

where F (i−1) = F
(
u, ρ(i−1), ρ

(i−1)
t , ρ

(i−1)
u

)
. The iteration process is terminated at the n-th

iteration if
∣∣∣(ρ(n)1k − ρ

(n−1)
1k )/ρ

(n)
1k

∣∣∣ < ε, where ε is a given constant. Then the approximate solution

of (7), (8) at t = tk is ρ(tk, u) = ρ(n)(u). Since this solution is continuous, the solution of problem
(4), (5) at t = tk, u(tk, ρ) can be determined without a loss of accuracy.

The developed algorithm allows us to construct a solution that is continuous with respect to
a spatial variable for problem with a free boundary (4), (5) at each given time step.

To calculate integrals
L∫
0

F (u, ρ, ρt, ρu)u
∗(v, u)du in (15), (16), we use the dual reciprocity

method [11] based on the expansion of F (u, ρ, ρt, ρu) in terms of radial basis functions (RBF)

F (u, ρ, ρt, ρu) =
n∑

k=1

αkϕk(u). (17)

Functions ϕk depend on the distance between the current point and collocation points
u1, u2, . . . , un that belong to the interval [0, L]: ϕk(x) = ϕ (rk), where rk = |u − uk|. For
each function ϕk there is a function ŵk such that ϕk = ∆ŵk. After substituting expansion (17)
into the integrand and twice integrating by parts, we obtain the following equality∫ L

0

F (u, ρ, ρt, ρu)u
∗(v, u)du =

=
n∑

k=1

αk[−ŵk(v) + p̂k(0)u
∗(v, 0) + p̂k(L)u

∗(v, L)− ŵk(0)q
∗(v, 0)− ŵk(L)q

∗(w,L)],
(18)

where p̂k(x) = ∂ŵk(u)/∂n. The coefficients αk for each iteration are determined from the
system of equations obtained from (17) for the current iteration ρ(i)(u) at the collocation points

F
(
uj , ρ

(i) (uj) , ρ
(i)
t (uj) , ρ

(i)
u (uj)

)
=

n∑
k=1

αkϕk(uj), j = 1, 2, . . . , n.

The use of the simplest functions ϕk = rk as RBFs [5, 18] results in stable convergence of iterative
processes and good accuracy of solutions. However, it is rather complicated to use these functions
to solve problems with the source term because convergence of iterative processes is unstable and
depends on the parameters of the problem. Obviously, the additional non-linear term requires a
more precise expansion.

It is difficult to analyse the influence of RBFs on convergence analytically. Therefore, we
perform a numerical analysis of the influence of used RBFs on convergence and accuracy of the
solution. We consider linear function ϕk = 1+rk, polyharmonic spline ϕk = r3k and multi-quadric
function ϕk =

√
1 + ϵr2k. Stable convergence is observed when the last two functions are used.

At the same time, multi-quadric function ensures better accuracy of the solution so we use it in
calculations. The results are shown in Section 4.
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3. Construction and study of exact solutions

It is problematic to prove convergence of the algorithm based on the BEM. One possible way
is to construct and study exact solutions and then use them to verify numerical results.

Plain geometry. We consider the non-linear heat equation with a source for ν = 0

ut = uuxx + γu2x + αuβ . (19)

We assume that in this case the heat wave front is defined by following equation

u(t, x)|x=a(t) = 0. (20)

If functions a(t) and uβ are analytical (β ∈ N) then it follows from the previously proved
theorems (see, for example, [16]) that problem (19), (20) has unique analytical solution in form
of a power series with respect to variable z = x − a(t) with recurrently determined coefficients.
We consider the case when the condition of the analyticity of the source is not satisfied. Let
β > 0, β ∈ R in equation (19). For non-integer β the source function can not be expanded into
a Taylor series with respect to powers of u. We construct the solution in the form of a travelling
wave u = v(z), z = x−µt− η, µ > 0, η > 0. Due to the invariance of equation (19) one can take
η = 0.

Substituting v(z) in (19), we obtain the following ordinary differential equation

vv′′ + γ(v′)2 + µv′ + αvβ = 0. (21)

Solving this equation with the condition v(0) = 0, we obtain the solution of problem (19),
(20) which is a heat wave with the front x = a(t) = µt+η (if it exists). Properties of solutions of
this type for β ∈ N were previously studied [16]. For non-integer values of β, as far as we know,
this problem was not previously considered and it is now studied for the first time.

In this case one cannot impose arbitrary condition for the derivative at z = 0. If we set z = 0

in both parts of Eq. (21) then we obtain the quadratic equation

γ(v′(0))2 + µv′(0) = 0,

which has two roots v′(0) = −µ/γ and v′(0) = 0. For other values of v′(0) equation (21) is
incompatible. Thus, we obtain from the continuity condition that either

v(0) = 0, v′(0) = −µ/γ, or (22)

v(0) = 0, v′(0) = 0. (23)

Problems (21), (22) and (21), (23) have specific properties that they inherit from original
problem (19), (20). In particular, at the starting point z = 0 function v(z) (that is the term at
the higher derivative) turns to zero. It means that problems cannot be written in normal form,
and the classical theorems on existence of solutions of the Cauchy problem are not applicable.
It is obvious that (21), (23) has trivial solution v ≡ 0. Special study is required to prove the
existence and uniqueness of the solution of (21), (22) and the existence of a non-trivial solution
of (21), (23).

In what follows we consider only the case α > 0. It means that there is an influx of energy
(matter) into the system. This case is widely encountered in applications.
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Theorem 1. The Cauchy problem (21), (22) for α > 0, β > 1 has unique solution v(z) ∈
C[z0,0] ∩ C2

(z0,0)
for some z0 < 0.

Proof. Using substitution v′ = p, we lower the order of equation (21). Then it takes the form

vp
dp

dv
+ γp2 + µp+ αvβ = 0. (24)

Using the change of variable w = vβ in equation (24), we obtain

βw
dp

dw
+ γp+ µ+

αw

p
= 0. (25)

Since for β > 0 the equality vβ |v=0 = 0 holds then for equation (24) conditions (22) correspond
to

p(0) = −µ/γ. (26)

Let us perform a qualitative analysis of equation (21). To do this, we consider the equivalent
dynamic system

dw

dξ
=
β

µ
wp,

dp

dξ
= −γ

µ
p2 − p− α

µ
w. (27)

Here the parametrization is performed in such a way that dz = µwdξ. System (27) is very close
to system (4.3) from [19]. The first equations differ by a positive constant multiplier on the
right-hand side. The second equations are the same.

System (27) has two singular points M1(0,−µ/γ) and M2(0, 0). It follows from qualitative
analysis [19] that M1 has the topological type "saddle", and M2 is the "saddle-node" with one
nodal and two saddle sectors. Considering condition (26), we are primarily interested in phase
trajectories that enter point M1 and/or leave it. In this case, there is no need to consider the left
phase half-plane w < 0 (except β = k/m, where k,m are natural odd numbers) because w = vβ .

There is a separatrix S that tends to the point M1 as ξ → +0. Phase trajectories which are
located to the right of S bypass the nodal sector bounded by S and the coordinate axis Op. The
phase trajectories inside the nodal sector tend to M2 as ξ → +∞ (Fig. 1).

The separatrix S corresponds to the solution v = v∗(z) of problem (21), (22). Taking into
account the conditions of the theorem, the solution has the following properties: 1) v is defined
and continuous on some interval [z0, 0]; 2) v is twice continuously differentiable on the interval
(z0, 0); 3)@v∗(0) = v∗(z0) = 0, v∗(z) > 0; 4) v′∗(z) changes sign once, v′∗(zmax) = 0, v∗(zmax) =

vmax, lim
z→z0+0

v′(z) = +∞; 5) v′′∗ (z) < 0. Let us note that condition β > 1 guarantees that

properties 1 and 2 hold. The schematic representation of function v(z) is shown in Fig.2.
It seems impossible to find the exact values z∗, zmax, vmax. Further we discuss how to find

interval estimates for them.

Remark 1. For β = k/m, where k,m are natural odd numbers, k > m, the left phase half-plane
w = vβ < 0 can also be considered. The solution of problem (21), (22) can be continued to the
right from the point z = 0 as well as problem (21), (23) at z < 0 has a non-trivial solution. Both
solutions are negative so they are meaningless from the physical point of view.

Interval estimates are constructed for the key parameters of the solution of (21), (23) in the
particular case β = 1 to simplify the study. We follow the procedure suggested in [19].

Let us use linear substitution of the unknown function and independent variable

z̃ = Az, ṽ = Bv, A = αγ/[µ(γ + 1)], B = αγ2/[µ2(γ + 1)]. (28)
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Fig. 1. Phase portrait Fig. 2. The traveling wave configuration

Then problem (21), (23) takes the form

vv′′ + γ(v′)2 + γv′ + (γ + 1)v = 0, v(0) = 0, v′(0) = −1. (29)

Here the tilde is omitted.
We analyse the properties of solution of (29) and find estimates for z∗, zmax, vmax. In the proof

of Theorem 1 we show that for z ∈ [zmax, 0] function v decreases, −1 6 v′ 6 0 and v′(zmax) = 0.
Then from (29) we have that −1− γ 6 v′′ 6 −1, and v′′(0) = −1, v′′(zmax) = −γ − 1.

Integrating the upper bound for v′′ on the interval [z, 0] and taking into account the Cauchy
conditions (29), we obtain that

v′ 6 −(γ + 1)z − 1, v > −0.5(γ + 1)z2 − z, zmax 6 z 6 0. (30)

It follows from the first inequality (30) that zmax 6 −1/(γ + 1). The right-hand side of
the second inequality at z1 = −1/(γ + 1) > zmax takes the maximum value that satisfies the
inequality v(z1) > 1/[2(γ + 1)]. Since v(z1) 6 vmax we obtain that vmax > 1/[2(γ + 1)].

Integrating the lower bound for v′′ on the interval [z, 0] we obtain that

v′ > −z − 1, v 6 −0.5z2 − z, 0 < z 6 zmax. (31)

It follows from (31) that zmax > −1 and vmax 6 0.5.
When z ∈ [z0, zmax] function v increases, i.e., v′ > 0. Taking into account this inequality, it

follows from (29) that v′′ 6 −γ−1. Integrating it twice, we obtain vmax−v > (γ+1)(zmax−z)2/2,
z0 6 z 6 zmax. Since vmax 6 0.5, for z = z0 we have 0 < zmax− z0 6 1/

√
γ + 1 whence it follows

that −1/
√
γ + 1− 1 6 z0 6 −1/(γ+1). So, we have all the required estimates. Let us apply the

transformation inverse to (28). Then we obtain the following inequalities

−µ(γ + 1)

αγ
6zmax 6 − µ

αγ
; − µ

αγ
(
√
γ + 1+γ+1) 6 z0 <zmax;

µ2

2αγ2
6 vmax 6 µ2(1 + γ)

2αγ2
. (32)

We omit cumbersome transformations that are required to construct estimates of the form
(32) for the general case. Now a solution of equation (19) can be found. The solution has the
form of a heat wave that propagates with the constant velocity u(t, x) = v∗(x− µt− η).

An interesting feature of this solution is that it is a soliton (solitary wave). We point out
that if α = 0 (no source) then solution has explicit form u = −µ(x − µt − η)/γ. It is easy to
show that it is not a soliton.

– 701 –



Alexander A. Kazakov . . . On the Construction of Solutions to a Problem with a Free Boundary . . .

Derivation of travelling wave solution. Since one can not obtain analytical solution of
problem (21), (22) we solve it numerically. It follows from the proof of Theorem 1 that solution
should be constructed on the interval [z0, 0], and z0 < 0 is unknown. We only know that v(z0) = 0

and v′(z) → ∞ when z → z0. This is the problem with a free boundary, and its formulation is
non-standard for solving by the boundary element method. Note that we prefer to use the BEM
because, unlike difference methods, it allows one to construct a continuous solution.

For convenience, we use substitution V (z) = v(−z) and resolve equation (21) with respect to
the higher derivative. Taking into account (22), we have the Cauchy problem

V ′′ =
1

V

[
µV ′ − γ (V ′)

2 − αV β
]
, V (0) = 0, q(0) = −µ

γ
. (33)

It is difficult to find its solution with satisfactory accuracy on the interval z ∈ [0, z∗], where
z∗ = −z0, because of specific properties (mentioned above) of the unknown function. A correct
solution can be found in two stages. In the first stage, problem (33) is solved on the interval
z ∈ [0, L], where L < z∗ is selected in such a way that V ′(L) < 0, i.e., L > −zmax. Then the
BEM iterative procedure is used to obtain continuous solution of this problem (see [20]).

One cannot construct a solution of problem (33) on the interval z ∈ [L, z∗] in the original
formulation because the derivative is unbounded. Then, in the second stage, we interchange the
independent variable and the unknown function, just as we did in Section 2. As a result, we
obtain the inverse Cauchy problem for the unknown function z(V ).

z′′ =
z′

V

[
γ − µz′ + αV β(z′)2

]
, z(L∗) = L, qz(L

∗) =
1

q(L)
, (34)

where V ∈ [0, L∗], qz = ∂z/∂n, L∗ = V (L); V (L) and q(L) are obtained in the first stage.
Now problem (34) can be solved with the use of the iterative BEM. As a result, in particular,

the value z(0) = z∗ is found. The continuousness of the found function allows us to determine
V (z) for z ∈ [0, z∗] and the solution of problem (21), (22) without loss of accuracy. Note that
estimates (32) can be used to select parameter L.

Cylindrical geometry. For ν = 1, there are no exact travelling wave solutions for equa-
tion (4). It is known [16] that for β = 1 equation (4) has a self-similar solution u(t, ρ) =

= a(t)a′(t)v(r), where r = ρ/(Reθt), and R > 0, θ are constant. Function v(r) satisfies the
Cauchy problem

vv′′ + γ(v′)2 +
(
r +

v

r

)
v′ +

(α
R
− 2
)
v = 0, v(1) = 0, v′(1) = − 1

γ
. (35)

This solution corresponds to a heat wave with an exponential law of motion of the heat wave
front a(t) = Reθt. Since equation (35) is not autonomous, it is difficult to perform a qualitative
analysis in this case, and we don’t consider this task here.

In conclusion, we note that solution of problem (35) by the iterative boundary element method
[20] does not require additional modification because the unknown function in the solution domain
r ∈ (0, 1] monotonically decreases. In this case, to solve problem (4), (5) in the time interval
t ∈ [0, t∗], it is sufficient to solve problem (35) in the segment r ∈ [a(0)/a (t∗) , 1].

4. Computational experiment

Verification of the BEM algorithm. Here we test the BEM algorithm developed in
Section 2 by comparing the calculation results with the exact solutions presented in Section 3
for various values of parameters.
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Example 1. We consider the problem in the case of plane geometry (ν = 0) with γ = 1/3, α =

1, µ = 1, η = 0. Parameter β is varied: β = 0.8; 1; 1.2; 1.4; 1.6; 1.8; 2.
The accuracy of solving problem (4), (5) using the BEM algorithm is tested as follows. The

exact travelling wave solution ue(t, x) is found by solving problem (21), (22) using the boundary
element method described in Section 3. When the exact solution is found condition (5) that
corresponds to this solution is

u|x=0 = ue(t, 0). (36)

Next, numerical solution of problem (4), (36) is calculated using BEM. Then it is compared
with the exact solution ue(t, x). Numerical and exact solutions for β = 1.4 are shown in Fig. 3.

Fig. 3. Travelling heat wave for β = 1.4

To estimate the accuracy of the numerical solution we compare the law of motion of the heat
wave front found by the BEM and the law of motion x = µt + η of the exact solution. The
relative error in determining the heat wave front is shown in Tab. 1.

Table 1. The relative error in determining the heat wave front

t β = 0.8 β = 1 β = 1.2 β = 1.4 β = 1.6 β = 1.8 β = 2
0.5 4.96E–03 1.77E–03 6.29E–04 2.10E–04 7.22E–05 2.19E–05 2.86E–05
1 4.63E–03 1.61E–03 5.85E–04 2.10E–04 8.88E–05 4.97E–05 4.37E–05

The results show that the accuracy of the solution decreases as parameter β decreases. The
results are not acceptable for β < 0.8. This seems to be related to the fact that the term uβ−1

(see (7)) has a singularity at u = 0 if β < 1. Note that Theorem 1 is also valid only for β > 1.
Nevertheless, one should note that the acceptable numerical results are obtained not only under
the conditions of Theorem 1 but also for 0≪ β < 1.

Example 2. We consider the problem in the case of cylindrical geometry (ν = 1) with γ =

1/3, α = 1, β = 1, R = 1, θ = 1.
The exact solution ue(t, ρ) is found by solving problem (35) using the BEM [20]. The bound-

ary condition for problem (4), (5) is

u|ρ=R = ue(t, R). (37)

Comparison of the BEM solution of problem (4), (37) and the exact solution is shown in Fig. 4.
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Thus, the results demonstrate the effectiveness of the developed algorithm for solving the
problem of heat wave initiating for a non-linear heat equation with a source.

Fig. 4. Heat wave with exponential front

Traveling wave. The second part of the computational experiment is devoted to the nu-
merical analysis of estimates obtained for the parameters of the solution of problem (21), (22).
Tab. 2 shows values of z∗, zmax and vmax, as well as boundaries of their interval estimates
z− 6 zmax 6 z+, z− 6 z0 6 zmax, v− 6 vmax 6 v+ (see (32)) for α = µ = 1 and various
γ. One can see that the estimates are relatively accurate for zmax and vmax. The values of zmax

are closer to the left border of the interval, and the values of vmax are closer to the right border.
For the wave length z∗ = −z0 the rough estimate was obtained, and further improvement is
needed.

The results of calculations show that obtained analytical estimates can be probably im-
proved. So, for all calculations performed (both presented in Tab. 2 and not included
in it) the inequalities |zmax − zM |/|zM | < 0.05, v− + 0.7 ∆v < vmax < v− + 0.8 ∆v

are valid. Here, zM = (z− + z+)/2, ∆v = v+ − v−. It follows from (28) and (29)
that if we have values of z0(γ, α, µ)|α=µ=1, zmax(γ, α, µ)|α=µ=1 and vmax(γ, α, µ)|α=µ=1, we
can find z0(γ, α, µ), zmax(γ, α, µ) and vmax(γ, α, µ) for all α and µ as z0(γ, α, µ) = =

µα−1z0(γ, 1, 1), zmax(γ, α, µ) = µα−1zmax(γ, 1, 1), vmax(γ, α, µ) = µ2α−1vmax(γ, 1, 1).

Table 2. Estimates of travelling wave parameters

γ α µ z− zmax z+ z− z0 v− vmax v+
1 1 1 –2 –1.547918 –1 –3.414214 –2.328672 0.5 0.858849 1

0.5 1 1 –3 –2.575608 –2 –5.449490 –4.265408 2 2.744421 3
1/3 1 1 –4 –3.590301 –3 –7.464102 –6.229110 4.5 5.643519 6
0.2 1 1 –6 –5.611311 –5 –11.477226 –10.194475 12.5 14.4864942 15

Conclusions

In this study we consider the problem of a heat wave initiating for a non-linear heat equation
with a source and construct the solution on a specified finite time interval. We develop a step-
by-step algorithm based on the iterative BEM using the dual reciprocity method. We choose
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systems of radial basis functions that ensure convergence of the iterative process at each step of
the solution. To verify the developed algorithm we use exact travelling wave solutions. Their
construction is reduced to solving the Cauchy problem for the ODE with a singularity. For this
Cauchy problem we prove the existence and uniqueness theorem of the classical solution that
does not have to be analytical. A qualitative study of the solution properties was performed,
and some estimates for the amplitude and wave length were obtained. To solve the Cauchy
problem numerically, we develop an iterative algorithm based on the BEM. It allows one to
determine correctly the boundary of the solution domain where the derivative of the unknown
function tends to infinity. The performed calculations show the effectiveness and accuracy of the
developed computational algorithm.

Further research can be directed towards expanding the proposed approach to other types of
problems and to multidimensional equations. It is also interesting to apply new methods such
as the method of fundamental solutions, the interior field method and the null field method to
solve the considered elliptic equations and to compare these methods with the BEM.

The study was funded by RFBR (research project no. 20-07-00407) and by RFBR and MOST
(research project no. 20-51-S52003.
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О построении решений задачи со свободной границей
для нелинейного уравнения теплопроводности

Александр Л. Казаков
Институт динамики систем и теории управления имени В.М. Матросова СО РАН

Иркутск, Российская Федерация
Лев Ф. Спевак

Институт машиноведения УрО РАН
Екатеринбург, Российская Федерация

Минг-Гонг Ли
Университет Чунг Хуа

Город Синьчжу, Тайвань

Аннотация. В статье обсуждается построение решений задачи со свободной границей для нели-
нейного уравнения теплопроводности, которые имеют тип тепловой волны. Особенностью таких
решений является то, что уравнение имеет вырождение на фронте тепловой волны, который раз-
деляет область положительных значений искомой функции и холодный (нулевой) фон. Предло-
жен численный алгоритм решения указанной проблемы на основе метода граничных элементов.
Поскольку доказать сходимость алгоритма не удается из-за нелинейности задач и наличия вы-
рождения, в качестве метода верификации расчетов выбрано сравнение с точными решениями,
построение которых сводится к интегрированию задачи Коши для ОДУ. Проведено качественное
исследование последних. Выполнены иллюстрирующие расчеты, на основании которых с исполь-
зованием результатов качественного анализа сделаны содержательные выводы.

Ключевые слова: нелинейное уравнение теплопроводности, тепловая волна, метод граничных
элементов, приближенное решение, точное решение, теорема существования.
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Abstract. The work proposes a model for synthesizing a composite "metallic matrix–reinforcing inclu-
sions". The solution is based on two algorithms demonstrating similar results. It is shown that, like in
classic models of combustion, there is a domain of model parameters where a transition to the stationary
regime is possible. It is demonstrated that taking into account the thermal and mechanical processes
alters the effective properties (thermal capacity and thermal effects of the reaction) and provokes the
formation of a new heat source conditioned by the interaction of different physical processes.

Keywords: composite synthesis, pulsed heating, consecutive-parallel reactions, comparison of algo-
rithms.
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Introduction

Currently, there are numerous methods for synthesizing composites [1—3 and other]. One of
them is based on combustion synthesis or SHS [4]. The chemical reactions in powder mixtures
are diverse. The obtained multi-component and multi-phase reaction products, depending on
the conditions of synthesis, can possess different properties. In general case, the deformation and
stress field formation processes accompanying the chemical transformations are inherent stages of
the synthesis and may impact the effective properties and structure. Such mathematical models,
taking into account the processes of different physical nature, are called coupled models. From
this perspective, the models of classic combustion theory—taking into account the effect of heat
liberation from the reactions on the temperature field—also belong to coupled models. Taking
into account the mutual influence of thermal phenomena, chemical reactions and deformation,
in the elementary case, affects the effective formal-kinetic parameters [5, 6]. In the case of more
detailed investigation, it leads to the occurrence of new transformation regimes [7]. However,
before the detailed accounting of mechanical and mechanochemical phenomena, the sequence and
mutual influence of the chemical stages should be elucidated. This work is aimed at studying
the regimes of transformation using a non-stationary model of composite synthesis that includes
consecutive-parallel stages at the moment of powder mixture reaction initiation by a heat pulse
applied from a side end.
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1. Mathematical statement of problem

Let us assume that the composite synthesis can be described by a simple scheme of chemical
reactions. The result of the first reaction are reinforcing particles and an intermediate product
consumed in the second reaction. The second reaction immediately forms the matrix. The
general reaction scheme can be expressed as

2X + Y → P1 + 2P2,

X + 2P2 + Z → P.
(1)

This scheme can be exemplified by the synthesis of composites in systems Al+Cr2O3+Ti and
Al+Fe2O3+Ni. According to scheme (1), the reagent Y (oxides) takes part in the first reaction,
consequently changing its rate, while the concentration of the component Z (titanium or nickel)
in the initial mixture changes the rate of the second reaction. Therefore, these substances may
not be included into the kinetic equations. The resulting set of kinetic equations, corresponding
to the said reaction scheme, is as follows:

dP1

dt
= k1(T )X̄

2,

dP2

dt
= 2k1(T )X̄

2 − 2k2(T )P2
2X̄,

dP1

dt
= k2(T )P2

2X̄,

(2)

where X̄ = 1 − P − P1 − P2 is the total number of reagents, k1(T ) = k10 exp

(
− E1

RT

)
and

k2(T ) = k20 exp

(
− E2

RT

)
are the rates of reactions 1 and 2. Assuming that the synthesis is

initiated from the surface by a uniformly distributed heat source (heat pulse) and the side surfaces
are heat-insulated, in the thermal section of the problem we will stick to the one-dimensional
thermal conductivity equation with chemical sources:

cρ
∂T

∂t
= λ

∂2T

∂x2
+Q1Φ1 +Q2Φ2, (3)

where Φ1 = k1(T )X̄
2, Φ2 = k2(T )P

2
2 X̄.

The boundary conditions are:

x = 0 : −λ∂T
∂x

= q0, t < timp, and − λ∂T
∂x

= 0, t > timp, (4)

x→∞ :
∂T

∂x
= 0. (5)

To reduce the number of variables and number of necessary numerical calculations, let us

introduce the following dimensionless variables: θ =
T − T∗
T∗ − T0

, τ =
t

t∗
, ξ =

x

x∗
, where t∗ =

=
cρRT 2

∗
k10E1Q1

exp
( E1

RT∗

)
, T∗ =

Q1

cρ
+ T0 and x2∗ =

λt∗
cρ

are the characteristic scales.

Then, the problem (2)–(5) will take the following form:

∂θ

∂τ
=
∂2θ

∂ξ2
+Wch, (6)

∂P1

∂τ
= X̄2γ exp

(
θσ

β(1 + θσ)

)
, (7)
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∂P2

∂τ
= 2X̄γ

[
X̄ exp

(
θσ

β(1 + θσ)

)
− zP 2

2 exp

(
θσ + ε

β(1 + θσ)

)]
, (8)

∂P

∂τ
= zX̄P 2

2 γ exp

(
θσ + ε

β(1 + θσ)

)
, (9)

ξ → 0 : −∂θ
∂ξ

= Qe, τ < τ∗ and − ∂θ

∂ξ
= 0, τ > τ∗ (10)

ξ →∞ :
∂θ

∂ξ
= 0, (11)

τ = 0 : θ = −1, P = P1 = P2 = 0,

where τ∗ =
timp

t∗
, Wch =

β

σ
X̄

(
X̄ exp

(
θσ

β (1 + θσ)

)
+KQzP

2
2 exp

(
θσ + ε

β (1 + θσ)

))
.

The problem, along with the pulse duration, includes dimensionless parameters σ =
T∗ − T0
T∗

,

β =
RT∗
E1

is the lesser parameter of the combustion theory, γ =
cρRT 2

∗
E1Q1

<< 1 is the lesser

parameter of the combustion theory that characterizes the sensitivity of the reaction rate to

burning-out, θ0 =
σ

β
is the temperature head, while the parameters KQ =

Q2

Q1
, z =

k2
k1

, ε =

=
E1 − E2

E1
characterize the relations between the kinetic reaction parameters, Qe =

q0
Q1

√
t∗
κ

is

the relation of heat accumulated in the layer x∗ to the reaction heat Q1, κ =
λ

cρ
.

2. Method of solution

The thermal conductivity equation (6) was solved using am implicit difference scheme of
first-order approximation in time and second-order approximation in spatial coordinates and
implementing the sweep method [8]. The kinetic equations for the total reactions were solved by
an explicit-implicit method, which efficacy was shown elsewhere [9]. For instance, let us express
eq. (7) for the numerical solution as

P1i − P̌1i

∆τ
= γ

(
1− P̌i − P̌1i − P̌2i)(1− P̌i − P1i − P̌2i

)
exp

(
θσ

β(1 + θσ)

)
or

P1i =
P̌1i +

(
1− P̌i − P̌2i

)
Z

1 + Z
, (12)

where Z = ∆τγ
(
1− P̌i − P̌1i − P̌2i

)
exp

(
θσ

β(1 + θσ)

)
. In eq. (10), the numerator is, obviously,

always less than the denominator. Similarly for eqs. (8) and (9):

P2i =
P̌2i +

(
1− P̌i − P̌1i

)
Z

1 + 2Z + 2Z2
, (13)

Pi =
P̌i +

(
1− P̌1i − P̌2i

)
Z

1 + Z3
, (14)

where Z2 = ∆τγzP̌2i

(
1− P̌i − P̌1i − P̌2i

)
exp

(
θσ + ε

β(1 + θσ)

)
, Z3 = ∆τγzP̌ 2

2i exp

(
θσ + ε

β(1 + θσ)

)
.
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In eq. (12), the following notations were accepted: P̌1i is the value P1 in point i of the difference
grid at the moment of time j∆τ ; P1i is the value P1 in point i of the difference grid at the
moment of time (j + 1)∆τ.

To confirm the correctness of the results, the problem was solved using two algorithms: (1)
consecutive calculations at each of the layers in time with the verification of the convergence
with decreasing step in time and number of decompositions of the calculation domain; (2) using
the iteration at each of the layers in time. In the second case, the iterations are repeated until
the result ceases to change (in the selected points) with a given accuracy:∑

(k)

(
θ̃k − θk

)2−1/2

6 ε,

where θ̃k is the solution for the temperature obtained in the previous iteration, θk is current
calculation.

Tabs. 1 and 2 contain the data on the temperature at specific moments of time in point ξ = 0

for h = 0.005 and different steps in time ∆τ . Both the tables illustrate satisfactory convergence
with decreasing step in time. Both the algorithms demonstrate satisfactory convergence also
with increasing number of decompositions of the calculation domain (i.e. with decreasing spatial
step), which is not shown in the tables.

Table 1. Temperature and conversion degree in point ξ = 0 for different time steps for the
problem solution as per the first algorithm

dt t=0.5s. t=1s. t=2s.
0.0025 3.9386 10.7376 67.9454

θ 0.005 3.9153 10.6336 65.6274
0.01 3.8695 10.4418 62.4896

0.0025 1.5441 · 10−4 0.0697 0.4722
P 0.005 1.5252 · 10−4 0.00684 0.4702

0.01 1.488 · 10−4 0.00658 0.466
0.0025 0.02591 0.09022 0.4876

P1 0.005 0.02589 0.08982 0.4856
0.01 0.02584 0.08906 0.4826

0.0025 0.0515 0.1664 0.037
P2 0.005 0.0514 0.1657 0.04

0.0512 0.0513 0.1645 0.046

The iteration method converges, on average, on the 2–6th iteration, depending on the pro-
cess stage: heating, reaction initiation, or process stabilization. The advantage of the iteration
method is in the possibility to use in calculations quite large time steps with satisfactory conver-
gence of the kinetic subproblem. The results below were generally obtained with the following
parameters of the problem: σ = 0.9, ε = 0.01, γ = 0.035, KQ = 0.3, z = 5.

3. Results and discussion

A typical distribution of the temperatures and concentrations in the surface layer at different
moments of time is shown in Fig. 1 for different external pulse durations. The small duration
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Table 2. Temperature and conversion degree in point ξ = 0 for different time steps using iterations

dt t=0.5s. t=1s. t=2s.
0.1 4.0828 12.3788 43.2305

θ 0.04 4.2018 11.3522 51.7492
0.025 3.9876 11.1474 55.5466

0.1 0.00015 0.0111 0.4089
P 0.04 0.00018 0.0084 0.4462

0.025 0.0015 0.0078 0.4566
0.1 0.02912 0.1164 0.4655

P1 0.04 0.02879 0.0989 0.4744
0.025 0.02666 0.0955 0.4776

0.1 0.05746 0.2015 0.0998
P2 0.04 0.05701 0.1786 0.0676

0.025 0.05291 0.1740 0.0574

of the external pulse is insufficient for the reaction in the mixture to continue. Disabling the
source inhibits the reaction, after which the reaction stops (Fig. 1, left side). With increased
pulse duration, there is a self-sustained reaction and stabilization of the process (Fig. 1, right
side). We suppose that the stationary regime was caused by the conditions when the maximum
temperature does not change with the accuracy of 3–5%. Other criteria–connected with the
analysis of various thermodynamic characteristics are also possible. The figures in the center
correspond to some intermediate case, when the stabilization of the process takes long time. In
this case, there are fluctuations in the composition at the initial stage of the process evolution.

The maximum temperature, evidently, grows with the increase of the pulse duration. How-
ever, during the stabilization process, the maximum temperature decreases and approaches some
asymptotic limit. The same is applicable to the fraction of particles in the reaction products
P1 and the fraction of the matrix P. The intermediate product exists in a considerable concen-
tration in the reaction front; however, then, the concentration P2 appreciably drops due to the
end product formation. In the combustion theory, the stationary regime is a limit that should
not depend on the initiation conditions and properties of a system under study. In the investi-
gation of the stabilization process, it cannot be shown. Having a short pulse, the reactions in
the surface layer stop (Fig. 2b, solid lines). In the stationary regime, they condition some end
composition of the composite that depends on the initial composition of the reagents and other
parameters. In out model, the variation of the initial composition is bound with altered relation
of pre-exponential factors of the reactions.

Fig. 3 demonstrate changed composition of the products. The alteration of parameter is
connected with the change to the stationary velocity of the front that can be defined using various
methods (though, all the methods are equivalent to each other). For instance, the velocity can
be calculated from Fig. 3 using the data on the location of the point with fixed value of the
product P concentration at different moments of time. For three values of z = 0.5, 3 and 5, we
get V = 0.365, 0.592 and 0.735, respectively.

After changing parameters γ or β, we get the stationary regime of the composite synthesis
with different velocity and different temperature in the front. However, the composition of the
products remains unchanged.
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a) b) c)

d) e) f)

g) h) i)

j) k) l)

Fig. 1. Temperature and concentration distribution for different pulse durations τ∗ at different
moments of time. a), d), g) and j) correspond to τ∗ = 0.5; b), e), h) and k) correspond to τ∗ = 2;
c), f), i) and l) correspond to τ∗ = 10. Moments of time: а) t = 1) 0.3, 2) 0.5, 3) 0.8, 4) 5,
5) 20, 6) 200; b) t = 1) 0.3, 2) 2, 3) 2.5, 4) 5, 5) 50, 6) 200; c) t = 1) 1, 2) 5, 3) 10, 4) 15,
5) 50, 6) 90, 7) 150, 8) 200; d, g, j) t = 1) 0.3, 2) 0.4, 3) 0.5, 4) 200; e, h, k) t = 1) 0.3, 2) 1.5,
3) 7, 4) 200; f, i, l) t = 1) 1, 2) 5, 3) 20, 4) 50, 5) 105, 6) 155, 7) 200
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a) b)

Fig. 2. Time dependence of the maximum temperature and concentrations in the surface layer.
The solid line corresponds to the calculation of the pulse duration τ∗ = 0.5; the dashed line
corresponds to τ∗ = 2; the dash-dotted line corresponds to τ∗ = 10. Curves 1 in b) correspond
to product P, the curves 2 correspond to product P1, the curves 3 correspond to product P2

a) b)

c) d)

Fig. 3. Temperature and concentration distribution for different values of parameter z at different
moments of time. The solid line corresponds to the parameter value of z = 0.5, the dashed line
corresponds to z = 3, the dash-dotted line corresponds to z = 5, γ = 0.025. Moments of time:
t = 1) 4, 2) 12, 3) 50, 4) 90, 5) 120, 6) 160, 7) 220, 8) 260, 9) 300

4. Transition to the coupled model

The mathematical model that takes into account the mutual influence of thermal, chemical
and mechanical phenomena for the described reaction scheme and built similarly to [10, 11]
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includes an equation that is similar to eq. (3), but including an additional nonchemical source
of heat:

c′ερ
dT

dt
= λ

∂2T

∂x2
−W (t, x) +Q′

1Φ1 +Q′
2Φ2

where

c′ε = cε

(
1 + 3

Kα2
T

ρcε
T
1 + ν

1− ν

)
,

Q′
1 = Q1 − 3KαTT

1 + ν

1− ν
[(α1 − αx) + 2 (α2 − αx)] ,

Q′
2 = Q2 − 3KαTT

1 + ν

1− ν
[(α− αx)− 2 (α2 − αx)] ,

W (t, x) = 2KαT
2− 4ν

1− ν

(x
h
− 1
)
T
d

dt
F (t, x) ,

F (t, x) =
2

h2

∫ h

0

w(t, x)x dx− 4

3h

∫ h

0

w(t, x) dx,

w = 3 [αT (T − T0) + (α1 − αx) (P2 − P20) + (α− αx) (P − P0)] ,

K is the isothermal volume elasticity modulus, ν is the Poisson’s ratio; αT is the linearly coef-
ficient of thermal expansion (averaged in the properties of the reagents and products); α, α1,
α2,αx are the coefficients of concentration expansion of the reagents and reaction products; h
is the sample dimensions along 0X. The alteration of the effective properties (thermal capacity
and thermal effects of the reaction), compared to the uncoupled model, can be interpreted as the
expansion of the variation domain of the model parameters (6)–(11). However, the introduction
of the additional heat source may introduce its own peculiarities; for instance, lead to the expan-
sion of the domain of existence of stationary conversion regime, as compared to the classic works
[12–15 and other] even with due account for the peculiarities in the kinetic functions that reflect
the specificity of the reactions in heterogeneous systems. This should be investigated further.

Conclusions

Therefore, the work proposed the model of composite synthesis with reinforcing inclusions.
The synthesis of the matrix and inclusions is determined by two total parallel-consecutive stages.
Two algorithms for the problem solution on the reaction initiation give similar results. It was
shown that in the model, there is a domain of parameters, where a stationary synthesis regime
is possible. The composition of the products depends on the relation of the model parameters,
including the changes to the initial composition, which in the model is connected with the
alteration of the relation of the reaction pre-exponential factors. The paper presented a coupled
model of the composite synthesis, including the effective properties (depending on the mechanical
characteristics) and an additional heat source, conditioned by the interaction of different physical
processes. The role of the new factors requires additional investigation.

The reported study was funded by RFBR, project no. 20-03-00303.
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Связанная математическая модель синтеза композитов
Анна Г.Князева

Наталья В.Букрина
Институт физики прочности и материаловедения СО РАН

Томск, Российская Федерация

Аннотация. В работе предложена модель синтеза композита «металлическая матрица – упроч-
няющие включения». Решение осуществлено с помощью двух алгоритмов, показывающих близкие
результаты. Показано, что, как и в классических моделях горения, существует область парамет-
ров модели, в которой возможен переход к стационарному режиму. Продемонстрировано, что учет
связанности тепловых и химических процессов приводит к изменению эффективных свойств (теп-
лоемкости и тепловых эффектов реакции) и появлению дополнительного источника тепла, обу-
словленного взаимодействием процессов разной физической природы.

Ключевые слова: синтез композитов, импульсный нагрев, последовательно-параллельные реак-
ции, сравнение алгоритмов.
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1. Introduction and preliminaries

The notion of complexity is widely used in Mathematics and Computer Science in the context
of several various abstract objects. The computational complexity of algorithms, the algebraic
complexity of polynomials, the Rademacher complexity in the computational learning theory or
the social complexity in the social systems are the concepts of great importance in the corre-
sponding fields of science. The present work is devoted to the particular type of complexity –
the analytic complexity of bivariate holomorphic functions.

The notion of analytic complexity is closely related to Hilbert’s 13th problem, which was
solved by A. N. Kolmogorov and V. I. Arnold in 1957 [1]. The initial formulation of Hilbert’s
13th problem asks whether any continuous function of several variables can be represented as
a finite superposition of bivariate functions [17]. The problem of finding similar representations
for analytic functions has given rise to the theory of the analytic complexity. The main objects
under consideration in this theory are the analytic complexity classes.

Definition 1 (See [2]). Let O(U(x0, y0)) denote the set of holomorphic functions in an open
neighborhood U(x0, y0) of a point (x0, y0) ∈ C2. The class Cl0 of analytic functions of analytic
complexity zero is defined to comprise the functions that depend on at most one of the variables.
A function f(x, y) is said to belong to the class Cln of functions with analytic complexity n > 0 if
there exists a point (x0, y0) ∈ C2 and a germ f(x, y) ∈ O(U(x0, y0)) of this function holomorphic
at (x0, y0) such that f(x, y) = c(a(x, y) + b(x, y)) for some germs of holomorphic functions a, b ∈
Cln−1 and c ∈ Cl0. If there is no such representation for any finite n, then the function f is
said to be of infinite analytic complexity.

∗Krasikov.VA@rea.ru
c⃝ Siberian Federal University. All rights reserved
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Example 1. A generic element of the first complexity class Cl1 is a function of
the form f3(f1(x) + f2(y)). A function in Cl2 can be represented in the form
f7 (f5(f1(x) + f2(y)) + f6(f3(x) + f4(y))) , where fi(·) are univariate holomorphic functions,
i = 1, . . . , 7.

For any class of analytic complexity Cln, n ∈ N there exists a system of differential polyno-
mials with constant coefficients ∆n which annihilates a function if and only if it belongs to Cln.

Example 2 (See [2]). For a bivariate function f(x, y) consider the differential polynomial

∆1(f) = f ′x(f
′
y)

2f ′′′xxy − (f ′x)
2f ′yf

′′′
xyy + f ′′xy(f

′
x)

2f ′′yy − f ′′xy(f ′y)2f ′′xx.

This differential polynomial vanishes if and only if its argument f ∈ Cl1.

The problem of defining whether a function belongs to an analytic complexity class is equiv-
alent to computing the corresponding system of differential polynomials. Note that this is a
problem of formidable computational complexity [4, 11] and a direct approach to its solution
appears to be inappropriate.

An important question is a possible connection between the classes of finite analytic com-
plexity and hypergeometric functions. In this paper we consider hypergeometric functions
as solutions of hypergeometric systems in the sense of Horn [8, 10]. We choose a matrix
A ∈ Zm×n = (Aij , i = 1, . . . ,m, j = 1, . . . , n) and a vector of parameters c = (c1, . . . , cm) ∈ Cm.
We denote the rows of this matrix by Ai, i = 1, . . . ,m.

Definition 2. The hypergeometric system (or the Horn system) Horn(A, c) is the following
system of partial differential equations:

xjPj(θ)f(x) = Qj(θ)f(x), j = 1, . . . , n, (1)

where

Pj(s) =
∏

i:Aij>0

Aij−1∏
l
(i)
j =0

(
⟨Ai, s⟩+ ci + l

(i)
j

)
,

Qj(s) =
∏

i:Aij<0

|Aij |−1∏
l
(i)
j =0

(
⟨Ai, s⟩+ ci + l

(i)
j

)
,

and θ = (θ1, . . . , θn), θj = xj
∂

∂xj
.

It has been conjectured in [14] that any hypergeometric function has finite analytic complexity.
Hypergeometric systems of equations differ greatly from the differential criteria for the analytic
complexity classes, but numerous computer experiments suggest that the conjecture is true in a
lot of particular cases [6, 7]. The case of hypergeometric systems with low holonomic rank has
been considered in [9].

The set of functions of infinite analytic complexity is also a matter of interest. Until recently,
all known examples of such functions were differentially transcendental functions, that is, func-
tions that are not solutions to any nonzero differential polynomial with constant coefficients.
Important examples of differentially algebraic functions of infinite analytic complexity have been
presented in [15,16].

A bivariate hypergeometric system can be defined by an integer convex polygon and a complex
vector of parameters as explained in the next definition.
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Definition 3. Let li denote the generator of the sublattice {s ∈ Zn : ⟨Ai, s⟩ = 0} and let
ki be the number of elements in the set {A1, . . . ,Am}, which coincide with Ai. Let us define
the polygon P(A) (see [13]) as the integer convex polygon whose sides are translations of the
vectors kili, the vectors A1, . . . ,Am being the outer normals to its sides. We will say that the
hypergeometric system Horn(A, c) is defined by the polygon P(A) and the vector c ∈ C.

Definition 4. A polygon is called a zonotope if it can be represented as the Minkowski sum of
segments.

In this article we investigate the analytic complexity of solutions to hypergeometric systems
of equations (1) defined by zonotopes.

The present paper is organized as follows. In Section 2 we investigate particular cases of hy-
pergeometric systems defined by zonotopes and analyze the analytic complexity of their solutions.
We formulate and prove an estimate of the analytic complexity for Puiseux polynomial solutions
to such systems in terms of the defining matrices and parameter vectors. In Section 3 we present
algorithms for finding the supports of Puiseux polynomial solutions to hypergeometric systems
and estimating the analytic complexity of polynomials. In Section 4 we consider examples of
hypergeometric systems and estimate the analytic complexity of their solutions. Throughout
the rest of the paper by «polynomial solutions to hypergeometric systems» we mean Puiseux
polynomial solutions.

We use the Wolfram Mathematica package HyperGeometry for solving hypergeometric
systems we investigate in this article. The package is available for free public use at
https://www.researchgate.net/publication/318986894_HyperGeometry, the description of avail-
able functions is given in [12].

2. Hypergeometric systems defined by zonotopes

Let us consider the special case of hypergeometric systems defined by zonotopes. Numerous
experiments suggest that the analytic complexity of polynomial solutions to such systems can be
much lower than its estimate based on their supports (see [3, Proposition 4]).

The set of hypergeometric systems defined by zonotopes enjoys the following properties:

a) these systems are holonomic for generic values of parameters;

b) the holonomic rank of a hypergeometric system (see Theorem 2.5 in [5]) is given by

rank(Horn(A, c)) = d1d2 −
∑

Ai,Aj lin. dependent

νij , (2)

where dj =
m∑

i = 1
Aij > 0

Aij , j = 1, 2 and

νij =

{
min(|Ai1Aj2|, |Aj1Ai2|), if Ai,Aj are in opposite open quadrants of Z2,

0, otherwise.

For the hypergeometric systems defined by zonotopes there is another formula for computing
their holonomic rank (see Proposition 1 in [9]), which in some cases may be more suitable;

c) for any number of rows (ai, bi) belonging to the matrix A defining such a system, A contains
the same number of rows (−ai,−bi). Thus the rows of A can be grouped into two matrices Â,−Â.
This representation is in general not unique.
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d) for a hypergeometric system defined by a zonotope one can always choose parameter
values such that any solution to the resulting system is a polynomial (see [10, Proposition 6.5]).
Namely, for such a hypergeometric system Horn(A, c), where the matrix A contains 2k rows,
let α = (α1, . . . , αk) be the part of the parameter vector c, corresponding to the matrix Â (see
the property (c) above), β = (β1, . . . , βk) be the part of this vector corresponding to −Â. By
Proposition 4.7 in [10] the general solution to Horn(A, c) is a polynomial if −αi − βi ∈ N\{0}
for i = 1, . . . , k.

The simplest instance of a zonotope is a parallelogram. The analytic complexity estimate of
the solutions to the systems defined by parallelograms is the basis for more complex cases.

Proposition 1. The analytic complexity of a solution to a hypergeometric system defined by a
parallelogram cannot exceed 2.

Proof. The solutions to the hypergeometric system Horn(A, c) defined by a parallelogram have
been described in Proposition 4.7 in [10]. For a bivariate system (n = 2) this formula leads to

(x−a11
1 x−a21

2 )α1
(
1 + x−a11

1 x−a21
2

)−α1−β1 · (x−a12
1 x−a22

2 )α2
(
1 + x−a12

1 x−a22
2

)−α2−β2
,

where A−1 =

(
a11 a12
a21 a22

)
, c = (α1, α2, β1, β2). The monomials x−a11

1 x−a21
2 and x−a12

1 x−a22
2

both belong to Cl1, thus for any univariate analytic functions ϕ(·), ψ(·) the product
ϕ(x−a11

1 x−a21
2 ) · ψ(x−a12

1 x−a22
2 ) belongs to Cl2. �

The following example shows that the solutions to hypergeometric systems defined by more
complex polygons can still have low analytic complexity.

Example 3. A simple zonotope. Let us consider the hypergeometric system Horn(A′, c′)

defined by the matrix A′ =

(
1 −1 1 −1 0 0
1 −1 0 0 1 −1

)T

and the parameter vector c′ =

(−23, 22,−10, 0,−9, 0). Using the formula (2) we conclude that the holonomic rank of this sys-
tem is equal to 3. The hypergeometric system Horn(A′, c′) is defined by the zonotope shown in
Fig. 1.
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Fig. 1. Polygon defining the system Horn(A′, c′), and its representation as the Minkowski sum
of segments

The support of the polynomial solutions to the system Horn(A′, c′) is shown in Fig. 2.
Let us consider the part of the solution p0(x, y) whose support is bounded by the straight lines

parallel to the coordinate axes. Note that p0(x, y) contains 110 monomials (we do not put here the
whole expression due to its large size) and the known estimates for polynomials [3, Proposition 4]
imply that the analytic complexity of p0(x, y) does not exceed 5. Indeed, the support of p0(x, y)
lies in the union of 10 lines parallel to the s axis. The analytic complexity of the polynomial
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Fig. 2. The support for the solution of the system Horn(A′, c′)

whose support lies on a straight line parallel to an axis cannot exceed 1. Then the analytic
complexity of the sum of k such polynomials cannot exceed 1+ ⌈log2 k⌉, where by ⌈x⌉, x ∈ R we
denote the smallest integer not exceeding x. Later we prove that in fact the analytic complexity
of p0(x, y) does not exceed 3.

In general, appending a pair of rows (ai, bi), (−ai,−bi) to the matrix defining a hypergeometric
system is equivalent to adding a pair of parallel straight lines bounding the support of the solution
in the exponent space. Let the hypergeometric system be defined by a parallelogram, and let
p0(x, y) =

∑
(s,t)∈S

cs,t · xsyt be a polynomial solution of this system with the support S. Adding

a pair of straight lines in the exponent space leads to the system whose solution is given by

p1(x, y) =
∑

(s,t)∈S

Γ (α1s+ β1t+ γ1 + 1)

Γ (α1s+ β1t+ γ1)
· cs,t · xsyt =

∑
(s,t)∈S

(α1s+ β1t+ γ1)x
syt =

= (α1θx + β1θy + γ1)
∑

(s,t)∈S

cs,tx
syt = (α1θx + β1θy + γ1) p0(x, y).

Using this formula repetitively we obtain the solution for k additional pairs of
rows (ai, bi), (−ai,−bi):

pk(x, y) =

(
k∏

j=1

(αjθx + βjθy + γj)

)
p0(x, y).

Thus the estimate for the analytic complexity of pk(x, y) depends on the analytic complexity
of p0(x, y). This dependence is described in detail in the following Proposition and its corollaries.

Recall that we use the notation θx = x
∂

∂x
, θy = y

∂

∂y
and αj , βj , γj ∈ C, j = 1, . . . , k.
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Proposition 2. If f(x, y) ∈ Cln then (αθx + βθy + γ)f(x, y) ∈ Cl2n+1.

Proof. We use induction by n to show that (αθx + βθy)f(x, y) ∈ Cl2n.
For n = 1 we can represent f(x, y) in the form f(x, y) = c(a(x) + b(y)).

(αθx + βθy)c(a(x) + b(y)) = c′(a(x) + b(y)) · (αxa′(x) + βyb′(y)) ,

and this function belongs to Cl2 as a product of Cl1 functions. If the statement holds for all
n < N, and f(x, y) belongs to ClN , which means it can be represented as f(x, y) = h(f1(x, y) +

f2(x, y)), where f1(x, y), f2(x, y) ∈ ClN−1, then

(αθx + βθy)h(f1(x, y) + f2(x, y)) =

= h′(f1(x, y) + f2(x, y)) ((αθx + βθy)f1(x, y) + (αθx + βθy)f2(x, y)) .

Both of the functions f1(x, y) and f2(x, y) belong to ClN−1, so the estimate of the analytic
complexity for (αθx + βθy)fi(x, y), i = 1, 2 is Cl2N−2. Then their sum belongs to Cl2N−1 and,
after the multiplication of the result by h′(f1(x, y) + f2(x, y)) ∈ ClN , the product belongs to
Cl2N . Thus we conclude that for any n, if f(x, y) ∈ Cln then (αθx + βθy)f(x, y) ∈ Cl2n. Adding
γf(x, y) ∈ Cln to this expression we obtain a function in Cl2n+1. �

Corollary 1. For any f(x, y) ∈ Cln the analytic complexity of(
k∏

j=1

(αjθx + βjθy + γj)

)
f(x, y)

cannot exceed 2k(n+ 1)− 1.

Corollary 2. Assume that the analytic complexity of a polynomial solution p0(x, y) to the hy-
pergeometric system Horn(Ã, c̃) does not exceed n, S is a support of p0(x, y). Let the matrix A be
obtained from Ã by appending k pairs of vectors (ai, bi), (−ai,−bi), vector c be obtained from c̃ by
appending 2k elements. Then the analytic complexity of a polynomial solution with the support S
to the hypergeometric system Horn(A, c) does not exceed 2k(n+ 1)− 1.

Example 3.(Continued). Let us use Corollary 2 to estimate the analytic complexity of a solution
to the system Horn(A′, c′). To do this, consider the system Horn(Ã′, c̃′), defined by the matrix

Ã′ =

(
1 0 0 −1
0 1 −1 0

)T

and the vector of parameters c̃′ = (−10,−9, 1, 1). This system differs

from the original one only by the absence of the pair of straight lines with the normal vectors (1, 1)
and (−1,−1) bounding the support of the solution. Thus this support for the system Horn(Ã′, c̃′)

coincides with the support of p0(x, y). Note that this system is defined by a parallelogram and
hence by Proposition 2 the analytic complexity of its solutions cannot exceed 2. Computations
show that the basis in the space of solutions to the system Horn(Ã′, c̃′) consists of the single
function (x− 1)10(y − 1)9 ∈ Cl1, and hence p0(x, y) ∈ Cl3 by Corollary 2. The supports of two
other solutions to Horn(A′, c′) lie on two parallel straight lines, so a linear combination of these
solutions belongs to Cl3, and the general solution to Horn(A′, c′) is a function in Cl4.

The following theorem is the main theoretical result of the paper. It contains the general
estimate of the analytic complexity for polynomial solutions to hypergeometric systems defined
by zonotopes.
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Theorem 1. Let Horn(A, c) be a hypergeometric system defined by a zonotope. Assuming that
the matrix A contains 2k rows, consider the matrices Â and −Â such that the union of their rows
coincides with the set of rows of A. Let α be a part of the parameter vector c corresponding to the
matrix Â, β be a part of this vector corresponding to −Â, and define the vector ĉ = (ĉ1, . . . , ĉk)
by ĉi = −αi − βi.

If ĉi ∈ N\{0}, i = 1, . . . , k, then the analytic complexity of the general solution to Horn(A, c)
does not exceed

min

(
3 · 2k−2 − 1 +

⌈
log2

k(k − 1)

2

⌉
, 2 +

⌈
log2( max

i=1,...,k
ĉi + 1)

⌉
+
⌈
log2(k − 1)

⌉)
.

Proof. For any system defined by a parallelogram the condition ĉi ∈ N\{0} provides the existence
of a polynomial solution (see [10, Proposition 4.7] and the proof of Proposition 2.). Appending
of the rows (ai, bi), (−ai,−bi) to the matrix defining the hypergeometric system affects only the
coefficients of this solution but not its support. Without loss of generality we can choose a vector
of parameters c such that the support of the general solution to Horn(A, c) coincides with a union
of supports of the solutions to a finite number of systems defined by parallelograms (see proof of
Proposition 6.5 in [10]). Thus the condition ĉi ∈ N\{0} provides the existence of a polynomial
basis in the space of solutions to Horn(A, c).

The matrix A contains 2k rows, so supports of the solutions are bounded by k pairs of straight
lines. Let us assign a natural number from 1 to k to each pair of lines. The union of these supports

is a subset of
k(k − 1)

2
parallelogram intersections (it is the sum of an arithmetic progression),

each intersection we denote as �i,j , where i ∈ {1, . . . , k} and j ∈ {1, . . . , k} are numbers assigned
to pairs of straight lines which form the intersection, i < j. For any (i, j) ∈ {1, . . . , k}2 the
solution to Horn(A, c) whose support lies in the intersection �i,j belongs to Cl3·2k−2−1 (by

Corollary 2). The analytic complexity of the sum of
k(k − 1)

2
functions in Cl3·2k−2−1 (that is, the

analytic complexity of the general solution to Horn(A, c)) cannot exceed estim1

(
k∪

i,j=1

�i,j

)
=

= 3 · 2k−2 − 1 +
⌈
log2

k(k − 1)

2

⌉
(see [3, Section 5]).

On the other hand, there is the estimate based on the number of parallel straight lines con-
taining the points of the support (see Proposition 4 in [3]). While the analytic complexity of any
polynomial with the support belonging to a straight line does not exceed 2, the number of these
lines corresponding to the i-th row of Â equals ĉi+1. Thus for any i the analytic complexity of the

part of the solution whose support belongs to
k∪

j=1

�i,j cannot exceed 2 + ⌈log2( max
i=1,...,k

ĉi + 1)⌉.

Note that there is no need to use all of k pairs of bounding straight lines to estimate the an-
alytic complexity of the general solution this way, since k − 1 pairs already bound the whole
support of the solution. The sum of k − 1 elements in Cl2+⌈log2( max

i=1,...,k
ĉi+1)⌉ cannot exceed

estim2

( k∪
i,j=1

�i,j

)
= 2 + ⌈log2

(
max

i=1,...,k
ĉi + 1

)
⌉ + ⌈log2(k − 1)⌉. The minimal of the numbers

estim1

( k∪
i,j=1

�i,j

)
, estim2

( k∪
i,j=1

�i,j

)
is the sought estimate. �

An example of using the estimate given in Theorem 1 is shown in Fig. 3. Note that there
are three sets of parallel lines, each corresponding to one of the ĉi. For each of the parallelogram
intersections there are 2 estimates: estim1(�i,j), based on Corollary 2 and estim2(�i,j) based
on Proposition 4 in [3].
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Fig. 3. The analytic complexity estimate for a polynomial solution to a simple hypergeometric
system

We order ĉi by the ascension and choose v to be a vector with the elements vi =

= min
(
2 + ⌈log2(ĉi + 1)⌉, 3 · 2k−2 − 1+ ⌈log2(k − i)⌉) , i = 1, . . . , k − 1. To find more accurate

value for the analytic complexity estimate from Theorem 1, one could use Algorithm 2 from
Section 3 using v as an input vector. The general estimate from Theorem 1 can be rough, if
values of ĉi vary greatly for different i. For example in Fig. 3 estim2(�1,2) = estim2(�1,3) = 3,

estim2(�2,3) = 4, and for the general estimate we use the maximal of these values. The vector
v in this case provides the choice of the better estimate.

3. Algorithms of analytic complexity estimation

The following algorithm allows one to compute the analytic complexity of any given bivariate
polynomial.

Algorithm 1: Finding an analytic complexity estimate for a polynomial
Input: p(x, y) - a polynomial, x, y ∈ C.
Output: N - an estimate for the analytic complexity of p(x, y).

1 result← 0

2 short← {}
3 polys← {pi(x, y)|p(x, y) =

∑
i

pi(x, y), Supp pi(x, y)||Supp pj(x, y)∀i, j}

4 for p ∈ polys do
5 curr = getShort(p)

6 if curr ̸⊂ short then
7 result += 1

8 short = short ∪ curr
9 N ← 2 + ⌈Log2(result)⌉

The main advantage of this algorithm compared to the existing ones is its ability to distinct
the powers of lower degree polynomials included in the original polynomial as summands. With-
out this feature, even the analytic complexity of the function like p(a(x) + b(y)) ∈ Cl1, where
p(t), a(x), b(y) are univariate polynomials, is estimated based on its support, which becomes very
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inaccurate with the growth of degree of p(t).
The input of the function getShort() is a homogeneous polynomial and the output contains

elements of its decomposition into the sum of powers. Note that the definition of polys assumes
the ambiguity of the representation of the polynomial as the sum of finitely many polynomials
supported in parallel straight lines. Any of such representations yields an estimate, but some of
them may be better than the other ones.

To estimate the analytic complexity of the general solution to the hypergeometric system
from Theorem 1 one can use the following algorithm.

Algorithm 2: Finding an analytic complexity estimate for a sum of functions
Input: c = {c1, c2, . . . , cn} - a set of known estimates of the analytic complexity values for

bivariate functions f1(x, y), f2(x, y), . . . , fn(x, y), where (x, y) ∈ C2.

Output: N - an estimate for the analytic complexity of the function
n∑

i=1

fi(x, y).

1 while c contains more than 1 element do
2 find 2 minimal elements of c, namely, ci and cj .
3 c = (c ∪ {max(ci, cj) + 1})\{ci, cj}.
4 N ← only element of c.

Algorithm 2 is finite, since at each step the number of elements in c decreases by 1.

The following algorithm allows one to find the support of a polynomial solution to a given
hypergeometric system defined by a zonotope, provided that such a solution exists. The algorithm
is based on Proposition 4.7 in [10].

Algorithm 3: Constructing the support of a polynomial solution to a hypergeometric
system
Input: the matrix A, the parameter vector c for the hypergeometric system Horn(A, c)

defined by a zonotope
Output: supp - the support for the polynomial solution to Horn(A, c).

1 supp← {}
2 find Â : rows(Â)∪ rows(−Â) = rows(A)
3 for (ri, rj) ⊂ rows(Â), i < j do
4 Ai,j ← (ri, rj)

T

5 α← elements of c corresponding to (ri, rj)

6 β ← elements of c corresponding to (−ri,−rj)
7 if −αj − βj > 0 for j = 1, 2 then

8 supp = supp ∪ Supp
(
x−A−1

i,jα
(
1 + x−A−1

i,j e1
)−α1−β1

(
1 + x−A−1

i,j e2
)−α2−β2

)
9 else

10 the general solution to Horn(A, c) is not a polynomial

For some pairs of rows ri, rj the solution to the corresponding system defined by a parallelo-
gram is not a polynomial. In this case, a part of the basis in the solution space can still consist
of polynomials, and their supports can be found by means of Algorithm 3.

4. Examples

Example 3 (Continued). Let us replace the parameter vector c′ in the system Horn(A′, c′) by
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the vector (k, 0, 0, 0, 0, 0). The corresponding system is given by

xθx(θx + θy + k)− θx(θx + θy),

yθy(θx + θy + k)− θy(θx + θy).

A basis in its solution space is given by 1, log
x

x− 1
+

k−1∑
j=1

(−1)j

j(x− 1)j
, log

y

y − 1
+

k−1∑
j=1

(−1)j

j(y − 1)j
,

so there is no polynomial basis for these parameter values. Nevertheless, the analytic complexity
of the general solution is equal to 1.

The present example shows that the analytic complexity of solutions to hypergeometric sys-
tems can be heavily dependent on parameter vectors defining these systems. A resonant choice
of their parameters can drastically reduce the analytic complexity of general solutions to such
systems.

Example 4. An octagon zonotope. Consider Example 6.8 in [10]. In order to find the analytic
complexity of a polynomial solution to the hypergeometric system defined by the matrix

A =

(
1 −1 −1 1 −3 3 2 −2
2 −2 1 −1 −2 2 −1 1

)T

and the vector of parameters c = (3,−5,−2, 1,−2,−1,−1,−1) we can use the basis of the
solutions to this system, computed in [10]. There are 3 solutions whose analytic complexity is
equal to 2, and 28 solutions in Cl1, two of them also belonging to Cl0. Therefore the analytic
complexity of the general solution to this system cannot exceed 7. Note that this estimate is
based on a trivial grouping of the basis functions into pairs, but the very specific structure of
the solution support makes it possible to show that the analytic complexity does not exceed 6.

Let us estimate the analytic complexity of the general solution to this system using Theorem 1.
The vector ĉ, ordered by the ascension, is (1, 2, 2, 3). Then the vector v = (3, 4, 4) (it includes only
support-based estimates, because of low values of the elements of ĉ), and, by using Algorithm 2,
we conclude that the general solution belongs to Cl6.

Futhermore, we can estimate the analytic complexity of a solution to any hypergeometric
system we obtain by appending a pair of rows to A (the only condition is that these rows
are not collinear to the rows of A). Note that this estimate does not depend much on the
difference between new parameters. If this difference is big, it becomes the last element of
the ordered vector ĉ, and does not affect the new vector v, the new element of the vector v is
equal to 2 + ⌈log2(3 + 1)⌉ = 4, and the resulting analytic complexity is 6. On the contrary, if
this difference is low, for example, if it is equal to 1, the new vector ĉ = (1, 1, 2, 2, 3), the new
vector v = (3, 3, 4, 4), and the analytic complexity is also equal to 6. Thus we conclude that
appending 2 rows to the matrix A does not affect the analytic complexity of the solution to the
system.

Example 5. A decagon zonotope. Consider the hypergeometric system Horn(A1, c1), defined by
the matrix (

−1 1 0 0 −2 2 3 −3 3 −3
0 0 −1 1 1 −1 1 −1 2 −2

)T

(3)

and the parameter vector c1 = (−1, 0, 4,−5, 1,−4,−9, 6,−4, 0). The zonotope defining the ma-
trix 3 is shown in Fig. 4.

By Theorem 2.5 in [5] the holonomic rank of the system Horn(A1, c1) equals 34. The support
to the solution to this system computed by the means of Algorithm 3 is shown in Fig. 5.

A polynomial basis in the solution space to Horn(A1, c1) consists of the 4 monomials
x6

y9
,
x17/3

y8
,
x3

y3
,
x8/3

y2
and 30 polynomials
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Fig. 4. The zonotope which defines the matrix (3)

1

xy6
+

5643

637xy5
+

247095

8281xy4
+

329460

8281xy3
+

27455

286y4
+

82365

49y3
+

741285

49y2
+

724812

7y
,

20y3

63x
− 4y2

35x
+

4y2

5
− 18y

5
+ 1,

3y3/2

380x
− 3969y5/2

41990x
+

1323y7/2

16796x
− 51

55
y3/2 +

√
y,

− 11y12

115311x
− 33y11

38437x
− 297y10

100555x
− 24y9

5915x
+

3y9

1105
+
y8

26
+

36y7

143
+ y6, xy4 − 2

13
xy5,

8y5

99x
+

4y4

3x
+

50y5

81
+ y4,

1550775x7/2y5

82808479
− 31465x9/2y5

61400001
+ x5/2y4 − 5175x7/2y4

89947
,

1547x4y5

103455
− 91x4y4

6840
− 91x3y5

1026
+ x3y4,

806y5

129x8/3
+

84656y4

735x5/3
+

y4

x8/3
,

x13/3

y6
+

451x13/3

261y5
,

87y5

82x7/3
+

5220y5

275561x10/3
+

36575y4

2392x4/3
+

y4

x7/3
,

44y5

1183x3
+

33y5

182x2
+
y4

x2
,

x16/3

y8
+

1378x16/3

451y7
,

− 21

46
x2/3y5 + x2/3y4 +

119

286
x5/3y4, − 12

247
x4/3y5 + x4/3y4 − 364 3

√
xy5

1045
,

2x

7y
+ x,

11985

299
x8/7y2/7 +

14382x8/7

253y5/7
+
x8/7

y12/7
,

1200x2/7

1643y3/7
+

345x9/7

31y3/7
+
x9/7

y10/7
,

x10/3

y4
+

261x10/3

238y3
,

114774x6/7y5/7

28405
+

1188x6/7

65y2/7
+
x6/7

y9/7
,

x10/7

y8/7
+

731x3/7

638 7
√
y

+
1763x10/7

754 7
√
y
,

x4/7

y6/7
+

32680x11/7

8613y6/7
+

1558

261
x4/7 7
√
y,

169

150
x5/7y3/7 +

x5/7

y4/7
+

65x12/7

136y4/7
,

− 1

66
5x2y3 +

5

7
x2y2 − 45

28
x2y + x2, x11/5y2/5 − 4301x11/5y7/5

4277
+

232254x11/5y12/5

1056419
,

x9/5y3/5 − 1287x9/5y8/5

1634
+

55913x9/5y13/5

346408
, x12/5y4/5 − 68

19
x7/5y9/5 − 116

231
x12/5y9/5,

x8/5y6/5 +
5824x13/5y6/5

432837
− 1064x8/5y11/5

2829
,

x5

y7
+

8x5

15y6
− 21x4

55y6
− 182x4

15y5
− 91x4

24y4
,

x14/3

y7
+

828x14/3

85y6
− 585488x11/3

48825y5
+

21758x14/3

23715y5
− 2488324x11/3

35805y4
.

There are 14 functions in Cl1 and 20 functions in Cl2\Cl1 among these polynomials.
The analytic complexity estimate of the general solution to Horn(A1, c1) obtained by grouping

these functions into pairs is Cl7. Theorem 1 gives a better estimate: since ĉ = (2, 2, 3, 3, 4),
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Fig. 5. The support for the solution of the system Horn(A1, c1)

v = (4, 4, 4, 4), it follows that the general solution belongs to Cl6.

The following examples present hypergeometric systems defined by polygons other than zono-
topes whose solutions have low analytic complexity.

Example 6. A pentagon. The matrix
(

1 −1 0 1 −1 0 0
1 0 −1 0 0 −1 1

)T

and the vector of

parameters (−4, 0, 0,−1,−2,−1,−2) define the hypergeometric system

x(θx + θy − 4)(θx − 1)− θx(θx − 2),

y(θx + θy − 4)(θy − 1)− θy(θy − 2).
(4)

This system is holonomic and its holonomic rank equals 4. The pure basis (see [10]) in its solution
space is given by the Taylor polynomials

x2y2, 1− 4x− 4y + 12xy, 6x2 − 4x3 + x4 − 12x2y + 4x3y, 6y2 − 12xy2 − 4y3 + 4xy3 + y4.

The first and the second of these polynomials belong to Cl1, the third and the fourth belong
to Cl2. Thus the general solution is a function in Cl4.

Example 7. A trapezoid, high holonomic rank. A basis in the solution space of the hypergeo-
metric system with holonomic rank k defined by the operators

xθk−1
x (θx + θy)− (−1)kθkx,

y(θx + θy) + θy.

is given by {logj((y + 1)/x), j = 0, . . . , k − 1} (see Fig. 6). The generating solution equals
logk−1((y + 1)/x). Thus the general solution to this system belongs to Cl1 by the conserva-
tion principle. This example shows that the analytic complexity of solutions to hypergeometric
systems with high holonomic rank can still be low.
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Fig. 6. a) the supports of solutions to the system (4); b) polygon defining the system (4)

Example 8. A triangle with no symmetries. The hypergeometric system

x(θx+ θy− 4)(θx+ 2θy− 4)− (2θx + 3θy − 4)(2θx + 3θy − 5),

y(θx+ θy− 4)(θx+ 2θy− 4)(θx+ 2θy− 3)− (2θx+ 3θy − 4)(2θx + 3θy − 5)(2θx + 3θy − 6)
(5)

is holonomic and its holonomic rank equals 6. The pure basis in its solution space is given by
the Laurent polynomials

x−4y4, x−2y3, x7y−3, x8y−4, 3y2 + 2x−1y2,

6x2 + 12x3 + x4 + 4x5y−2 + 6x6y−2 − 12x4y−1 − 4x5y−1 − 12xy − 4x2y.

In the Fig. 7 the small filled circles correspond to monomial solutions, the two empty circles
indicate the binomial solution and the big filled circles correspond to the remaining polynomial
solution. The analytic complexity of the general solution to the system (7) does not exceed 5.
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Fig. 7. The supports of solutions to the system (5)
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Верхние границы аналитической сложности решений
двумерных гипергеометрических систем в классе
многочленов Пюизо

Виталий А.Красиков
Российский экономический университет им. Г. В. Плеханова

Москва, Российская Федерация

Аннотация. В статье исследуется аналитическая сложность решений двумерных голономных ги-
пергеометрических систем типа Горна. Получены оценки аналитической сложности решений в
классе многочленов Пюизо для гипергеометрических систем, заданных зонотопами. Также пред-
ложены алгоритмы для оценки аналитической сложности многочленов.

Ключевые слова: гипергеометрические системы дифференциальных уравнений в частных про-
изводных, голономный ранг, полиномиальные решения, зонотопы, аналитическая сложность, диф-
ференциальный многочлен.
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Introduction
Lie algebra is an algebra satisfying the anticommutativity identity and the Jacobi identity.

The derivations of finite-dimensional Lie algebras are a well-studied direction of the theory of Lie
algebras. It should be noted that the space of all derivations of Lie algebras is also Lie algebra
with respect to the commutator. In the set of derivations of Lie algebras, there exist subsets
of the so-called inner derivations. Naturally, there is a question: in what classes of algebras do
derivations exist? and which are not inner? For the semisimple Lie algebras the sets of inner
derivations and derivations coincide [14].

Almost inner derivations of Lie algebras were introduced by C. S. Gordon and E. N.Wilson [13]
in the study of isospectral deformations of compact manifolds. Gordon and Wilson wanted to
construct not only finite families of isospectral nonisometric manifolds, but rather continuous
families. They constructed isospectral but nonisometric compact Riemannian manifolds of the
form G/Γ, with a simply connected exponential solvable Lie group G, and a discrete cocompact
subgroup Γ of G. For this construction, almost inner automorphisms and almost inner derivations
were crucial.

Gordon and Wilson considered not only almost-inner derivations, but they studied almost
inner automorphisms of Lie groups. The concepts of "almost inner" automorphisms and deriva-
tions, almost homomorphisms or almost conjugate subgroups arise in many contexts in algebra,
number theory and geometry. There are several other studies of related concepts, for example,
local derivations, which are a generalization of almost inner derivations and automorphisms [2,3].

In [4] we initiated the study of derivation type maps on non-associative algebras, namely,
we investigated so-called 2-local derivations on finite-dimensional Lie algebras, and showed an
essential difference between semisimple and nilpotent Lie algebras is the behavior of their 2-local
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derivations. The present paper is devoted to local derivation on finite-dimensional Lie algebra
over an algebraically closed field of characteristic zero.

Local derivation first was considered in 1990, Kadison [16] and Larson and Sourour [18]. Let
X be a Banach A-bimodule over a Banach algebra A, a linear mapping ∆ : A → X is said to
be a local derivation if for every x in A there exists a derivation Dx : A → X, depending on x,
satisfying ∆(x) = Dx(x).

The main problems concerning this notion are to find conditions under which local derivations
become derivations and to present examples of algebras with local derivations that are not
derivations [8, 16, 18]. Kadison proves in [16, Theorem A] that each continuous local derivation
of a von Neumann algebra M into a dual Banach M -bimodule is a derivation. This theorem
gave rise to studies and several results on local derivations on C∗-algebras, culminating with a
definitive contribution due to Johnson, which asserts that every continuous local derivation of
a C∗-algebra A into a Banach A-bimodule is a derivation [15, Theorem 5.3]. Moreover in his
paper, Johnson also gives an automatic continuity result by proving that local derivations of a
C∗-algebra A into a Banach A-bimodule X are continuous even if not assumed a priori to be so
(cf. [15, Theorem 7.5]).

In the theory of Lie algebras, there is a theorem which says that in the finite-dimensional
nilpotent Lie algebra there are not inner (i.e. outer) derivations [12]. We give an Example 2.1
to shows that that there exists 4-dimensional nilpotent Lie algebras, where any almost inner
derivation is an outer derivation, and the converse is true also. But this question is still open for
the general case. In [9] authors study almost inner derivations of some nilpotent Lie algebras.
Prove the basic properties of almost inner derivations, calculate all almost inner derivations of
Lie algebras for small dimensions. They also introduced the concept of fixed basis vectors for
nilpotent Lie algebras defined by graphs and studied free nilpotent Lie algebras of the nilindex
2 and 3.

We recall that the study of almost-inner derivations of the Leibniz algebras is an open problem.
Therefore in this paper we consider almost-inner derivations for some nilpotent Leibniz algebras.
We prove the basic properties of almost inner derivations of the Leibniz algebras. We get almost
all inner derivations of four-dimensional nilpotent Leibniz algebras. The study of the inner
derivations of nilpotent Leibniz algebras is a very difficult problem. Therefore, we consider some
subclasses of these nilpotent algebras. We study almost inner derivations of the null-filiform
Leibniz algebras, and also consider almost inner derivations of the some filiform Leibniz algebras.

1. Preliminaries

Definition 1.1. An algebra L over a field F is called the Leibniz algebra if for all x, y, z ∈ L
the Leibniz identity holds:

[x, [y, z]] = [[x, y], z]− [[x, z], y],

where [ , ] is the multiplication in L.

For an arbitrary Leibniz algebra L, we define a sequence:

L1 = L, Lk+1 = [Lk, L1], k > 1.

The Leibniz algebra L is said to be nilpotent if there exists s ∈ N such that Ls = 0. The
minimal number s with this property is called the nilpotency index or nilindex of the algebra L.

We recall that the Leibniz algebra is called
null-filiform, if dimLi = (n+ 1)− i, 1 6 i 6 n+ 1;
filiform, if dimLi = n− i, 2 6 i 6 n.
Let L be a nilpotent Leibniz algebra with nilindex s.
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We consider Li = Li/Li+1, 1 6 i 6 s−1 and grL = L1⊕L2⊕ · · ·⊕Ls−1. Then [Li, Lj ] ⊆ Li+j

and we obtain the graded algebra grL.

Definition 1.2. If the Leibniz algebra L is isomorphic algebra grL, then L is called naturally
graded Leibniz algebra.

For the Leibniz algebra L, we denote the right and left annihilators, respectively, as follows

Annr(L) = {x ∈ L | [L, x] = 0}, Annl(L) = {x ∈ L | [x, L] = 0}.

We denote the center of the algebra by Cent(L) = Annr(L) ∩Annl(L).
A linear map d is called a derivation of the Leibniz algebra L, if

d
(
[x, y]

)
= [d(x), y] + [x, d(y)].

We denote the space of all derivations by Der(L).
For each x ∈ L, the operator Rx : L → L which is called the right multiplication, such that

Rx(y) = [y, x], y ∈ L, is a derivation. This derivation is called an inner derivation of L, and we
denote the space of all inner derivations by Inner(L).

Definition 1.3. The derivation D ∈ Der(L) of the Leibniz algebra L is called almost inner
derivation, if D(x) ∈ [x, L]

(
[x, L] ⊆ L

)
holds for all x ∈ L; in other words, there exists ax ∈ L

such that D(x) = [x, ax].

The space of all almost inner derivations of L is denoted by AID(L).

Definition 1.4. The derivation D ∈ AID(L) of the Leibniz algebra L is called the right central
almost inner derivation, if there exists x ∈ L such that the map (D −Rx) : L→ Annr(L).

The space of right central almost inner derivations of L is denoted byRCAID(L), respectively.

Definition 1.5. The derivation D ∈ AID(L) of the Leibniz algebra L is called central almost
inner derivation, if there exists x ∈ L such that the map (D −Rx) : L→ Cent(L).

The space of central almost inner derivations of L is denoted by CAID(L), respectively.

2. Main results

2.1. The properties of almost inner derivations of the Leibniz algebras
The subspaces Inner(L), CAID(L), RCAID(L), AID(L), Der(L) are Lie subalgebras with

[D,D′] = DD′ −D′D.

Proposition 2.1. We have the following inclusions of Lie subalgebras

Inner(L) ⊆ CAID(L) ⊆ RCAID(L) ⊆ AID(L) ⊆ Der(L).

Proof. Let D1, D2 ∈ AID(L) and x ∈ L. Then there exist y1, y2 ∈ L such that D1(x) = [x, y1],
D2(x) = [x, y2]. Using the property of the derivation and the Leibniz identity, we get the
following

[D1, D2](x) = (D1D2)(x)− (D2D1)(x) = [D1(x), y2] + [x,D1(y2)]− [D2(x), y1]− [x,D2(y)] =

= [[x, y1], y2]− [[x, y2], y1] + [x,D1(y2)]− [x,D2(y1)] =

= [x, [y1, y2]] + [x,D1(y2)]− [x,D2(y1)] = [x, [y1, y2] +D1(y2)−D2(y1)].
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Therefore, [D1, D2](x) = [x, [y1, y2] +D1(y2)−D2(y1)] ∈ [x, L], we have [D1, D2] ∈ AID(L).
Let C1, C2 ∈ CAID(L). Then there exist y1, y2 ∈ L such that C1 − Ry1 and C2 − Ry2 are

maps from L to Cent(L). We consider [C,Rx] = RC(x) for C ∈ Der(L) and obtain the following

[C1 −Ry1 , C2 −Ry2 ] = [C1, C2]− [C1, Ry2 ]− [Ry1 , C2] + [Ry1 , Ry2 ] =

= [C1, C2]−RC1(y2) +RC2(y1) −R[y2,y1] = [C1, C2]− (RC1(y2) −RC2(y1) +R[y2,y1]).

Hence we have that the linear transformation [C1, C2]− (RC1(y2)−RC2(y1) +R[y2,y1]) maps L to
Cent(L). Hence [C1, C2] ∈ CAID(L).

Let D1, D2 ∈ RCAID(L). Then there exist y1, y2 ∈ L such that D1 −Ry1 and D2 −Ry2 are
maps L to Annr(L). We consider [D,Rx] = RD(x) for D ∈ Der(L) and obtain the following

[D1 −Ry1 , D2 −Ry2 ] = [D1, D2]− [D1, Ry2 ]− [Ry1 , D2] + [Ry1 , Ry2 ] =

= [D1, D2]−RD1(y2) +RD2(y1) −R[y2,y1] = [D1, D2]− (RD1(y2) −RD2(y1) +R[y2,y1]).

Hence we have that the linear transformation [D1, D2] − (RD1(y2) − RD2(y1) + R[y2,y1]) maps L
to Annr(L). Hence [D1, D2] ∈ RCAID(L).

Now let us show that Inner(L) ⊆ CAID(L). Let Rx, Ry ∈ Inner(L) and Rx − Ry : L →
Cent(L). For every z ∈ L, a ∈ Cent(L) we consider the following

(Rx −Ry)(z) = [z, x]− [z, y] = [z, x]− [z, a+ x] = [z, a] ∈ Cent(L).

Therefore, Inner(L) ⊆ CAID(L).

Proposition 2.2. The subalgebra RCAID(L) is a Lie ideal in AID(L).

Proof. Let C ∈ RCAID(L) and D ∈ AID(L). We must show [D,C] ∈ RCAID(L). We already
know [D,C] ∈ AID(L). We fix an element x ∈ L such that C ′ := C − Rx maps L to Annr(L).
We denote D′ := [D,C]−RD(x). Then from [D,Rx] = RD(x) we obtain

[D,C ′] = [D,C −Rx] = [D,C]− [D,Rx] = [D,C]−RD(x) = D′

and D′ maps L to Annr(L). Hence for all y ∈ L we have

D′(y) = [D,C ′](y) = D(C ′(y))− C ′(D(y)),

because C ′ maps L to Annr(L) and D maps Annr(L) to Annr(L).

Proposition 2.3. Let L be the Leibniz algebra. Then the followings are true:
1) Let D ∈ AID(L). Then D(L) ⊆ [L,L], D(Cent(L)) = 0 and D(I) ⊆ I for every ideal I

of L.
2) For D ∈ CAID(L), there exists an x ∈ L such that D|[L,L] = Rx|[L,L].
3) If L has nilindex 3, then CAID(L) = AID(L).
4) If Cent(L) = 0, then CAID(L) = Inner(D).
5) If L is nilpotent, then AID(L) is nilpotent.
6) AID(L⊕ L′) = AID(L)⊕AID(L′).

Proof. 1) By definition, almost inner derivations of L maps to [L,L] and Cent(L) to 0.
Let x ∈ I. Then we have D(x) ∈ [x, L] ⊆ [I, L] ⊆ I.
2) For a given D ∈ CAID(L), there exists x ∈ L such that D′ = D − Rx satisfies D′(L) ⊆

Cent(L). Hence D′ is derivation and for all u, v ∈ L we have

D′([u, v]) = [D′(u), v] + [u,D′(v)] = 0.
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3) If L is nilpotent with nilindex 3, i.e. L3 = 0, then for each D ∈ AID(L) we get D(L) ⊆
[L,L] ⊆ Cent(L) and get equality.

4) We suppose Cent(L) = 0 and D ∈ CAID(L). Then there is x ∈ L such that D−Rx = 0.
Therefore D is inner.

5) Let D ∈ AID(L) and x ∈ L. Then Dk(x) ∈ [[[. . . , [x, L], . . . L], L] (k times L). If k is
higher than nilpotent class over L, then we have Dk(x) = 0, therefore D is nilpotent. By Engel’s
theorem for Leibniz algebras [5], AID(L) is nilpotent.

6) Let D ∈ AID(L ⊕ L′). Then the constraints are again almost inner derivations, i.e.
D|L ∈ AID(L) and D|L′ ∈ AID(L′). It is obvious that the mapping D 7→ D|L ⊕ D|L′ gives a
one-to-one correspondence between AID(L⊕ L′) and AID(L)⊕AID(L′).

2.2. Almost inner derivations of null-filiform Leibniz algebras

Firstly we consider a certain class of nilpotent Leibniz algebras, the so-called null-filiform
Leibniz algebra [7].

In any n-dimensional null-filiform Leibniz algebra L there exists a basis {e1, e2, . . . , en} such
that the multiplication in L has the form:

NFn : [ei, e1] = ei+1, 1 6 i 6 n− 1 (1)

(the omitted of products are equal to zero).
Let L be a null-filiform Leibniz algebra.

Proposition 2.4. For the n-dimensional null-filiform Leibniz algebra NFn the following equality
holds:

AID(NFn) = Inner(NFn).

Proof. The null-filiform algebra L is a one-generated algebra, i.e. generated by e1. Let
D ∈ AID(NFn). Then, by the definition of almost inner derivation, there exists ae1 such
that D(e1) = Rae1

. Let D′ ∈ AID(NFn) and let D′ = D−Rae1
, then we get D′(e1) = 0. Then

by multiplication (1) we have

D′(ei) = D′([ei−1, e1]
)
= [D′(ei−1, e1)] + [ei−1, D

′(e1)] = 0, 2 6 i 6 n.

This means that
AID(NFn) = Inner(NFn).

2.3. Almost inner derivation of non-lie filiform Leibniz algebras

Now we consider filiform non-Lie Leibniz algebras F1(α4, α5, . . . , αn, θ) and F2(β5, . . . , βn, γ)
from [7]:

F1(α4, α5, . . . , αn, θ) :



[e1, e1] = e3,

[ei, e1] = ei+1, 2 6 i 6 n− 1,

[e1, e2] =
n−1∑
s=4

αses + θen,

[ej , e2] =
n−j+2∑
s=4

αses+j−2, 2 6 j 6 n− 2,
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F2(β4, β5, . . . , βn, γ) :



[e1, e1] = e3,

[ei, e1] = ei+1, 3 6 i 6 n− 1,

[e1, e2] =
n∑

k=4

βkek,

[e2, e2] = γen,

[ei, e2] =
n+2−i∑
k=4

βkek+i−2, 3 6 i 6 n− 2.

Let L be an algebra from F1(α4, α5, . . . , αn, θ) or F2(β4, β5, . . . , βn, γ).
Let L be the Leibniz algebra and En,2 : L→ L be a linear mapping such that

En,2(ei) = δi,2en, 1 6 i 6 n, (2)

where δi,2 =

{
1, i = 2
0, i ̸= 2

— Kronecker symbol.

Theorem 2.1. Let L be a non-Lie filiform Leibniz algebra and let D ∈ AID(L). Then there
exist an element x ∈ L and λ ∈ C such that

D −Rx = λEn,2.

Proof. We first consider the non-Lie filiform Leibniz algebra L = F1(α4, α5, . . . , αn, θ).
Let D ∈ AID(L). This algebra is a two-generated algebra, i.e. we have generators e1 and e2.

Then, by the definition of almost inner derivation, there exists ae1 such that D(e1) = Rae1
. Let

D′ ∈ AID(L) and D′ = D − Rae1
, then we get D′(e1) = 0. Since D′(e1) = 0, then we have the

following:

D′(e3) = D′([e1, e1]) = [D′(e1), e1] + [e1, D
′(e1)] = 0,

D′(ei) = D′([ei−1, e1]
)
= [D′(ei−1), e1] + [ei−1, D

′(e1)] = [D′(ei−1), e1] = 0, 4 6 i 6 n.

Let D′(e2) =
n∑

j=1

bjej . we check the following:

D′(e3) = D′([e2, e1]) = [D′(e2), e1] =

[ n∑
j=1

bjej , e1

]
= (b1 + b2)e3 + b3e4 + · · ·+ bn−1en.

On the other hand, D′(e3) = D([e1, e1]) = 0. So we get

b1 = −b2, bi = 0, 3 6 i 6 n− 1.

Now we check the following:

0 = D′([e1, e2]) = [D′(e1), e2] + [e1, D
′(e2)] = [e1, b1e1 − b1e2 + bnen] =

= b1e3 − b1(α4e4 + · · ·+ αn−1en−1 + θen).

We have b1 = 0 and D′(e2) = bnen. On the other hand, by definition of almost inner derivation

bnen= D′(e2)= [e2, ae2 ]= [e2, a2,1e1+a2,2e2+ · · ·+a2,nen]= a2,1e3+a2,2(α4e4+α5e5+ · · ·+αnen).

We obtain {
a2,1 = 0, a2,2αi = 0, 4 6 i 6 n− 1,

bn = a2,2αn.
(3)
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Hence D′(e2) = a2,2αnen. If a2,2αn = 0, then AID(L) = Inner(L), so

a2,2αn ̸= 0,

therefore from (3) we get
αi = 0, 4 6 i 6 n− 1.

In the end we obtain D′ = a2,2αnEn,2 = λEn,2.

Let L = F2(β4, β5, . . . , βn, γ) and D′ ∈ AID(L). By definition AID for e2 there exists ae2
such that

D′(e2) = [e2, ae2 ] = [e2, a2,1e1 + · · ·+ a2,n] = a2,2γen.

Conducting analogously reasoning in this algebra we obtain D′(e1) = 0, D′(ei) = 0, 3 6 i 6 n
and D′ = a2,2γEn,2 = λEn,2, where λ ∈ C.

Now we consider the following equality:

a2,2γen = D′(e1) +D′(e2) = D′(e1 + e2) = [e1 + e2, ce1+e2 ] = [e1 + e2, c1e1 + c2e2] =

= c1e3 + c2β4e4 + c2(β4 + β5)e6 + · · ·+ c2(β4 + · · ·+ βn−1)en−1+

+ c2(β4 + · · ·+ βn−1 + βn + γ)en.

We get 
c1 = 0,

c2βi = 0, 4 6 i 6 n− 1,

c2(βn + γ) = a2,2γ.

If at least one of βi0 ̸= 0 (4 6 i0 6 n− 1), then we have c2 = 0, hence AID(L) = Inner(L).
Therefore βi = 0, 4 6 i 6 n− 1.

Thus, for filiform non-Lie algebras we obtain D −Ra = λEn,2, λ ∈ C.

Remark 2.1. Let L be a filiform non-Lie Leibniz algebra. If at least one of αi0 ̸= 0 and βj0 ̸= 0,
i0, j0 ∈ {4, 5, . . . , n− 1}, then we get AID(L) = Inner(L).

Theorem 2.2. Let L be an n-dimensional filiform non-Lie Leibniz algebra F1(0, . . . , 0, αn, θ) or
F2(0, . . . , 0, βn, θ). Then at run θ = 0, αn ̸= 0 and βn = 0, γ ̸= 0 respectively we obtain

AID(L) = Inner(L)⊕ ⟨En,2⟩,

where En,2 is the matrix of the elements in which in the place (n, 2) we have 1, and other elements
are 0.

Proof. Let L = F1(0, . . . , 0, αn, θ). We have to show that En,2 is an almost inner derivation of

the algebra L. We take the element x =
n∑

i=1

xiei ∈ L, then there is cx = c1e1 + c2e2 ∈ L and we

check up the following

En,2(x) = [x, cx] =

[ n∑
i=1

xiei, c1e1 + c2e2

]
=

= c1(x1 + x2)e3 + c1x3e4 + c1x4e5 + · · ·+ c1xn−2en−1 + (c1xn−1 + c2(x1θ + x2αn))en.

If θ ̸= 0 and x3 ̸= 0, then for x1 = −x2αn

θ
the map En,2 is not almost inner derivation.

Therefore θ = 0 and for any x ∈ L choosing c1 = 0, c2 =
1

αn
we have En,2(x) = x2en. Hence

En,2 ∈ AID(L).
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Let L = F2(0, 0, . . . , 0, βn, γ). Let ∀x =
n∑

i=1

xiei ∈ L, then ∃cx = c1e1 + c2e2 ∈ L and we

obtain the following

En,2(x) = [x, cx] =

[
n∑

i=1

xiei, c1e1 + c2e2

]
=

= c1x1e3 + c1x3e4 + c1x4e5 + · · ·+ c1xn−2en−1 + (c1xn−1 + c2(x1βn + x2γ))en.

If βn ̸= 0 and x4 ̸= 0, then for x1 = −x2γ
βn

the derivation En,2 is not almost inner derivation.

Therefore βn = 0 and for any x ∈ L choosing c1 = 0, c2 =
1

γ
we have En,2(x) = x2en. Hence

En,2 ∈ AID(L).

Theorem 2.1 and 2.2 imply the following consequence:

Corollary 2.1. In filiform non-Lie Leibniz algebras, if all parameters are equal to zero, then
these algebras turn into a graded algebra. Then the almost inner derivations of graded non-Lie
Leibniz algebras coincide with the inner derivations.

2.4. Almost inner derivations of sme filiform Leibniz algebras

We consider filiform Leibniz algebra L = F3(θ1, θ2, θ3), which contain filiform Lie algebra [10]:

F3(θ1, θ2, θ3) :



[e1, e1] = θ1en, [e1, e2] = −e3 + θ2en, [e2, e2] = θ3en,

[ei, e1] = ei+1, 2 6 i 6 n− 1,

[e1, ei] = −ei+1, 3 6 i 6 n− 1,

[ei, e2] = −[e2, ei] =
n−i+3∑
k=5

βkek+i−3, 3 6 i 6 n− 2,

[ei, ej ] = −[ej , ei] = 0, i, j > 3.

Theorem 2.3. Let L = F3(θ1, θ2, θ3) and let D ∈ AID(L). Then there exist an element x ∈ L
and λ ∈ C such that

D −Rx = λEn,2.

Proof. Let L = F3(θ1, θ2, θ3). Let D ∈ AID(L). Then D induces an almost inner derivation of
D̄ by L/⟨en⟩. By induction, we can assume that after changing D to inner derivation, we have
D̄ = µEn−1,2 for some µ ∈ C. This implies such that D(e1) = αen for some α ∈ C. Now we
replace D with D′ = D +Rαen−1 . Then we have

D′(e1) = D(e1) +Rαen−1(e1) = αen + [e1, αen−1] = 0,

D′(ei) = D(ei) + [ei, αen−1] = D(ei), i > 2.

We get
D′(e2) = D(e2) = µen−1 + λen, µ, λ ∈ C.

Hence, we have the following

D′(e3) = D′([e2, e1]) = [D′(e2), e1] = [µen−1 + λen, e1] = µen,

D′(e4) = D′([e3, e1]) = [D′(e3), e1] = [µen, e1] = 0,

moreover, D′(ei) = 0, i > 5.
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Since we have D′(e3) = µen and D′ ∈ AID(L), then there exists an element ae3 = a3,1e1+
+a3,2e2 ∈ L such that D′(e3) = [e3, ae3 ] = µen. Therefore we get the following

µen = [e3, a3,1e1 + a3,2e2] = a3,1e4 + a3,2(β5e5 + β6e6 + · · ·+ βnen).

We obtain
a3,1 = 0, a3,2βi = 0, 5 6 i 6 n− 1, a3,2βn = µ.

Since we assume µ ̸= 0, then we have

βi = 0, 5 6 i 6 n− 1.

Now we consider the following

D′(e2) = [e2, ae2 ] =

[
e2,

n∑
j=1

a2,jej

]
= a2,1e3 + (a2,2θ3 − a2,3βn)en.

On the other hand D′(e2) = µen−1 + λen. We have

a2,1e3 + (a2,2θ3 − a2,3βn)en = µen−1 + λen.

Since we assume that µ ̸= 0, this equation does not have a solution, which is a contradiction.
Hence indeed µ = 0, and therefore D′ = λE2,n.

Proposition 2.5. Let L be an n-dimensional filiform Leibniz algebra F3(θ1, θ2, θ3). Then

AID(F3(θ1, θ2, θ3)) = Inner(F3(θ1, θ2, θ3))⊕ ⟨En,2⟩,

where En,2 is the matrix of the elements in which in the place (n, 2) we have 1, and other elements
are 0.

Proof. The proof is analogous to Proposition 7.4 in [9].

2.5. Almost inner derivations of low dimensional nilpotent Leibniz
algebras

N. Jacobson proved the following theorem [12]:

Theorem 2.4. Every nilpotent Lie algebra has a derivation D which is not inner.

There is a question: Are almost inner derivations of nilpotent Lie algebras outer derivations?
And is the converse right? Generally this question is open. We give an example which answers
in the positive on this question.

Example 2.1. We consider 5-dimensional nilpotent Lie algebra in which there exist almost inner
derivations which are not inner [9].

1) g5,3 : [e1, e2] = e4, [e1, e4] = e5, [e2, e3] = e5, the omitted products are equal to zero.
Derivations, inner derivations and almost inner derivations of this algebra have the following
matrix forms respectively:

Der(g5,3) =


a1,1 0 0 0 0
a1,2 a2,2 0 0 0
a1,3 a2,3 2a1,1 0 0
a1,4 a2,4 −a2,2 a1,1 + a2,2 0
a1,5 a2,5 a3,5 −a1,3 + a2,4 2a1,1 + a2,2

 ,
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Inner(g5,3) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
µ2 −µ1 0 0 0
µ4 µ3 −µ2 −µ1 0

 , AID(g5,3) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
a1,4 a2,4 0 0 0
a1,5 a2,5 a3,5 a2,4 0

 .

If a1,4 = a1,5 = a2,4 = a2,5 = 0, then we obtain the matrix of outer derivation of algebra g5,3:

Outer(g5,3) =


a1,1 0 0 0 0
a1,2 a2,2 0 0 0
a1,3 a2,3 2a1,1 0 0
0 0 −a2,2 a1,1 + a2,2 0
0 0 a3,5 −a1,3 2a1,1 + a2,2

 .

Therefore, AID(g5,3) ⊆ Outer(g5,3) and any almost inner derivation of the algebra g5,3 is outer.
If in Outer(g5,3) we have a1,1 = a1,2 = a1,3 = a2,2 = a2,3 = 0, then the space of all outer
derivations coincides with the space of all almost inner derivations.

Now we give examples for low dimensional nilpotent Leibniz algebras.

Example 2.2. Let L be the three-dimensional nilpotent Leibniz algebra:

L1(α) : [e2, e2] = e1, [e3, e3] = αe1, [e2, e3] = e1, α ∈ C,
L2 : [e2, e2] = e1, [e3, e2] = e1, [e2, e3] = e1,

L3 : [e2, e2] = e1, [e3, e3] = e1, [e3, e2] = e1, [e2, e3] = e1,

L4 : [e3, e3] = e1,

L5 : [e2, e3] = e1, [e3, e3] = e1,

L6 : [e3, e3] = e1, [e1, e3] = e2.

For three-dimensional nilpotent Leibniz algebras L, the following equality

AID(L) = Inner(L)

holds.

Example 2.3. Let L be four-dimensional nilpotent Leibniz algebra. Then from [1] there are 28
algebras and we give only those algebras which will be necessary to us:

L4 : [e1, e1] = e3, [e1, e2] = αe4, [e2, e1] = e3, [e2, e2] = e4,
[e3, e1] = e4, α ∈ {0, 1};

L9 : [e1, e1] = e4, [e2, e1] = e3, [e2, e2] = e4, [e1, e2] = −e3 + 2e4,
[e3, e1] = e4, [e1, e3] = −e4,

L10 : [e1, e1] = e4, [e2, e1] = e3, [e2, e2] = e4, [e3, e1] = e4,
[e1, e2] = −e3, [e1, e3] = −e4;

L11 : [e1, e1] = e4, [e1, e2] = e3, [e2, e1] = −e3, [e2, e2] = −2e3 + e4;

L12 : [e1, e1] = e3, [e2, e1] = e4, [e2, e2] = −e3;

L13 : [e1, e1] = e3, [e1, e2] = e4, [e2, e1] = −αe3, [e2, e2] = −e4;

L20 : [e1, e2] = e4, [e2, e1] =
1 + α

1− α
e4, [e2, e2] = e3, α ∈ C \ {1}.

Let us show the calculation of the dimension of almost inner derivations and the inner deriva-
tions of these algebras.
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• The algebra L4 is a filiform algebra from the class F1(0, . . . , 0, αn, θ). Therefore, by The-
orem 2.2 we have: if α = 0, then AID(L4) = Inner(L4), and if α = 1, then AID(L4) =
= Inner(L4)⊕ ⟨E4,2⟩.
• We consider the algebra L9. Let D ∈ AID(L9), then by definition AID for 1 6 i 6 4 for

each ei there is aei =
4∑

j=1

ai,jej and we have the following:

D(e1) = [e1, ae1 ] = −a1,2e3 + (a1,1 + 2a1,2 − a1,3)e4, D(e2) = [e2, ae2 ] = a2,1e3 + a2,2e4,

D(e3) = [e3, ae3 ] = a3,1e4, D(e4) = [e4, ae4 ] = 0.

Since D is derivation, we check the following:

a3,1e4 = D(e3) = D([e2, e1]) = [D(e2), e1] + [e2, D(e1)] = a2,1e4,

from here we get a2,1 = a3,1. Therefore, the matrix AID of this algebra has the following form:

AID(L9) =


0 0 0 0
0 0 0 0
−a1,2 a2,1 0 0

a1,1 + 2a1,2 − a1,3 a2,2 a2,1 0

 ,

hence dimAID(L9) = 4.
Now we calculate the dimension of the space of inner derivations. To do this, we take the

element x =
4∑

i=1

xiei and consider Rx(ei), (1 6 i 6 4) :

Rx(e1) = [e1, x] = −x2e3 + (x1 + 2x2 − x3)e4, Rx(e2) = [e2, x] = x1e3 + x2e4,

Rx(e3) = [e3, x] = x1e4, Rx(e4) = [e4, x] = 0.

The matrix of inner derivation of algebra L9:

Inner(L9) =


0 0 0 0
0 0 0 0
−x2 x1 0 0

x1 + 2x2 − x3 x2 x1 0

 ,

hence dimInner(L9) = 3.
From the matrices AID(L9) and Inner(L9) it is clear that AID(L9) = Inner(L9)⊕ ⟨E4,2⟩.

Now let’s calculate the dimension of RCAID(L9), for this we take every element of x =
4∑

i=4

xiei ∈

L9 and

(D −Rx)(x) =


0 0 0 0
0 0 0 0

−a1,2 − x2 a2,1 − x1 0 0
a′1,3 − x′3 a2,2 − x2 a2,1 − x1 0




x1
x2
x3
x4

 = 0̄.

Then we have a1,2 = x2, a
′
1,3 = x′3, a2,1 = x1, a2,2 = x2. Hence, dimRCAID(L9) = 3.

• For algebras L10, L11, L12, L20 similarly conducted reasoning and calculated dimension
AID(L) and Inner(L).
• Now we consider L13 and get the following matrices:

AID(L13) =


0 0 0 0
0 0 0 0
a1,1 −a2,1 0 0
a1,2 −a2,2 0 0

 , Inner(L13) =


0 0 0 0
0 0 0 0
x1 −x1 0 0
x2 −x2 0 0

 .
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This shows that dimAID(L13) = 4, dimRCAID(L13) = dimInner(L13) = 2, hence we obtain
AID(L13) = Inner(L13)⊕ ⟨E3,2 + E4,2⟩.

For other algebras, except those shown, almost inner derivations coincide with inner deriva-
tions.

Therefore, we have the following table:

Algebra dim Inner(L) dimRCAID(L) dimAID(L) dimDer(L) D
L4 2 2 3 4 E4,2

L9 3 3 4 4 E4,2

L10 3 3 4 4 E4,2

L11 2 2 3 5 E4,2

L12 2 2 3 5 E4,2

L13 2 2 4 5 E4,2 + E3,2

L20 2 2 3 7 E4,2

Example 2.4. Let L be a complex Leibniz algebra of dimension n 6 2. Then we have

AID(L) = RCAID(L) = Inner(L).

It is clear that for abelian Leibniz algebras Inner(L) = RCAID(L) = AID(L) = 0.
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Аннотация. В статье исследуется почти внутренние дифференцирования некоторых конечномер-
ных нильпотентных алгебр Лейбница. Мы показываем существование почти внутренних диффе-
ренцирований филиформных нелиевых алгебр Лейбница, отличных от внутренних дифференциро-
ваний, а также показываем, что почти внутренние дифференцирования некоторых филиформных
алгебр Лейбница, содержащих филиформные алгебры Ли, не совпадают с внутренними диффе-
ренцированиями.

Ключевые слова: алгебра Лейбница, дифференцирование, внутреннее дифференцирование, по-
чти дифференцирование.
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Introduction
Control of multidimensional inertialess processes is considered in the paper.
It is assumed that a controlled process has a parametric structure. In other words, in designing

a control algorithm differential equation or system of equations that describes the process is
known.

Often the structure of the controlled process is not completely known. In this case, before
designing a control algorithm, one need to restore the structure of the controlled process.

Restoring the structure of the process is very complicated process. A control algorithm that
does not require restoring of the structure of the control process is considered in the paper.
In other words only the values of the input variables u⃗ and output variables x⃗ are used in the
algorithm. It is assumed that some qualitative characteristics of the process are also known, such
as inertia and the degree of nonlinearity of the process.

One of the features of considered processes is stochastic dependence between components
of the vector of input variables (u⃗). That is why the process proceeds not in domain Ω(u⃗)
determined by the vector of input variables but in some subdomain ΩH(x). Often the fact that
components of input variables are interdependent is unknown. Of course, the type of relationship
is also unknown.

Processes with stochastic interdependency of components of the vector of input variables are
called H-processes [1].

Processes in which components of the vector of input variables u⃗ should be supplied in a
certain proportion are H-processes.

Multidimensional H-processes are considered in the paper. Multidimensional H-processes
include multiple output variables x⃗. For each component of the vector of output variables

∗edmihov@mail.ru
c⃝ Siberian Federal University. All rights reserved
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xj , j = 1, k there is its own ΩH(xj), where k is the number of elements in the vector of output
variables. In other words, the interrelation between input variables is different for each output
variable xj .

For example, consider some chemical process with two output products (k = 2). To obtain the
first output product one should satisfy some conditions. In other words, temperature, pressure,
oxygen supply, etc. must be taken into account (components of vector u⃗). The process proceeds
when values of some input variables u⃗ satisfy some relationships. The domain where these
relationships are satisfied is ΩH(x1).

To obtain the second output product one should satisfy some other conditions (ΩH(x2)). How-
ever, these conditions may be different from conditions for the first product (ΩH(x1) ̸= ΩH(x2)).
Only the values of input variables that satisfy at the same time the conditions for both
products allow one to obtain both products. Both products can be obtained in domain
ΩH(x12) = ΩH(x1) ∩ ΩH(x2).

The described above process is an example of a multidimensional H-process.
Obviously, there are many processes with this feature. Standard control algorithms (P -, PI -,

PID - regulators) do not use the process domain ΩH(x). That is why these control algorithms
are not suitable for the processes under consideration.

Thus the need to construct new control algorithms for multidimensional H-processes is actual
issue.

The simplified schematics of the considered control loop is shown in Fig. 1, where A is the
considered process, u⃗ is the vector of input variables, x⃗ is the vector of output variables, x⃗∗ is
the setting action and ξ is the noise.

Fig. 1. Schematic representation of the control loop

The H-process does not proceed in domain Ω(x) but in some subdomain of ΩH(x). A
schematic representation of the multidimensional H-process is shown in Fig. 2, where u⃗ is the
input vector of dimension n.

The process is characterized by vector of output variables x⃗ of dimension k. Arrows indicate
the interrelation between the input variables.

It is important that the values of the components of the setting action belong to ΩH(xj),
j = 1, k. There is no information on interrelation between input variables. Then it is difficult to
determine the domain to which every output variable belongs.

Suppose that the process proceeds in domain ΩH(x). One should find subdomain ΩH′
(x) ∈

ΩH(x) which is part of process domain (Fig. 3).
However, it can be difficult to find domain ΩH′

(u⃗) because domain ΩH(u⃗) is unknown. In
addition there can be several intersections of domains ΩH(xj), j = 1, k. Then one needs to
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Fig. 2. Schematic representation of multidimensional H-process

Fig. 3. Isolation of H-process flow domain

decide: what intersections should be used to control the process? Should the transition between
these intersections be used in control and how the transition influences the process control?

These difficulties demonstrate that development of control algorithms for multi-dimensional
H-process is the topical problem. The control algorithms should use the domain where the
process proceeds and it should include some analysis of the control object. In other words, the
control algorithm should be the adaptive algorithm.

The nonparametric dual control algorithm [1] is used in the paper. The nonparametric dual
control algorithm is based on two methods: the dual control method developed by A. A. Feldbaum
[2] and the nonparametric regression function estimation method [4]. The nonparametric dual
control algorithm was developed by A.V. Medvedev [3].

The nonparametric regression function estimation
Let us consider statically independent observations of two random variables (x, y) =

= (x1, y1), . . . , (xn, yn) that are distributed with unknown frequency function P (x, y).
Let us assume that p(x) > 0 ∀x ∈ Ω(x). To approximate the unknown stochastic relationship

between y and x the regression is often used [4]:

y = f(x) =

(∫
Ω(y)

P (x, y)dy

)−1(
y

∫
Ω(y)

P (x, y)dy

)
(1)

Nonparametric estimation of relation (1) is

ŷ = f̂(x) =

(
n∑

i=1

Φ

(
x− xi
Cn

))−1 n∑
i=1

yiΦ
(
C−1

n (x− xi)
)

(2)
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When x = (x1, . . . , xk) and y = (y1, . . . , yk) are vectors relation (2) becomes

ŷd =

n∑
i=1

ydi
∏k

j=k Φ(C
−1
j (n)(xj − xji ))

n∑
i=1

∏k
j=k Φ(C

−1
j (n)(xj − xji ))

, d = 1, k (3)

The nonparametric estimate of the regression curve is convergent, i.e.,

lim
n→∞

M((f(x)− fn(x))2) = 0,∀x ∈ Ω(x) (4)

lim
n→∞

M(f(x)) = f(x),∀x ∈ Ω(x). (5)

Information on the parametric structure of the object is not needed for the noparametric
estimate of regression function.

Nonparametric dual control

In the case when control algorithm includes control and investigation of the system, it is
called dual control algorithm.

Dual control algorithm was developed by A. A. Feldbaum. The nonparametric dual control
algorithm is

us+1 = u∗s + δus+1, (6)

where u∗s is "knowledge" of the object, δus+1 is "learning" search steps (in the classic form of
nonparametric dual control algorithm) and δus+1 is

δus+1 = ξ(x∗s+1 − xs). (7)

Using the noparametric estimate of the regression function (xi, ui), i = 1, s, we obtain the
estimate of the object x̂ = f̂(u⃗) as

x̂(u) =

n∑
i=1

xiΦ(
u−ui

cs
)

n∑
i=1

Φ(u−ui

cs
)
. (8)

Here bell-shaped functions Φ(·) and smooth coefficient cs satisfy convergence condition, u =
f−1(x), where f−1(x) is the inverse of f(u), and u∗s is

u∗s =

n∑
i=1

uiΦ
(Φ(x∗−xi)

cs

)
n∑

i=1

Φ(x∗−xi)
cs

, (9)

where x∗ is the setting action.
At the beginning of process control, second component δus+1 is more important component

of control. This is the time of active investigating of the dual control system. This stage begins
with receiving of the first values of the input and output variables. The first component (us∗)
becomes more important component of control after stage of active investigating. Thus, there
are stage of object investigation and stage of action in the process of dual control.
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Modification of nonparametric dual control algorithm
for multidimensional H-processes

In multidimensional H-process control the action cannot be arbitrarily specified as it is con-
sidered in control theory. This is due to the fact that it is possible to set a vector of action
such that

∏
i = 1kΩH

i (x⃗∗) = ∅. In other words, this action is not achievable for all components

of vector x⃗∗ at the same time. That is why it is important to set x⃗∗ ∈
k∏

i=1

ΩH
i (x⃗∗), i.e., define

x∗1, x
∗
2, . . . , x

∗
k.

We propose the following method:

1. Calculate the value
s∑

i=1

k∏
j=1

Φ
(x∗j − xij

csj

)
, where x⃗∗ is the action and s is the size of sample

observations.

2. If the calculated value
s∑

i=1

k∏
j=1

Φ
(x∗j − xij

csj

)
is not equal to zero then the action is achievable

otherwise the action may not be achieved.
Let us note that in nonparametric dual control the calculation of the search step δu⃗s+1 is

performed with the use of (7). In the case of H-process with several output variables the described
method for calculating the search step δu⃗s+1 is not suitable because the input action must belong

to
k∏

j=1

ΩH(u⃗).

Taking this into account, we propose to use an algorithm with punishment to calculate δu⃗s+1.
This method determines the reachability of the action and it can be described as follows

1) u⃗s(x⃗∗) is calculated;

2) a random vector δu⃗s+1 is generated;

3) u⃗s+1(x
∗) is calculated;

4) if u⃗s+1 ∈ ΩH(u⃗) then u⃗s+1 is used as a control action otherwise we return to step 2;

5) if
k∑

i=1

|xi,s+1 − x∗i | <
k∑

i=1

|xi,s − x∗i | then δu⃗s+1 is used as the next value of the search step

δu⃗s+2 otherwise the random vector δu⃗s+2 is generated;

6) go back to step 1.
The length of the vector δu⃗ is m|x∗ − xs|, where m is the preassigned coefficient.

Results of computer simulation
Examples of control of the inertialess process and H-process are presented. Standard regulator

and regulator on the basis of the nonparametric algorithm of dual control are used in simulations.
Firstly, the PID regulator is compared with the modified algorithm of nonparametric dual

control. Secondly, the nonparametric dual control algorithm is used to control the multidimen-
sional H-process.

The simulated multidimensional process is defined as follows

x1(u⃗) = f(u1, u2) = u1 ∗ 3 ∗ sin(u2) + 7 + ξ1,

x2(u⃗) = f(u1, u2) = 4 ∗ (u1) + u2 + ξ2.
(10)

Let us note that structure of the object is not used in the algorithm. It is used only to
generate a sample of observations.
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Next the result of control based on the PID regulator is presented.
The result of control over x1 is shown in the upper part of Fig. 4. The result of control over

x2 is shown in the lower part of the figure. The value of the action is marked by the dashed line.
The iteration number is shown on the abscissa.

Fig. 4. Result of the PID control

Results presented in Fig. 4 demonstrate that PID algorithm successfully controls object (10).
This algorithm is not adaptive, and it does not include training. This means that algorithm
controls the process without using a sample of observations to improve its characteristics. That
is why the control efficiency did not increase.

Nonparametric dual control algorithm is used to control process (10) in the next experiment.
Unlike the PID algorithm used in the previous experiment (Fig. 5) this algorithm includes

training. This is confirmed by the fact that after training the control is more efficient.
Next we consider a multidimensional inertialess H-process. There is a stochastic relationship

between input variables in the H-process.
The process is described by the system of equations (10). The relationship between input
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Fig. 5. Result of nonparametric dual control

variables is described by the following equations

u2 = u1 ∗ 5− 3 + ξ1, ξ1 ∈ (−0.4; 0.4), (11)

u1 = u2 ∗ 3 + 1 + ξ2, ξ2 ∈ (−0.6; 0.6). (12)

Variables ξ1, ξ2 characterize the "width" of domains ΩH1(u⃗) and ΩH2(u⃗), respectively.
It is difficult to control this H-process using the PID algorithm because this algorithm does

not take into account domain (ΩH1(u⃗), ΩH2(u⃗)). This is important in the case of the H-process.
The H-process under consideration is controlled with the use of the modified nonparametric

dual control algorithm (Fig. 6).
The modification of the nonparametric dual control algorithm can be successfully applied to

control the multidimensional H-process. It is demonstrated in Fig. 6. The nonparametric dual
control algorithm is adaptive.

Therefore, after training, the proposed modification more effectively controls the process.
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Fig. 6. Result of control with the modified nonparametric dual control algorithm

Conclusion

A modification of the nonparametric dual control algorithm was proposed. A feature of the
proposed modification is a new choice of the search step which takes into account the domain
of the process. The proposed modification was applied to control multidimensional inertialess
processes with interdependent input variables.

The modified nonparametric dual control algorithm and the PID algorithm was compared.
It was demonstrated that the modified nonparametric dual control algorithm is adaptive. After
training this algorithm controls the process more effectively than the PID algorithm. The mod-
ification of nonparametric dual control was applied to a multidimensional inertialess H-process.
The proposed algorithm successfully controls the multidimensional inertialess H-process.

This work was financially supported by the Ministry of Science and Higher Education of the
Russian Federation under the project "Creation of a production of earth stations of advanced
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satellite communications systems to ensure the coherence of hard, northern and Arctic territory
of Russian Federation", implemented with the participation of the Siberian Federal University
(agreement number 075 -11-2019-078 dated 13.12.2019).
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Аннотация. В статье рассматриваются вопросы управления стохастическими процессами. Опи-
саны новые виды процессов (Н-процессы), в которых имеется стохастическая зависимость между
входными переменными. Для решения проблем, возникающих при решении задачи идентификации
и управления, была предложена модификация алгоритма непараметрического дуального управле-
ния. Проведены эксперименты, в которых предложенная модификация алгоритма сравнивается
по эффективности с ПИД-регулятором. В конце статьи представлен эксперимент по управлению
Н-процессом с несколькими выходными переменными при помощи разработанного алгоритма.

Ключевые слова: непараметрические алгоритмы, H-процессы, управление.
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Abstract. We study the unique solvability of the mixed Dirichlet-Neumann problem for the biharmonic
equation in the exterior of a compact set under the assumption that solutions of this problem have
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1. Introduction and preliminaries

Let Ω be an unbounded domain in Rn, n > 2, Ω = Rn \ G with the boundary ∂Ω ∈ C2,
where G is a bounded simply connected domain (or a union of finitely many such domains) in
Rn, 0 ∈ G, Ω = Ω ∪ ∂Ω is the closure of Ω, x = (x1, . . . , xn) ∈ Rn and |x| =

√
x21 + · · ·+ x2n.

In the domain Ω we consider the following mixed problems for the biharmonic equation

∆2u = 0 (1)

with the Dirichlet–Neumann boundary conditions

u
∣∣
Γ1

=
∂u

∂ν

∣∣∣
Γ1

= 0, ∆u
∣∣
Γ2

=
∂∆u

∂ν

∣∣∣
Γ2

= 0, (2)

where Γ1 ∪ Γ2 = ∂Ω, Γ1 ∩ Γ2 = ∅, mesn−1 Γ1 ̸= 0, ν = (ν1, . . . , νn) is the outer unit normal
vector to ∂Ω.

As is well known, if Ω is an unbounded domain, one should additionally characterize the
behavior of the solution at infinity. As a rule, to this end, one usually poses either the condition
that the Dirichlet (energy) integral is finite or a condition on the character of vanishing of the
modulus of the solution as |x| → ∞. Such conditions at infinity are natural and were studied by
several authors (e.g., [6–8]).

Elliptic problems with parameters in the boundary conditions have been called Steklov or
Steklov-type problems, since their first appearance in [27]. For the biharmonic operator, these

∗hmatevossian@graduate.org https://orcid.org/0000-0002-9895-9628
c⃝ Siberian Federal University. All rights reserved
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conditions were first considered in [1, 9] and [25], where the isoperimetric properties of the first
eigenvalue were studied.

Note that standard elliptic regularity results are available in [3]. The monograph covers
higher order linear and nonlinear elliptic boundary value problems, mainly with the biharmonic
or polyharmonic operator as the leading principal part. The underlying models and, in particular,
the role of different boundary conditions are explained in detail. As for linear problems, after a
brief summary of the existence theory and Lp and Schauder estimates, the focus is on positivity.
The required kernel estimates are also presented in detail.

In [2], the boundary value problems for the biharmonic equation and the Stokes system are
studied in a half space, and, using the Schwarz reflection principle in weighted Lq-space, the
uniqueness of solutions of the Stokes system or the biharmonic equation is proved.

In the present note, this condition is the boundedness of the weighted Dirichlet integral:

Da(u,Ω) ≡
∫
Ω

|x|a
∑
|α|=2

|∂αu|2 dx <∞, a ∈ R.

In various classes of unbounded domains with finite weighted Dirichlet (energy) integral, one
of the author [10–23] studied uniqueness (non–uniqueness) problem and found the dimensions of
the spaces of solutions of boundary value problems for the elasticity system and the biharmonic
(polyharmonic) equation.

By developing an approach based on the use of Hardy type inequalities [6–8], in the present
note, we obtain a uniqueness (non–uniqueness) criterion for a solution of the mixed Dirichlet–
Neumann problem for the biharmonic equation.
Notation: C∞

0 (Ω) is the space of infinitely differentiable functions in Ω with compact support
in Ω. We denote by Hm(Ω,Γ), Γ ⊂ Ω, the Sobolev space of functions in Ω obtained by the
completion of C∞(Ω) vanishing in a neighborhood of Γ with respect to the norm

||u;Hm(Ω,Γ)|| =

(∫
Ω

∑
|α|6m

|∂αu|2dx

)1/2

, m = 1, 2,

where ∂α ≡ ∂|α|/∂xα1
1 . . . ∂xαn

n , α = (α1, . . . , αn) is a multi-index, αi > 0 are integers, and
|α| = α1 + · · ·+ αn; if Γ = ∅, we denote Hm(Ω,Γ) by Hm(Ω).

◦
H

m

(Ω) is the space obtained by the completion of C∞
0 (Ω) with respect to the norm

||u;Hm(Ω)||.
◦
H

m

loc (Ω) is the space obtained by the completion of C∞
0 (Ω) with respect to the family of

semi-norms

∥u;Hm(Ω ∩B0(R))∥ =

 ∫
Ω∩B0(R)

∑
|α|6m

|∂αu|2 dx


1/2

for all open balls B0(R) := {x : |x| < R} in Rn for which Ω ∩B0(R) ̸= ∅.
Let

(
n
k

)
be the (n, k)-binomial coefficient,

(
n
k

)
=0 for k > n.

2. Definitions and auxiliary statements
Definition 2.1. A solution of the homogenous biharmonic equation (1) in Ω is a function
u ∈ H2

loc(Ω) such that for every function φ ∈ C∞
0 (Ω), the following integral identity holds:∫

Ω

∆u∆φdx = 0.
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Lemma 2.2. Let u be a solution of equation (1) in Ω such that Da(u,Ω) <∞. Then

u(x) = P (x) +
∑

β0<|α|6β

∂αΓ(x)Cα + uβ(x), x ∈ Ω, (3)

where P (x) is a polynomial, ordP (x) < m0 = max{2, 2−n/2−a/2}, β0 = 2−n/2+a/2, Γ(x) is
the fundamental solution of equation (1), Cα = const, β > 0 is an integer, and the function uβ

satisfies the estimate:

|∂γuβ(x)| 6 Cγβ |x|3−n−β−|γ|, Cγβ = const,

for every multi-index γ.

Remark 2.3. As is known [26], the fundamental solution Γ(x) of the biharmonic equation has
the form

Γ(x) =

{
C|x|4−n if 4− n < 0 or n is odd,

C|x|4−n ln |x| if 4− n > 0 and n is even.

Proof of Lemma 2.2. Consider the function v(x) = θN (x)u(x), where θN (x) = θ(|x|/N), θ ∈
C∞(Rn), 0 6 θ 6 1, θ(s) = 0 for s 6 1, θ(s) = 1 for s > 2, while N ≫ 1 and G ⊂ {x : |x| < N}.
We extend v to Rn by setting v = 0 on G = Rn \ Ω.

Then the function v belongs to C∞(Rn) and satisfies the equation

∆2v = f,

where f ∈ C∞
0 (Rn) and supp f ⊂ {x : |x| < 2N}. It is easy to see that Da(v,Rn) <∞.

We can now use Theorem 1 of [5] since it is based on Lemma 2 of [5], which imposes no
constraint on the sign of σ. Hence, the expansion

v(x) = P (x) +
∑

β0<|α|6β

∂αΓ(x)Cα + vβ(x),

holds for each a, where P (x) is a polynomial of order ordP (x) < m0 = max{2, 2− n/2− a/2},
β0 = 2− n/2 + a/2, Cα = const and

|∂γvβ(x)| 6 Cγβ |x|3−n−β−|γ|, Cγβ = const .

Therefore, by the definition of v, we obtain (3). The proof of Lemma 2.2 is complete. 2

Definition 2.4. A function u is a solution of the mixed Dirichlet–Neumann problem (1), (2),

if u ∈
◦
H

2

loc (Ω,Γ1) such that for every function φ ∈ C∞
0 (Rn), φ = 0 in the neighborhood of Γ1,

the following integral identity holds: ∫
Ω

∆u∆φdx = 0. (4)

3. Main Results
Theorem 3.1. The mixed Dirichlet–Neumann problem (1), (2) with the condition D(u,Ω) <∞
has n+ 1 linearly independent solutions.

Proof. For any nonzero vector A in Rn, we construct a generalized solution uA of the biharmonic
equation (1) with the boundary conditions

uA(x)
∣∣
Γ1

= (Ax)
∣∣
Γ1
,

∂uA(x)

∂ν

∣∣∣
Γ1

=
∂(Ax)

∂ν

∣∣∣
Γ1

, ∆uA
∣∣
Γ2

=
∂∆uA
∂ν

∣∣∣
Γ2

= 0, (5)
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and the condition

χ(uA,Ω) ≡



∫
Ω

(
|uA(x)|2

|x|4
+
|∇uA(x)|2

|x|2
+ |∇∇uA(x)|2

)
dx <∞

for n > 4,∫
Ω

(
|uA(x)|2

||x|2 ln |x||2
+
|∇uA(x)|2

||x| ln |x||2
+ |∇∇uA(x)|2

)
dx <∞

for 2 6 n 6 4,

(6)

for A, x ∈ Rn, where Ax denotes the standard scalar product of A and x.
Such a solution of problem (1), (5) can be constructed by the variational method [26], mini-

mizing the functional

Φ(v) =
1

2

∫
Ω

|∆v|2 dx

in the class of admissible functions
{
v : v ∈ H2(Ω), v(x)

∣∣
Γ1

= (Ax)
∣∣
Γ1
,
∂v(x)

∂ν

∣∣
Γ1

=
∂(Ax)

∂ν

∣∣
Γ1

,

v is compactly supported in Ω
}
. The validity of condition (6) as a consequence of the Hardy

inequality follows from the results in [6–8].
Now, for any arbitrary number e ̸= 0, we construct a generalized solution ue of equation (1)

with the boundary conditions

ue
∣∣
Γ1

= e,
∂ue
∂ν

∣∣∣∣
Γ1

= 0, ∆ue
∣∣
Γ2

=
∂∆ue
∂ν

∣∣∣
Γ2

= 0, (7)

and the condition

χ(ue,Ω) ≡



∫
Ω

(
|ue(x)|2

|x|4
+
|∇ue(x)|2

|x|2
+ |∇∇ue(x)|2

)
dx <∞

for n > 4,∫
Ω

(
|ue(x)|2

||x|2 ln |x||2
+
|∇ue(x)|2

||x| ln |x||2
+ |∇∇ue(x)|2

)
dx <∞

for 2 6 n 6 4.

(8)

The solution of problem (1), (7) is also constructed by the variational method with the
minimization of the corresponding functional in the class of admissible functions {v : v ∈

H2(Ω), v
∣∣
Γ1

= e,
∂v

∂ν

∣∣∣∣
Γ1

= 0, v is compactly supported in Ω}. The condition (8) as a con-

sequence of the Hardy inequality follows from the results in [6–8].
Consider the function v(x) = (uA(x)−Ax)− (ue − e). Obviously, v is a solution of problem

(1), (2):

∆2v = 0, x ∈ Ω, v
∣∣
Γ1

=
∂v

∂ν

∣∣∣∣
Γ1

= 0, ∆v
∣∣
Γ2

=
∂∆v

∂ν

∣∣∣
Γ2

= 0.

One can easily see that v ̸≡ 0 and D(v,Ω) <∞.
To each nonzero vector A = (A0, A1, . . . , An) in Rn+1, there corresponds a nonzero solution

vA = (vA0 , vA1 , . . . , vAn) of problem (1), (2) with the condition D(vA,Ω) <∞, and moreover,

vA(x) = uA(x)− ue −Ax+ e.

Let A0, A1, . . . , An be a basis in Rn+1. Let us prove that the corresponding solutions
vA0 , vA1 , . . . , vAn are linearly independent. Let
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n∑
i=0

CivAi ≡ 0, Ci = const .

Set W (x) ≡
n∑

i=1

CiAix− C0e. We have W (x) =
n∑

i=1

CiuAi(x)− C0ue,∫
Ω

|x|−2|∇W |2 dx <∞, n > 4;

∫
Ω

||x| ln |x||−2|∇W |2 dx <∞, 2 6 n 6 4.

Let us show that

W (x) ≡
n∑

i=1

CiAix− C0e ≡ 0.

Let T =
n∑

i=0

CiAi = (t0, . . . , tn), where A0 = −e. Then

∫
Ω

|x|−2|∇W |2 dx =

∫
Ω

|x|−2(t21 + · · ·+ t2n) dx =∞, n > 4,∫
Ω

||x| ln |x||−2|∇W |2 dx =

∫
Ω

||x| ln |x||−2(t21 + · · ·+ t2n) dx =∞, 2 6 n 6 4,

if T ̸= 0.

Consequently, T =
n∑

i=0

CiAi = 0, and since the vectors A0, A1, . . . , An are linearly indepen-

dent, we obtain Ci = 0, i = 0, 1, . . . , n.
Thus, the Dirichlet–Neumann problem (1), (2) with the condition D(u,Ω) <∞ has at least

n+ 1 linearly independent solutions.
Let us prove that each solution u of problem (1), (2) with the condition D(u,Ω) < ∞ can

be represented as a linear combination of the functions vA0 , vA1 , . . . , vAn , i.e.

u =

n∑
i=0

CivAi , Ci = const .

Since A0, A1, . . . , An is a basis in Rn+1, it follows that there exist constants C0, C1, . . . , Cn

such that

A =

n∑
i=0

CiAi.

We set

u0 ≡ u−
n∑

i=0

CivAi .

Obviously, the function u0 is a solution of problem (1), (2), and D(u0,Ω) <∞, χ(u0,Ω) <∞.
Let us show that u0 ≡ 0, x ∈ Ω. To this end, we substitute the function φ(x) = u0(x)θN (x)

into the integral identity (4) for the function u0, where θN (x) = θ(|x|/N), θ ∈ C∞(R), 0 6 θ 6 1,
θ(s) = 0 for s > 2 and θ(s) = 1 for s 6 1; then we obtain∫

Ω

(∆u0)
2θN (x) dx = −J1(u0)− J2(u0), (9)

where

J1(u0) = 2

∫
Ω

∆u0∇u0∇θN (x) dx, J2(u0) =

∫
Ω

u0 ∆u0 ∆θN (x) dx.
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By applying the Cauchy–Schwarz inequality and by taking into account the conditions
D(u0,Ω) < ∞ and χ(u0,Ω) < ∞, one can easily show that J1(u0) → 0 and J2(u0) → 0 as
N →∞. Consequently, by passing to the limit as N →∞ in (9), we obtain∫

Ω

(∆u0)
2 dx = 0.

Therefore, we have
∆u0 = 0, x ∈ Ω,

u0
∣∣
Γ1

=
∂u0
∂ν

∣∣∣∣
Γ1

= 0, ∆u0
∣∣
Γ2

=
∂∆u0
∂ν

∣∣∣∣
Γ2

= 0.

Hence, it follows [4, Ch.2] that u0 ≡ 0 in Ω. The proof of the theorem is complete.

Theorem 3.2. The mixed Dirichlet–Neumann problem (1), (2) with the condition Da(u,Ω) <∞
has:

(i) the trivial solution for n− 2 6 a <∞, n > 4;
(ii) n linearly independent solutions for n− 4 6 a < n− 2, n > 4;
(iii) n+ 1 linearly independent solutions for −n 6 a < n− 4, n > 4;
(iv) k(r, n) linearly independent solutions for −2r + 2− n 6 a < −2r + 4− n, r > 1, n > 4,

where

k(r, n) =

(
r + n

n

)
−
(
r + n− 4

n

)
.

The proof of Theorem 3.2 is based on Lemma 2.2 about the asymptotic expansion of the
solution of the biharmonic equation and the Hardy type inequalities for unbounded domains
[6–8]. In case (iv), we need to determine the number of linearly independent solutions of the
biharmonic equation (1), the degree of which do not exceed the fixed number.

It is well know that the dimension of the space of all polynomials in Rn of degree 6 r is equal(
r+n
n

)
[24]. Then the dimension of the space of all biharmonic polynomials in Rn of degree 6 r

is equal to (
r + n

n

)
−
(
r + n− 4

n

)
,

since the biharmonic equation is the vanishing of some polynomial of degree r − 4 in Rn. If
we denote by k(r, n) the number of linearly independent polynomial solutions of equation (1)
whose degree do not exceed r and by l(r, n) the number of linearly independent homogeneous
polynomials of degree r, that are solutions of equation (1), then

k(r, n) =
r∑

s=0

l(s, n), where l(s, n) =

(
s+ n− 1

n− 1

)
−
(
s+ n− 5

n− 1

)
, s > 0.

Further, we prove that the mixed Dirichlet–Neumann problem (1), (2) with the condition
Da(u,Ω) < ∞ for −2r + 2 − n 6 a < −2r + 4 − n has equally k(r, n) linearly independent
solutions.
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Смешанная бигармоническая задача Дирихле–Неймана
во внешних областях

Овик А. Матевосян
Федеральный исследовательский центр «Информатика и управление» РАН

Москва, Российская Федерация
Московский авиационный институт (национальный исследовательский университет)

Москва, Российская Федерация

Аннотация. Изучаются вопросы единственности решения смешанной задачи Дирихле–Неймана
для бигармонического уравнения во внешности компактного множества, в предположении, что
обобщенное решение этой задачи обладает конечным интегралом Дирихле с весом |x|a. В зависи-
мости от значения параметра a доказаны теоремы единственности (неединственности), и найдены
точные формулы для вычисления размерности пространства решений смешанной задачи Дирихле–
Неймана.

Ключевые слова: бигармонический оператор, задача Дирихле-Неймана, весовой интеграл Ди-
рихле.
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1. Problem Statement

The urgency of a theoretical study of filtration problems in porous media is associated with
their wide application in solving important practical problems: filtration near river dams, reser-
voirs and other hydraulic structures; movement of magma in the earth’s crust, etc. In many
practical problems the porosity of the medium is variable, and the medium is deformed. The
model of fluid filtration in a viscous non-isothermal porous medium considered in the work is
based on the laws of conservation of masses and energy, Darcy’s law, as well as rheological
relationships for porosity and pressures. The system of equations has the following form [1,2]:

∂(1− ϕ)ρs
∂t

+
∂

∂x
((1− ϕ)ρsvs) = 0,

∂(ρfϕ)

∂t
+

∂

∂x
(ρfϕvf ) = 0, (1)

ϕ(vf − vs) = −
K(ϕ)

µ
(
∂pf
∂x
− ρfg),

∂vs
∂x

= − 1

ξ(ϕ, θ)
pe, (2)

∂ptot
∂x

= −ρtotg, ρtot = ϕρf + (1− ϕ)ρs, pe = ptot − pf , ptot = ϕpf + (1− ϕ)ps, (3)

(ρfcfϕ+ ρscs(1− ϕ))
∂θ

∂t
+ (ρfcfϕvf + ρscs(1− ϕ)vs)

∂θ

∂x
=

∂

∂x
(λ
∂θ

∂x
), (4)

and is solved in the domain (x, t) ∈ QT = Ω× (0, T ), Ω = (0, 1), under the boundary and initial
conditions
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vs |x=0,x=1= vf |x=0,x=1=
∂θ

∂x
|x=0,x=1= 0, ϕ |t=0= ϕ0(x), θ |t=0= θ0(x). (5)

This initial-boundary value problem describes the one-dimensional motion of a two-phase
medium between impenetrable heat-insulated walls [1, 2]. Here ρs, ρf , vs, vf , are, respectively,
the constant real densities and velocities of phases (s is solid porous medium, f is liquid), ϕ is
porosity (fraction of pores), ps and pf are pressures in solid and liquid phases, ptot is total
medium pressure, pe is effective pressure, ρtot is two-phase density, θ is absolute temperature,
g isdensity of the mass forces, cs and cf are heat capacities for at constant volume of phases,
K(ϕ) is permeability coefficient, µ is dynamic fluid viscosity, ξ(ϕ, θ) is bulk viscosity coefficient,
λ(ϕ) is heat conductivity coefficient (the prescribed functions). The problem is written in Euler
coordinates (x, t).

For the permeability coefficient K(ϕ), a well-known dependence of the form is used K(ϕ) =

K ′ϕn, where K ′ = const > 0, n = 3 [1]. The bulk viscosity coefficient ξ(ϕ, θ) is usually taken as
ξ(ϕ, θ) = η(θ)/ϕm, m ∈ [0, 2], where η(θ) is the coefficient of dynamic viscosity of the skeleton,
which characterizes the relationship between the strain rate tensor and the stress tensor and is
determined from the experiment under uniaxial compression [3, 4]. The following dependence is
taken as a model one: η(θ) = ηr exp(Qr(1−θ/θr)/Rθ), ηr, Qr, θr, R are positive constants (analog
of the Arrhenius formula for the dependence of the reaction rate on temperature) [1]. The thermal
conductivity coefficient of the medium λ(ϕ) is taken in the form λ(ϕ) = λfϕ+ λs(1− ϕ), where
λf , λs are the thermal conductivity of liquid and solid phase (averaged thermal conductivity) [2].
In what follows, the notations are used k(ϕ) = K(ϕ)/µ, 1/ξ(ϕ, θ) = a1(ϕ)ξ1(θ), a1(ϕ) = ϕm,
ξ1(θ) = 1/η(θ).

The local in time solvability of the initial-boundary value problem for the equations (1)–(3)
at constant temperature in the case of a compressible fluid was established in the work [5]. A
numerical analysis of the initial-boundary value problem for the system (1)–(3) is carried out in
[6]: difference schemes are constructed and their convergence is established. In paper [7], the
global solvability of the problem (1)– (3) is proved in the case of constant phase densities.

Systems of equations similar in structure were considered in [8–16]. The local solvability of
the Cauchy problem in Sobolev spaces was established in [8]. The simplest models of deformation
of a poroelastic medium were studied in [9, 10]. Self-similar solutions of the traveling wave type
for the equations of magma motion were considered in [11,12]. The works [14,15] are devoted to
numerical calculations. The problem of substantiating multidimensional models of fluid filtration
in poroelastic media is open.

In the notation of function spaces, we follow [15]: Cl+α,r+β(QT ) is the Hölder space, where
l, r are natural numbers, (α, β) ∈ (0, 1], with the norm ||f ||Cl+α,r+β(QT ).

In this paper, we prove the local classical solvability of the problem (1)–(4) in the case
when the bulk viscosity coefficient ξ is a function of porosity and temperature. An example of
decidability "in the whole" is given.

Definition. By a solution of problem (1)–(5) we mean the set of functions ϕ, ϕt, θ, vs, vf ∈
C2+α,1+β(QT ), pf , ps ∈ C1+α,1+β(QT ), such that 0 < ϕ < 1, 0 < θ <∞. These functions satisfy
the equations (1)–(4) and the initial and boundary conditions (5) and regarded as continuous
functions in QT .

Theorem 1. Suppose that the data of problem (1)–(5) satisfies the following conditions:
1) the functions k(ϕ), a1(ϕ), λ(ϕ), ξ1(θ) and their derivatives up to the second order are

continuous for ϕ ∈ (0, 1), θ ∈ (0,∞) and satisfy the conditions

k−1
0 ϕq1(1− ϕ)q2 6 k(ϕ) 6 k0ϕ

q3(1− ϕ)q4 ,
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k−1
0 ϕq5(1− ϕ)q6 6 λ(ϕ) 6 k0ϕ

q7(1− ϕ)q8 , ξ1(θ) > 0, θ ∈ (0,∞),

1

ξ(ϕ)
= a0(ϕ)ϕ

α1(1− ϕ)α2−1, 0 < R1 6 a0(ϕ) 6 R2 <∞,

where k0, αi, Ri, i = 1, 2 are positive constants, q1, ..., q8 are fixed real numbers.
2) the function g, the initial functions ϕ0 and θ0 satisfy the following smoothness conditions:

g ∈ C1+α,1+β(Q̄T ), θ0, ϕ0 ∈ C2+α(Ω̄),

and the inequalities

0 < m0 6 ϕ0(x) 6M0 < 1, 0 < m 6 θ0(x) 6M <∞, |g(x, t)| 6 g0 <∞, x ∈ Ω̄, t ∈ (0, T ),

where m0,M0,m,M, g0 are given positive constants.
Then problem (1)–(5) has a local solution, i.e., there exists a value of t0 such that

ϕ(x, t), ϕt(x, t), θ(x, t) ∈ C2+α,1+β(Q̄t0), (vs(x, t), vf (x, t)) ∈ C2+α,β(Q̄t0), (pf (x, t), ps(x, t)) ∈
C1+α,β(Q̄t0).

Moreover, 0 < ϕ(x, t) < 1, 0 < θ(x, t) <∞ in Q̄t0 .

Theorem 2. Let, in addition to the conditions of Theorem 1, the functions k(ϕ), ξ(ϕ, θ) satisfy
the conditions

k(ϕ) =
K

µ
, ξ(ϕ, θ) =

η(θ)

ϕ
,

where K,µ are positive constants.
Then for all t ∈ [0, T ], T < ∞ uniqueness solution of problem (1)–(5) exists, and there are

numbers 0 < m1 < M1 < 1, 0 < m2 < M2 such that m1 6 ϕ(x, t) 6 M1, m2 6 θ(x, t) 6 M2,
(x, t) ∈ QT .

2. Local solvability

Proof of Theorem 1. When proving Theorems 1 and 2, it is convenient to use the Lagrange
variables [17]. Suppose that x̄ = x̄(τ, x, t) is a solution of the Cauchy problem

∂x̄

∂τ
= vs(x̄, τ), x̄ |τ=t= x.

We set x̂ = x̄(0, x, t) and take x̂ and t for the new variables. Then Ĵ(x̂, t) =
∂x̂

∂x
(x, t) =

= (1 − ϕ(x̂, t))/(1 − ϕ0(x̂)) is the Jacobian of the transformation. Following [5], we rewrite the
system (1)–(4):

∂

∂t

(
ϕ

1− ϕ

)
=

∂

∂x

(
k(ϕ)(1− ϕ) ∂

∂x

(
1

ξ1(θ)

∂G(ϕ)

∂t

)
− k(ϕ)g(ρtot + ρf )

)
, (6)

(
(1− ϕ) ∂

∂x

(
1

ξ1(θ)

∂G

∂t

)
− g(ρtot + ρf )

)
|x=0,x=1= 0, ϕ |t=0= ϕ0(x), (7)(

csρs + cfρf
ϕ

1− ϕ

)
∂θ

∂t
+ cfρfϕ(vf − vs)

∂θ

∂x
=

∂

∂x

(
λ(1− ϕ)∂θ

∂x

)
, (8)

∂θ

∂x
|x=0,x=1= 0, θ |t=0= θ0(x), (9)

∂G(ϕ)

∂t
= ξ1(θ)pe,

dG

dϕ
=

1

a1(ϕ)(1− ϕ)
. (10)

– 765 –



Alexander A. Papin . . . Filtration of Liquid in a Non-isothermal Viscous Porous Medium

In the system (6)–(10), the basic equations are (6) and (8) for the required functions ϕ and θ.
We substitute in the coefficients of the equation (6) and the boundary condition (7) instead

of θ(x, t) an arbitrary smooth function θ0(x, t) ∈ C2+α1,1+β1(QT ), which satisfies the inequalities
0 < m 6 θ0(x) 6M <∞. We retain the previous notation ϕ for solving the arising problem and
the latter is called Problem I.

Lemma 1. Let the data of problem I satisfy the conditions of the theorem. Then problem I has
a unique local solution, i.e., there exists a value of t0 such that

(ϕ, ϕt) ∈ C2+α,1+β(Qt0), ϕ ∈ (0, 1).

Proof. Suppose that z =
1

ξ1(θ0)

∂G

∂t
, we arrive at the following problem for G, z :

z =
1

ξ1(θ0)

∂G

∂t
, G |t=0= G(ϕ0) = G0(x), (11)

z

d(G, θ0)
− ∂

∂x

(
a(G)

∂z

∂x
− b(G)

)
= 0,

(
a(G)

∂z

∂x
− b(G)

)
|x=0,x=1= 0, (12)

where

d(G, θ0))) =
1− ϕ(G)

a1(ϕ(G))ξ1(θ0)
, a(G) = k(ϕ(G))(1− ϕ(G)), b(G) = k(ϕ(G))g(ρtot + ρf ).

Since 0 < m0 6 ϕ0(x) 6M0 < 1 and the function G(ϕ) is monotone, then G(m0) 6 G0(x) 6
G(M0). From (11) when the inequality max(x,t) |ξ1(θ)z(x, t)| 6 c0 we have that there is a value
t0, such that for all t 6 t0 the estimates take place

G1(m0) = G(m0)− c0t0 6 G(x, t) 6 G(M0) + c0t0 = G2(M0),

0 6 G−1(G1(m0)) 6 ϕ(x, t) 6 G−1(G2(M0)) < 1.

(13)

Let G0(x, t) be a function continuous in x and t, satisfying inequalities (13) and having a
continuous derivative ∂G0/∂x with respect to x, t. Substituting G0(x, t) instead of G(x, t) into
the coefficients of the equation (12) and the boundary conditions, we arrive at a linear problem
for z, in which a > 0, b > 0 and d > 0. The solution to this problem is unique. Existence follows,
for example, from Hilbert’s theorem [18] for ordinary linear equations of the second order. The t
variable plays the role of a parameter. Thus, (z, zx, zxx) ∈ C(Qt0). After finding z(x, t), we can
find a new value G(x, t) from the equation (11). This value will satisfy the condition (13).

To prove the solvability of problem I, we use the method of successive approximations. Let
zi(x, t) and Gi(x, t) be a solution to the problem

∂Gi+1

∂t
= ξ1(θ0)z

i+1, Gi+1(x, 0) = G0(x),

zi+1

d(Gi)
− ∂

∂x

(
a(Gi)

∂zi+1

∂x
− b(Gi)

)
= 0,(

a(Gi)
∂zi+1

∂x
− b(Gi)

)
|x=0,x=1= 0,

where i = 0, 1, 2, . . . . Substituting G0(x) into the equation for z at the first step, we find z1(x, t).
After that, from the equation for G we find G1(x, t), etc. For each i there is a unique solution
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zi(x, t) and Gi(x, t), satisfying (13). It is checked in a standard way that for a small value of t0
the solutions zi(x, t), Gi(x, t) and their derivatives up to the second order inclusive are bounded
uniformly in i.

We put yi+1 = zi+1 − zi, ωi+1 = Gi+1 −Gi. We have

∂ωi+1

∂t
= ξ1(θ0)y

i+1, ωi+1 |t=0= 0,

yi+1

d(Gi)
+A1ω

i − ∂

∂x

(
ayi+1

x +A2ω
i
)
= 0,

(ayi+1
x +A2ω

i)|x=0,x=1 = 0,

where the coefficients A1, A2 are easily recovered and are limited. We have from this system the
following inequalities∫ 1

0

(|yi+1|2 + |yi+1
x |2)dx 6 c1

∫ 1

0

|ωi|2dx 6 c1 max
x
|ωi|2,

max
x
|ωi+1| 6 c1

∫ t

0

max
x
|yi+1|dτ,

where the constant c1 does not depend on i. Taking into account the last inequality for the

function vi(t) = maxx |yi(x, t)|2 we get vi+1(t) 6 c2
t∫
0

vi(τ)dτ and therefore [19], vi(t) 6

(c2T )
iv0/i! → 0 for i → ∞. After that it is easy to establish that the sequences zi, Gi are

fundamental in C(Qt0) and have limits z(x, t) ∈ C(Qt0) and G(x, t) ∈ C(Qt0). The sequences
zix, z

i
xx, G

i
t are also fundamental. Passing to the limit as i→∞, we obtain that the limit func-

tions satisfy the problem (11), (12). The uniqueness of the solution is proved similarly to [7].
Increasing the smoothness of the initial data to those specified in the conditions of Theorem 1
allows us to obtain that ϕ(x, t), ϕt(x, t) ∈ C2+α,1+β(Q̄t0).

Lemma 1 is proved. �
Substituting θ0(x, t) and the solution to Problem I into the coefficients of equation (8), we

arrive at a linear problem for θ(x, t) of the form

Q
∂θ

∂t
+ V

∂θ

∂x
=

∂

∂x

(
λ(1− ϕ)∂θ

∂x

)
,

∂θ

∂x
|x=0,x=1= 0, θ |t=0= θ0(x),

where

Q = ρscs + ρfcf
ϕ

1− ϕ
, V = cfρfϕ(vf − vs) = ρfcfk(ϕ)

(
(1− ϕ)∂z

∂x
+ g(ρtot + ρf )

)
.

The unique solvability of this problem in Holder classes follows from [19], and the solution
satisfies the estimate

0 < θ = min
x
θ0(x) 6 θ(x, t) 6 max

x
θ0(x) = θ̄ <∞.

After these remarks, the local solvability of the problem (6)–(9) can easily be obtained using the
Schauder theorem according to the scheme used in [7].
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After finding ϕ, θ, the remaining functions from the system (1)–(4) can be defined as follows.
We find the phase velocities from (1)

vf (x, t) = −
1

ϕ

∫ x

0

∂ϕ

∂t
dξ ∈ C2+α,β(Qt0),

vs(x, t) = −
1

1− ϕ

∫ x

0

∂(1− ϕ)
∂t

dξ ∈ C2+α,β(Qt0).

From (3) we find ptot(x, t) = p0(t)−
x∫
0

ρtotgdξ ∈ C3+α,1+β(Qt0).

From (2) we have pe(x, t) = −
∂vs
∂x

ξ(ϕ, θ) ∈ C1+α,β(Qt0), then

pf (x, t) = ptot − pe ∈ C1+α,β(Qt0), ps(x, t) =
ptot
1− ϕ

− ϕ

1− ϕ
pf ∈ C1+α,β(Qt0).

Theorem 1 is proved. �

3. Global solvability

Proof of Theorem 2. By Theorem 1, we will assume that on the interval [0, t0] there exists a
solution to the problem (1)–(5), and 0 < ϕ(x, t) < 1, 0 < θ(x, t) < ∞, x ∈ Ω, t ∈ [0, t0]. After
obtaining the necessary a priori estimates that do not depend on the value of t0, the local solution
can be continued to the entire segment [0, T ].

Lemma 2. Under the conditions of Theorem 2, for all t ∈ [0, T ] the following relations hold:∫ 1

0

s(x, t)dx =

∫ 1

0

s0(x)dx, s =
ϕ

1− ϕ
, s0 = s(x, 0), (14)

0 < θ ≡ min
x∈[0,1]

θ0(x) 6 θ(x, t) 6 max
x∈[0,1]

θ0(x) ≡ θ <∞, (15)

∫ 1

0

1

ξ1(θ)

a1
1− ϕ

(
∂G

∂t

)2

dx+
1

2

∫ 1

0

k(ϕ)(1− ϕ)
∣∣∣∣ ∂∂x

(
1

ξ1(θ)

∂G

∂t

)∣∣∣∣2 dx 6

6 1

2

∫ 1

0

k(ϕ)

1− ϕ
g2(ρtot + ρf )

2dx 6 N. (16)

Hereinafter, N denotes a constant that depends only on the data of the problem (1)–(5) and does
not depend on t0.

Proof. Let us integrate the equation (6) over x from 0 to 1 and take into account the boundary
condition (7). After integration over time from 0 to the current value of t, we arrive at the
equality (14).

The equation (8) is written in a divergent form:

∂

∂t

(
θ(csρs + cfρf

ϕ

1− ϕ
)

)
+

∂

∂x

(
θcfρfϕ(vf − vs)− λ(1− ϕ)

∂θ

∂x

)
=

= θ

[
∂

∂t

(
csρs + cfρf

ϕ

1− ϕ

)
+

∂

∂x
(cfρfϕ(vf − vs))

]
. (17)
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The right-hand side of this equality is equal to zero, since the second equation from (1) in
Lagrange variables becomes [5]

∂

∂t

(
ϕ

1− ϕ

)
+

∂

∂x
(ϕ(vf − vs)) = 0.

In particular, from (17) we have∫ 1

0

(
cfρf

ϕ

1− ϕ
+ csρs

)
θdx =

∫ 1

0

(
cfρf

ϕ0

1− ϕ0
+ csρs

)
θ0dx,

and therefore θ(x, t) ∈ L1[0, 1] for all t ∈ [0, T ].
Let the smooth function κ(θ) satisfy the condition κ′′(θ) = d2κ/dθ2 > 0. Multiplying the

equation (8) by κ′(θ) = dκ/dθ, and following the equality (17) we reduce the resulting equality
to the form

∂

∂t

((
csρs + cfρf

ϕ

1− ϕ

)
κ(θ)

)
+

∂

∂x
(cfρfϕ(vf − vs)κ(θ)) =

=
∂

∂x

(
λ(1− ϕ)∂κ(θ)

∂x

)
− κ′′(θ)

(
∂θ

∂x

)2

λ(1− ϕ). (18)

In the case κ(θ) = θp, p > 1, from (18) we deduce∫ 1

0

θp(x, t)dx 6 max
x∈[0,1]

(
cfρf
csρs

ϕ0(x)

1− ϕ0(x)
+ 1

)∫ 1

0

|θ0(x)|pdx.

Whence, in the standard way, we get that θ(x, t) 6 maxx∈[0,1] θ
0(x) for all t ∈ [0, T ], x ∈ [0, 1].

Put θ1 = 1/θ and the equation (6) can be represented as‘(
csρs + cfρf

ϕ

1− ϕ

)
∂θ1
∂t

+ cfρf (vf − vs)
∂θ1
∂x

=
∂

∂x

(
λ(1− ϕ)∂θ1

∂x

)
− 2λ(1− ϕ)

(
∂θ1
∂x

)2

θ.

Multiplying (8) by κ′1(θ1) = dκ1/dθ1, κ1 = θp1 , and integrating over x, we arrive at a relation of
the form (14) for θ1(x, t). Therefore θ(x, t) > minx∈[0,1] θ

0(x) for all t ∈ [0, T ], x ∈ [0, 1].

Multiplying the equation (6) by
1

ξ1(θ)

∂G

∂t
and integrating over x we arrive at the relation

∫ 1

0

1

ξ1(θ)

a1(ϕ)

1− ϕ

(
∂G

∂t

)2

dx+

∫ 1

0

k(ϕ)(1− ϕ)| ∂
∂x

(
1

ξ1(θ)

∂G

∂t

)
|dx =

=

∫ 1

0

k(ϕ)g(ρtot + ρf )
∂

∂x

(
1

ξ1(θ)

∂G

∂t

)
dx 6

6 1

2

∫ 1

0

k(ϕ)(1− ϕ)
∣∣∣∣ ∂∂x

(
1

ξ1(θ)

∂G

∂t

)∣∣∣∣2 dx+
1

2

∫ 1

0

k(ϕ)

1− ϕ
g2(ρtot + ρf )

2dx.

The last term on the right-hand side is bounded uniformly in t0, since ϕ < 1 and, therefore,
ρtot 6 max(ρf , ρs). Finally, due to (14) we have∫ 1

0

dx

1− ϕ
= 1 +

∫ 1

0

s0(x)dx.

Lemma 2 is proved. �
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Lemma 3. Under the conditions of Theorem 2, for all t ∈ [0, T ], x ∈ [0, 1] the estimate takes
place

0 < m 6 ϕ(x, t) 6M < 1. (19)

Proof. From the inequality (16) by the conditions of Theorem 2 it follows

∫ 1

0

∣∣∣∣ ∂∂x
(

1

ξ1(θ)

∂G

∂t

)∣∣∣∣ dx 6
(∫ 1

0

dx

1− ϕ

)1/2
(∫ 1

0

(1− ϕ)
∣∣∣∣ ∂∂x

(
1

ξ1(θ)

∂G

∂t

)∣∣∣∣2 dx
)1/2

.

From (6) it also follows that ∫ 1

0

a1
1− ϕ

∂G

∂t
dx = 0,

and, therefore, there is a point x0(t) at which
∂G

∂t
(x0(t), t) = 0. Therefore

min
x∈(0,1)

∣∣∣∣ 1

ξ1(θ)

∣∣∣∣ ∣∣∣∣∂G∂t
∣∣∣∣ 6 ∣∣∣∣ 1

ξ1(θ)

∂G

∂t

∣∣∣∣ 6 ∫ 1

0

∣∣∣∣ ∂∂x
(

1

ξ1(θ)

∂G

∂t

)∣∣∣∣ dx 6 N.

Taking into account (15) and the conditions of Theorem 2, from the last inequality we have

|lns(x, t)| 6 |G(x, t)| 6 |G0(x)|+N1T 6 N2.

Then we arrive at (19) with m = (1 + eN2)−1, M = (1 + e−N2)−1.

Let z =
1

ξ1(θ)

∂G

∂t
. The problem (6), (7) takes the form

a1(ϕ)ξ1(θ)z

(1− ϕ)
=

∂

∂x

(
k(ϕ)(1− ϕ)∂z

∂x
− k(ϕ)g(ρtot + ρf )

)
,

(
k(ϕ)(1− ϕ)∂z

∂x
− k(ϕ)g(ρtot + ρf )

)
|x=0,x=1= 0.

By Lemmas 2 and 3, we have∫ t

0

∫ 1

0

θ2xdxdτ +

∫ 1

0

(z2 + z2x + θ2x)dx 6 N3,

where N3 is a positive constant depending on the initial data, parameters and problem constants,
but does not depend on t0.

Using the representation

G(ϕ) =

∫ t

0

ξ1(θ)zdτ +G(ϕ0),

we get

G′(ϕ)ϕx =

∫ t

0

(zxξ1(θ) + zξ′1θx)dτ +Gx(ϕ
0).

Therefore ∫ 1

0

ϕ2xdx 6 N4.

The equation for function z(x, t) takes form

a0(ϕ, θ)z = a1(ϕ)zxx + a′1(ϕ)ϕxzx + a′2(ϕ)ϕx.
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The coefficients a0(ϕ, θ) > 0, a1(ϕ) > 0, a2(ϕ) are limited and easy to calculate.
We have ∫ 1

0

z2xxdx 6 C1

(∫ 1

0

(z2 + ϕ2x)dx+

∫ 1

0

|zxxzxϕx|dx
)
,

where

I1 =

∫ 1

0

|zxx||zxϕx|dx 6 max |zx|
(∫ 1

0

z2xxdx

)1/2(∫ 1

0

ϕ2xdx

)1/2

6

6 C1

((∫ 1

0

z2xxdx

)1/2(∫ 1

0

ϕxdx

)1/2

+

(∫ 1

0

z2xxdx

)3/4(∫ 1

0

ϕxdx

)1/2
)
.

The constant C1 is not depend on t0.
Therefore

max
x
|zx|+

∫ 1

0

z2xxdx 6 N4.

The equation for the function θ(x, t) has the form

θt + a3(ϕ, zx)θx = a4(ϕ)θxx + a5(ϕ)ϕxθx,

where the coefficients a4(ϕ) > 0, a3(ϕ, zx), a5(ϕ) are limited and easy to calculate.
Since ∫ 1

0

|θxθxxϕx|dx 6 max
x
|θx|

(∫ 1

0

θ2xxdx

)1/2(∫ 1

0

ϕ2xdx

)1/2

6

6 c

(∫ 1

0

θ2xxdx

)3/4(∫ 1

0

ϕ2xdx

)1/2(∫ 1

0

θ2xdx

)1/4

,

then from the equation for θ we have∫ 1

0

θ2xdx+

∫ t

0

∫ 1

0

(θ2t + θ2xx)dxdτ 6 N5.

To complete the proof of Theorem 2, it is necessary to obtain the Holder continuity in x, t

of the functions ϕx and zx included in the coefficients of the equations for z and θ. From the
embedding zxx ∈ L2[0, 1] and the representation for ϕ we have ϕxx ∈ L2[0, 1]. Then for w = θx
we get ∫ 1

0

(θ2t + w2
x)dx+

∫ t

0

∫ 1

0

(w2
t + w2

xx)dxdτ 6 N6.

After that we deduce that |ϕxt| 6 N7. Finally, following [7] for the function σ = zt we get
σx ∈ L2[0, 1].

Theorem 2 is proved. �

Conclusion

The local solvability in the Holder classes of the initial-boundary value problem of one-
dimensional fluid motion in a nonisothermal viscous porous medium is proved. An example of
decidability is given at any finite time interval.

The work was carried out in accordance with the State Assignment of the Russian Ministry
of Science and Higher Education entitled ‘Modern methods of hydrodynamics for environmental
management, industrial systems and polar mechanics’ (Govt. contract code: FZMW-2020-0008,
24 January 2020).
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Abstract. The article considers the flow patterns of an electrically-conductive fluid in a 90 degree bend.
The magnetic field is directed parallel to the outlet branch of the bend. Magnetohydrodynamic equations
in terms of the small magnetic Reynolds numbers approach and the spectral-element method were used.
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Introduction

The phenomenon of a magnetic field interaction with fluid is observed in nature, and is widely
used in industry. Plasma in some cases can be considered as a viscous electrically-conducting
fluid. It is intended to use liquid metals for cooling advanced nuclear and thermonuclear reactors,
and in large batteries that are designed to buffer energy from wind- and solar-power plants. For
the design of such devices, it is important to understand the interaction mechanism of the folded
flow of the electrically conducting fluid with the magnetic field. In the cases of a jet and a single
vortex influenced by a transverse magnetic field, this issue was considered in [1, 2]. In these
papers it was found that a vortex in a uniform transverse magnetic field can generate secondary
vortices that rotate in the reverse direction. In [3], it is described that similar phenomena can
be observed in a bent channel in a vertical magnetic field in that a reverse flow was observed in
the inlet branch. In this paper, we study conditions for the origin of the reverse flow in the bend
in the presence of a horizontal magnetic field.

1. Equations and numeric method

Consider the flow in a bent channel as shown in Fig. 1. The length of the input and output
branches are indicated as L1 and L2 respectively. The channel width is 2d, and the bend radius is
R. The flow of the electrically-conducting viscous fluid occurs under a constant pressure gradient
between the "inflow" and "outflow". The state Hartmann flow with the maximal velocity V0
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forms in the inlet branch. The Reynolds number is

Re =
V0d

ν
, (1)

where ν is the viscosity. The Hatrmann number is

Ha = dB0

√
σ

ρν
, (2)

where B0 is the magnetic field, σ is the electrical conductivity, and ρ is the density of the fluid.

Fig. 1. The bent channel

The problem is considered under the assumption that the magnetic field generated by the
movement of the fluid does not affect the flow. This small magnetic Reynolds number approach
is suitable for most engineering applications [4]. It is now possible to write the equations in the
following form:

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ ν∆v + F (v,B0),

∇ · v = 0,

(3)

where v is the fluid velocity, p is the pressure, and F is the magnetic force.
Omh’s law is

j = σ (−∇φ+ v ×B0) , (4)

where j is the electric current density, φ is the electric potential. A condition ∇ · j = 0 for the
electric current leads to

∆φ = ∇ · (v ×B0). (5)

Using Reynolds (1) and Hartmann (2) numbers , equations (3) can be written in a non-
dimensional form

∂v

∂t
+ (v · ∇)v = −∇p+ 1

Re
∆v +

Ha2

Re
(−∇φ+ v ×B0)×B0,

∇ · v = 0,

∆φ = ∇ · (v ×B0).

(6)

As the flow is two-dimensional, the flow fields do not depend upon the coordinate z, and
vz = 0. This approximation leads to the simplified form ∆φ = 0 of the electric potential equation,

and hence φ ≡ 0. Consequently, the magnetic forces will take the form F (v,B0) =
Ha2

Re
(v ×

B0)×B0 and the electric potential is excluded from the equations (6).
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Boundary conditions v = 0 are set on the channel walls. At the inflow, the Hartmann flow is
established

vy(x) =
cosh (Ha)− cosh (Ha · x)

cosh (Ha)− 1
. (7)

At the outflow, the velocity satisfies the condition

∂v

∂n
= 0. (8)

The spectral-element method and the computer program described earlier in [5] were used
for calculations. The mesh is shown in Fig. 2. The state flow was determined by integrating
equations over time until constant values of at least eight digits were established at test points.
The Fig. 3 shows some of these points, marked with the letters A, B, C. The Tab. 1 contains
the velocity values at these points when increasing the approximation order p from 5 to 12. The
convergence has been achieved to at least five significant digits. A similar analysis with different
grids was performed in [3].

Fig. 2. The mesh Fig. 3. The test points

Table 1. Convergence at the test points

p A, vy B, vy C, vx C, vy
5 0.98470321 0.8643492 –0.03093629 –0.00133713
7 0.98465574 0.8639382 –0.03093710 –0.00131847
10 0.98465842 0.8638807 –0.03093676 –0.00132150
12 0.98465844 0.8638864 –0.03093673 –0.00132158

2. Results and discussion
Primarily, the flow at small Reynolds numbers was considered. Fig. 4 shows streamlines in

the outlet branch at Re = 0.1 and Ha= 10 (a), Ha= 35 (b), Ha = 100 (c), and Ha = 300 (d).
At Ha = 10, the streamlines are parallel. At Ha = 35, a small vortex is observed near the outer
wall after the bend. At Ha = 100, a reverse flow is observed near the outer wall of the outlet
branch. When the Hartmann number increases to Ha = 300, the reverse flow area shifts to the
center and a return jet is formed near the channel axis. The corresponding velocity profiles in the
middle of the length of the outlet branch are shown in Figs. 5 and 6. Fig. 6 shows the velocity
at a large scale by a dashed line. The magnitude of the reverse flow has a perceptible value by
comparison to the velocity scale V0.
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(a)

(b)

(c)

(d)

Fig. 4. Streamlines at Re = 0.1, R = 2: Ha = 10 (a), Ha = 35 (b), Ha = 100 (c), Ha = 300 (d)

Fig. 5. Velocity vx in the outlet branch at
R = 2, Re = 0.1: Ha = 10, Ha = 35,
Ha = 100.

Fig. 6. Velocity vx in the outlet branch at
R = 2, Re = 0.1, Ha = 300. The dashed line
shows the plot at the large scale.

Fig. 5 shows that for Ha = 10 the velocity profile is symmetrical. When the magnetic field
increases, the velocity maximum drifts to the inner wall. To move to the upper part of the outlet
branch, the fluid would have to flow across the magnetic field. With regard to this direction, the
magnetic force supresses the movement of the fluid. In the inlet branch, this magnetic braking
is compensated for by the pressure gradient, but there are no forces that would cause a vertical
movement in the outlet pipe. Such forces exist only in the bend, where the velocity distribution
is formed due to the action of the inertia forces, the magnetic forces, and the gradient of the
pressure field. In Fig. 4 (c), one can see that the streamlines from the input branch take up only
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the lower half of the outlet branch. In the upper half, the fluid is dragged by viscous forces, and
the flowing forward volume is compensated for by the reverse flow from the outlet of the channel.

The mechanics of motion in a bent channel is similar to that of a free vortex in the transverse
field, for which analytical solutions and estimates were obtained in [2]. The origin of the pair of
reverse vortices was described in [1, 2] and is analogous to the origin of the reverse flow.

Fig. 7 shows the dependencies of the critical Hartmann number Ha∗ from the Reynolds
number. The critical Hartmann number is the number at which the reverse flow occurs, initially
in the form of a small vortex as shown in Fig. 4 (b). The bend radii were considered equal to
R = 1, 2 and 3. For the Re→ 0, the dependencies Ha∗(Re) have horizontal asymptotes, that is,
the occurrence of the reverse flow does not depend on the Reynolds number. At 10 < Re < 100,
these dependencies have minima. For Re > 100, the curves Ha∗(Re) increases.

Fig. 7. Reverse flow diagram for R = 1, 2, 3

Fig. 8 shows the streamlines of the reverse flow at Re= 1000: Ha = 10 (a), Ha = 65 (b),
Ha = 100 (c). At Ha = 10, a vortex is observed near the inner wall of the channel straightway
after the bend. At Ha = 65, a vortex exists at the outer wall in the outlet branch. When
Ha = 100, a reverse flow is observed. At the Reynolds number Re = 1000 it was not possible
to obtain a flow without vortices, as shown in Fig. 4 (a): at the smallest Hartmann numbers the
flow has the form as in Fig. 8 (a). Also, due to instability, it was not possible to obtain a state
reverse jet at Ha = 300.

Conclusion

This paper describes the flow of a viscous electrically-conducting fluid in a bent channel. The
magnetic field is directed parallel to the outlet branch. The occurrence of the reverse flow in the
form of the near-wall flow and the near-axial jet is presented, including the data for several bend
radii. The obtained results are interesting with regard to the design of magnetohydrodynamic
devices such as liquid metal blankets for thermonuclear reactors, given that they have a large
number of bent channels. The suppression of rotational motion by a magnetic field should have
a strong effect on their hydraulic characteristics. At the same time, the complete mathematical
modeling of flows in engineering devices is currently a very expensive task. A solution of model
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(a)

(b)

(c)

Fig. 8. Streamlines at Re = 1000, R = 2: Ha = 10 (a), Ha = 65 (b), Ha = 100 (c)

problems, and the identification of general laws of magnetohydrodynamic flows in bends, would
have a great influence on the design of blankets and the interpretation of experimental results.
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Аннотация. В работе рассмотрены режимы течения электропроводящей жидкости в изогнутом
на 90 градусов канале. Магнитное поле направлено параллельно выходному патрубку канала. Ис-
пользовались уравнения магнитной гидродинамики в приближении малых магнитных чисел Рей-
нольдса и спектрально-элементный метод. Паттерны течения изучены при разных значениях чисел
Рейнольдса и Гартмана, разных радиусах изгиба канала. Обнаружено возникновение противотече-
ния в выходной части канала.
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Introduction

Accuracy of the numerical integration of a satellite motion still remains one of the top prob-
lems associated with Global Navigation Satellite Systems. A review of the approaches used by
Analysis centres of International GNSS Service [1] shows that the basic techniques of the nu-
merical integration of a satellite orbit are the Adams-Bashforth/Moulton PECE-algorithms, the
nonlinear Everhart’s procedure [2] and collocation methods [3, 4]. However, a linear multi-step
symmetric methods shows considerable promise [5] for near-circular orbits that are typical for
navigation satellites.

The theory of multi-step methods, including the Adams family which are traditional for the
numerical integration of the motion of celestial objects, are widely discussed in many textbooks
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on numerical methods [6,7,9–12]. The Störmer-Cowell methods were developed and successfully
used since the early 20th century. However, in 2016 an interesting result concerning instability for
small step size of some Störmer-Cowell methods was presented by Nørsett and Asheim [13]. The
general theory of the symmetric multi-step methods was developed by Lambert and Watson [14].
The symmetric methods of high order were discussed in relation to the numerical integration of
planetary orbits over a long period of time.

The orbital motion is described by the system of second order ordinary differential equations
(ODE). It is generally agreed that is better to solve numerically the second order ODE rather
than equivalent system of two first order equations [6,15]. We also confirm this in our numerical
experiments.

In this paper, we discuss the accuracy and stability of high-order explicit symmetric multi-
step methods and their advantage over the Störmer-Cowell methods with/without "predict –
evaluate – correct evaluate" (PECE) mode. We propose an efficient way to calculate intervals of
absolute stability and periodicity for any linear multi-step method.

To study stability and periodicity we used the general-purpose computer algebra system
REDUCE over the complex field with an accuracy of 40 significant digits. Numerical algorithms
were implemented in C++ using the library quadmath for quadruple precision calculations.

1. Linear multistep methods

On the discrete point set {tn : tn = t0 + nh, h > 0, n = 0, 1, . . . }, we consider the k-step
linear multistep method

k∑
j=0

αjxn+j = h2
k∑

j=0

βjfn+j , k > 2, (1)

for the numerical solution of the special second-order initial value problem

x′′ = f(t, x), x(t0) = x0, x′(t0) = x̂. (2)

Here xn is the approximation of the exact solution x(tn) ∈ R and fn = f(tn, xn). Method (1) is
characterized by polynomials ρ(ξ) and σ(ξ), where

ρ(ξ) =

k∑
j=0

αjξ
j , σ(ξ) =

k∑
j=0

βjξ
j , ξ ∈ C.

We suppose that ρ and σ have no common factors, αk = 1, |α0| + |β0| ̸= 0, and
k∑

j=0

|βj | ̸= 0.

If βk = 0 the method is explicit, otherwise it is implicit. For method (1) to be consistent, it is
necessary and sufficient that ρ(1) = ρ′(1) = 0 and ρ′′(1) = 2σ(1). Method (1) has the order p if
for all sufficiently smooth test functions z(t)

k∑
j=0

αjz(t+ jh)− h2
k∑

j=0

βjz
′′(t+ jh) = Cp+2h

p+2z(p+2)(t) +O(hp+3).

We assume that if the Cauchy problem (2) is solved with the use of method (1) the accuracy of
first starting values xn, n = 0, . . . , k − 1 is at least not less than the order of the method.

All Störmer-Cowell methods have ρ(ξ) = ξk − 2ξk−1 + ξk−2. Method (1) is symmetric if
αj = αk−j , βj = βk−j , j = 0, . . . , k. A symmetric method has only even order [7]. We study
higher order methods, namely, from 6th to 12th order Störmer-Cowell methods and even order
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symmetric methods. Coefficients αj and βj for these methods are presented in [13] and [5, 14],
respectively.

These methods are consistent and zero-stable. Hence they are convergent [6,14] and polyno-
mial ρ has the root of multiplicity two at +1. Let us denote the roots of ρ by ξs, s = 1, . . . , k,
where ξ1 = ξ2 = 1 are the principal roots and the remaining k−2 roots are spurious. All spurious
roots of any Störmer-Cowell method are zero.

We demonstrate main differences between symmetric and Störmer-Cowell methods by the
example of the harmonic oscillator equation

x′′ = −λ2x, x(t0) = x0, x′(t0) = x̂, λ ∈ R. (3)

That has general solution x(t) = A cosλt+B sinλt with period T = 2π/λ.
Using method (1) to solve (3), we obtain the difference equation

k∑
j=0

(
αj +H2βj

)
xn+j = 0 (4)

with general solution

xn = D1r
n
1 +D2r

n
2 +

k∑
s=3

Dsr
n
s . (5)

Here H = λh, Ds ∈ C are constant. Let us assume that all the roots rs, s=1,. . . ,k of the stability
polynomial

π(r;H2) = ρ(r) +H2σ2(r) (6)

are distinct. Since the roots of the polynomial are continuous functions of its coefficients, rs are
perturbation of ξs when H2 > 0. Thus, the numerical solution of (3) xn may be represented
by the sum of the component (xn)P = D1r

n
1 + D2r

n
2 associated with the perturbation of the

principal roots and (xn)S that arises from perturbation of spurious roots.
Absolute stability of the Störmer and Cowell methods. Root-locus curves for some Störmer

and Cowell methods are shown in Fig. 1 (a–i). They are constructed by the "boundary locus"
method [12] which gives a general shape of the boundary |r| = | exp(iφ)| = 1 of the open stability
region in the complex plane H2. The stability region is always at the left of the curve when we
move along the curve as φ increases from 0 to 2π. For example, there is no stability region
for the 10th order Störmer’s method (Fig. 1 c). Moreover, the stability region near the interval
of absolute stability is shown in more detail in Figs. 1 (b, f, h) for methods that are used in
our numerical experiments. Let us note that in the general case λ ∈ C the stability region is
determined, while for the harmonic oscillator we obtain the stability interval on the real axis.

In order to determine the stability interval more accurately the Routh-Hurwitz criterion [16]
can be used. In this case, a transformation of the region |r| 6 1 into the region Re(z) 6 0

is required. There are the Schur-Cohn [12] and the Jury [17–19] criteria that test the strong
stability of π(r;H2) directly. The Schur-Cohn and the Jury criteria are convenient for program
implementation and they are easily tested for a given H2.

According to the Jury criterion, the problem of determining the set of all values of H2

that all roots of π(r;H2) are inside of the unit circle, is reduced to solving the system of k
inequalities, where k is the degree of π(r;H2). The left-hand side of each inequality is the ratio
of polynomials in H2 and the right-hand side is zero. The polynomial coefficients are obtained
from the coefficients of π(r;H2). Even for small k the system of the inequalities can be analysed
analytically only in some cases. For high order methods this task becomes computationally
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Table 1. Stability intervals ofH2 for Störmer’s and Cowell methods and the interval of periodicity
of H2 for symmetric methods

Order 5 6 7 8

Störmer
(
360

323
;
60

49

)
unstable (0; 0.3820447 . . . )

(
0;

27

128

)
Cowell

(
0;

60

11

) (
0;

60

13

) (
87280

308407
;
189

52

) (
4221504

1824647
;
189

71

)
Order 9 10 11 12

Störmer unstable unstable
(
0;

51975

1686934

) (
0;

9450

595163

)
Cowell (0; 0.3597184 . . . ) (0; 1.0218233 . . . )

(
0.1898631;

20790

28687

)
unstable

Order 6 8 10 12
Symmetric (0; 0.8021734 . . . ) (0; 0.5157665 . . . ) (0; 0.1724269 . . . ) (0; 0.0456343 . . . )

intensive. For example, when the Jury criterion is applied to the 8th order Störmer method the
maximum degree of the polynomial equals to 12, and for the 8th order Cowell method it equals
to 117!

We propose the following effective method to determine the boundaries of the stability interval
of method (1). We have to define allH2 for which the polynomial π(r;H2) has a root that belongs
to the unit circle. Consider the roots r∗ = exp(iφ) and r∗ = exp(−iφ) of (6), 0 < φ < π. Let us
represent π(r;H2) in the form:

π(r;H2) = S(r;H2)(r2 − 2r cosφ+ 1) +R(r;H2)

where S(r;H2) is a polynomial of the order (k − 2) in r with real coefficients, R(r;H2) =

= a0(H
2, cosφ) + a1(H

2, cosφ)r, a0, a1 ∈ R. Since r∗ and r∗ are the roots of both polynomials
π(r;H2) and r2− 2r cosφ+1, R(r;H2) = 0. Therefore a0(H2, cosφ) = 0 and a1(H2, cosφ) = 0.
Consider solutions (H2

∗ , φ∗) of the last two equations, where −1 < cosφ∗ < 1. In addition, the
case φ = 0 gives H2

∗ = 0 and the case φ = π immediately gives H2
∗ = −σ(−1)/ρ(−1). Choose

all H2
∗ ∈ R+ only, and they divide R+ into disjoint intervals. We test polynomial (6) using the

Jury criterion for strong stability for some value of Ĥ2 belonging to each interval. The interval
in R+ for which π(r; Ĥ2) is strongly stable corresponds to the interval of absolute stability of
method (1).

Tab. 1 presents the absolute stability intervals for the Störmer and Cowell methods of orders
from 5 to 12 . The results show that not all methods are stable at small H2. For example, the
Cowell method of order 8 has a very short stability interval separated from zero. The presented
results are the same as those from [13], with the exception of the 7th order Störmer method for
which one more root was found. It is close to but it does not agree with that found in [13]. This
reduces the stability interval. In addition, rational boundaries of the stability intervals can be
found with our approach find if they exist.

Interval of periodicity of symmetric methods. If ξ̂ is a root of a symmetric polynomial then
1/ξ̂ is also its root. Then for symmetric method (1) there is no such H2 that all roots of
the stability polynomial π(r;H2) are in the unit circle. Therefore, any symmetric method is
absolutely unstable. On the other hand, symmetric methods can have another useful property,
namely, they can have a non-vanishing interval of periodicity [14].
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According to [14] method (1) has non-vanishing interval of periodicity (0;H2
0 ) if for all

H2 ∈ (0;H2
0 ) the roots rs of the stability polynomial π(r;H2) satisfy relations

r1 = exp (iθ(H)) , r2 = exp (−iθ(H)) , |rs| = 1, s = 3, . . . , k, θ(H) ∈ R

and if the order of (1) is p then θ(H) = H +O(hp+1) ∈ R.
If method (1) has non-vanishing interval of periodicity then it is symmetric. The opposite is

not true, but if polynomial ρ of symmetric method (1) has all roots in the unit circle and there
are no other double roots except the principal ones then the method has a non-vanishing interval
of periodicity. In this case, since the roots of the polynomial continuously depend on parameter
H2, all roots of π(r;H2) remain in the unit circle when H2 changes from 0 to some H2

0 . Then the
principal component (xn)P of the numerical solution is periodic with a period close to 2π/λ (the
period of the analytical solution of (3)), and (xn)P dominates over (xn)S which is also periodic.

The approach to determine the value of H0 is proposed [14]. Some polynomial is constructed
from π(r;H2) by special transformation of variable r [14]. The value ofH2

0 is determined from the
condition that all roots of the polynomial are real, distinct and non-negative. This corresponds
to the condition that the absolute values of all roots of π(r;H2) are equal to 1 for H2 ∈ (0;H2

0 ).
We propose an alternative method based on determining of H2

0 in such a way that multiple
root arises for π(r;H2

0 ). Let symmetric method (1) has a non-vanishing interval of periodicity
(0;H2

0 )> Then for H ∈ (0;H2
0 ) all roots of π(r;H2) are distinct and lie on the unit circle.

Moreover, each root that does not lie on the real axis has the conjugate root as the root of a
polynomial with real coefficients (Fig. 2 a). If H2 > H2

0 then there exists ξ∗ = r∗(cos θ∗+i sin θ∗)

root of π(r;H2), where r∗ > 1. Therefore 1/ξ∗ = (cos θ∗ − i sin θ∗)/r∗ and its conjugate ξ∗ =

= r∗(cos θ∗ − i sin θ∗), 1/ξ∗ = (cos θ∗ + i sin θ∗)/r∗ are also the roots of π(r;H2). Because r∗

is continuously depends on parameter H there exists H = H∗ for which r∗ = 1, that is, ξ∗ is
root of multiplicity 2. Therefore, H∗ coincides with the right-hand boundary of the interval of
periodicity H0. Thus, H0 can be found as the minimum positive real root of the discriminant
of the stability polynomial of a symmetric method. In Fig. 2, the behaviour of the roots of the
stability polynomial for the 8th order symmetric method is shown when H approaches H0 and
when H is greater than H0. Table 1 shows the interval of periodicity for the symmetric methods
considered here.

The Störmer methods have a non-vanishing absolute stability interval but do not have an
interval of periodicity. Alternatively, symmetric methods are absolutely unstable but they have
a non-vanishing interval of periodicity. These differences are shown in Fig. 3 for the following
simple numerical example. Let us consider problem (3) with the initial conditions x(0) = 1 and
x′(0) = 0. Then the exact solution is x(t) = cos(λt). Equation (3) has two the first integrals

E := λ2(x(t))2 + (x′(t))2 = const, θ := λt+ arctan
x′(t)

λx(t)
= const.

Although the velocity x′(t) = v(t) is not directly defined by (3), it can be determined by
equation (3) through introduction of unknown function v with the initial data v(0) = 0,
v′(0) = x′′(0) = −λ2.

The error of the first integral ∆E = Eh − E for (3) is shown in Fig. 3 (a) and (b) for
λ = 1. equation (3) is integrated with the 8th order symmetric method and Störmer method,
respectively. The error of the first integral ∆θ = θh − θ is demonstrated in Fig. 3 (c) for both
methods. Here E, θ are exact values of the first integrals (they equal to 1 and 0, respectively)
and Eh, θh are numerical values of the first integrals. The step-size h = π/128 belongs to the
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a) 8th order Störmer b) zoom in 8th order Störmer c) 10th order Störmer (unstable)

d) 12th order Störmer e) 8th order Cowell f) zoom in 8th order Cowell

g) 9th order Cowell h) zoom in 9th order Cowell i) 10th order Cowell

Fig. 1. The root-locus curves and the stability regions for some Störmer and Cowell methods in
the complex plane represented by H2

interval of periodicity of symmetric method and to absolute stability interval of the Störmer
method.

The symmetric method gives a periodic solution, therefore Eh is a periodic function with
constant amplitude. One can see in Fig. 3 (a) that the energy of the system does not increase
with time. Since all roots of π(r;H2) for the Störmer method are less than 1, the energy of the
numerical solution decreases (Fig. 3 (b)). Since the period of the numerical solution does not
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a) b) c) d)

Fig. 2. The roots of stability polynomial π(r;H2) for the 8th order symmetric method (1) in the
complex plane; r is shown for H2 = H2

0/10 (a), H2 = 9H2
0/10 (b), H2 = H2

0 (c), H2 = 11H2
0/10

(d). The roots r1 and r2 that correspond to the perturbed principal roots ξ1 = ξ2 = 1 are marked
with black triangle marker

a) b) c)
Fig. 3. The errors of the first integrals for the equation of harmonic oscillator for the symmetric
(a,c) and Störmer (b,c) methods with step-size h/T = 256, t in radians.

coincide with the theoretical one, the numerical solution is either ahead of or lagging behind
the exact solution. For the symmetric method |∆θ| grows slower than for the Störmer method
(Fig. 3 (c)).

2. Numerical experiments

Let us consider two three-dimensional model problems that have exact solutions. By “exact
solution” is meant a solution that can be obtained by integrating Kepler’s equation.

Model problem 1 is the three-dimensional Kepler problem

x′′(t) = −µ x

|x|3
, (7)

where µ is the standard gravitational parameter, x = (x1, x2, x3) is the radius-vector of the
satellite and |x| is the Euclidean norm of x.

Model problem 2 is specially constructed from the restricted three-body problem (Earth–
Moon–Earth’s satellite of negligible mass). In this problem, the force acting from the Moon
on the satellite is compensated by an additional force which depends only on time and it is
independent of the position of the satellite on the orbit. This force affects the movement of the
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satellite in such a way that the exact solution of the problem describes the movement of the
satellite around the Earth in the absence of the Moon.

Let us consider the equation of motion for a satellite of negligible mass in an inertial reference
frame centred at the Earth-Moon barycentre

x′′(t) = −µE
x− xE

|x− xE |3
− µM

x− xM

|x− xM |3
+ f(t). (8)

Here x = (x1, x2, x3), xE = ((xE)1, (xE)2, (xE)3) and xM = ((xM )1, (xM )2, (xM )3) are posi-
tions of the satellite, the Earth and the Moon, respectively; µE=3.986004419E+14 m3/s2 and
µM=4.9048696E+12 m3/s2 are the standard gravitational parameters of the Earth and the Moon;
f(t) = (f1(t), f2(t), f3(t)) is an additional force. The coordinates of the Earth and the Moon are
determined by two-body problem. Let xES be the exact solution of the Kepler problem (7) for
the system Earth-satellite. Then x = xES + xE and

f(t) = µM
xES + xE − xM

|xES + xE − xM |3
− µM

xE − xM

|xE − xM |3
. (9)

Thus, model problem (8)–(9) has the exact solution, and the errors of the numerical solution
are calculated directly. Since the Jacobian of the problem coincides with the Jacobian of the re-
stricted three-body problem the stability properties of the numerical methods for these problems
coincide.

The following initial orbital parameters are adopted in numerical experiments. For the
Moon they are aM = 3.94748E + 08 m, εM = 0.042200, ωM = 22◦8′′, ΩM =4◦40′′,
iM =18◦31′′, (M0)M=340◦13′′. For satellite they are aSat=2.5500000004E+07 m, εSat=0.00068,
ωSat=135.0000214◦, ΩSat=120◦, iSat=64.9◦, (M0)Sat=32.6650111◦, TSat=11h15′44′′.

We compare the accuracy of the orbit integration by the Störmer method and symmetric
methods. Additionally, the results for the Bashforth method are shown in the case when problems
(7) and (8) are represented in the form of six first-order ODEs. To improve the accuracy of
the Adams methods the predictor-corrector scheme is also used in the form P (EC)3E, where
the right-hand side (E) and the corrector (C) are evaluated three times at each step. Since
the absolute stability intervals of the 8th order Störmer and Cowell methods do not coincide,
calculations were carried out for the case when the orders of the predictor and corrector coincide,
and they are equal to 8 (P8(EC8)3E), and for the case of the 9th order corrector (P8(EC9)3E).

For each Model problem, we are interested in the maximum deviation of the calculated
satellite position from the exact one after integration for about a year. Let us denote the
numerical and exact solutions at the moment tn by xh

n and xex(tn), respectively, n = k, . . . ,K,
tK = 779Tsat, Tsat is a period of satellite. The following notations for errors are used

∆h
n = xh

n − xex(tn), ∆h
i = max

n=k,...,K
|
(
∆h

n

)
i
|, ρh = max

n=k,...,K
|∆h

n|.

In addition, we consider the decomposition of the error vector ∆h
n in terms of the basis vectors as-

sociated with the exact ellipse. They are r0(tn) = xex(tn)/|xex(tn)|, τ0(tn) = = vex(tn)/|vex(tn)|
and n0 = r0(tn)× τ0(tn). Then we have

δhr = max
n=k,...,K

|r0(tn) ·∆h
n|, δhτ = max

n=k,...,K
|τ0(tn) ·∆h

n|, δhn = max
n=k,...,K

|n0(tn) ·∆h
n|.

Results of calculations with fixed step-size h = Tsat/512 for the Model problems 1 and 2
In Tabs are presented in 2, 3, respectively. One can see that the direct solving of the second
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order ODE is more efficient. Explicit symmetric methods give more accurate results even in
comparison with the explicit–implicit PECE algorithms. In Model problem 1 the Störmer-Cowell
PECE algorithm offers slight advantage over other algorithms only in the error along the radius.
However, symmetric method offers advantage over other algorithms in calculating positions of
the satellite. The symmetric algorithm symmetric method offers advantage over other algorithms
in the case of Model problem 2.

Table 2. Accuracy of the orbit integration (h = Tsat/512). Model problem 1

Bashforth- Störmer- Störmer-
Bashforth Moulton Störmer Cowell Cowell symmetric

P8(EC8)3E P8(EC8)3E P8(EC9)3E
∆h

1 , m 7.43E-03 1.77E-04 7.06E-04 2.04E-05 8.45E-06 1.61E-06
∆h

2 , m 1.07E-02 2.55E-04 1.01E-03 2.93E-05 1.21E-05 2.20E-06
∆h

3 , m 1.08E-02 2.59E-04 1.03E-03 2.98E-05 1.23E-05 2.27E-06
ρh, m 1.20E-02 2.86E-04 1.14E-03 3.29E-05 1.36E-05 2.60E-06
δhr , m 4.98E-06 1.06E-07 3.82E-07 1.73E-08 1.30E-08 1.42E-07
δhτ , m 1.20E-02 2.86E-04 1.14E-03 3.29E-05 1.36E-05 2.60E-06
δhn, m 1.77E-24 1.74E-24 1.40E-22 7.03E-23 1.17E-22 5.07E-23

Table 3. Accuracy of the orbit integration (h = Tsat/512). Model problem 2

Bashforth- Störmer- Störmer-
Bashforth Moulton Störmer Cowell Cowell symmetric

P8(EC8)3E P8(EC8)3E P8(EC9)3E
∆h

1 , m 1.36E-01 3.23E-03 1.27E-02 3.62E-04 1.56E-04 8.89E-05
∆h

2 , m 1.95E-01 4.64E-03 1.82E-02 5.20E-04 2.23E-04 1.28E-04
∆h

3 , m 1.97E-01 4.70E-03 1.84E-02 5.27E-04 2.26E-04 1.29E-04
ρh, m 2.19E-01 5.22E-03 2.05E-02 5.85E-04 2.51E-04 1.43E-04
δhr , m 3.44E-04 8.14E-06 3.20E-05 9.05E-07 4.02E-07 3.70E-07
δhτ , m 2.19E-01 5.22E-03 2.05E-02 5.85E-04 2.51E-04 1.43E-04
δhn, m 7.55E-04 1.80E-05 9.56E-06 2.73E-07 1.17E-07 6.77E-08

Table 4. Accuracy of the orbit integration (h = Tsat/den). Model problem 1

Bashforth- Störmer- Störmer-
Bashforth Moulton Störmer Cowell Cowell symmetric symmetric

P8(EC8)3E P8(EC8)3E P8(EC9)3E

rhp 486876 1286888 377037 1012680 922316 174497 253176
den 625 413 484 325 296 224 325
h, sec 64.8 98.1 83.7 125 137 181 125
H2 1.01E-04 2.31E-04 1.69E-04 3.74E-04 4.51E-04 7.87E-04 3.74E-04
ρh, m 1.99E-03 1.98E-03 1.89E-03 1.98E-03 1.89E-03 1.91E-03 9.80E-05
δhr , m 6.56E-07 7.51E-07 6.86E-07 7.64E-07 1.81E-06 1.07E-04 5.41E-06
δhτ , m 1.99E-03 1.98E-03 1.89E-03 1.98E-03 1.89E-03 1.91E-03 9.80E-05
δhn, m 1.22E-24 1.12E-24 1.02E-22 4.49E-23 5.65E-23 2.41E-23 5.57E-23

Another series of calculations were carried out to determine the step at which the maximum
deviation of the numerical solution from the exact one does not exceed 2 mm for a year. The
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Table 5. Accuracy of the orbit integration (h = Tsat/den). Model problem 2

Bashforth- Störmer- Störmer-
Bashforth Moulton Störmer Cowell Cowell symmetric symmetric

P8(EC8)3E P8(EC8)3E P8(EC9)3E

rhp 671499 1779216 519594 1402180 1274424 289789 350551
den 862 571 667 450 409 372 450
h, sec 47.0 71.0 60.8 90.1 99.1 109 90.1
H2 5.31E-05 1.21E-04 8.87E-05 1.95E-04 2.36E-04 2.85E-04 1.95E-04
ρh, m 2.00E-03 1.95E-03 1.87E-03 1.88E-03 1.89E-03 1.84E-03 4.02E-04
δhr , m 3.10E-06 3.03E-06 2.91E-06 2.92E-06 3.03E-06 4.75E-06 1.04E-06
δhτ , m 2.00E-03 1.95E-03 1.87E-03 1.88E-03 1.89E-03 1.84E-03 4.02E-04
δhn, m 6.89E-06 6.72E-06 8.75E-07 8.78E-07 8.86E-07 8.69E-07 1.90E-07

results of calculations are presented in Tabs. 4, 5. The first row marked “rhp” shows the number of
evaluations of the right-hand side that were required to achieve the accuracy. In the last column,
the results are presented for the symmetric method with the step it takes the Störmer-Cowell
PECE algorithm to achieve the specified accuracy. The advantage of the symmetric method is
obvious, especially for Model problem 2. In addition, the symmetric methods have the lowest
number of right-hand side evaluations in comparison with other methods considered.

This work was supported by the Krasnoyarsk Mathematical Center and financed by the Min-
istry of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Censers for Mathematics Research and Education (Agreement
no. 075-02-2020-1631).
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[3] G.Beutler, Numerische Integration gewöhnlicher Differentialgleichungssysteme: Prinzipien
und Algorithmen. Mitt. Satell., Beobachtungsstn. Zimmerwald, 23(1990).

[4] G.Beutler, Methods of Celestial Mechanics I: Physical, Mathematical, and Numerical Prin-
ciples, Springer-Verlag, Berlin, 2005.

[5] G.Quinlan, S.Tremaine, Symmetric multistep methods for the numerical integration of plan-
etary orbits, Astron. J., 100(1990), no. 5, 1694–1700.

[6] P.Henrici, Discrete Variable Methods in Ordinary Differential Equations, John Wiley and
Sons, New York, 1969.

[7] J.D.Lambert, Computational Methods in Ordinary Differential Equations, John Wiley and
Sons, New York, 1973.

[8] T.Bordovitcina, The modern numerical methods in problems of celestial mechanics, Nauka,
Moscow, 1984 (in Russian).

– 790 –



Evgenia D.Karepova . . . Accuracy of the Symmetric Multi-Step Methods for the Numerical . . .

[9] E.Yairer, S.Norsett, G.Wanner, Solving Ordinary Differential Equations, Springer-Verlag,
Berlin, 1987.

[10] E.Vergbitckii, Basis of Numerical Methods, Vysshaya shkola, Moscow, 2004 (in Russian).

[11] V.Avdushev, Numerical modeling of orbits, Izdat. NTI, Tomsk, 2010 (in Russian).

[12] J.C.Butcher, Numerical methods for ordinary differential equations, John Wiley and Sons,
New York, 2016.

[13] S.Nørsett, A.Asheim Regarding the absolute stability of Störmer-Cowell methods, Discrete
and Continuous Dynamical Systems, 34(2014), no. 3, 1131–1146.
DOI: 10.3934/dcds.2014.34.1131

[14] J.D.Lambert, Symmetric Multistep Methods for Periodic Initial Value Problems, J. Inst.
Maths Applics, 18(1976), 189–202.

[15] P.Chakravarti, P.Worland, A class of self-starting methods for the numerical solution of
y′′ = f(x, y), BIT Numerical Mathematics, 11(1971), no 4, 368–383.

[16] A.Hurwitz, On the conditions under which an equation has only roots with negative real
parts (English translation by H. G. Bergmann), in Selected Papers on Mathematical Trends
in Control Theory, R. Bellman and R. Kalaba Eds., Dover, New York, 1964, 70–82.

[17] E.Jury, J.Blanchard, A stability test for linear discrete systems in table form, I.R.E. Proc.,
49(1961), 1947–1948.

[18] E.Jury A modified stability table for linear discrete systems, Proc. IEEE, 53(1965), 184–185.

[19] E.Jury, Inners and the Stability of Linear Systems, John Wiley and Sons, New York, 1982.

Точность симметричных многошаговых методов
численного моделирования движения спутника
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Юрий В. Шанько
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация

Аннотация. В статье мы подробно обсуждаем устойчивость линейных многошаговых симметрич-
ных методов высокого порядка в задаче гармонического осциллятора. Приведены эффективные
алгоритмы вычисления интервалов абсолютной устойчивости и периодичности. Численные экспе-
рименты демонстрируют точность вычисления орбиты на интервале около одного года для трех-
мерной задачи Кеплера и для специально разработанной трехмерной тестовой задачи, которая
моделирует систему Земля-Луна-спутник и имеет точное решение.

Ключевые слова: линейные многошаговые методы, симметричный метод, методы Адамса-
Штермера-Коуэлла, PECE-схема, орбита.
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Abstract.Dynamical problems of the theory of plasticity have not been adequately studied. Dynamical
problems arise in various fields of science and engineering but the complexity of original differential
equations does not allow one to construct new exact solutions and to solve boundary value problems
correctly. One-dimensional dynamical problems are studied rather well but two-dimensional problems
cause major difficulties associated with nonlinearity of the main equations. Application of symmetries
to the equations of plasticity allow one to construct some exact solutions. The best known exact solution
is the solution obtained by B.D. Annin. It describes non-steady compression of a plastic layer by two
rigid plates. This solution is a linear one in spatial variables but includes various functions of time.
Symmetries are also considered in this paper. These symmetries allow transforming exact solutions
of steady equations into solutions of non-steady equations. The obtained solution contains 5 arbitrary
functions.
Keywords: differential equation, plasticity, dynamical problem, exact solution, symmetries.
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Introduction

There is an extensive literature on the theory of plasticity. The reason is that problems con-
sidered in this theory are very important for various practical applications. These problems arise
in the design of machines and technological processes where plastic deformations are present,
in various applications to armaments industry (for example, projectile penetration theory, etc.).
Contemporary and classical studies deal mainly with static problems. This is not because dy-
namical problems are not important but because of lack of progress in developing appropriate
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methods to solve these problems. The spatial solution of dynamical equations was first obtained
by B. D. Annin in 1978 [2]. This solution is linear in spatial variables and contains several
arbitrary functions that depend on time. The solution was constructed with the use of group of
point symmetries admitted by the system of equations of dynamical theory of plasticity. Later,
new exact solutions of some plane dynamical problems were constructed,. They are based on
group properties of the equations. New solutions of the dynamical equations are given in [8].
They are based on transformation of steady-state solutions into non-steady solutions.

New classes of exact solutions of dynamical problems of the theory of plasticity are proposed
in the paper. They contain 5 arbitrary functions.

1. Problem definition

Let x = x1, y = x2, z = x3 is Cartesian coordinate system, u = v1, v = v2, w = v3 are
components of strain rate vector, eij are components of strain velocity tensor, σij are components
of stress tensor. The components of strain velocity tensor and stress tensor satisfy the equations
of motion

dvi
dt

= ∂iσij , i, j = 1, 2, 3. (1)

Here
dvi
dt

= ∂tvi+ vj∂jvi is a full or substantial derivative. Einstein summation convention is
applied here. Components of the stress deviator tensor and the strain velocity tensor are coaxial

σij − δijp = λeij = λ(∂jvi + ∂ivj)/2, (2)

where, δij is the Kronecker symbol, λ is a non-negative function, 3p = σii.
It is assumed that medium is incompressible. Then we have incompressibility equation

∂ivi = 0. (3)

In addition to system of equations (1)–(3), von Mises yield criterion is used

(σ11 − p)2 + (σ22 − p)2 + (σ33 − p)2 + 2(σ2
12 + σ2

13 + σ2
23) = 2k2s , (4)

where ks is the shear yield stress.

2. Group properties of the equations of dynamical theory
of plasticity

Lie group of point symmetries admitted by equations (1)–(4) is described in [3]. It is generated
by the following operators

X0 = ∂i, M = t∂t + xi∂xi , S = φ(t)∂p, Ti = fi(t)∂xi + f ′i(t)∂vi − xif ′′i (t)∂p,
Z1 = x2∂x3 − x3∂x2 + v2∂v3 − v3∂v2 .

(5)

There is no Einstein summation convention in (5). Two more operators Z2, Z3 can be
obtained from Z1 by circular permutation of indices. Functions φ(t), fi(t) are arbitrary functions
from the class C∞. Therefore, operators (5) generate an infinite Lie algebra. Derivatives with
respect to variable t is designated by primes.
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Group properties of differential equations can be used for various purposes. They are most
often used to construct invariant solutions – the solutions which do not change with continuous
transformations that correspond to the operators of algebra (5). The invariant solutions of the
plasticity equations and methods of their construction are described more fully in [2] and in the
literature therein. The procedure of deformation of the exact solutions using point symmetries
and the reduction of an exact solution into another one in the case of plane steady equations
of ideal plasticity were shown [7]. We use the group of point symmetries for transformation of
new stationary solutions into new non-stationary ones for the case of three-dimensional plasticity
equations. This approach was firstly applied for construction of new solutions in [8].

3. New stationary solution of system (1)–(4)

As system (1)–(4) admits the operator X0 = ∂t, one can find the invariant solutions of this
system that do not depend on the variable t. These solutions can be determined from the system

vj∂jvi = ∂iσij , σij − δijp = λeij = λ(∂jvi + ∂ivj)/2,

∂ivi = 0, (σ11 − p)2 + (σ22 − p)2 + (σ33 − p)2 + 2(σ2
12 + σ2

13 + σ2
23) = 2k2s .

(6)

System (6) is simpler than the initial one because it has fewer independent variables. Some
of solutions of the system are given in [8]. As far as we know, there are no other solutions
of the considered system [1–3]. Let us find an invariant solution of system (6) regarding the
one-dimensional subalgebra that admits the operator 1

α∂x + 1
β∂y −

2
γ ∂z. This solution has the

following form

u = Ag(αx+βy+γz), v = Bg(αx+βy+γz), w = Cg(αx+βy+γz), p = F (αx+βy+γz). (7)

Here A, B, C, α, β, γ are arbitrary constants, and functions g, F are determined from
system (6). One can obtain the following relations between the functions and the constants

αA+ βB + γC = 0, F =
1

2
g2 + δ,

αA2 + βAB + γAC = α, αAB + βB2 + γBC = β, αAB + βBC + γC2 = γ,
(8)

here δ is an arbitrary constant. Equalities (7) and (8) imply that all components of the stress
tensor are constant and have the form

σ11 = p+
αA

D
, σ22 = p+

βB

D
, σ33 = p+

γC

D
,

σ12 =
βA+ αB

2D
, σ13 =

γA+ αC

2D
, σ23 =

γB + βC

2D
,

D2 = 2k2s

(
(αA)2 + (βB)2 + (γC)2 +

1

2
(βA+ αB)2 +

1

2
(γA+ αC)2 +

1

2
(γB + βC)2

)
.

(9)

The similar solution with the absence of convective terms was constructed in [8].

4. Deformation of stationary solution of system (1)–(4)

Here, the stationary solution obtained above with the use of transformations (5) is deformed
into non-stationary solution of initial system (1)–(4). For this purpose, a notable property of
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the point symmetries is used, namely, the symmetries transform any exact solution of system
(1)–(4) into a new exact solution of this system.

System (1)–(4) admits operators S = φ(t)∂p, Ti = fi(t)∂xi + f ′i(t)∂vi − xif ′′i (t)∂p, (i =

1, 2, 3). It means that the system is not changed under the following transformations

x′i = xi + aifi(t), v′i = vi + aif
′
i(t), p′i = p−

3∑
i=1

aixif
′′
i (t) + a4φ(t). (10)

Here variables without primes are initial ones and variables with primes are obtained as a result of
point symmetries that correspond to subalgebra generated by the operators S, Ti. Parameters ai
are group parameters which change continuously in neighbourhood of zero x1 = x, x2 = y, x3 =

z.
Let us assume that v1i , p1 is a solution of system (1)–(4). Then, in accordance with (9), v2i , p2

of the form

v21 = v11

(
t, x1 + a1f1(t), x2 + a2f2(t), x3 + a3f3(t)

)
+ a1f

′
1(t),

v22 = v12

(
t, x1 + a1f1(t), x2 + a2f2(t), x3 + a3f3(t)

)
+ a2f

′
2(t),

v23 = v13

(
t, x1 + a1f1(t), x2 + a2f2(t), x3 + a3f3(t)

)
+ a3f

′
3(t),

p2 = p1

(
t, x1 + a1f1(t), x2 + a2f2(t), x3 + a3f3(t)

)
−

3∑
i=1

xif
′′
i (t)

)
(11)

are also an exact solution of the same system. This property is used to construct new solutions
of system (1)–(4). Let us apply formulae (11) to the solution constructed above. Then we obtain

u = Ag

(
α(x+ a1f1(t)) + β(y + a2f2(t)) + γ(z + a3f3(t)

)
+ a1f

′
1(t),

v = Bg

(
α(x+ a1f1(t)) + β(y + a2f2(t)) + γ(z + a3f3(t)

)
+ a2f

′
2(t),

w = Cg

(
α(x+ a1f1(t)) + β(y + a2f2(t)) + γ(z + a3f3(t)

)
+ a3f

′
3(t),

p =
1

2
g2
(
α(x+ a1f1(t)) + β(y + a2f2(t)) + γ(z + a3f3(t)

)
−

−xa1f ′′1 (t)− ya2f ′′2 (t)− za3f ′′3 (t) + φ(t).

(12)

The components of the stress tensor corresponded to the velocity field (12) coincide with (9).

Conclusion

A non-steady solution containing 5 variable functions was constructed from a stationary
solution. The method of construction of non-stationary solutions of dynamical equations of
plasticity from a stationary solution was shown in the paper. These solutions can be used for
the analysis of technological processes when the stress state is stationary but the process is
dynamical.
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Новые классы решений динамических задач
пластичности

Сергей И.Сенашов
Ольга В. Гомонова

Ирина Л.Савостьянова
Сибирский государственный университет науки и технологий им. Решетнева,

Красноярский рабочий 31, Красноярск, 660037, Россия
Ольга Н.Черепанова

Сибирский федеральный университет,
Свободный 79, Красноярск, 660041, Россия

Аннотация. Динамические задачи – это наименее изученная область теории пластичности.
Динамические задачи возникают в самых разных областях техники и науки, но сложность исход-
ных дифференциальных уравнений не позволяет строить точные решения и корректно численно
решать краевые задачи. Неплохо исследованы одномерные динамические задачи пластичности, но
уже двумерные вызывают непреодолимые математические сложности, вызванные нелинейно-
стью основных уравнений. Изучение симметрий уравнений пластичности позволило построить
некоторые точные решения. Наиболее известное из них это решение Б.Д.Аннина, описывающее
нестационарное сжатие пластического слоя жесткими плитами. Это решение линейно по про-
странственным переменным, но в него входят произвольные функции времени. В предлагаемой
работе также используются симметрии.
Ключевые слова: дифференциальные уравнения, пластичность, динамические задачи, точные
решения, симметрии.
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