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Abstract. The rheological properties of polyvinylidene fluoride (PVDF) solutions in N-
methylpyrrolidone were studied using the rheometric method. It was shown that the viscosity of polymer
solutions decreases non-linearly with increasing temperature. The viscosity of the N-methylpyrrolidone
used as solvent remains practically unchanged. It was shown that solutions exhibit Newtonian behaviour
at concentrations less than 7 wt.%. At higher concentrations, solutions exhibit properties of pseudoplas-
tic fluid.

Keywords: liquids, structure, viscosity, rheological properties, Newtonian and non-Newtonian be-
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pendences.
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Introduction

The paper deals with the study of fundamental problem of fluid structure engineering. The
basic and essential feature of the present paper is the research object — a suspension of func-
tional piezo polymer and piezo polymer-based nano-composite suspensions. The ferroelectric,
piezoelectric polymer PVDF is considered. Its spontaneous electric polarization varies between 3
and 7 puc/cm?. One of the simple and effective methods of modifying the properties of functional
materials is mechanical processing (compression/stretching) which leads to the accumulation
of mechanical stresses in the material, crystal lattice distortions and deformations of chemical
bonds. This approach is called the strain engineering [1,2]. Many studies have demonstrated the
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effectiveness of this approach in changing optical, magnetic, chemical (catalytic) and electrical
properties. Low-symmetry ferroelectrics occupy an exceptional place among various available
materials. By analogy with magnetic materials, they have two important properties: orientation
of a spontaneous polarization vector (the total dipole moment of the system) can be changed
by the direction of the external electric field and the ferroelectric-paraelectric phase transition
at the Curie temperature. Unlike quantum dots and superparamagnetic particles, ferroelectrics
show significant degradation of their functional properties which is explained by a violation of
the balance of short-range and long-range forces of the system in the framework of the Landau-
Devonshire-Ginzburg theory of ferroelectric effect [3].

It was experimentally shown in 2004 that the spontaneous polarization of epitaxially grown
barium titanate film with a certain difference in the parameters of an elementary crystal cell can
be 250 % above the spontaneous polarization of a bulk crystal [4]. Theoretical studies showed
that this increase can be induced by mechanical deformation, in particular, by biaxial compres-
sion of the barium titanate film [5]. The strain engineering concept which consists in selecting
systems with certain difference in the lattice parameters can significantly enhance the functional
characteristics of low-dimensional ferroelectrics. However, this is only possible for thin films
and two-dimensional systems. In the case of nanoparticles the situation is essentially different.
Methods of chemical synthesis of monodisperse nanoparticles do not yet allow producing parti-
cles in the "stressed, deformed" state due to the passive role of ligands covering the surface [6].
Therefore, it is of interest to stabilize such polymer particles in viscous media and thus to create
ensembles of particles periodically located in space and stabilized by interaction with the sur-
rounding polymer molecules. This in turn can significantly affect the low-frequency rheological
characteristics of nanosuspensions and be evidence of "solidification". Recently, there was great
interest in the study of fluids that exhibit non-Newtonian behaviour [7-12]. Previously, it was
shown that PVDF solutions mainly exhibit Newtonian behaviour [13-16]. In this work, a de-
viation from the Newtonian behaviour of PVDF solutions in N-methylpyrrolidone (NMP) was
found at certain weight concentrations.

1. Experiment

1.1. Materials under study
Polyvinylidenefluoride(PVDF)

Polyvinylidene fluoride or polyvinylidene difluoride (PVDF) is a highly reactive thermoplastic
fluoropolymer obtained by polymerization of vinylidene fluoride [17] (see Fig. 1). The chemical

formula of polyvinylidene fluoride is (CoHo Fy),,.
k

Fig. 1. The structural formula of the PVDF

e e
M—0O—T

The PVDF is a crystalline polymer of white or translucent colour with a molecular weight
of over 100,000. The PVDF is a special plastic used in areas where the highest purity as well as
resistance to solvents, acids, and hydrocarbons is required. Compared to other fluoropolymers,
such as polytetrafluoroethylene (Teflon), PVDF has low density (1.78 g/em?). The polymer
has high mechanical strength, wear and weather resistance as well as resistance to ionizing and

- 266 —



Bair B. Damdinov, Victoria A.Danilova ... Rheological Properties of PVDF Solutions

ultraviolet radiation [18]. Besides, it also exhibits high chemical resistance and compatibility
with thermoplastic materials. In industry, PVDF solutions are used to produce fluoroplastic
membranes.

N-methylpyrrolidone

N-methylpyrrolidone (NMP) is an organic compound comprising of five-membered lactams
(see Fig. 2). Tt is a colourless liquid but impure samples may look yellow. It also belongs to the
class of dipolar aprotic solvents, such as dimethylformamide and dimethyl sulfoxide. It is mixed
with water, and it is the most common organic solvent used in the petrochemical and plastic
industries due to its volatility and ability to dissolve various materials including polymers.

(=0

I
CH,

Fig. 2. The structural formula of the NMP

Its chemical formula is C5 Hg N O, molar weight is 99.133 g-mol~!, and density is 1.028 g/cm?.
The NMP is used for the extraction of certain hydrocarbons formed in the processing of
petrochemical products, such as the reduction of 1,3-butadiene and acetylene. It is also used
for the absorption of hydrogen sulfide from acid gases and hydrodesulfurization plants. N-
methylpyrrolidone is used for dissolving a wide range of polymers.

Typically, polymers dissolved in NMP are used to treat the surface of electrodes or produce
polymer electrolytes. The results of measurements of viscosity of PVDF solutions in NMP are
presented in the paper. These solutions are pseudoplastic at high concentrations of the solution
and the presence of PVDF. Viscosity was defined as a function of the shear rate. The PVDF and
NMP materials and reagents of the biotechnological class were purchased from the Sigma-Aldrich
Chemistry Products catalog. The average molecular weight of PVDF was 534,000.

1.2. Preparation of solutions

To prepare polymer solutions the following features were taken into account: the ability to
form stable suspension at the stage of polymer dispersion in the NMP, solubility in the NMP
and the viscosity of the resulting solution. To prepare a 10% PVDF solution 10 ml of N-
methylpyrrolidone was poured into a vessel at ambient temperature. Then a polymer sample
(1 g) was added, left for 24 hours, and after that it was dispersed for an hour. The resulting
solution was homogeneous, transparent, and it did not contain undissolved particles. Solutions
with concentrations of 0.1, 0.2, 0.4, 1, 2, 3, 5, and 7 wt.% were prepared by the same procedure.

1.3. Rheological measurements

The rheological properties of polymer solutions were studied with the use of Anton Paar
MCR 52 rotary rheometer with a plane-plane unit (see Fig. 3). The solution was placed into a
gap between two round plates 20 mm in diameter. The width of the gap remained constant and
it is equal to 1 mm.

The temperature dependence of viscosity was obtained. Temperature was varied between 15
to 40°C. The relationship between viscosity and shear rate was also established. The shear rate
was varied between 1 to 200 s~! at constant temperature of 20°C.
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Fig. 3. General view of the Anton Paar MCR 52 rheometer

2. Results and discussion

Fig. 4 shows viscosity of solutions versus shear rate.

It is apparent that the shape of the curves for concentrations less than 7 wt.% is typical for
Newtonian fluid, i.e., the viscosity does not depend on the velocity gradient. For concentrations
of 7 and 10 wt.% the viscosity decreases with increasing shear rate. This behaviour is typical for
non-Newtonian (pseudoplastic) fluids. The rheology of PVDF solutions in dimethyl acetate was
studied before [13]. It was shown that the viscosity of the solution practically did not change
with an increase in the strain rate (Newtonian behaviour) up to concentrations of 15 wt.%. Thus,
the present results are in qualitative agreement with the results obtained before [13].

The rheological behaviour of solutions with concentrations of 7 and 10 % is described by the
Power Law model:

p=Fky""t,
where k is a consistency index (Pa-s™), 4 is the shear rate (s7!), and n is the flow behaviour
index. Consistency indexes for the concentrations of 7 % and 10 % are k =215.1 mPa-s™ and
k =1245 mPa-s", respectively. Flow indexes for the concentrations of 7 % and 10 % are n =0.966
and n =0.954, respectively.

A similar behaviour of viscosity was observed for suspensions of nanoparticles [11] (see Fig. 5).
Like polymer solutions, suspensions are Newtonian fluids at low concentrations of nanoparticles.
When concentration of nanoparticles in the suspension increases the non-Newtonian properties
emerge. However, unlike the solutions considered above, the rheology of nanosuspensions is
not always described by the power-law model. In some cases, yield shear stresses 7y occur in
nanosuspensions and the rheology is better described by the Herschel-Bulkley model:

= (k3" +710)/7-
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Fig. 4. Viscosity coefficient of the solution versus shear rate at different weight concentrations
of PVDF in NMP
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Fig. 5. Viscosity coefficient versus shear rate for ethylene glycol-based nanosuspensions with
150 nm particles of AloO3 (a) and TiO4 (b) [11]

The volume not occupied by molecules (free volume) is very small in fluids. Then even small
molecules from the faster-moving layer can not penetrate the slower-moving layer. As a result,
the exchange of the momentum between the layers does not result from the collisions of molecules
but because fast-moving molecules entrain the slow-moving molecules.

Polymer molecules are fully oriented and straightened at high shear rates. Then the transfer
of momentum from the faster-moving layer to the slower-moving layer should occur in the same
way as in fluids since the size of the free volume is small to accommodate a long molecule.
Therefore, the viscosity at high shear rates will be low. It approaches the value characteristic for
fluids consisting of monomeric rather than polymer molecules [14]. Fig. 6 shows the relationship
between the viscosity coefficient and the weight concentration of solutions at three different shear
rates (69.6, 131, and 200 s—1). It is apparent that viscosity coefficient does not depend on shear
rate. The viscosity coefficient increases with increasing concentration. A deviation from the
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Newtonian behaviour begins at concentrations of more than 7 wt.%.

200 -
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Fig. 6. Relationship between the viscosity coefficient and the weight concentration of solutions
at three different shear rates (69.6, 131, and 200 s—1)

For solutions with concentrations of up to 7 %, the relative viscosity coefficient was calculated
(the viscosity coefficient of the solution referred to the NMP viscosity coefficient). The relation-
ship between the relative viscosity coefficient and concentration is well described by a quadratic
correlation (coefficient of determination R? = 0.996):

Mrel(c):1+a'c+b'02a

where a = 2.11, b =1.16. The relationship between viscosity coefficient of the nanosuspension
and particle concentration is generally also nonlinear. For example, the viscosity coefficient of
water-based nanofluids with Al;O3 (150 nm) particles is described by following equation

pret(C) =1+1.52-C +4.61-C2.

Temperature dependences of the viscosity coefficient and relative viscosity coefficient of PVDF
solutions in NMP at different weight concentrations are shown in Fig. 7. It was found that the
relative viscosity coefficient is independent of temperature:

pret(Cst) = punarp(t) - prrer(C).

At high concentrations (above 7%) these fluids exhibit non-Newtonian behaviour. Similar
phenomenon was observed for suspensions of nanoparticles [12]. So, it was shown that at low
concentrations of particles the relative viscosity of nanosuspensions does not depend on temper-
ature.

It should be noted that the viscosity of solutions, like the viscosity of low-molecular fluids, de-
creases with increasing temperature. This is because the average distances between the molecules
increase with the increase of temperature, and the mutual attraction between molecules weak-
ens. For example, the temperature dependences of the viscosity coefficient of PVDF solutions
in dimethyl acetate were studied at concentrations above 14 wt.% [15]. Like in the present
work, Newtonian behaviour is exhibited by solutions at temperatures up to 30°C while at the
temperature of 50°C the phase transition and destruction of the pseudo structure was detected.
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Fig. 7. Relationship between viscosity coefficient (a) and relative viscosity coefficient (b) of
PVDF solutions in NMP and temperature at different weight concentrations

Conclusions

The rheological properties of PVDF solutions in N-methylpyrrolidone were studied. It was
shown that the viscosity coefficient of polymer solutions decreases with increasing temperature
though this relation ship is not linear. The viscosity coefficient of the pure N-methylpyrrolidone
solution remains almost constant. As shown experimentally, solutions with concentrations of
PVDF up to 7 wt.% behave as Newtonian fluids, i.e., their viscosity does not depend on shear
rate. For higher concentrations of PVDF, the pseudoplastic behaviour was observed. It was
demonstrated that addition of polymers allows one to modify the behaviour of solutions.
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MEeTPUYIECKUM MeTOIO0M. BhII0 0Ka3aHO, YTO BA3KOCTh PACTBOPOB IIOJIMMEPOB HEJIMHEWNHO YMEHbBIIIAETCs
C YBEJIMYEHUEM TEMIIEpaTypPbl. BS3KOCTh pACTBOPUTEJISI — H-METHITUPPOIHIOHA — OCTAETCsI TPAKTHIe-
CKM Hem3MeHHOM. [IoKa3aHo, 9TO IPH MACCOBBIX KOHIEHTPAIUAX MeHee 7 % PaCcTBOPBI POSBJISIIOT HBIO-
TOHOBCKOe moBejieHne. 1Ipu 6osiee BBICOKMX KOHIIEHTPAIUAX PACTBOPBI IIPOSBIIAIOT IICEBJONIACTHIECKIE
CBOICTBA.

KuroueBbie ciioBa: KUIKOCTH, CTPYKTYypa, BI3KOCTb, PEOJIOTHYECKHE CBOWCTBA, HBIOTOHOBCKOE U

HEHBIOTOHOBCKOE NoBezieHue, nosmMmuHmaendropus (IIB®), H-MeTHmupposnoH, cBOfcTBa MaTepu-

aJIoB, TeMIlepaTypHble 3aBUCUMOCTU.
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1. Introduction and motivation

Let (X4,...,Xy) be independent copies of a non-negative random variable (rv) X with
cumulative distribution (cdf) F, defined over some probability space (2,.4,P), suppose that
X is right truncated by sequences of independent copies (Y1,...,Yy) of (rv) Y with cdf G,
throughout the paper, we assume that F and G are heavy-tailed in other words that F=1—F
and G = 1 — G are regularly varying ( RV) at infinity with respective negative indices —1/v;
and —1/7v,; we will use the notation: F € RV(—1/7;) and G € RV(—1/72) that is for any = > 0.

im F;(ta:) =z % and lim (i(ta:) =g (1)

The statistical literature on such problems of extremes [4] and [13] events is very extensive, one of
those problems is for the estimation of the mean E(X), this problem was already treated by [11]
and [3] in the case of complete data, nevertheless in numerous survival practical applications,
it happens that one is not able to observe a subject entire lifetime. The subject may leave the
study may survive to the closing data, or may enter the study at some time after its lifetime has
started, the most current forms of such incomplete data are censorship and truncation. As we
mention our aim is to propose an asymptotically normal estimator for the mean of X:

p=EX)= /000 F(r)dx. (2)
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Whose existence requires that 77 < 1, The sample mean for censored data is obtained and equal

to: - 5
_ " i T n—j n]
= () e 3)

i=2 j=1

the asymptotic normality of fi, is established by [14]. The model studied here is based on the
random right truncated (RRT) data, in the sense that the rv of interest X; and the truncated
rv Y, are observable only when X; < Y, whereas nothing is observed if X; > Y,;. We denote
(X;,Y;), i = 1;n to be observed data as copies of a couple of rv’s (X,Y") corresponding to the
truncated sample (X;,Y;)1<i<n, where n = ny is a sequence of discrete rv’s by the weak law
of large numbers, we have

%—)p:P(XgY) as N — oc.

We shall assume that p > 0, otherwise nothing will be observed. The joint P-distribution of on
observed (X,Y) is given by:
Yy
H(z,y) =P(X <2,V <y)=PX <2, Y<y|X<Y=p! / F(min(z, 2))dG(z).
0

The marginal distributions of the rv’s X and Y respectively denoted by F' and G are defined by:

F(x):p_l/OmG(z)dF(z) and G(y):p_l/OyF(z)dG(z),

Fz) = —p~ / T G)dF(z) and Cly) = —p-! / TR (2)dG(2).

For randomly truncated data; the truncation product-limit estimate is the maximum likelihood
estimate (MLE) for non-parametric models the well-known non-parametric estimator of F in
RRT model, proposed by [10] :

FIB ()= [ ew (1 - cnl( Xi)). (4)

1:X;>x

Where Cp,(z) = n~ ! 3 1(X; < z < Y;) the empirical counterparts of C(z) = P(X < 2 <Y).
i=1

i=
Since F and G are heavy-tailed their right endpoints are infinite and thus are equal. As we
mentioned this problem has been studied by [11] in the case of sets of complete data from heavy-
tailed distributions with a range of 4, € (1/2,1) throughout this paper we restrict ourselves on
the case where v belongs to the following range:

V2
142y

R={vmz>0: <71<1}. (5)

To ensure that the mean is finite and since we have applied both conditions of [15] paper:
dF(x)

D ey, b= [ E@ (©)

=] aw G

We find those conditions may be infinite when we deal with heavy-tailed distributions. Assumed
that both of X and Y are Pareto(v,) and Pareto(vys) respectively:

1-F(x)=F(x) = af%, 1-G(z)=G(z) = 2”5 with 71 >0, %2>0 and z > 1.
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We figure out that the central limit theorem (CTL) established by [15] cannot be applied in
the previous range when I, = I, = co. It is worth to mention that in the case of non truncation
we have 73 = 7 and 2 = oo so R abbreviate to Peng’s range. To define our new estimator
we introduce an integer sequences k = k, representing a fraction of extreme order statistics
satisfying the following conditions:

1<k<n, k— oo and k/n— 0 as n — oo. (7)

So by decomposing u as the sum of two terms

= /0 F(z)dx + /too F(z)dr = p1 + po. (8)

Then we can estimate yu;, i = 1,2 separately, after integration p; by parts and after changing
variables in py we may write:

By replacing ¢t by X,,_j,, where X;, < --- < X, , denote the order statistics pertaining to
X1,...,X,;and F by F%LB) we get that:

——(LB)

Xn—k,n
l/zl = Xn—k,nFn (X7L—k,n)+/ xdF»(nLB)(x)v
0

hence from [16] we may write:

1 iy FgLLB)(Xz,n)

——(LB)
(ank,n)"'_n On(XLn)

///Zl = ank,nFn Xi,n- (9)

i=1
Back to o building on the Karamata Theorem [9, page 363] we may write:

V1
-N

H2 o~ g tF(t) as n—> 00, 0<7y <1 (10)

Notice to estimate (10) it is based on estimator of tail index ~q, in view of the history of
the estimation of ;. In [8] introduced an estimator of 7; under random truncation. In [1]
established the asymptotic normality of this estimator under the tail dependence and the second
order conditions of regular variation, throughout this paper we use the estimation of [1]. So that
yield us to an estimator to us :

~

~ ——(LB
M2 = 1 71/\ ank,nFn( )
-Nn

(ankr,n)7 (11)

finally with (9) and (11), we build our estimator i for the mean (2) as follow:

n—k
. 1 1 FLB(Xz' n)
0 = Xn— n Fn Xn— n 2 n ninn
H k, ( k, )1 - + n ; Cn(Xl,n) 7

The rest of this paper is organized as follows. In the second section, we state our main result.

This is followed by a simulation study of our proposed estimator where we discuss its behavior
with a finite sample.
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2. The main results

In extreme value analysis and in the second-order frame work (see, e.g. [9]), weak approxima-
tion are achieved. Consequently, it seems quite natural to suppose that df’s F and G satisfy the
well-known second-order condition of regular variation we express in terms of the tail quantile
functions. That is we assume that for z > 0. we have

i UR(t0)/Up(t) 2 o™ 1 (12)
e Ar(t) 1
and Ug(tz)/Ug(t) — 27 1
. c(te)/Ug(t) —a™ a7 —
Tim ye = —, (13)

where 71,75 < 0 are the second-order parameters and Ag, Ag are functions tending to zero and
not changing signs near infinity with regularly varying absolute values at infinity with indices
T1,To respectively.

Theorem 2.1. Assume that (12 and 13) hold and VEA,(n/k)= O(1) for vo/(1+27) <71 < 1.
Let k = k,, denote an intermediate integer sequences satisfying (7), then i — p in probability:
_ VE@E—p)
F(Xn—k,,n)Xn—k,n

1 271 ¥ nl
= C1W(1) + / {CQSiTJr@Jrl + C38771+ﬁ+1 +cy ]og(s) + (;5} 37%71W(3)d3+
0

(’71 + 71— 1)(1 — 'Yl) + (]_ . Tl)
A-—m)(n+mn—-1)1—-m) VEA(n/k).

Corollary 2.1. Under the assumptions of Theorem 2.1 we suppose that VEAo(n/k) — X,

+

_ V(i — p) —>/\/<)\(% + 71 —1)(1—71)+(1—T1)702) s 1 oo,
F(Xn—k,n)Xn—k,n (1 - Tl)(71 + 71— 1)(1 - ’Yl)
Where
2. p=p) [p(1 —p) + 23] N P71 2p*(1 - p)
' (1—m)? L=y (I=y)(-n+2)
+ —2p* " 3p° —271p°(1 — p)
(=2+p)(—=4+3p)  (—24+p)(—2+mp+3p) (—2+p) (-1 +2)
5 9,D 1 3 2 3p—2, p
+ 3p 71(5 - m) = 2p”7i(1—p) 6 (m) +
N p’ylp— 1)1 —m) —p*yi {71(—293 +4—6p) +p*(n1 —2) + 2]
(=14+p)(=2+p)(1 =) (=1=p)+n(-p—-2)
L= —2p°(1 — p)2(1 —71) +7ip
p? (I=y)n+2)(-m+p+1)2
2 _ o 2 2 2
+2p (1-p)(1 721)+%p ( 2p ) +( 1 )
(1-m) p?—1 1-p
and
p= 72 .
Y1+ 72
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3. Simulation study

The main purpose of this section is to study the execution of our new estimator ji for that
we generate the data as follows:

e The interset and the truncated variable: we generate two sets of truncated and truncation
data both pulled for the first hand from Fréchet model:

F(z)=1- exp(—x%), G(r)=1- exp(—:c%), x>0
and the other hand from Burr model:
Fz)=(1+z¥)"%, G@)=1+z5)"%, >0 and 67,7 > 0.

e The observed data: for the proportion of observed data is equal to p = v2 /71 + 72 we take
p="T0%, 80% and 90 % we fix 6 = 1/4 and choose the values 0.6, 0.7 and 0.8 for ;. For
each couple (vy1,p); we solve the equation p = v2/v1 + 72 to get the pertaining ~»-value.

e We vary the common size N of both samples (Xy,...,Xy) and (Y1,...,YnN) .

e We apply the algorithm of [12] page 137, to select the optimal numbers of upper order
statistics (k*) used in the computation of 4;.

The performance of this new estimator named by [ is evaluated in terms of absolute bias
(A-bias) root mean squared error (RMSE) which are summarized in tables for Burr model in
Tables: 1 for v = 0.6, 2 for v = 0.7, 3 for 73 = 0.8 and for Fréchet models Tables: 4 for
v1 = 0.6, 5 for vy = 0.7, 6 for 73 = 0.8 adding two forms of graphical representation; we
consider two truncated schema of Burr truncated by Burr the first for vy = 0.6 and the second
for 41 = 0.8 we represent the Biases and the RMSE of our estimator as functions of k& ( number
of the longest order statistics).

After examining all tables and figures, and as expected, the sample size affects the estimate in
the sense that a larger N gives a better estimate. It is noticeable that the estimation accuracy of
estimator decreases when the truncation percentage increase and it is quite expected. Moreover
the estimator performs best for the larger value of the tail index larger than 0.5 especially when
truncation proportion is high.

4. Appendix

4.1. Proof of Theorem 2.1
We begin by setting U; = F(X;) and define the corresponding uniform tail process by
an(8)=VE(Uy,(s) — 5), for 0<s <1 where Uy,(s) = 1/k 1<U4 < k%) The weighted weak
i=1 i

approximation to ay,(s) given in terms of either a sequence of wiener processes (see, eg., [6]
and [5] ) or a single Wienner process as in Proposition 3.1 of [7], will be very crucial to our proof
procedure.

In the sequel, we use the latter representation which says that: there exists a Wiener process
W, such that for every 0 <n <1

sup | an(s) — W(s) |= 0, as n — oo. (14)
0<s<1

Observe that 1 — p = (i1 — p1) + (12 — p2) and starting by:

ank:n - ti
1 — p1 :/ F,(z)dx —/ F(x)dx,
0 0
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Table 1. Bias and RMSE of the mean estimator Table 2. Bias and RMSE of the mean estimator

based on samples of Burr models with v = 0.6 based on samples of Burr models with v, = 0.7
1 =0.6 — p =2.371 1 =0.7T — p=3.218
p=0.7 p=0.7
N A-bias RMSE k* n n N A-bias RMSE k* m n
300 0.002 0.130 27 2374 198 300 0.016 0.634 25 3.234 215
400 0.069 0.858 31 2440 278 400 0.008 0.067 34 3.227 290
500 0.072 0.257 39 2300 355 500 0.008 0.063 58 3.226 3362
1000 | 0.001 0.048 40 2.372 681 1000 | 0.004 0.023 88 3.222 701
p=0.8 p=0.8
N A-bias RMSE k* m n N A-bias RMSE k* m n
300 0.008 0.180 10 2.380 244 300 0.021 0.178 18 3.239 246
400 0.008 0.119 16 2.379 318 400 0.002 0.306 23 3.221 319
500 0.001 0.174 27 2372 399 500 0.002 0.367 39 3.220 403
1000 | 0.001 0.106 25 2372 811 1000 | 0.001 0.193 52 3.219 788
p=0.9 p=0.9
N A-bias RMSE k* I n N A-bias RMSE k™ I n
300 0.005 0.040 4 2406 268 300 0.005 0.028 19 3.223 268
400 0.006 0.028 7 2406 361 400 0.000 0.134 21 3.218 368
500 0.003 0.067 8 2374 445 500 0.008 0.246 25 3.226 458
1000 | 0.003 0.097 12 2374 886 1000 | 0.002 0.049 37 3.220 896

Table 3. Bias and RMSE of the mean estimator Table 4. Bias and RMSE of the mean estimator

based on samples of Burr models with ;3 = 0.8 based on samples of Frechét models with v1 = 0.6
1 = 0.8 — u = 4.896 y1 =0.6 — p=2.218
p=0.7 p=0.7
N A-bias RMSE  k* o n N A-bias RMSE k* I n
300 0.000 0.152 73 4.896 207 300 0.155 0.537 28 2373 170
400 0.029 0.070 75 4.925 278 400 0.153 0.186 25 2.371 217
500 0.065 0.631 147 4.961 348 500 0.004 0.065 32 2222 284
1000 | 0.013 0.302 228 4.919 697 1000 | 0.002 0.010 43 2.220 568
p=0.8 p=20.8
N A-bias RMSE  k* o n N A-bias RMSE k* I n
300 0.106 0.613 55  5.002 239 300 0.259 0.263 17 2475 178
400 0.014 0.446 14 4910 315 400 0.031 0.598 40 2.249 241
500 0.001 0.321 146  4.897 404 500 0.066 0.222 33 2284 293
1000 | 0.030 0.039 173 4.926 810 1000 | 0.074 0.076 31 2.307 569
p=20.9 p=09
N A-bias RMSE k* m n N A-bias RMSE £k~ I n
300 0.094 0.962 67 4.990 275 300 0.010 0.084 5 2228 180
400 0.058 0.240 86  4.954 359 400 0.009 0.185 11 2218 231
500 0.029 0.171 67 4.925 451 500 0.004 0.052 19 2222 314
1000 | 0.006 0.041 187 4.902 894 1000 | 0.008 0.106 23 2.227 594

we consider the following decomposition:
fir — pa =T, (x) + T, ().
Where:
T, (z) = / (Fp(z) —F(z))dz and T,,(z) = / F(x)dx.
0

Xn—kin
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Table 5. Bias and RMSE of the mean estimator Table 6. Bias and RMSE of the mean estimator
based on samples of Frechét models with v4 = 0.7 based on samples of Frechét models with v; = 0.8

1 =07 — pu=2.992 1 =0.8 — pu=4.591
p=0.7 p=0.7
N A-bias RMSE k* i n N A-bias RMSE k* i n
300 0.085 0.213 23  3.076 168 300 0.084 0.720 15  4.675 164
400 0.080 0.356 57 3.072 227 400 0.185 0.604 42 4.776 225
500 0.025 0.365 49 3.016 278 500 0.001 0.037 52 4.591 297
1000 0.020 0.385 58 3.011 564 1000 0.063 0.674 109 4.654 540
p=0.8 p=0.238
N A-bias RMSE k* i n N A-bias RMSE k* I n
300 0.031 0.171 30 3.022 169 300 0.267 0.282 12 4857 173
400 0.000 0.063 26 2.992 250 400 0.131 0.147 29  4.722 222
500 0.016 0.352 44 3.007 274 500 0.044 0.045 41  4.635 306
1000 0.001 0.122 48 2,993 598 1000 0.011 0.331 68 4.690 597
p=0.9 p=09
N A-bias RMSE k™ I n N A-bias RMSE k* I n
300 0.001 0.213 22 2993 193 300 0.222 0.301 37  4.813 172
400 0.082 0.206 25 3.074 225 400 0.128 0.283 72 4719 256
500 0.086 0.189 29 3.078 306 500 0.057 0.576 70  4.648 302
1000 0.000 0.257 40 2.992 584 1000 0.001 0.382 133 4.592 604

It follows after changing variables that:

1=
F — _
Tn1 (fﬂ) = Xn—k,n/ 7(0’161') Fn(xXn—k,n) - F(I'Xn—k,n)dxa
o F(apz)
Xn—tk,m, —_
Tng (.f) - _Xn—k,n/ F($X7L—k,n)dx~
1

In order to established the result of theorem we apply the results of [2], we have:

Fo(2Xp_tn) — FxX,_kn _a FE 1
ViEnleXnckn) ZB@Xnoin) _ o2 3 gty — 2% [ s E W s)as.
F(apz) M Y1+ Y2 0

After some elementary but tedious manipulations of integral calculus (change of variables and
integration by parts) and by making use of the uniform inequality of the second-order regularly
varying functions F, to T,,, (z) becomes:

Ty, () ! _m M1 a2
\/%17*:/ —ysT T 4 sTa T4 15
Xn—knF(ar) 0 = (11 +72) (11 +1) (15)

sTTYW (s)ds + op(1).

YY1
(71 +72) (11 +1)

Next we move toT,, (z) which we may write it as follow after changing variables:

\/Ezm(x) _ /xk \/EleX”*’“»”)
Xn—k',nF(Xn—k,n) 1 F(Xn—k,n)

t

_ 1 Xn—/k,n _ 1
—x 71dm—|—/ z vndr=1; +1,.
1

For I; we apply the results of [2]

— T1

VR Enkn) o = o T L RA (nk) 4 o, (A HI0)
F(Xn—k,n) T
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Fig. 1. Absolute Bias (left panel) and RMSE (right panel ) of i based on samples of size 1000
and v; = 0.6

from Burr distribution truncated by another Burr model with p = 0.7 (top) and p = 0.9 (bottom)

This implies, almost surely, that

/ ank:,n \/%F(Z'ank,n
1

1 Xn—tk n 1 .’L'_%
) —z ndr = / Ta
F(Xn—k,n) 1

Y1

1
VEA,(n/k)dz.
M
Which is equal after simple calculus and by using the mean value theorem we get I; = op(1),
t

for the second step by similar argument and using the fact that from Theorem 2.1 of [1] we have
X’I’l— n .
Vk ( ko _ 1) —yYW(1) = op(1) we get Iy = —yW(1) + 0p(1), that yield to:

\/Eznz (x)

= —YW(1) + 0p(1).
Xn—k,nF(Xn—k,n) P
The two approximation 15 and 16 together give:
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Fig. 2. Absolute Bias (left panel) and RMSE (right panel ) of i based on samples of size 1000
from Burr distribution truncated by another Burr model with p = 0.7 (top) and p = 0.9 (bottom)
and v; = 0.8

~ 1
M1 — p1 _/ ( _2m YY1 _a_q
— = —7vs 7+ S 72 —+
Xk F(Xn-kn) Jo (1 +72) (n+1)

o n s)ds — op(1).
HRCES T )W( J =W Foell)

V(fiz = pa)

Let us now treat term =

(17)

. Consider the following forms of o and fis:

T ()
A2 - 1 71/\ Xn—k,nF (Xn—k,n) and K2 :/ F(!E)dl‘,
- n t
-~ M = e
M2 — H2 = 1—AXn—k,nFn(Xn—k,n) - / F(.’L’)d:l)
gt t

After changing variables we can obtain:

e — e [ EE)
W_[tmmd m@[ o

and
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’a _ :Y\l =
2 — ~ 5 )
1-m

so the previous equation leads to

- g0 = F(Xnkn) = /°° F(tz)
H2 — M2 2 k, ( k, )F (t) . F(t)

if we devise this equation by tF(t) we can get:

\/El/b — U2 _ \/E M X, » Fn(Xn—k,n) F(Xn—k,n) _ \/E/OO F(tx) da
1_ Al n—k,n F . .

tF(t) tf(t) (anktn) F(t)
%(To —
So after adding and Subtract some terms we can decompose W into the sum of:
0 Fn an n F an n an n
Il = \/% ’yl/\ (7 k, )7( k, ) |: k, N 1:|
1-%  F(t) F(Xp—kn) ¢
12 — \/gfn(i(n—k,n) E(Xn—k,n) |: ?1/\ . Y1 ]
Ft) F(Xpkn) - 1-m

- gi! F(‘Xn*k,n) Fn(ank,n)_
R e 7y [F(Xnk,n) 1}

F();;n(t)k,n) B (Xntk,n)—wi}

1
X _L
I .= Vk n [( - k’") 71—1]
1—’}/1 t

IG:Z\/E[ n —/IOOF(m)da:].

L=m

For I, we have, A1 — v1 and X, /t — 1. Since Fjs regular variation we obtain F(Xn_km) =
= (14 op(1))F(¢). From remark 4.1 of [1|, we have F,,(X,,—gn)/F(Xn—kn) = 1. So,

Xn— n
VEL = (14 0p(1))VEk <t’“ - 1) .
From Theorem 2.1 of [1] we have

Vi (X";’“” - 1) —YW(1) = op(1),

then
VEL = (1 + op(1)) 1“1 W(1). (18)
-MN
For I, by using a similar way of I;, we prove that:
1 ~
VL = (1 +0p<1))ﬁ¢%m - ). (19)
-N

From Theorem 3.1 of [2] we have

VRG: ) = VA gy

1—-7 Y1+ Y2

1
/ (2 =71 — vlog 8)87%71W(s)d5 +op(1).
0
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For I5 we have

_ 1Y Fo(Xnkn)
VEI; = (1+0p(1)) 1—m vk < F(Xn—kn) 1> |

From Theorem 4.1 of [1] we have

@(FTL(XMU _ 1) __m w(1)+’“”2/013%1vv(s)ds+01)(1).

F(ank,n) B 7t e (’71 + 72)2
So,
VT =(1 + op(1)) — 2 W (1)+
(1+ op(1) W)
N3 s (20)
+ (14 o0p(1)) L / 5”72 "W (s)ds + op(1).
(11 +72)" Q=) Jo
For 14, after the second-order condition of regular variation
VEL = op(1). (21)
For Is, using the mean value theorem with X,,_x ,/t — 1, we get
1 Xn— n
\/%15:7(1+0P(1))1 5 \/%( tk’ 1). (22)
-MN

From Theorem 2.1 of [1] we have
XTL_ n
vk (tk - 1) —W(1) = op(1),

then

VEI; = —(1+ op(1))5 j%wu).

oo
/ o Vndy = ,
1 L—m

16:/ x_l/"“dx—/ F;(tw)dx
1 1 F(t)

Then, by applying the uniform inequality of regularly varying functions (see, e.g., Theorem 2.3.9
in [9, page 48]) together with the regular variation of |A,|, we show that

For Ig, we have

then

VEA(t)
ViIg ~ ° : 23
Tt n -1 -m) (23)
Summing up above equations, we get
= _9 2 Vo4
\/E(/ig ) = (%72 7’1 +72)) wW(1) - —L / s~ W (s) log sds+
tF(¢) (1=71) (n +2) Y1+ 72 Jo
2 - VoA kAo (n/k
Y172 (722 71) / s 73 1W(S)d$+ f (Tl/ )+ (24)
(1 +72)"(1=m) Jo 1-7n
VEA(t)

m+n—-1)00-m)

Finally, Summing up equations 17 and 24 achieves the proof.
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4.2. Proof of Corollary 2.1
We set:

\/ﬁ(ﬁ—u) _ (m+n -1 —y)+(1—m) .
F(Xn—k,n)Xn—k,n =4 * (1 - 7—1)(71 + 71— 1)(1 - ’71) \/EAO( /k)’

where A = ClAl + CQAQ + CgAg + C4A4 + C5A5 with
1, 1
AL =W(1), Ag= / sT 7 W(s)ds, A= / sTTW(s)ds,
0 0

1 1
Ay = / P log(s)W(s)ds, As= / 3_%_1'W(s)ds.
0 0

After elementary but tedious computations, we find the following covariance as asymptotic vari-
ance: I'SI, where

p(l—p Ip
r:(( ),—ml,p(l—p),71p2(1—p)7p(1—p)+ n )
1771 ].*"}/1

and I'? is the transpose of ', ¥ is the variance-covariance matrix:

1 a2 a3 a4 o015
Q12 Q2 Q23 O24 Q25
YX=| a3 a3 @3 Q34 Q35 |,
14 Q24 Q34 Q4 Q45
Q15 Q25 Q35 Q45 Q5

2p?
BAD =1 o= BAS) = o i)

1 —2p)

as = E(A2) = (7u

3= BB = i)

1-2p 2vip 2(1—p)? 1
ay = E(A?) = - - + ’
4 (A3) Pr1—p2 (1—-p3 (-1—-p)  (1—p)2@2p—1)2
4p —3
(07 Z:E AQ = )
) S )
a1 2 1= E(AlAQ) = ﬁa
1
a13:=E(A1Az) = L
-N

1

Q.4 1= E(A1A4) = _F7
1

ars = E(AAs) = 7’

3p? p

g3 = E(A2A3) = 2(=2+p)(p— 1)(—2 + v1p + 3p) - (=24+p)(=m +2)’

3p2 D 1 2 3p—2 P 2
= E(AAy) = ~ — + —_—
02,4 (A284) 2(p—1) (2 4—p) 6 1+p/) "’
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—’m 1

a5 = B(A2ls) = T+ (24 (-l —ptm(—2+p)  —2+p’

1 1 » 2 1 \2
azy = E(A3Ay) = + 4+ — ,
st = BB = e o 2 Tt D (—1+p2) (1—19) ]
1 PPy
ass = E(A3As) = ++ :
s =B = T i+ ) D - P -t D)
(1-p)° l—p

ays = E(ALAs) =
o (A48s) (=n—-1)2p-1)  p?
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OneHKa cpe/iHero pacnpejesjieHnsl C TAXKeJbIMIA XBOCTaMU
Npu CIy4vYallHOM ycedeHUuu

Ben /JJaxman Xancca
Benatus Parex

Bbpaxumun Bpaxum
JlabopaTopust TPUKJIAIHON MaTeMATHKHI
Yuusepcurer Moxamesa Xujiepa
Buckpa, Amxup

Awnnoramusi. Bnoxuosnenusie paboroit JI. [IsHa mo orneHke cpe/iHero 3HaveHUsI paclupeieieHus C Tsi-
2KEeJIBIMH XBOCTaMHU B CJIydae IOJIHBIX JAHHBIX, MBI IIpeJJjlaraeM aJIbTePHATUBHYIO OLIEHKY U U3ydaeM ee
ACUMITOTUYIECKYIO HOPMAJILHOCTD, KOTJIa, JIEJI0 KACAeTCsl YCEeUeHHO! CclIpaBa CIydJaiiHONW BeJTMInHBI. VIMu-
TAIMOHHOE UCCJIEJIOBAHUE BBIMIOJIHAETCS I aHAJIN3a TTOBEJIEHUS KOHEYHOI BBIOOPKU Ha IIpeJIaraeMoit
OIIEHKE.

KurouyeBbie ciioBa: ciiydaiiHoe ycedeHue, olleHKa Xujuia, oneHka JIunmaena-Benna, pacrpenenenus c

TAXKEJIbIMUA XBOCTaMU.
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Abstract. We study a conjugacy between two critical circle homeomorphisms with irrational rotation
number. Let fi, i = 1,2 be a C* circle homeomorphisms with critical point xgz,) of the order 2m; + 1.
We prove that if 2m1 + 1 # 2mg + 1, then conjugating between fi and fs is a singular function.
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Citation: U.A. Safarov, A Note on the Conjugacy Between Two Critical Circle Maps, J. Sib. Fed. Univ.
Math. Phys., 2021, 14(3), 287-300. DOI: 10.17516/1997-1397-2021-14-3-287-300.

1. Introduction and preliminaries

Denjoy’s classical theorem [4] states, that if the C? circle diffeomorphism f and irrational
rotation number p = py then f is topologically conjugate to the linear rotation f,, that is, there
exists a circle homeomorphism ¢ with f = ¢ 1o f,0¢.

It is well known that a circle homeomorphisms f with irrational rotation number is strictly
ergodic, i.e. it has a unique f-invariant probability measure v¢. A remarkable fact is that the con-
jugacy ¢ can be defined by ¢(z) = v¢([0, z]), which shows, that the regularity properties of con-
jugacy ¢ and the absolute continuity of invariant measure vy are closely related. The problem of
smoothness of the conjugacy ¢ for diffeomorphisms is one of the important problems of circle dy-
namics. The fundamental results were obtained by V.I. Arnold [1] , J. Moser [15], M. Herman [9],
J. Yoccoz [17], Ya. G. Sinai and K. Khanin [12], Y. Katsnelson and D. Ornstein [13]. Notice that
for sufficiently smooth circle deffeomorphisms f with a typical irrational rotation number the con-
jugacy ¢ is C''-diffeomorphism. Consequently, the invariant measure vy is absolutely continuous
with respect to Lebesgue measure p on S*.

Since the works of Mostow, Margulis, Sullivan, and others, rigidity problems occupy a central
place in the theory of holomorphic dynamical systems. This type of problems is classical in
dynamics: a rigidity theorem postulates that in a certain class of dynamical systems equivalence
(combinatorial, continuous, smooth, etc.) automatically has a higher regularity. The dynamical
systems considered in this paper are critical circle maps, that is smooth homeomorphisms of
the circle with a single critical point having an odd type. These maps have been a subject of
intensive study since the early 1980’s as one of the two main examples of universality in transition
to chaos. Yoccoz in [17] generalized Denjoy’s classical result, a critical circle homeomorphism
with irrational rotation number is topologically conjugate to an irrational rotation.

*safarovua@mail.ru
(© Siberian Federal University. All rights reserved
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Definition 1.1. The point z., € S* is called non-flat critical point of a homeomorphism f with
order (2m+1), m € N, if for a some d-neighborhood Us(z..), the function f belongs to the class
of C*™+L(Us(z.,)) and

f/(zcr) = f//(xcr) == f(zm)(xcr) =0, f(2m+1)(-rcr) 7é 0.

The order of the critical point ., is 2m+ 1. By a critical circle map we define an orientation
preserving circle homeomorphism with exactly one non-flat critical point of odd type.

An important one-parameter family of examples of critical circle maps are the Arnold’s maps
defined by

1
fo(z) =z +0+ 2—sin27rx (modl), =€ S*.
™

For every 6 € R' the map fy is a critical map with critical point 0 of cubic type.

Graczyk and Swiatek in [7] proved that if f is C3 smooth circle homeomorphism with finitely
many critical points of polynomial type and an irrational rotation number of bounded type, then
the conjugating map ¢ is singular function on S* i.e. ¢'(x) = 0 a.e. on S'. Consequently,
the invariant measure of critical circle homeomorphisms is singular w.r.t. Lebesque measure
on S'. Hence the problem of regularity of the conjugacy between two critical maps with identical
irrational rotation number arises naturally. This is called the rigidity problem for critical circle
homeomorphisms. For the critical circle maps the rigidity problem is developed by de Faria, de
Melo, Yampolsky, Khanin and Teplinsky, Guarino among others.

The first result concerning on rigidity for critical maps was proven by de Melo and de Faria [6].

Theorem 1.1 (see [6]). If f1, fa are C? critical circle mappings with the same irrational rotation
number of bounded type and the same power-law at the critical point, then there exists a C1+
conjugacy h between f1 and fo for some universal a > 0.

The following result of D. Khmelev and M. Yampolski [14] seemed to indicate that the analytic
case could be different.

Theorem 1.2 ([14]). There exists a universal constant o > 0 such that the following holds. Let
f1 and fa be two analytic critical circle maps with the same irrational rotation number. Denote
h : S — S conjugacies between f1 and fo fizing the critical points. Then h is C't* at the
critical point.

K. Khanin and A. Teplinskii [11] proved that any two f; and f analytic critical circle maps
with the same order of critical points and the same irrational rotation number are C'-smoothly
conjugate to each other. Later, A. Avila [2] showed, that there exist f; and fy analytic homeo-
morphisms with the same irrational rotation number such that h is not C'*® for any a > 0.

Next we formulate the result of P. Guarino, M. Martens, and W. de Melo [8].

Theorem 1.3 ([8]). Let fi and fo be two analytic C*-circle homeomorphisms with the same
wrrational rotation number and with a unique critical point of the same odd type. Then they are
C'-smoothly conjugate to each other. The conjugacy is C1T for Lebesque almost every rotation
number.

The present work continuous and completes the above results. Namely we show that if the
rotation numbers of two critical homeomorphisms coincide but the orders of critical points are
different then the conjugacy h is a singular function. Now we formulate our main result.

Theorem 1.4. Let fi and fo be C? critical circle maps with the same irrational rotation number.
Suppose that the orders of critical points of f1 and fo are different i.e. 2mq+1 # 2mo+1. Then
the conjugacy h between fi and fs is a singular function on S'.
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2. Notations, terminalogy, background

Let f be a circle homeomorphism that preserves orientation, i.e. f(z) = F(x)(modl), x €
S ~[0,1), where F is continuous, strictly increasing on R! and F(x+1) = F(z)+1 for any x € R.
F is called lift of homeomorphism f. The important characteristic of the circle homeomorphism

FTL
f is it’s rotation number (see for instance [6]) py which defined by py = lim ﬂ(mod 1),
here and later F'™ denotes the n-th iteration of F'. The rotation number p; is rational if and

only if f has periodic orbits.

2.1. Dynamical partition. Let f be an orientation preserving homeomorphism of the circle
with lift F' and irrational rotation number p = py. We denote by {a,,n € N} the sequence
of entries in the continued fraction expansion of p, i.e. p = [a1,az2,...,an,...]. Denote by
Pn/Gn = [a1,a2,...,a,] the convergents of p. Their denominators ¢, satisfy the recurrence
relation, that is gn+1 = ap+i1gn + gn—1, n 21, @ =1, g1 = a;.

For an arbitrary point 29 € S' we define Aé")(zg) the closed interval on S' with endpoints
zo and x4, = f9(x¢). Note that for odd n the point z,, lies to the left of ¢ and for even
n to the right. Denote by A" (x0) the iterates of the interval A (20) under f:A™ (z0) =
FUAS (z0)), i > 1.

Lemma 2.1 (see [12|). Consider an arbitrary point xo € S'. A finite piece {z;, 0 < i <
Gn + Gn-1} of the trajectory of this point divides the circle into the following disjoint (except for
the endpoints) intervals: A("_l)(xo), 0<i<qp, Ag.") (z0), 0<J < qn-1-

(3

We denote the obtained partition by &,(xg) and call it n-th dynamical partition of the cir-
cle. 'We now briefly describe the process of transition from &, (zg) to &,4+1(zo). All intervals
A;n)(mo), 0 < j < gu_1, are preserved, and each of the intervals Agnfl)(xo) is divided into
Gn+1 + 1 sub intervals:

ant1—1

AP (@) = A" V@ u ) Al (wo)-
s=0

it+qn—1+5qn

Obviously one has & (z9) < &a(z0) < ... < &nlzp) < .. ..

Definition 2.1. Let K > 1 be a constant. We call two intervals I and I, of S' are K-
comparable, if the inequalities K~ 1p(Iy) < u(l1) < Ku(ls) hold.

Next we formulate the lemma, that is proved in the similar way as in [16].

Let x.. € S' be a critical point of homeomorphism f. For any zo € S!, consider the
dynamical partition &,(zg). For definiteness we assume that n is odd. Then x4, < 2o < 24, _,.
The structure of the dynamical partition implies that Z., = f~?(zcr) € [2q,,2,,_,], for some
p, 0 < p < q,. Let I} and I be any elements of a dynamical partition &, (Z.-), m = n having a
common endpoints.

Lemma 2.2. Let f € C3(SY) be a critical circle homeomorphism with irrational rotation number.
Then there exists a constant K > 1 depending only on f such that the intervals I; and Is are
K -comparable.

It follows from the Lemma 2.2 that the trajectory of each point is dense in S'. Hence it
follows that there exists conjugation map ¢ between f and f,, i.e. p(f(x)) = f,(p(z)) for any
re St
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We assume that A(™+k) is element of partitioning &, (%), while A(™) is an element of
partitioning &, (Z.,) that contains A(m+k),

Lemma 2.3 (see [10]). There exist constants A1 (f) < Xo(f) <1 such that
AT < const AE(HLAM™), (AT > const AT (f).
2.2. Cross-ratio tools. In the proof of our main theorem the tool of cross-ratio plays a key
role.
Definition 2.2. The cross-ratio of four points (21, 22, 23, 24), 21 < 22 < 23 < 24 18 the number

(22 — 21)(24 — 23)
(23 — 21)(2a — 22)

CT(31,227Z3,Z4) =

Definition 2.3. Given four real numbers (21, 29, 23, 24) with z1 < 29 < 23 < 24 and a strictly
increasing function F : RY — R'. The distortion of their cross-ratio under F is given by

CT(F(’Zl)vF(ZQ)vF(Z3)aF(Z4))
Cr(z1, 22, 23, 24)

Dist(z1, 22, 23,243 F) =

For m > 3 and z; € S', 1 < i < m, suppose that z; < 23 < -+ < z,, < 21 (in the sense of
the ordering on the circle). Then we set 21 := z; and

5 .= Z; if 21 < z; < 1,
Tl 142 if0<z < 2.
for2<i<m.
Obviously, 21 < 23 < ... < Zp. The vector (21, 22,...,%,) is called the lifted vector of

(21,22, ..., 2m) € (SH™.

Let f be a circle homeomorphism with lift . We define the cross-ratio distortion of
(21,22,23,24), 21 < 22 < 23 < z4 < 21 with respect to f by Dist(z1,29,23,24;f) =
= Dist(21, 29, 23, 24; F), where (21, 22, 23, 24) is the lifted vector of (21, 22, 23, 24). We need the
following lemma.

Lemma 2.4 (|5]). Let z; € S',i =1,2,3,4, 21 < 23 < 23 < 24. Consider a circle homeomor-
phism f with f € C**%([21,24]), € > 0, and f'(z) > const > 0 for x € [z1,24]. Then there is a
positive constant Cy = C1(f) such that

‘ DiSt(Zl,227Z3aZ4; f) -1 |< Cl|24 - 21|1+€7
where (21, 22, 23, 24) is the lifted vector of (21, 22, 23, 24).-

We now consider the case when the interval [z1, z4] contains a critical point z, of the home-
omorphism f. More precisely, suppose that zo = x... We define numbers «, 3, v, £ and n as

follows:
B B

Q=29 — 21, [Bri=1Z3— 2o, 7= 24— Z3, f::a, ni= =,

where (21, 22, 23, 24) is the lifted vector of (21, 22, 23, 24).
Thus we need the following lemma.
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Lemma 2.5. Suppose that a homeomorphism f with lift F has a critical point x.. with order
2m+ 1, m € N. Then for any € > 0, there exist 6 = §(e) > 0, such that for all z; € Us(zr),
i=1,1m, 21 < %2 = Ter < 23 < 24 ONE has

1 eomn*™ + €am_1m?" e+ 1

< Rye,
L—€4+& - 1em ™ ypmy ol pam—1 4. 4 o214 0

Dist(z1, 22, 23, 245 f) —

where the constants eaym = 2m + 1, ¢; = C4, + C;r_nl_l +--+C8 . and Ry depends only on
function f.

Proof. Fix a number ¢. It is easy to check that for any z; € S', i =1,n, 21 < 22 < 23 < 24 one

has
(2m) (3 29
F(z1) = F(2)—F'(22) (22— 21)+- -+ F27m(‘2)(22 —2)%™m — ﬁ A FCHD () (y — 21)?™dy,
(2m) (3
F(2) =F(e2) + F'(a)(z0 — 22) + o4 T 5, oy
" (2.1)
b / FOTW)E )y, s =34
By the assumption of the lemma, 23 = 2., and using the (2.1) we write
Cr(f(z1), f(22), f(23), f(24)) as follows
_ (F(%2) — F(%1))(F(24) — F(3s)) _
C’I"(f(Zl)7f(ZQ),f(Zg),f(Z4)) - (F(ZA’g) . F(él))(F(é4) o F(Y:’Q)) -
7‘2F(2'm+1)(y)(y _ 21)2"Ldy
= — 1 _ X
JFCmI(y) (25 — y)>mdy + [ FEmD (y)(y — £1)>mdy (2.2)
JEEm )z g)mdy - [ FEm )25 - y)mdy

X = )

24

[ F@m+D(y) (24 — y)2mdy

22
where (21, 22, 23, 24) is the lifted vector of (21, 29, 23, 24). Since FQIHY) ¢ C(Uy(xer)), there exist
§(g) > 0, such that for any z,y € (2er — w, Ter +w) the inequality |FCm+D () — FCmH (1) < ¢
is true.

Hence from (2.2) we have

Cr(f(z1), f(z2), f(23), f(24)) =

[ FCmD (2,)(y — 21)?™dy(1 + O(e))

2y

= N = ><
(JPema)ea =gy + [ FEmeD )y - 2mdy ) 14+ 06)

(TF(QWH)(%T)(% — y)?2mdy — jSF(QmH)(fEcr)(éS - y)zmdy> o+ o)
X = - B

JFemD (20 (24— y)Pmdy(1 4 O())

ED)
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a2m+1 (,.y + 5)2m+1 _ ﬂ2m+1
= a2m+1 + 527n+1 ’ ('7 i B)Q"H_l (]- + 0(5))

From the last equality it follows that

1
:1_€+§2_,,,+£27rnx

(L+n)2"+ 1A +n)* I+ 4 (L4+n)p> L+ 9™

Dist(z1, 22, 23, 245 f)

X 14+ 0(e)) =
T (1+0()
i eamn®™ + Camo11P™ Loty + 1
= 2 2m X e 1 It 2m—1177 (1+0(e)).
]_7£+£ 7+€m n2m_|_02m772m—1_|_...+c2m 77+1
Thus Lemma 2.5 is proved. O

Next suppose the interval [z1, z4] is a subset of the interval U, (z..) but does not contain a
critical point x., of the homeomorphism f. Let d = 11r<ni£14 0([zs,Zcr]). We now state an assertion
IS%

from [10].

Lemma 2.6 (see [10]). Suppose that a homeomorphism f satisfies the conditions of Lemma 2.5.
Then the following equality holds

2
Dist(z1,22,23,24; ) =14+ 0O <<a+dﬂ+7) ) .

3. Proof of Theorem 1.4

In order to prove Theorem 1.4 we need several lemmas which we formulate next. Their proofs
will be given later. We consider two copies of the unit circle S'. The homeomorphism f; acts
on the first circle and f> acts on the second one. Assume that f;, ¢ = 1,2 satisfies the conditions
of Theorem 1.4.

Let 1 and @2 be conjugations of f; and fa to linear rotation f,, i.e. w10 fi = f, 01 and
w20 fo = f,0p. It is easy to check that the homeomorphisms f; and f, are conjugated by
h = @2 Ogofl, i. e. hofi(x) = faoh(x),Vz € S*. Recall that every ¢;, i = 1,2 is unique up to an
additional constant. This gives us a possibility to choose h with initial condition h(xg)) =z

Notice the conjugation h(z) is continuous function on S'. It suffices to show that h'(x) = 0
for almost all 2 with respect to the Lebesgue measure. The derivative h/(x) = 0 exists for almost
all z with respect to the Lebesgue measure because the function h is monotonic. Let us show
that h’(xz) = 0 at all points where the derivative is defined.

Lemma 3.1 (see [5]). Assume, that the conjugating homeomorphism h(x) has a positive deriva-
tive h'(zo) = wo at some point xog € S, and that the following conditions hold for the points
2z €8, i=1,...,4, with 21 < 29 < 23 < 24, and some constant R; > 1:

(a) the intervals [z1, 22, 22, 23], [#3, 24] are pairwise Ry-comparable;

(b) max f([zﬁ,ro]) g le([zl,zﬂ).

1<i<4
Then for any € > 0 there exists 6 = 6(¢) > 0 such that
|Dist(z1, 22, 23, z4; h) — 1] < Cae, (3.1)

if zi € (ko — 9, mo+ ) for all i =1,2,3,4, where the constant Cy > 0 depends only on Ry, wp
and not on €.
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Suppose that h/(z¢) = wo, where o € S1. Let &,(x¢) be its n-th dynamical partition. Put
to := h(zg) and consider the dynamical partition 7, (o) of ¢y on the second circle determined by
the homeomorphism fs, i.e.

Talto) = {17V (to), 0<i<qn—13U{IM(t0), 0<j<guor—1}

with Ién) (to) the closed interval with endpoints ¢ and f3"(¢9). Choose an odd natural number
n1 = n(f1, f2) such that the n;-th renormalization neighborhoods [z, , 7, _,]and [tg, %4, ]
do not contain critical point of f; and fo respectively. Since the identical rotation number p of
f1 and fy is irrational, the order of the points on the orbit {fF(x¢), k € Z} on the first circle will
be precisely the same as the one for the orbit {f¥(¢y), k € Z} on the second one. This together
with the relation h(fi(z)) = f2(h(z)) for z € S implies that

h(A(_nlfl)) _ I_(nlfl)

2 2 )

0<i<qn —1, AAM) =" 0<j<gu-1—-1. (32

The structure of the dynamical partitions implies that Z(r (nl) 1 (.Tcr ) € [®g, »Tqn, 1]

where [ € (0, ¢y, —1) if xgr)(nl) € [vq, o], and I € (0,qy,) if xgr)(nl) € [vo, 7, _,]. Since h

conjugation between f; and f5, we get
F(ED)) = 57 (f2(h(@))) = 5 (B(AED)) = - = h(f1@)) = h(=l) = 28).

Hence x( )( 1) = fo (xcr) [t

Gn,-pre-images of the critical points xy

stg,, 1] The points T (n1) and T2 (n1) are called the

(1) and :Eg), respectively.

Gny o

Next we introduce the concept of a "regular" cover of the critical point. Let z; € 81, i =1, 4,
21 < 29 < 23 < z4 < z1. Define for each j, 0 < j < qn

O (z2), H (23)])
0([f(z1), fi (22)])

Definition 3.1. Let M > 1, ¢ € (0,1), § > 0 be constant numbers, n is a positive integer and
xo € St. We say that a triple of intervals ([z1, 2], [22, 23], [23, 24]), 2: € S, i = 1,2,3,4, covers
the critical point of x( ) "(M,(,0,0;xq)-reqularly ", if the following conditions hold:

1) [21,24] C (x0 — 8,20 + 0), and the system of intervals {fi([z1,24]), 0 < j < qn — 1} cover
critical point ;vci only once;

2) 2z = f1 (xcr ) for some l, 0 <1 < qn;

3) Ep (1) < ¢ andny, (1) = M.

e([f

N Ll

£ (d) = (22), fz(z3)]) .

J
1 .
7 y nfl(.j):
1

Denote
L = min{2m; + 1, 2mqo + 1, 2|my — mal}.

Lemma 3.2. Suppose that the homeomorphisms f;, i = 1,2 satisfy the conditions of Theo-
rem 1.4. Then for any xog € S* and 6 > 0 there exist constant My > 1 and {y € (0,1), such that
for all triples of intervals [z, zs41] C (xo— 0, xo+9), s =1,2,3, and [h(zs), h(2zs41)], s =1,2,3,
covering the critical points 25 and 22 regularly with constants My and (o the following in-
equalities hold:

1 62m177]2cm1 (1) + e2m, — 177fm1 1(1) R | ) X I
1— l 2my x 2my cl 2mqy—1 1 ] - ( mi + ) < ]_767
ffl() +€ () T]fl ()+ 2m1nf1 ()+ +
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2m 2mo—1
1 eamy Ny > (1) + €amy—1mp, (1) + - + 1
ma 2722 1 2m2J:1 —(2ms +1)| < T
l_ng(l)+.'.+§f2 () N, (l)+02m277f2 +--+1 6

where my and my are orders of critical points xg) and x&i) respectively.

Assume that the homeomorphism f; satisfies the conditions of Theorem 1.4. Let &, (x&})) be

a dynamical partition of the circle by fi;. We take a natural number r, such that Aér) (xg)) U
Agﬂ*l)(mg}n)) c U, (mg«)) Suppose that h/(z¢) = po > 0 for some zo € S'. Consider the
dynamical partition &,(z) of the point xg under f;. Suppose that n > r an odd natural
number. Let T4 = f’l(xg«)) € [Tg, Tqn_ 1]

Let {§n+k(f£i))},;“;0 be a sequence of dynamical partitions of the point Z... We define the
points z;, i = 1,2, 3,4 as follows

2y = fintko (Egi))’ 29 = f((;)7 23 = fintkoth (fﬁp), 24 = fqn+k0+k1+qn+k2 (f((:p)

Lemma 3.3. Suppose that the homeomorphisms fi and fo satisfies the conditions of Theo-
rem 1.4. Let W (zo) = po > 0 for some zg € S*, § € (0,1) and ko € N. Then there exist natural
numbers ki, ko such that for sufficiently large n, the triple of intervals [zs, zs4+1] C (x0—0, xo+9),
s = 1,2,3 satisfies the following properties:

(1) the intervals {[f](z1), f1(24)], 0 < j < qn} cover each point at most once;

(2) the intervals [zs, zs11] and [f{"(zs), 1" (zs+1)], s = 1,2,3 satisfy conditions (a) and (b)
of Lemma 3.1 with some constant Ry > 1 depending on kg, k1, ko;

(3) the triples of intervals ([zs, zs+1], $ = 1,2,3) and ([h(zs), h(zs41)], s = 1,2,3) cover the
critical points a:éi), xg), "(Moy, Co, 0; o) -regularly " and "(My, Co, 6; h(xo))-regularly ", respectively.
Lemma 3.4. Suppose the circle homeomorphisms f1 and fo satisfy the conditions of Theo-
rem 1.4. Then there exists natural number ko such that for intervals [zs,zs41], s = 1,2,3 sat-
isfying conditions (1)-(8) of Lemma 3.3, and for sufficiently large n the following inequality

holds
Dist(z1, z2, 23, 243 [1")

Dist(h(z1), h(z2), h(23), h(24); f3")

where the constant Re depends only on f1 and f.

—1/ >Ry >0, (3.3)

Proof of Theorem 1.4. Let f; and fs be circle homeomorphisms satisfying the conditions of
Theorem 1.4. The lift H(z) of the conjugating map h(z) is a continuous and monotone increasing
function on R'. Hence H (x) has a finite derivative H'(z) for almost all z with respect to Lebesgue
measure. We claim that h'(z) = 0 at all points x where the finite derivative exists. Suppose
h'(xp) > 0 for some point zp € S'. Fix ¢ > 0. We take a triple of intervals [zs,zs41] C
(xo — 0, o+ 0), s=1,2,3, satisfying the conditions of Lemma 3.4.

Using the assertion of Lemma 3.1 we obtain

‘Dist(zl, 29,23, 243 h) — 1‘ < Cse, (3.4)

[ Dist(£" (21), £ (22), F1" (z0), Fi" ()3 ) = 1| < Ce (3:5)

Hence )
DZSt(Zla 292,23, 24, h)

‘D’Lst(fln(21), fln (22), fln (23)7 fln (Z4>, h)

where the constant C4 > 0 does not depend on ¢ and n.

- 1‘ < Ce, (3.6)
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Since h is conjugating f; and fo we can readily see that
Cr(h(fi" (1)), h(fi" (22)), h(fi" (23)), h(fi" (24))) =
= Cr(f3" (h(21)), f3" (h(22)), f3" (h(23)), f3" (h(24))).

Hence we obtain )
Dist(f{" (z1), f{" (22), f{" (23), f{" (24);h)

Dist(z1, 22, 23, 243 h) -

_ Cr(af1" (1)), AU (22)), U (23)), (U (24))
Cr(fi" (z1), fi" (z2), fi" (2 ),ff (24))

o Cr(z1, 2, 23, 24) _ Cr(f5"(h ( 1), 3" (h(22)), 3" (h(23)), f3" (A(24)))
Cr(h(z1), h(z2), h(23), h(z4)) Cr(h ( s h(22), h(z3), h(24)) '

1)
 Or(fi" (1), [ (z2), S (28), 1" (z0)) _ Dist(h(z1), h(z2), h(z3), h(Z4);f2")'

2),
CT(Z1722a23;Z4) B Dist (21,22723,24,f1 )
This, together with (3.6) obviously implies that

Dist(z1, z2, 23, 243 [1")
Dist(h(z1), h(z2), h(z3), h(z4); f5™)

—1 <C5E,

where the constant Cs >0 does not depend on € and n. This contradicts equation (3.3). Therefore
Theorem 1.4 is completely proved. O

4. The proofs of Lemmas 3.2-3.4

Proof of Lemma 3.2. Denote

1 (gfl (Z)) =

L&)+ -+ M0

and ) 1
e2m, Ny (1) + ey -1y (D) + o+ 1

) =
w2(77f1()) 77J2¢1m1()+02m1 2mq — 1(l)+ S+ 1

It is easy to check that for ny, (I) > 0 the function 12(ny, (1)) is monotone increasing and 1 <
¥2(ns, (1)) < 2mq + 1. Obviously

lim 1, lim =9y + 1.
et ! 18 ) = nh(l)%O%(Uﬁ( ) 1

Taking these remarks into account and using the explicit form of the functions (€, (1)) and
2(ny, (1)) we can now estimate | 11 - 2 — (2mq + 1) |. Firstly, we estimate 1) for large value of
Ny, (1). Using the explicit form of the function ¥2(ny, (1)), we see that the inequality
1
|¢2—(2m1+1)|20< ><R3

15 (1) <77f11(l)> ’ (4.1)

where the constant R > 0 depends only on fi. If we choose 1y, (I) satisfying the inequality

Ry (nfll(l)) < 3%, then

ol () — (2m1 + 1)) < o,
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32R.
for ny, (1) > 7 2.

We next estimate |11 — 1| for small value of £, (I). Using the explicit form of the function
Y1 (&p, (1), we see that |¢1(Er, (D) — 1] = O(&f, (1)) < R4y, (1). Tt follows from this together with

(4.1) that |1 -2 — (2my + 1) < |2 — 2my + 1)| + |¢2] - |1 — 1| < 3% + (2my 4+ 1)Ra&y, (1). If

we take I oR
= mi —,1}, M = {75,1},
¢1 3= min { 32(2my + 1)Rs e )
where R5; = max{Rj3, R4}, then for all &, (1) < {; and ny, (1) > M; the following inequality holds
L
|11 - ah2 — (2ma + 1) < —.
16
Similarly it can be shown that with
L 32Rg
S TR R VR 2
Gz = min { 32(2ms + 1)Rg 7 (4.2)

and &¢, (1) < (2 and 1y, (1) > My, the second assertion of Lemma 3.2 holds. In (4.2) the constants
R > 0 depends only on fs. Finally, if we set (o := min{¢1, (2} and My := max{M;, M>}, then
Lemma 3.2 holds for &y, (1), &7, (1) € [0,¢o) and 5y, (1), ns, (1) > My. Lemma 3.2 is proved. 0

Proof of Lemma 3.3. Firstly, we prove the third assertion of the lemma. By the construction of
the points z;, i = 1,2,3,4, it implies that the intervals [z, z511] and [h(zs), h(2zs41)], s = 1,2,3
satisfy the 1) and 2) conditions of definition of "regularly" covering. We consider dynamical
partition §n(:cg«)) According to Lemma 2.2 the intervals Aén) (xgp) and Ag"‘”(zﬁi)) are K-
comparable, i.e. there exist constant K > 1 such that K*%(Aé”‘”(x&?)) < K(A(()") (acg))) <
K Z(Aénil)(xg))). Thus it follows that there exists k%l) € N such that the following inequality
holds

q X (1)
(2, £ @)

. 4.3
(@) .

Indeed, it is clear that

(Al () 1 1 K

el (1Y) e(agm e ) Tl g KL
(AT )

Hence K(A(()q”k(’“’)(xgn))) < KLHE(AEJQ"M““)(xg))). Using the last inequality we obtain that

for any k
K

Haf o @) < (s

k
Vo)

cr

Since Aéq’L+k“+l)(xg~)) and Aéq’L+k°)(33£71~)) are K-comparable, there exists a k%l) € N such that
the inequality (4.3) is true. Similarly, we can show that there exists a kgl) € N such that the
following inequality holds

(25, flmrroia (200)

£<[ffn+ko+kl (xg)), ffn+ko+k§1)+qn+ké1) (a:Ep)])

> Mp.
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)

Similarly, it can be shown that with natural numbers k:§2) and k:§2 the inequalities

2 qn (2) 2 9 qn . (2) 2
E([z&)v : +ho+k| (gg((jr))]) <é E([x&r)’ 2 +Eo+k] (zgr))])

(U @), ) (1 @), 1 )

cr )y J2

> My

hold. If we take k; = max{k‘gl),k‘gz)} and ky = max{kgl),k;gz)} then the third assertion of
Lemma 3.3 holds for k; and k3. By the definition of the points z;, i = 1,2, 3 it implies the first

assertion of the lemma.

Let &, (Eg)) be a dynamical partition of the point fg) According to Lemma 2.2 the in-
tervals A(()n) (fg)) and AE,”‘”(E&P) are K-comparable. Hence, it implies that the intervals
[2s,zs+1], s = 1,2,3 are pairwise Kkitk2_ comparable. It is easy to see that the intervals

[fIm (25), fi" (2s41)], s = 1,2,3 are pairwise K*1T*2_comparable. Obviously,

L _UATER) pen LA @)
KRS i(lnzl) 0 KR A GO G

Since the intervals A(()"_l)(ig)) and Aén_l)( N q"—l(f&}))) are K-comparable and
2o € ALV (5 (310)) U AP (7 we get

max {([f% (), x0]), ([zi, zo])} < (K + 1)Kk°+1€([z1,22]).

1<ig4

ko+1

If we take Ry = (K +1)K*+Fi+k2 then we obtain the proof of the second assertion of Lemma 3.3
with constant R;. Lemma 3.3 is proved. O

Proof of Lemma 3.4. Suppose, the triples of intervals ([zs, zs+1], $s=1,2,3) and ([h(2s), h(zs4+1)];
s = 1,2,3) satisfy the conditions of Lemma 3.3. We want to compare the distortion
Dist(z1, 22, 23, z4; f{) and Dist(h(z1), h(22), h(z3), h(z4); f3"). We estimate only the first dis-
tortion, the second one can be estimated analogously. Obviously

n—1

Dist(z1, 22, 23, 221 fi*) = [ Dist(fi(z1). fi(22). fi(23), fi(za): 1)
1=0
We denote
To(@1) = AP @) U AT (@D), A= {i: (fi(z1), fi(za) N T (2D)) = 0},

B ={i: (fi(z1), fi(z)) N Jp(x(})) # 0}.
It is clear that AUB ={0,1,...,qn}.
Next we rewrite Dist(z1, 22, 23, 24; f{") in the form

Dist(21, 22, 23, 24; [1*) = [ [ Dist(fi(z1), fi(22), fi(23), fi(2); 1) %

i
x [ Dist(fi(=1), fi(z2), fi(z), fi(z0)i fo)- (4.4)
We estimate the first factor 121613(4.4). Using the Lemmas 2.4 we obtain
| [T Dist(fiCe0. i), i), Ko f) = 1 =| [T (1+ otetsiten. sita) ™) - 1| =
= max (U(f{(=1). A=) O D (A=), fi(z0)]) ) = OO,

i€EA
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where v > 0 and 0 < Ay, < 1. We fix € > 0. There exists Ny = Ng(e) > 1 such that for any
n > Ny the estimate

| TL Dist(fiCa), FiCza) FiCes), FiCea)s f2) = 1] < Co (45)

i€EA

holds. We now estimate the second factor in (4.4). We rewrite the second factor in the following

form
1 Dist(fi(z1), fi(z2), fi(zs), fi(za); 1) =
ieB
= H Dist(fi(z1), fi(22), fi(23), fi(za); f1) % Dist(fi(21), fi(22), fi(23), fi(za); f1). (4.6)
i€ Blil

By applying Lemmas 2.5 and 3.2 we obtain

IDist (7). 1 (22), fi(z3), fA () 1) — (2 4 1)] < 2. (4.7)

Using Lemma 2.6 for the first factor in (4.6), we get

11 (1+O(f([f1i(2121’ff(24)]))2> _1’ _

7

I1 Dist(fi(z1), fi(z2), fi(zs), fi(za): f1) — 1‘ =

i€B.il i€B.il
([ f? ( 2 (] Fi i 2
_ exp{ Z log (1+O( ([f1(212l,f1(24)])> >}1‘ < const Z < ([f1(21()1,f1(24)])> _
i€ B,i#l g i€ B,i#l i
ATHENNENAS
= t .
cons Z ‘ A Zl 1 di
T=0 (£ (1), £ (24)]C(Jn—q (25 N\ T g1 (25)) i
Obviously,
3 5([f1(212lalf1(24)])> — const
i:[£1 (20), £ (20)] C(Jn—q (@5 )\ Tn— g1 (25))) il '
f 7 7
and it follows from Lemma 2.3 that ([fl(zl()i"fl (z0)]) < const )\I;SH'HI. Consequently
I Dist(fi(z1), fi(z2), fi(za), fi(z0); f1) = 1’ < O, (4.8)
i€B,i#l

where C7 > 0 depends only on f;.
Similarly one can show that for the triple of intervals ([h(zs), h(zs+1)], s = 1,2, 3) the follow-
ing inequality

[T Dist(fs(h(=1)), f3(h(z2)), f3(h(z8)), f3(R(z4)); f2) — 1‘ < CsAl, (4.9)

i€B,i#l
where Cs > 0 depends only on f> and 0 < Ay, <1 is defined in Lemma 2.3.

If we choose

L L
ko = 1 1,11 1
0 max{[ O8x (16m1+8+L)C7] * ’[Ogm (16m2+8+L)CS] + }
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where constants 0 < Af,, Ay, < 1 are defined in Lemma 2.3, then from the relations (4.4)—(4.8)
it implies that for sufficiently large n

L
|Dist(z1, 22, 23, 24; f1") — (2m1 + 1)| < T (4.10)
Similarly
) L
|Dist(h(z1), h(z2), h(z3), h(z4); fa") — (2ma + 1)| < 1 (4.11)
The inequalities (4.10) and (4.11) implies

Dist(z1, 22, 23, 245 f{™) B 8(m1 —mg) — 2L
Dist(h(z1), h(z2), h(z3), h(z4); f3™) ~ 8me+L+4

>0, (4.12)

if my > mg, and

Dist(z1, 22, 23, 24; f1™) 8(my —ma) +2L

, —1< <0, 413
Dist(h(er), h(z2), (zs), hza); 2°) Sz — L +1 (4.13)
if m1 < mo. If we set
. |8(m1 — mg) — 2L‘ |8(m1 — mz) + 2L‘
= 4.14
= mm{ 8ms—L+4 = Sma+L+4 [ (4.14)

then it follows from (4.12)—(4.14) that the assertion of the lemma holds.

The author would like to thank Professors A. A. Dzhalilov, K. M. Khanin and A. Davydov for
useful discussion.
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O comnpsi>keHre MeXKAy JIBYyMs KPUTUYIECKUMU
OTOOpaKEeHUSIMI OKPYXKHOCTHI

Yrkup A. Cadapos

TypuHCKHI TOTUTEXHUYIECKUIT YHUBEPCUTET

TamkenTt, Y3bekucran

TarkeHTCKMit roCy1apCTBEHHBIN SKOHOMUYECKUN YHUBEPCUTET

Tamxkent, Y3bekucran

Anuoramusi. B crarbe u3ydaercst CONpsiKEHHE MEXKJY JIBYMSI KPUTUYECKUMH TOMEOMOP(MU3IMAMU
OKPY?KHOCTH C MPPAIIOHAIBLHBIM YHCJIOM Bparennst. 1lycrs fi, i = 1,2 sisastiorcst C°-romeoMopdusmbr
OKPY2?KHOCTH C KPUTUYECKON TOUKON x&ZT) nopsizika 2m; + 1. JTokazano, aro eciau 2mq + 1 # 2mg + 1, To

conpspkenne Mexay fi1 um fo — cuHrynspHas GyHKIuUS.

KuroueBrbie cioBa: romeoMopdu3M OKPYKHOCTU, KPUTHUIECKAs] TOUYKA, COINPSATAINNII roMeOMOPMU3M,

YHCJIO BPAIEHUS, CUHTYJIAPHAsS (DYyHKIINA.
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Abstract. In this paper we study the estimation of a multivariate normal mean under the balanced loss
function. We present here a class of shrinkage estimators which generalizes the James-Stein estimator
and we are interested to establish the asymptotic behaviour of risks ratios of these estimators to the
maximum likelihood estimators (MLE). Thus, in the case where the dimension of the parameter space and
the sample size are large, we determine the sufficient conditions for that the estimators cited previously

are minimax.
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Introduction

The multivariate analysis plays an essential role in statistical data analysis. Thus, the mean
parameters estimation of the multivariate Gaussian distribution is of interest to many users.
Stein [1] showed the inadmissibility of the usual estimator when the dimension of the parameter
space is greater than or equal to three by considering an alternative estimator with uniformly
smaller risk than the latter, the improvement being substantial for the mean close to the origin.
A central focus is on the general technique, namely, shrinkage estimation. This is systematically
applied to derive the MLE of the mean parameters. A large amount of research have been carried
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out to develop the properties of shrinkage estimators and to compare them with the MLE. For
a selected review of the subject matter of shrinkage estimation, interested readers may refer to
Stein [1], James and Stein [2] and Efron and Morris [3].

When the dimension of the parameter space and the sample size are large, Benmansour and
Hamdaoui [4] have taken the model X ~ N, (6,02I,) where the parameter 2 is unknown and
estimated by S? (5% ~ 02x2). The authors established the analogous results obtained by Casella
and Hwang [5]. Benkhaled and Hamdaoui [6], have considered the same model given by Benman-
sour and Hamdaoui [4], namely X ~ N, (9, O’ZIP) where o2 is unknown. They studied two differ-
ent forms of shrinkage estimators of 6: estimators of the form 6% = (1—4(S2, | X[|*)S2/ || X|*)X,
and estimators of Lindley-Type given by 6¥ = (1—¢(S?%,7?%)S5?/T?)(X — X)+ X, that shrink the
components of the MLE X to the random variable X. The authors showed that if the shrinkage
function ¢ (respectively ¢) satisfies the new conditions different from the known results in the
literature, then the estimator 6% (respectively §%) is minimax. When the sample size and the
dimension of parameters space tend to infinity, they studied the behaviour of risks ratio of these
estimators to the MLE. Hamdaoui et al. [7], have treated the minimaxity and limits of risks
ratios of shrinkage estimators of a multivariate normal mean in the Bayesian case. The authors
have considered the model X ~ N, (6,021,) where o2 is unknown and have taken the prior law
0 ~ N, (U,’Tz_[p). They constructed a modified Bayes estimator d3 and an empirical modified
Bayes estimator 0y 5. When n and p are finite, they showed that the estimators 63 and 6} 5
are minimax. The authors have also interested in studying the limits of risks ratios of these
estimators, to the MLE X, when n and p tend to infinity. The majority of these authors have
been considered the quadratic loss function for computing the risk.

Zellner [8] proposes a balanced loss function that takes error of estimation and goodness of fit
into account. This balanced loss function consists of weighting the predictive loss function and
the goodness of fit term. In addition for estimation under the balanced loss function we cite for
example, Guikai et al. [9], Karamikabir et al. [10]. Sanjari Farsipour and Asgharzadeh [11] have
considered the model: Xj,..., X, to be a random sample from N, (9, 02) with o2 known and
the aim is to estimate the parameter . They studied the admissibility of the estimator of the
form aX + b under the balanced loss function. Selahattin and Issam [12] introduced and derived
the optimal extended balanced loss function (EBLF) estimators and predictors and discussed
their performances. Under the balanced loss function, Hamdaoui et al. [13] studied the behavior
of risks ratios of James-Stein estimator and the positive-part of James-Stein estimator to the
MLE, when the dimension of the parameter space tends to infinity and the sample size is fixes
and when the dimension of the parameter space and the sample size tend simultaneously to the
infinity. They showed that these risks ratios tend to values less than 1. Thus, the authors have
assured the stability of minimaxity property of the James-Stein estimator and the positive-part
of James-Stein estimator in the large values of the dimension of the parameter space p and the
sample size n.

In this work, we deal with the model X ~ N, (9, 02Ip), where the parameter o2 is unknown
and estimated by S? (S? ~ 02x2). Our aim is to estimate the unknown parameter 6 by shrinkage
estimators deduced from the MLE. The adopted criterion to compare two estimators is the risk
associated to the balanced loss function. The paper is organized as follows. In Section 1, we
recall some preliminaries that are useful for our main results. In Section 2, we present the main
results. Under the balanced loss function, we consider the general class of shrinkage estimators
5o = (1 — p(S?, 1X1)S2/ ||X||*)X which containing the James-Stein estimator and we study
the behavior of risks ratio of these estimators to the MLE. Thus we generalized some obtained
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results in the our published papers for the case where the risks functions calculated relatively to
the quadratic loss function.

1. Preliminaries

x|I2
We recall that if X is a multivariate Gaussian random N, (6,0%I,,) in R?, then ” 2” ~x2 ()
o

where X% (M) denotes the non-central chi-square distribution with p degrees of freedom and non-
2
16]]
o2’
Arnold [14]. Tt will be used to calculate the expectation of functions of a non-central chi-square
law’s variable.

centrality parameter A = We also recall the following definition given in formula (1.2) by

Definition 1. Let U ~ X;Q; (M) be non-central chi-square with p degrees of freedom and non-
centrality parameter A. The density function of U is given by

X e (Q)k pp/Dh-1g-a/2

e
fz) = ;
1;) Kl T(E+ k)2(p/2)+k

0< < +oo.

The right hand side (RHS) of this equality is none other than the formula
+o0o A .
e 2 (%)k 2
Z TXP+2ka
where X?, Lok 18 the density of the central x? distribution with p + 2k degrees of freedom.

To this definition we deduce that if U ~ x2 (), then for any function f : Ry — R, x2 ()
integrable, we have

E[fU)] = EgwlfU)]=
= Fl@)xg (V) do =
R4

S (3)"

- Z l R, (m)X12)+2k (0) dx] e_% i —

k=0
(). o

“+ o0
= Z l/ f(x)X;Q)+2kd93
k=0 LB+
A . . . A 9 . .
where P (5; dk) being the Poisson distribution of parameter ) and x;,, o, is the central chi-square

distribution with p + 2k degrees of freedom.
Using the Definition 1 and the Lemma 1 in Benmansour and Hamdaoui [4], we deduce that
if X ~ N, (9,02119), then

1 1) 1 1 p
02(p—2+'6'2)<E<||X2> o? <P—2+2K><02(p—2)(p+'0'2)' (2)

o2 o2

We recall the following Lemma given by Stein [15], that we will use often in the next.
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Lemma 1. Let X be a N (’U7J2) real random variable and let f : R — R be an indefinite
integral of the Lebesgue measurable function, f' essentially the derivative of f. Suppose also that

E|f' (X)] < +oo, then
B|(F2) 10| = B x)

g

For the next, assume that X ~ N, (9,0’2Ip) where 02 is unknown and estimated by S2

(S? ~ 02x2). Our aim is to estimate the unknown parameter § under the balanced loss function
defined as, for any estimator 0 of 6:

Ly (8,0) = wl|d = dol|* + (1 — w)[|6 — 6],
where 0 < w < 1. We associate to this balanced loss function the risk function defined by
R, (6,0) = E(L,(6,0)).

In this model, it is clear that the MLE is 6y = X, its risk function is (1 — w)po?.
Indeed:
R, (X,0) =wE(|X — X|I*) + (1 - w) E(|X - 0]*).

X -0
o2 ~ Xp-

X -0
As X ~ N, (6,0%I,), then ~ N, (0, 1,), thus

ag
Hence

E(|X - 6]%) = B(e>2) = op.

It is well known that §p is minimax and inadmissible for p > 3, thus any estimator dominates it
is also minimax.
Now, we consider the shrinkage estimator
2 N
5o = (1= oS IXIP) ) X (3)

2

S
In the special case when ¢(S?, || X|?) = a, (i.e. 6, = (1 — GW)X) where a is a real constant

may depend on n and p. It is easy to show that a sufficient condition for that J, dominating the
MLE, thus it is minimax, is that

2p = 2)(1 - w)

0<a<
n+2

-2 -w)

For a = a , we obtain the estimator that minimizes the risk function of the

n—+
estimators d,, and its called the James-Sten estimator given by

S° (1-wp-2) s
5]52(55:(1—6))(:(1— X. (4)
X112 n+2 X[
Using the Definition 1 and the Lemma 1, one can prove that the risk function of ;g is
Rul615,0) = (1 —w)po® — (1 —w)2(p— 2 ——0?B [ —— (5)
’ n+t2 p—2+12K)’

where K ~ P ”0H2 .
202
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From the formula 5, it is trivial that the James-Stein estimator § ;5 dominate the MLE, thus
it is minimax. Furthermore, the Theorem 4.1 given in Hamdaoui et al [13] show that

lim Rw(6.7570) _ w+c
npstoo R (X,0)  1+c’

(6)

Then one can deduce that the James-Stein estimators dominates the MLE, for the large values
of n and p.

2. Main results

In the next we need the following Lemma that shows a explicit formula of the risk function
of the estimator d, given in (3), which helps us to compute the limit of risks ratio.

Lemma 2. Assume the estimator 6, given in (3). Then
A¢7JS = Rw((ip, 0) - Rw(d]s,&) =

= 1 (= o™, X1 s = 240 5%, X)) s ) +

121 -w) x E (<d — (5%, 1X )82 = Ad — so(cﬂxfm02x§+20>>>x3+f&)> ’

2 — — 2
where 655 = (1—dS)X, PR ) [Vt R Ll

BIE ot 2 p
Proof.
Rul3,.8) = B, — X|?) + (1~ ) B8, — 6]?) =
= B8, — 15+ 15— X|?) + (1~ (I8, — b5+ b5~ 0]) =
= w{E (10, = dssl? + 1655 — X|I* +2(5, — dss,d55 — X)) }+ -
+ (1= w){E (10, = s> + 1075 = 0> + 20, — b5,855 — 0))} =
= Ru,(0s5,0) + E(||6, — 615*) + 2E({8, — 645,615 — X))+
+2(1 —w)E((6p, — 15, X —0)).
As 2\2
BIS, ~ dsl) = B (@ o(S% XD s ) ®
BUS, —ds.ds = X)) = —B (dld— pl%, X[ (3 ) o)
and
BUS, 61X~ 0) = B (((d - o(8% X)) 3z X, X ) =

= B((d - (% IXIP)S) ~ B ((X.0)d — o(8™ 1X 1) 737z ) = "

| X |2
= B((d— o(S?,[|X]*))S%)—

—\E ((d—w(ozxi,azxﬁu()\))) Xa )

X?)Jrz()\)
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The last equality comes from the conditional expectation and the formula (2.7) given in Benman-
sour and Mourid Benmansour and Mourid [16]. Using the formulas (7-9) and (10), we deduce
the desired result. O

Theorem 1. Assume the estimator 6, given in (3), with ¢ satisfies the conditions

(H]) 0> \/(l_w)(p_2)

n+2 ’
1
(H2) |d — ¢| < g(S?) a.s., where E [(g*(S?))'T] = O (2(1-5-7)> for some v > 0, in the
n
neighborhood of +oo.
el
If pgr_ﬁl&ﬁ = ¢, then
. R,(0,,0) w+Hc
1 w (Y28} — .
n,p1—>n—1&-oo Rw(X; 0) ]_ + C
Proof. From (H2) we have
2 ayy2 (8%)? 2 2y (8%)?

o’x2
X B ]d—o(S% | X[*)|S% + Ald — 0(0x, 0%X5 1 2(N)| = S
Xp+2( )

(5%)?
112

+2(1 —w)AE (g(SZ) X2f2(>\)> .

From the independence between || X||? and S? and the holder inequality, we get

< B (515 ) + 248 (5550 ) +20 - ) Blo(s7)5+

1 = = !
Ay gs < BT+ ((9(52))2(1+7)> E1+ ((52)2( gl )> E <||)(|2) +

1 142y 4(14+~) 1

=) 21\2(1+7) A+ 2 -
+2dB70E ((g(5%)2040)) B0 ((87) 155 >E<HX||2>+
+2(1 - w)ETF ((9(52))2(1”)) e ((52)2&31)) T

+2(1 — w)AETT ((9(52))2<1+v>> okice=n) ((52)2&23’) E (21(”) _

Xp+2
1 1 1 1 1
E =SEBE(l——— )<= :
<||X||2) o? (p—2+2K> o?p—2

1 1 1
E|———|=F <
<X§+2(/\)> (p—|—2K> p—2

(1-w)(p-2)
d="—rs

and
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we obtain

~

Ay ss 4 . 2\ 2(14y F(2 +2(1::_7)> T+
60 S Tope T (0E) ( ey ¥

n (14+~) 2(1+7)

3 ) (% 4 234

I 5} ¢ =) 52 2(147) N2 142y 7 4
pn+2) R I'(3)

2

142~
n ) 2(1+7)
4 1 F(E + 21(14; )
i b-Tee=y 21)2(1+7) 2 42y
2B ((g(57)70) ( F) +

1+2~
n 2(147) 2(1+7)
4 ||9||2 2\\2(1+ F(5+ 1+2 )
E2(1 o) ) L . .
+ gy e B ((0(5)P0) (s

2

Now, from stirling’s formula which expresses that in the neighborhood of +o00, we have
D(y +1) = v2mytoe

and the fact that asn
lim (1 + —) =%,

n—-+oo n
we have
F(%"‘w) w n 2 2
(rm) ~(5+2+1)
1424
I'(%) T\2 142y
and

:§+1+2’y.

2(147) |\ 20D
<F(72L + 1+21 )) ! n 1

Then, in the neighborhood of 400 we have

mits <o () (545 41) +

8

1 2 2
__° pIzam 2\\2(1+7) n 1
Jrp(n—|—2) ((Q(S)) ) 2+1—|—27jL *

4 1 n 1
— 20+ 2\\2(1+7) _
to ((9(5)) ) 2 T 112y) "

e ) 3+ )

1
- s 20621)2(147)) —
Using the condition E((g*(S5%)) )=0 (n2(1+V)

), then it exists M > 0 such that

A Js 4 _1 1 n 2 2
lim —22% < i —  MT (4241
n.potoo Ry (X, 0) "-VPI—E&OO{ (1 —w)p(p —2) n? (2 N ) *
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p(n+2) 1+ 2y
4 1 1 (n
M =

+QU n<2+1—|—27)Jr

+ L ||60||2 2(1+'y) 1 n + 1 +
o?(p—2) p02 n \ 2 + 2y

2
—&-LMMM)I <Z+2+1> +
1

—_

from formula 6, we get

i el 0 o Rulis,l) _wie
np—too R,(X,0) ~ np—toe Ry(X,0) 1+c¢

In the other hand

Ru(5,,0) =B (P2 IXP) ) + (1 - ) (H (1- et X)) X -0

X112

2)
and

| (1- wts? 1x17) 75 ) X - {Z (1w X‘)H )
:E{i(l—ga(smxn)f”g) Z 23 (1- s ”X')nf:n?)”}:

=1 =1
2 2 SQ ? 2 2 2 2 52 .
=1

Using (b) of Lemma 3.1 in Hamdaoui and Benmansour [17], we obtain

B (1~ st 1P ) x -0

0.22

2 2
X
_ E{(1 N T .- I ) N
T Xp+2K

o’x?
12K — 4( G e xp+2K)22>} =
9 Xp+2K

2 2.2 2 2 X2 2K ? 2
=0 E{(QD(U Xn» O Xp+2K) 2 — =1+ 2 ) Xp+2K}+
Xp+2K Xp+2K

2 9K 2
+O’2E{p— —(XHH; ) }
Xp+2K

Using the conditional expectation we get

2 2
X - 2K 4K?
E{p(””;)} —E{E{p X2ioK — +4KK”

Xp+2K Xp+2K
4K?
—Elp—(p42K) - —27 L4kl =
{p w2 = sk }
4K?
=Ep—-2—-(p—2+42K)- —— +4K ; =
(p=2- =242 - o bar)
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E{p2p(—pzf)22[(}'

From the hypotheses (H1), we deduce that

R“’((S“"’e)>w[<1_w)7§p+_22>2n02E(p21+2K>} tl-wle ZE{p 2_(]92_5)22}(}'

Using the last formula and the formula (2), we have

R, (3,,0) S wip —2)%n 1
R,(X,0) ~ p(n+2) p—2+ IWII2

)

—we?El1 -2 (-2
+(1 ) E{l ’ (p—2) (p—2)(p+|3!2)}.

2
From the condition lim ” I

= ¢, we obtain
p—+00 pU

lim R, (8,,0) > w+c.

n,p—+oo R, (X,0) 1+c¢

The formulas 11 and 12 give the desired result. ([

The following Proposition gives the same result as Theorem 1 for a particular shrinkage

function ¢. Indeed, we will choose g in L? and note in L2('*7) but with the constraint that the
function g is monotone non-increasing.

(12)

Proposition 1. Assume the estimator 0, given in (3), with ¢ satisfies the condition

—V/2(p —

b

1
(H2) |d — | < g(S?) a.s., where g is monotone non-increasing and E ((gQ(SQ))) =0 <n2> in
the neighborhood of +o0.
[l
If p£+oo po? =c, then
. R,(0,,0) w+c
1 L .
npotoo Ry(X,0)  1+c

Proof. From (H2) we have

2 (5%)°
X112

Agss < ((d (52 1X12)2 B2 4 aad - o2, 1x) >|(S))+2<1—w>><

X112

*xa
B (10— pl8% IXI)IS? 4+ N - (i 0o 5205 ) <
Xp+2( )

< B((0(52)2 51z ) + 208 (95 5 ) + 201 - B (o(5%)5%)+

2
+2(1 —w)AE <g(52)xziw) .

As ¢ is monotone non-increasing, the covariance of two functions, one increasing and the other

1 1
decreasing is negative and the fact that E = —FE | ———— ], we obtain
|| H o2 \p—2+2K

Bpuss < B((a(8)Po%n(n+ 8 (55 ) + 20D g5y
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x n(n +2)E (p_QIHK) +2n(1 — w)E(g(5?) {02 LB (p +12K> } .

Then

Bods n(n+2)E((g(SQ))2)E( = >+ e 2)E(g(sg))E<1)+

R, (X,0) ~ p(1—w) X2 ok Xotork

2n 9 % 9 1
+ 2Bl + P E ()

1
From condition F((g(5%))?) = O <n2> and using the Schwarz inequality, when n is in the

neighbourhood of +00, we obtain
1
E(g(5%) < EY2((9(5%))) < VM-,

where M is a real strictly positive. Then, when n is in the neighbourhood of +o0o, we have

Ay 5s - M E( 1 >+2(p—2)\/ME( 1 )+

R,(X,0) " p(1—w) \p—2+2K P p—2+2K
M 2v/M |6 1
NV YR
p 0%  po p+ 2K
M p 1 2p—2)vVM [ p 1
== ) o |t ) T
p(l—w) \p p+ p p p+
N 2vVM N 2VM (11012 (p+2 1
p o2\ po? p ) \p+2+ 1)
2
As lim % = ¢, then
p—+o00 po
. Ay s
1 i L <0
prioo Ry(X,0)
thus
R, (d,,0) . R,(6s,0) w+ec

li — 2 1 = .
nptoo Ry (X, 0) S npoto Ry(X,0)  1+ec

The proof of
R, (64,0) L wte
n,p——+00 Rw(X,G) T 14c’

is the same given in the Theorem 1. a

Conclusion

In this work, we studied the estimation of the multivariate normal mean distribution X ~
N, (G,UZIp) under the balanced loss function. We considered the class of estimators defined
by 6, = (1—¢(S%[|X?)S?/||X|*) X which are not necessarily minimax, and containing the
James-Stein estimator ¢ ;5 and we interested to establish the sufficient conditions for that the
estimators ¢, dominates the MLE X in the case where the dimension of the parameter spaces p
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and the sample size n are large. If the limit of the ratio [|0]|> /po? is a constant ¢ > 0 when p tends
to infinity, we showed that the risks ratio R, (,,0)/R.(X,0) tends to (w+c)/(1+¢) (0 <w < 1)
when n and p tend simultaneously to infinity. Thus we ensured that the estimators §, which are
not necessarily minimax, dominate the MLE X, even if the dimension of the parameter spaces
p and the sample size n tend simultaneously to infinity. An extension of this work is to obtain
the similar results in the case where the model has a symmetrical spherical distribution.

The authors would like to thank the editor and the referees for their comments and insightful
suggestions, and careful reading of the manuscript. This work was supported by the Thematic
Research Agency in Science and Technology (ATRST-Algeria).
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IIpeaennl oTHOIIIEHWIT PUCKOB OIIEHIINKOB yCaaKM
npu cbaslaHCMPOBaHHOI (DYHKIIMN MOTEPh

Mekku Tepbeue

Yuuepcurer Hayk u TexHosoruit, Moxamen Bymunad, Opan

Jlaboparopust anaiau3a u npuMenenus: udaydenns, USTO-MB

Opan, Amxup

Aobnenbkanep Benxasen

Vuusepcurer Tymu, Mycrada Crambyan

JlabopaTopusi reoMaTUKH, IKOJIOITUU U OKpYyzKalomel cpeanl, YHuBepcurer Mackapa
Tymb, Amxup

Abnenyp Xamaayu

Yuupepcurer Hayk u Texuosoruii, Moxamen Byaunad, Opan

JlaGoparopusi cratTucTuky u ciayvainbix Mozgeseit (LSMA) Vausepcurera Tinemcena
Opan, Askup

Awnnoraiusi. B 370ii cTaThe MBI 3ydaeM OIEHKY MHOIOMEPHOI0 HOPMAJIBHOIO CPEIHEro Mpu cHaIaHCh-
poBaHHO# GyHKIMKE TOTEPh. MBI IpeicTaB/IsIeM 31eCh KJIaCC OIEHOK YCAIKU, KOTOPBIH 06001aeT OeHKY
Ixeiimca-CreiiHa, U Mbl 3aMHTEPECOBAHBI B YCTAHOBJIEHUU ACUMIITOTUYECKOTO MOBEJEHUsI OTHOIIEHUN
PHUCKOB 3THX OIEHOK K OIeHKaM MaKCUMaJIbHOrO npasionogobust (MLE). Takum o6pasom, B ciydae, KO-
T2 Pa3MEPHOCTD IIPOCTPAHCTBA MAPAMETPOB U pa3Mep BBIOOPKH BEJIMKH, MBI OIPEIesIseM JTOCTATOTHBIE
YCJIOBUS [JIsl TOTO, YTOOBI IIPUBE/IEHHbIE PAHEE OIEHKH OBLIIN MUHUMAKCHBIMU.

KuaroueBbie ciioBa: cbanaHcupoBaHHasi (DYHKIUsI TOTEPh, omeHka J[xkeitmca-CreitHa, MHOroMepHast
rayccosa CilydaiiHasl BEeJIUUIHHA, HEIEHTPAJIbHOE PACIPEIeIeHIe XIU-KBaPAT, OIEHKN YCaIKN.
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Introduction

In recent years, there has been a growing interest in the linear and nonlinear integro-
differential equations which are a combination of differential and integral equations [3,16,18,21].
The nonlinear integro-differential equations play an important role in many branches of nonlin-
ear functional analysis and their applications in the theory of engineering, mechanics, physics,
electrostatics, biology, chemistry and economics [13] and signal processing [25].

The challenging work is to find the solution while dealing with Volterra—Fredholm fractional
integro-differential equations. Therefore, many researchers have tried their best to use different
techniques to find the analytical and numerical solutions of these problems [1,2,4,6-8,10, 14,22,
23,29].

The study of iterative differential and integro-differential equations is linked to the wide
applications of calculus in mathematical sciences. These equations are vital in the study of
infection models. Many papers have dealt with the existence, uniqueness and other properties of
solutions of special forms of the iterative differential equations and integro-differential equations
[12,15,16,19,20].

Recently, Cheng et al. (2009), in [5,20] investigated analytic and exact solutions of an iterative
functional differential equation

u'(z) = f(a,u(h(z) + g(u(z)))),

u(zo) = .

*drahmedselwi985@hotmail.com  https://orcid.org/0000-0002-8877-7337
(© Siberian Federal University. All rights reserved
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Lauran (2011) [19], investigated the existence and uniqueness results for first order differential
and iterative differential equations with deviating argument of the type

u'(t) = f(t, u(t), u(u(t)), u(Au(t))),
u(to) = Xo-

In [15], Ibrahim (2013) investigated the existence and uniqueness of solution for iterative differ-
ential equations of the type

Du(t) = f(t,u(u(t))),
u(0) = uyg.

Kendre et al. (2015), [16] investigated the existence of solution for iterative integro-differential
equations of the type

W (1) = F(t,ulu(t)), / K(t, )u(u(s))ds),

to
u(ty) = xo.

Unhale and Kendre (2019), in [28] established the existence and uniqueness of solution for
iterative integro-differential equations of the type

Du(t) = f(t) —1—/0 h(t, s)u(Au(s))ds,
u(0) = wp.

Motivated by these problems, in this paper, we discuss new uniqueness and stability results
for nonlinear fractional Volterra-Fredholm integro-differential equation with deviating argument
of the type

T T
D%u(z) = f(x) +/ h(x,s)u(u(s))ds—l—/ k(x,s)u(u(s))ds, =,s€ J:=[0,T], (1)
0 0
with the boundary condition
au(0) +bu(T) =c, a,b,ceR, a+b#0, (2)

where D?(.), 0 < a < 1, is the Caputo fractional derivative, f(t), h(z,s) and k(z, s) are given
continuous functions, u(x) is the unknown function to be determined.

The main objective of the present paper is to study the new uniqueness and stability results
for iterative nonlinear fractional Volterra—Fredholm integro-differential equation with deviating
argument.

The rest of the paper is organized as follows: In Section 1, some essential notations, definitions
and Lemmas related to fractional calculus are recalled. In Section 2, the new uniqueness and
stability results of the solution for nonlinear fractional Volterra-Fredholm integro-differential
equation have been proved. In Section 3, we investigate the Ulam—Hyers stability and generalized
Ulam—Hyers stability for the problem (1)—(2). In Section 4, focuses on an example to illustrate
the theory. Finally, we will give a report on our paper and a brief conclusion.

1. Preliminaries

The mathematical definitions of fractional derivative and fractional integration are the subject
of several different approaches. The most frequently used definitions of the fractional calculus
involves the Riemann—Liouville fractional derivative, Caputo derivative, etc. The following ob-
servations are taken from [7,9-11,17,18,24,26,29].
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Definition 1.1 ([16]). The Riemann—Liowville fractional integral of order o > 0 of a function
f is defined as

1

Jaf(m):wAI(x—t)alf(t)dt, r>0, acRt

JOf(x) = f(x),
where RT is the set of positive Teal numbers.

Definition 1.2 ([16]). The Riemann—Liouville derivative of order o with the lower limit zero
for a function f :[0,1) — R can be written as

1 d

PO

SFIONP .
/O(x—t)adt’ >0, 0<a<l. (4)

Definition 1.3 ([24]). The Caputo derivative of order « for a function f :[0,1) — R can be
written as

apy 1 cr®)
Df(aj)_F(lfa)/O (x—t)adt’ x>0, 0<a<l.

Definition 1.4 ([26]). The fractional derivative of f(x) in the Caputo sense is defined by

‘Df(x) = JOD"f(x)=
1 ¢ n—a-1d"f(t)
m/o (x—1t) ! s dt, n—1<a<n, 5
] @@ .
dxn b b

where the parameter « is the order of the derivative, in general it is real or even complez.

Definition 1.5 ([26]). The Riemann-Liowville fractional derivative of order a > 0 is normally
defined as
Df(x) =D"J"“f(x), m—1<a<<m. (6)

Lemma 1.1 ([24], Gronwall-Bellman’s Inequality). Let u(x) and f(z) be nonnegative continuous
functions defined on J = [a, « + h] and ¢ be a nonnegative constant. If

u(z) < c+ /: f(s)u(s)ds, z € J,
then
u(z) < c exp (/: f(s)ds)7 x € J

Theorem 1.1 ([26], Banach contraction principle). Let (X,d) be a complete metric space, then
each contraction mapping T : X — X has a unique fized point x of T in X i.e. Tx = x.

2. Main results

In this section, we shall give an existence and uniqueness results of Eq. (1), with the
boundary condition (2). Let B = C(J,J) be the Banach space equipped with the norm
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|lul| = maxzep, 1 [u(x)|. For convenience, we are listing the following hypotheses used in our
further discussion: (A1) There exist two constants f, and 8y such that

B = sup{|h(t, 5)| s<t

10 < <T
Br =sup{|k(t,s)] :0<s <t <T

}
}

(A2) There exists a constant M > 0 such that

|u(t1) — u(t2)| < M|t1 — tg‘a, for u e B, t1,ts € J, t1 < to.

(A3) There exists a constant L > 0 such that L = sup{|f(¢)| : 0 <t < T}.

T(L+T°(Bn + Br)) [ ld } ||
1 <T < M.
T(a+1) Tlaxo) Tlav

(A4) Let p:=

Lemma 2.1. If a function u € C[0,T] satisfies (1)—(2) in the closed interval [0,T], then the
problems (1)—(2) are equivalent to the problem of finding a continuous solution of the integral
equation

u(r) = /OI(xF(Z;I(f(t)+/Oth(t,s)u(u(s))ds+/0Tk(t,s)u(u(s))ds)dt

a —1|— b [/OT b(TI‘_(ctg))al (f(t) + /Oth(tv s)u(u(s))ds + /OTk(t, S)u(u(s))ds)dt - c] )

Theorem 2.1. Suppose that the hypotheses (A1)-(A4) are satisfied and

e )

Then there is a unique solution to the problems (1)—(2).

Proof. Let B(p) ={u€ B: 0<u<p,u(t1) —u(te)| < Mty —t2|*}.
To apply Banach contraction principle, we define an operator ¥ : B(p) — B(p) by

_ t)a—l

(Pu)(x) = /Oar (xF(a) (f(t) + /Ot h(t,s)u(u(s))ds + /OT k(t, s)u(u(s))ds) dt—

o —1i— b {/OT b(TF_(Oi))a_l (f(t) + /Ot h(t, s)u(u(s))ds + /OT/c(t, s)u(u(s))ds)dt - c} )
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So, we have

0 < [Pul =

[ & F(Zfl (ro+ | bt syulus))ds + / " ke, syuu(s))ds )

aib[/Tb(TF_(oi))al (f(t)+/0th(t,s) (us ))ds+/Tk(t s)u(u(s ))ds)dtc]

(z —t)*
</0 o) |f |+/|hts||u \ds—f—/ |k(¢, 8)||u(u |ds dH-

1 |b|(T — t)*~ 1
b [ P o+ [ st + [ |k<t,s>||u<u<s>>\ds)dt+

<

X

+

la+b| =
Tz —t)t 3 |b\ 3
<[ s s sy [ (L4 (B + BT+
ol .
la+b]
T“(L+T3(ﬂh+ﬂk))[ 1] } [
< T(a+1) Y] Tlatn T
:p.

Also, for each 0 < 1 < 22 < T, we have

|[Pu(ze) — Pu(zr)] <

T (g — ) — (2 — 1)~ ¢ T
‘/ 1 (f( )—i—/o h(t,s)u(u(s))ds+/0 k(t,s)u(u(s))ds)dt‘—i—

/:ZWN(?)(f(tH/Oth(t s)u(u(s ))ds+/Tk(t s)u(u(s) ds)dt‘
gr(la)/o [(xl—t)a—l (22 — 1)° |+/ (L, 5)| [u(u(s))|ds +

/ |k(t, s)| Ju(u |ds)dt—|— o) /xl (g — )™ \f(t)| —i—/o |h(t, s)| |u(u(s))|ds +

+

Hence
1 o a—1 a—
Bules) = Wulen) < e [ [l =00 = a7 4 T B+

1 [ o f

+ F(a)/gc (20 — ) L+ T3(B) + Br)]dt <

L+T°Brn+ BT 0 w o
< F(a—:l) b [a:l — x5 +2(ze — x1) } <
b T(a+ 1) S



Ahmed A.Hamoud Uniqueness and Stability Results for Caputo Fractional Volterra-Fredholm. ..

This shows that ¥ maps from B(p) — B(p). Now, for all u,v € B(p), we have
Bu(z) - o()] <

1 ’ a—l ! T
/0 / 0.9 ) = o(w(a)lds + [ [b(t. )| uu(s) = otos)lds ) de+

+|a+|lf|1“( / ) 1 /Ihts||u —v(v(s))|ds+

# [ s atute)) - v(v(s))|ds)dt <

<Ll / 0o ([ 1uta I+ luw(s)) — o(o(s))lds+
/ ju(u |+\u<<>>—v<v<s)>|ds)dt+

+'b'(f’},+pf’“/ =0 ([ ) = ol + utols) - ofo(s)as
w [ o |+\u<<>>—v<v<s>>|ds)dt<

(Bh + Br) _ pa-1 wfe) — ol = laf s — o s)\dls
S T T(a) /0(9” t) (/O(Ml() (8)] + |u(s) ()I)d)dt+

1Bl Br+B0) [T et [ () — ol luls) — ofs)1ds
+\a+b\r(a)/o(T t) (/O(M\() (8)] + lu(s) ()I)d)dt<

< w?@f” /0 (x—t)a1</0t((M+1) Ju(s) — v(s))ds ) de+

T t
" W/ (= / ((M +1) [u(s) = v(s) )ds)dt <

T(Bn+ Br)(M +1) Jo- 16| T (Br+ Bi)(M + 1) T N
< T(a) [|w *v||/ — Lat + PR llu— v i (T — ) 1dt <

T (B + Br) (M +1) DI TT (B + Br) (M + 1)
S T(a+1 lu=vll + la + b|C(a + 1)

)
<[t 0 )|

lu—v| <

MNa+1)

Since

a+1
[T (Bn + Bi) (M + 1) (1+ i )] <1,
Ila+1) la + 0|

by the Banach contraction principle, ¥ has a unique fixed point. This means that the problems

(1)—(2) has unique solution. O
The above theorem shows that there exists a unique solution to the problems (1)—(2). How-

ever, it does not tell us how to find this solution. To find the solution of the problems (1)—(2),

we will define the following sequence

tn1 () = /0 G ;(2;_1 () + /O Bt )t (e (5))ds + /0 ! (t, 5)un (un(3))ds ) dt

a —li- b {/OT b(TI‘_(;i))a_l (f(t) + /Ot h(t, s)un (un(s))ds + /OT k(t, s)un(un(s))ds> dt — c} :
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where n = 0,1,2,... and ug(x) is fixed functions of the class C'' mapping [0,T] — [0, T] such
that |ug(z)| < T. For this, we have the following theorem.

Theorem 2.2. If the assumptions of the Theorem 2.1 are satisfied then the sequences defined in
(7) converges uniformly to the unique solution of the problems (1)—(2).

Proof. Let U, = maxgey |ug(x) — ug—1(z)|. Then

Ur = max [ur () — uo(x)| =

= Imax
zeJ

[ (e | " hlt, s)uoluso(s))ds + / 0, s)uoonols))ds ) di—

- - 41-6[ /OTb(TF—((i))a_l Ft)+ /0 th(t,s)uo(uo(s))ds—k / k(t7s)uo(uo(5))ds>dt—c]—uo(x)

0
T(L 4 T°(Bn + Br)) 10| ) ||
S T(a + 1) <1+|a+b| Tlaty S

<

X

<T.
Since wg : [0,T] — [0,T], we have U; < T.

Uz = max lug () — u1 ()| =

I “F(Q) (ror+ | "t sy (s (5))ds + / bty () ds ) o~

=
o —1i— b {/OT b(TF((i))Q1 (f(t) + /Ot h(t, s)u1(u1(s))ds + /OT k(t, s)ul(ul(s))d5> dt — c} —
_ { Ow (fr(tofl (£ + /O "Bt $)uo(uo(s))ds + /O T S)uauo()ds) dt

S UT b(Tr_<t)> (ro+ [ . s)uo(uo(5))ds + / (5o o 5))ds )t — clat} ‘ <

ajw t S)|ur(ui(s)) — upg(upgls S
<mac{ [TETI 101+ [ h) s (a(5) - wo(uolo)ids +

. 1 [T p|(T —t)et
+/O (¢, 8)] u (ur (s)) _UO(UO(S))|dS>dt_ |a+b|/0 Ma)

t T
< (1)1 + / [(t, )] ua (w1 (s)) — uouo(s))|ds + / [kt ) s (ua (5)) — uo<uo<s>>|ds)dt} <
<TU, < T2

Assume that result is true for n ie. U, < TU,_1 < T™. Now, we show that result holds
forn+1

Unt1 = max |up41(x) — up(x)| =
zeJ

= Imax
xzeJ

o U /Ot Bt s)u (e (5) s + /OT kit 5 (5))ds )~

Ca -ly b [ /OT b(Tr_(é))a_l (f(t) + /O th(t,s)un(un(S))ds + /0 Tk(t7s)un(un(s))ds>dt - c] —
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_ {/0”” (x_(t);l_l(f(t) + /Ot h(t, s)up—1(up—1(s))ds + /OT k(t,S)Hnﬂ(unﬂ(s))ds)dt—

L 0 [

+ /OT k(t, S)Un—l(un—l(s))ds) dt = C} dt}‘ s

Q

zw S Un (U — U U S S
<max{/0 (st |+/\ht ) Lt (11 (5)) = 1 (11 (5)) s+

g Ll
b o)~ s )t~ [ x

(01 [ ) 1 (5) = s (st

T
+/0 k(t, s)] [un(un(s)) —un-l(un-l(smds)dt} <
<TU, <7

Thus by induction, we have U, < T*. Since

R w1 FO. T

<T <1l
I'a+1) a+0bl la + bl

Hence Uy, tends to zero as k tends to infinity. Since the family {Uy} is the Arzela—Ascoli family
thus for every subsequence {uy;} of {Uy} there exists a subsequence {uy;} uniformly convergent
and the limit needs to be a solution of the problem (1)—(2). Thus, the sequence {Uj} tends
uniformly to the unique solution of the problem (1)—(2). O

3. Stability results

In this section, we investigate the Ulam-Hyers stability and generalized Ulam—Hyers stability
for the problem (1)—(2).

Definition 3.1 ([27]). The Eq. (1) is Ulam—Hyers stable if there exists a real number € > 0
such that for each € > 0 and for each solution v € C'(J,J) of the inequality

D%u( /hxs ds—/ E(x,s)v(v(s))ds| <e, z€J, (7)

there exists a solution u € C1(J,J) of Eq. (1) with
v(z) = u(z)] < Qe. (8)
Definition 3.2 ([27]). The Eq. (1) is generalized Ulam—Hyers stable if there exists © €

C(RT,RT), ©(0) = 0 such that for each ¢ > 0 and for each solution v € C*(J,J) of the
inequality

T
Dy( / h(zx, s)v(v(s))ds _/0 E(x,s)v(v(s))ds| <e, z€J, 9)

there exists a solution u € C*(J,J) of Eq. (1) with

o(z) — u(@)| < O(e). (10)
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Theorem 3.1. If the assumptions of the Theorem 2.1 are satisfied, then the problem (1)—(2) is
Ulam—Huyers stable.

Proof. Let ¢ > 0 and let function v € C!(J,.J) which satisfies the inequality
T T
D%(x) — f(z) — / h(z, s)v(v(s))ds — / k(x,s)v(v(s))ds < e, (11)

0 0

and let u € C(J,J) be the unique solution of the following problem

T T
D%u(z) = f(x) +/0 h(x,s)u(u(s))ds—i—/o k(z, s)u(u(s))ds,
u(0) = v(0), u(T)=ov(T).

from Lemma 2.1, we obtain

w(z) = /O (z F(’Z;1(f(t)+/Oth(t,s)u(u(s))ds+/0Tk(t,s)u(u(5))d5)dt

. 1[/0 b(Tr_(c?)a_l(f )+ /0 (e u(u)ds + /O Tk(t,s>u(u(s))ds)dt_c] _

a+b

_ Au+/0”” (z ;(12;_1(f(t)+/Oth(t,s)u(u(s))ds+/0Tk(t,s)u(u(s))ds)dt,

Au:aib[c—/OTW(f(t)Jr/oth(t,s ds—i—/ k(t, s)u ds dt}
szaib[c—/oTb(Tl:(;))a_l(f(t)+/oth(t,s ds+/ (t, 5)o(v(s))ds ) dt .

On the other hand, if u(0) = v(0), w(T) = v(T), then A, = A, and

u(z) = A, + /Ox (x;(t)‘“‘—l (f(t) + /Ot h(t, s)u(u(s))ds + /OT k(t, s)u(u(s))ds) dt.

a)

From inequality (11) we have

T T
—e < D%(z) — f(x) — / h(z, s)v(v(s))ds — / k(z,s)v(v(s))ds < e. (12)
0 0
If we integrate each term of the above inequality and appling the boundary conditions, then we

have

t Ta
+/ h(t, )v ds+/ k(t, s)v ds dt(
0 (a+1)

For any x € J, we have

v(z) —u(z)] <
A, — Or (x;(g;‘_l (f(t)—I—/o h(t, s)v ds—l—/ k(t,s) ds dt‘
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IM t —ulul(s S ! S)|vlv(s)) —ululs S
+/O ) ( | Dt 5)lo(u(s) — u(u(s)ld +/0 B(t,5)[o(v(s)) = u(u(s))ds ) dt <

- R t - —u(u(s s
S WJF/O p(a)<5h/0 [[o(v(s)) = v(u(e)] + [v(u(s)) — ulu(s))|]ds +

T
+ﬁk/0 [lo(v(s)) = v(u(s))| + [v(u(s)) - U(U(S))Hd8> dt <

s F(;le ﬂh / / = 1)* N (M + D)u(s) — u(s)|dsdt +
Bk ot —uls S

+ @/0 / (z = )" (M + 1)|u(s) — u(s)|dsdt <
er (ﬁh +,8k

<F(a+1) a—|—1 / [v(s) — u(s)|ds.

Using Gronwall’s inequality, we get

ere { ET(Bn + Br) (M + 1)

< = Qe,
’ T(a+1) T(a+1) ‘

v(z) = u(z)

where £ = £(a) a constant, which completes the proof.
Moreover, if we set ©(e) = Qe, ©(0) = 0, then boundary value problem (1)—(2) is generalized
Ulam—Hyers stable. U

4. An example
We consider the nonlinear iterative fractional integro-differential equation (1)—(2) with
a=05 T=05 L=02 M=04, B,=06,=05, a=b=1, and c=0.

New, we have

T*(L+T*(Bn + Br)) o] lef  0.5%%(0.2 +0.5%(0.5 + 0.5)) 1
T(a+1) ( +|a+b|) rE T(05+ 1) (145)+0

2

0.2298098
~ T(5) (15)
0.3447145
0.886227
— 0.38897

< 05=T
Also,

TN (M + 1) (B + Br) || 0 0.5%7FH(0.4 + 1)(0.5 + 0.5) 1
T(a+1) (H |a+b|) - 005+ 1) (1+3)
0.494975

= —(1.
0.886227( 5)

= 0.8378
< 1

Since all the hypotheses of Theorem 2.1 are fulfilled, then there exists a unique solution of the
given equation.
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Conclusion

The main purpose of this paper was to present new existence and uniqueness results as well

as the Ulam-Hyers stability and generalized Ulam—Hyers stability results of the solution for
Caputo fractional iterative Volterra—Fredholm integro-differential. The techniques used to prove
our results are a variety of tools such as the Gronwall-Bellman’s inequality, some properties of
fractional calculus and the Banach contraction fixed point theorem. Moreover, the results of
references [15,16,28] appear as a special case of our results.

The author would like to thank the referees for their valuable suggestions and comments that

improved this paper.
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PesyinbTaThl € ITMHCTBEHHOCTH M YCTONYMBOCTU
st KammyTo apobubix nmHTerpo-anddepeHnajIbHbIX
ypaBHenuii Boabreppa-®pearoabma

Axmen A. Xamyn
Kademnpa maremaTuku
Yuusepcurer Tans

Taus, Memen

Amnnoranus. B 910it craTbe MBI yCTAHOBUJIM HEKOTOPbIE HOBBIE PE3YJIHLTATHI, KACAIONIUECs €IMHCTBEHHO-
CTH ¥ YCTONYMBOCTH YJjlaMa peIleHU!l NTePaIMOHHBIX HEJIMHEHHBIX WHTErpo-TudOEPEHITNATBLHBIX YPaB-
nennit Bonbreppa—®pearospma ¢ TpaHUIHBIMA yCIOBUSAMU. J[[pOOHBIE TPOM3BOIHBIE PACCMATPUBAIOTCS
B cmbiciie KamyTo. DTy HOBbIE pe3yJbraThl IOJYYEHbI IIyTeM I[IPUMEHEHWs] HepaBeHCTBa | poHyosnia—
Bennvana m Teopembl Banaxa 0 CKaTWW HEMOJIBUXKHONW TOYKU. BKIIIOUEH HATJISIIHBIN MTpUMeEDP, ITOOBI
MIPOZIEMOHCTPUPOBATD M (MEKTUBHOCTD U HAJIEXKHOCTDH PE3YIIBTATOB.

KuarouesBsbie ciioBa: narerpo-anddepennuaibaoe ypasaenune Boimbreppa—®pearonbma, cmbica KamyTo,
HepaBeHCTBO ['ponyosna—bennmana, Teopema Banaxa o cxKaTUy HEMTOIBUKHON TOYKM.
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special, and general. Since the number of roots of such systems, as a rule, is infinite, it is necessary to
study power sums of the roots of negative degree. Formulas for finding residue integrals, their relation
to power sums of a negative degree of roots and their relation to residue integrals (multidimensional
analogs of Waring’s formulas) are obtained. Various examples of transcendental systems of equations
and calculation of multidimensional numerical series are given.
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Introduction

Based on the multidimensional logarithmic residue, for systems of non-linear algebraic equa-
tions in C" formulas for finding power sums of the roots of a system without calculating the
roots themselves were earlier obtained (see [1-3]). For different types of systems such formulas
have different forms. Based on this, a new method for the study of systems of algebraic equa-
tions in C™ have been constructed. It arose in the work of L. A. Aizenberg [1], its development
was continued in monographs [2—4]. The main idea is to find power sums of roots of systems
(for positive powers) and then, to use one-dimensional or multidimensional recurrent Newton
formulas (see [5]). Unlike the classical method of elimination, it is less labor-intensive and does
not increase the multiplicity of roots. It is based on the formula (see [1]) for a sum of the values
of an arbitrary polynomial in the roots of a given systems of algebraic equations without finding
the roots themselves.

For systems of transcendental equations, formulas for the sum of the values of the roots of the
system, as a rule, cannot be obtained, since the number of roots of a system can be infinite and
a series of coordinates of such roots can be diverging. Nevertheless, such transcendental systems
of equations may very well arise, for example, in the problems of chemical kinetics [6,7]. Thus,
this is an important task to consider such systems.

In the works [8-21] power sums of roots are considered for a negative power for different
systems of non-algebraic (transcendental) equations. To compute these power sums, a residue
integral is used, the integration is carried out over skeletons of polycircles centered at the origin.
Note that this residue integral is not, generally speaking, a multidimensional logarithmic residue
or a Grothendieck residue. For various types of lower homogeneous systems of functions included
in the system, formulas are given for finding residue integrals, their relationship with power sums
of the roots of the system to a negative degree are established.

*AKytmanov@sfu-kras.ru  https://orcid.org/0000-0002-7394-1480
fkhodos _o@mail.ru
© Siberian Federal University. All rights reserved
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The paper [12] investigated more complex systems in which the lower homogeneous parts are
decomposed into linear factors and integration cycles in residue integrals are constructed from
these factors. In [11], a system is studied that arises in the Zel’dovich-Semenov model (see [6,7])
in chemical kinetics.

The object of this study is transcendental systems of equations in which the lower homoge-
neous parts of the functions included in the system form a non-degenerate system of algebraic
equations: formulas are found for calculating the residue integrals, power sums of roots for a
negative power, their relationship with the residue integrals are established. See [21].

1. The simplest transcendental systems of equations

Consider a system of functions of the form

fl(z)a fZ(Z)w-'vfn(Z)a

holomorphic in a neighborhood of the point 0 € C*, z = (21, 22, ..., 2,) and having the following
form:

J )
fj(z):zﬁ +Qji(2), j=12,...,n, (1)
where 87 = (B],35,...,5)) is a multi-index with integer non-negative coordinates, 2%’ = Zfl .

zgé 2P and 187 = Bl +B5+...+B] =kj, =1,2,...,n. The functions Q; can be expanded
in absolutely and uniformly converging Taylor series in a neighborhood of the origin of the form

Qi(z)= ) ah=", (2)
fal>ks

where a = (a1, a2,...,ay), a; 20, o €Z, a 2% = 27" - 252 - 20,
Consider the cycles v(r) = v(r1,r2,...,7s), which are skeletons of polydisks:

v(r)={2€C":|z| =rs, s=1,2,...,0n}, 71 >0,...,7 >0.
For sufficiently small r;, the cycles v(r) lie in the domain of holomorphy of functions f;,

therefore the series
J |,.Q1 (o1 s
Z ‘aalrl '”rnn7 ]—1,...71,
llexl|>k;

converge. Then on the cycle y(tr) = y(try, tra, ..., tr,) for sufficiently small ¢ > 0 we have

|Z|ﬁj — rf{ ) ng .. .Tgvj? — ¢ki . rﬁj,
and
Qi) =] Y aha”| <
ol >k;
< Z tholl|g |ro < ¢hit? Z lad |r™, j=1,...,n.
llell>k; llex]| =0
Therefore, for such ¢ on the cycle v(¢r) the inequalities hold
Bj .
|| >1Q;(2)], ji=12,...,n. (3)

Thus
fi(z) #0 on ~(tr), j=1,2,...,n.
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In what follows, we will assume that t = 1. Consider a system of equations of the form

fi(z) =0,
fa(2) =0,
(4)
fu(z) =0
From (3) it follows that for sufficiently small r; the following integrals are defined
1 4 1 d n
A SN NN
2B+ f Zfl-i'l . zgz-i-l o Zﬁn-i-l fl f2 fn
y(r) Y(r1,7250057n)

where 51 > 0, B2 2 0,...,5, 20, 5; € Z, I = (1,1,...,1). We call them residue integrals
([22)).

The logarithmic residue theorem does not apply to these integrals, and they are not standard
Grothendieck residues.

Since condition (3) is satisfied on the cycles v(r), by the Cauchy-Poincaré theorem, these
integrals are independent of (rq,...,7,). Let us denote

1 1 df
Jp = (2mi)" / B+ 7

y(r)

Theorem 1. Under the assumptions made, for a function f; of the form (1), (2) the next
formulas are valid

_ (_1)Ila\|
Jo = 2 (64‘(061+1)/81+--~+(04n+1)ﬁn)!x

llell<lIBll4+min(n,k1+...+kn)

I (A-Q%)
X G @it DB A (an T 1B

z=0
A-Q”
_ _1)lel
o Z (=1)*am {z5+(a1+1)ﬂ1+.--+(an+1)ﬂ" ’
el <lIBll+min(n,k1+...+kn)
where k = ||+ (a1 + 1)BY + ...+ (an + 1)B7|, B! = 1! Bo!- B!, Q% = QT - Q5% --- Qon,
olsll olsll
= , A is the Jacobian of the system of functions (1) and, finally, I is

029 821618252 < Ozp" 1)
a linear functional assigning to the Laurent series (under the sign of the functional IM) its free
term.

Corollary 1. If all 7 = (0,0,...,0), j = 1,...,n, then the integral

. O~ —)llall glial
Js = Z (_1)|a|m[AZ§2:|: Z (lﬂ)lzzﬁ(A.QQ)

lell<lIBl el <lIBI ' =0

Our further goal is to relate the considered integrals to power sums of roots of the system (4).

To do this, we will narrow the function class f;. First, we take as functions Q; (j =1,2,...,n)
polynomials of the form '
Q)= Y e )
acM;
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where M; is a finite set of multi-indices such that for o € M; the coordinates aj < ﬁi,
k=1,2,...,n, k # j. (But it is still assumed that ||«| > k; for all o € M;).

Denote
M
1
OB+1 = 0(B1+1,B2+1,....,8n+1) = Z B1+l _Ba+1 Bn+17
k=1 ~1(k) “*2(k) " Pn(k)
where 8 = (f1,...,8n) is some multi-index. This expression is a power sum of roots that do

not lie on the coordinate planes of the system (4), but in negative power (or a power sum of the
reciprocal of the roots).

Theorem 2. For the system (4) with functions f; of the form (1) and polynomials Q; of the
form (5) the next formulas are valid

Jg = (=1)"op4r,

i.e.
A Q~
- _1)llell+n
B+ = Z (=1) m B+ D) BTt 4 (ant+1)B"
llall <l Bll+min(r,ki+...4+kn)

Consider a system of equations in three complex variables

J1(z1,22,23) = 1+ a121 = 0,
fa(z1,22,23) = 1+ b121 + baza = 0, (6)
fg(Zl,Zg,Zg) =1+4+c121 + coz9 + c32z3 = 0.

Here the functions do not satisfy the conditions of Theorem 2, but they satisfy the conditions of
Theorem 1. We find the integral

J _ 1 / 1 dfi Ndfs Ndfs
300 = (2mi)3 M zy fiofor fs
y(r)
B 1 / 1 arbacsdzy A dzo N dzs .
~ (2mi)? 2z (L arz) (L4 bz +baze)(1+ cizn + cozp + c323) B
v(r)
. a1b203 i’@ |: 1 ]
B! azf (1—|—a12’1)(1—|—b121)(1+61Z1) 2120
To calculate the last derivative, we transform the expression
1 A B C

= + + :
(1—|—a121)(1+b121)(1+0121) 1—|—a121 1+b121 1+612’1

A= (a1 —bi)(ag —c1)’

i
b= (a1 — b%)(bl —c) @
C= 4



Alexander M. Kytmanov, Olga V. Khodos On Transcendental Systems of Equations

B+2 b6+2 B+2
ay _ 1 + =l
(a1 —=bi)(ar —c1) (a1 —=bi)(by —ec1) (a1 —c1)(by —c1)

The roots of the system (6)

X

1 b1 —ay bocy — bica + ai1ca — arbo
21 = —— 2= y R3 = .
ai aibs

a1b263

If the numerator in the formula for z3 is 0, then this root lies on a coordinate plane, and we
should not take it into consideration.
Therefore, the power sum

_ (=1 1ay " b3es
PO T (b = )

bocy — bica + area — arbs)’

ie.
(=1)7a3b3esbi ™
b1 - al)(bgcl — b162 “+ ajco — albg)

J(8,0,0) = —0(B1+1,1) — ( +

(—1)’B+1a1b20263

(bacy — brca + a2 — arbs)

B+1 B+l B+1 B+l

a —c b —c

X [—0102 : % + (bica — boca) - % (8)
1—C1 1—C1

We recall the well-known expansions of the sine into an infinite product and the power series:

sinyz 2\ x= (—D)kF
vz _]}:[1(1_14:%2)_2(%4—1)!’

k=0

which converge uniformly and absolutely on the complex plane.
Consider the system of equations

A ) sinv/z; — a? 1‘>_°[ ) 21 — a? 0
21,29,23) = — e = — =
1\<1, <2, <3 /721_012 e’ k2772 ’
sinv/ze — 21 — a? 0 29 — 21 — a2
fa(z1, 22, 23) = — =1 (1-—5%5—) =0,
VZa — 21 —Q m=1
sinyvzg —zp —a? <1 23—zg—a2>
g A L

f3(21, 22, 23) = 5 I1
VZ3 —22—a s=1

Each of the functions of this system can be expanded into an infinite product of functions
from system (6).

The roots of the system (9) are the points (72k?+a?, 72 (k*+m?)+2a?, 72 (k*+m?+s%)+3a?),
k,m,s € N. Therefore, the power sum (s, 1,1) is equal to the sum of the series

o

1
o = D (72k2 + a2) B+ (12(k2 + m?) + 2a2)(72(k% + m? + 52) + 3a2)’

k,m,s=1

which converges as a # wki.
For the system (9)
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k(22 . — a2)k

(2k + 1)! ’

k(zS — 2y — a2)k

(2k + 1)! ’

I I
Iz I
T

therefore
oo

a’k sha
0,0,0) = £2(0,0,0) = f5(0,0,0) = —_— =
£1(0,0,0) = £2(0,0,0) = fs(0,0,0) ,;(2“1)! ;
Therefore, to apply the formula from Theorem 1, we need to divide the functions fi, fo, f3
by these constants (normalize).
Consider the integral J(; o,0) for the system (9). Using the form of the roots of the system (9),
we obtain that

1 1 1 1 1
al__ﬂ'QkQJraQ’ U rm2 i a2 7T memiia?’ 02_7r252+a2’ 03__77252+a2'
J(3.00) = —0(a11.11) + (=1)7Fx

1

1 i ! o (-1

L (7252 + a2)(r2(k2 + m2 + %) + 3a2) (m272 + a2)P1 " (k22 + a2)B+1 |’

Toom= Y. 1 x
(8,0.0) = L= (2R +m?) 4 20) (72 (k2 +m? + 52) + 3a?)
1 (_1)B+1
x + +
(]g27r2 + a2)ﬁ+1 (m27r2 + a2)5+1

i | T,

L (7252 + a2)(r2(k2 + m2 + s%) + 3a2) (m272 + a2)BT1 " (k272 + q2)P+1

X

For odd § the integral Jig 0,0y = 0, and for even 3 = 2n we obtain the following formula for
finding the sum of the series

A- Q
2n00) Z m[ } 20(2n+1,1,1)—

llell<2n A"

1
-9 .
. ; (@K% + a?) @D (w252 + a2) - (n2(k2 + m? + 5?) + 3a?)

Let us calculate, for example:
ofi Of Ofs 1 1 3
J =MA]=M|— -—-—| === — —cth .
(0.0.0) [A] [82’1 Ozg Oz 22 2
Applying the identity

1 1
(2K + &) (a2 (k2 + m2) + 2a%) | (nZm? + @) (n2 (k2 & m?) 1 2a?)
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1
©(72k2 + a?)(72m?2 + a2)’
We get that
> 1
2 = .
7,11 . ng::l (m2k2 4+ a?) - (7282 + a?) - (m2(k2 + m? + s2) + 3a?)
Thus, we get
> 1 )=
L= (7R 4 a?) - (w2 (K2 + m?) 4 2a2) - (w2 (k2 + m? + 52) + 3a?)
_ (actha —1)*
48aS

2. Special systems of equations

Consider a system of functions f1(z), f2(2),..., fo(z) of the form

fi(z) = (1 = a1120)™ - (1 = a1nzn)™" + Q1(2),
F2(2) = (1= 2™ (1= a020)™ + Qo) (10
Fu(2) = (L amz) ™ - (1~ )™ + Qu(2),

where m;; are natural numbers, a;; are complex numbers that are different for fixed j, Q;(z)

are entire functions, ¢ = 1,...,n. Let J = (j1,...,Jn) be a multi-index, where (j1...j,) is a
permutation of (1,...,n). Let us define ay = (a1, ..., an;,) for a multi-index J. We denote
qi(z1,- o y2n) = (1 —a;21)™ - (1 — @inzn)™™, i=1,...,n, (11)

then the system (10) can be rewritten as

filzay oo yzn) = qiz1, ooy 2n) + Qi(z1, .oy 2n), i=1,...,n. (12)

For each m we define the function

Gm(z) if am; #0 for all j;
= 1 1
i (2) m(z) - — ... if amy, = ... = as;, =0. (13)
21 Zji,
A system
hn(2) =0, i=1,...m, (14)

has n! isolated roots in @n, where C' =C x - e X C. Recall that C is a compactification of the
complex plane C (the Riemann sphere). Then C" is one of the well-known compactifications of
C™ (the function theory space). The roots of the system (14) are equal

. (1/ayj,,...,1/an;,) if agj, #0for k=1,...,n,
aj = .
(1/a1j1, .. .700[1'1]7. . .,OO[ik], ey 1/anjn) if ailjil =...= CLik]’ik = 0,
where k,j=1,...,n. If aj, ;, =0, then in @y we write oo, this is the point at infinity in C.
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By T'j, we denote the (global) cycle:
I'py={2€C": |hy|=7rm, : >0, m=1,...,n}.
In the case when all ag_j, # 0, we define the (local) cycle I'; 5, as follows

11 —aij,z1| =71,

11— agj, 22| = 12,

‘1 - anjnzn| =Tn.
If aj,j,, = ... = aij, =0 for some i1,..., 0, then I'y 5, is defined as
1 —ayj, 21| =1,
‘1/211| = Ty

‘1/Zik| = Tigs

|1 — anj, 2n| = Tn.

Lemma 1. For sufficiently small r,,, the global cycle T'), has connected components (local cycles)
in the neighborhood of the roots ay. Moreover, I'y, is homologous to the sum of local cycles I'y, 5, .

Consider the system of equations

Fm(zat):qm(z)—’_t'Qm(Z):O’ m:]-a"'vna

(18)

depending on the real parameter ¢t > 0. Let 1 > 0,...,r, > 0 be fixed real numbers. Then, for

sufficiently small ¢ > 0, the inequalities

’qm(z)| > |t'Qm(Z)’7 m=1,...,n

on cycles
Ip={2€C": |hp|=rm, m=1,...,n}

because I'j, is compact.
We denote by J,(t) the residue integral

= — AN——A...A
(2mi)™

1 / 1 dFy  dF; dFr,
- Z1n+1 . Zgz—&-l . zgn+1 i §2) E,’
h

where v = (y1,...,7s) is a multi-index, and I = (1,1,...,1).

We denote by A = A(t) the Jacobian of the system of functions F(z,t),..., F,(z,t) in the

variables z1,..., 2n.
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Theorem 3. Under the assumptions made on the functions F; defined by formulas (18), the
following expressions for J,(t) are absolutely convergent (for sufficiently smallt) series:

S(J) IIOzH+H,3(a Dl+n

DI s

QBN A(t) Q-
H28(a,J) Zflyl+1 . .Z%HH ’ an(J)

X

)

Z:&J

where (—1)*Y) is the parity of the permutation J, a = (au, ..., o) is a multi-indez of length n,
¢"H(T) = ¢ i) ann T ), and gl ds the product of all (1—ajizi)™* -+ (1=ajnz,)"™"
except (1 — agj,25)" s,

Bla, J) = (mljl(ajl +1)—1,...,my; (o, +1) — 1),

Bla, J)t =[] (myp, (e, + 1) = 1)1,

p

B+I __ m1.7'1(04.7'1+1) Moy, (0, +1)

a; = Ay nj,, g
BIECIeN oMy (@ 1) =1+ 4 mny, (o, +1)—1

928 ) azrljl(anﬂ)*l o 822%1'”(%'"“)*1‘

The dash at the summation sign means that the summation is performed over all multi-indices
J for which there are no zero coordinates in ay.

Suppose Qs(z) are polynomials:

Qs(z) =212y Z C:z* s=1,...,n, (20)
lee]| >0
where « is a multi-index, z* = 2" -+ z&", and degz Qs < mg;, 5,5 =1,...,n for all nonzero

ag;. If ags; = 0, then there are no restrictions on the degree degzj Qs.

1
Assuming that all w; # 0, we make the change z; = —, j = 1,...,n in the functions
Wi

Fy(z,t) = (¢s(2) + - Qs(2)), s=1,...,n.

Hence, for s =1,...,n we have
1 1 1 1 1 1
(t):q( >+t QS<,...7>:
w1 Wp, w1 wn w1 Wy,
1 ms1 1 Msn 1 1
:(1_a81) "'(1_asn) +tQé<aa =
wy wy, wy Wy,

1 ms1 1 Msn 1 1
= () - () .(wl _asl)msl ...(wn_a )msn +t QS < 7...7) .
w1 Wp, w1 Wy,

Then we arrive at the formula

E(dnmd)=(2) 7 (2) T @weeaw). e

where ¢ are functions

o

as = (wl - a/sl)mSl T (wn - asn)msna
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and @z are polynomials
~ 1 1
Qs :wTSI"'wZLS” 'Qs <a'--a)~
w1 W,
From the formula (20) we obtain
degwj @S <mg, S, j=1,...,n

We denote L _
Fy = Fy(w,t) = gs(w) + t- Qs(w), s=1,...,n. (22)
If 0 <t <1, then the system (22Lhas a finite number of roots in C™ that depend on t.
Moreover, (22) has no infinite roots in C .

Consider the cycle
1 1
hs (,,)‘ =g5, S= 1,...,n}7
w1y Wn,

for ¢ close enough to zero. The compactness of the cycle fh implies

fh:{wE(C”:

1 1 1 1
& <)‘ > g () L s=L...n.
wq W, w1 W,
Therefore, I is homologous to the sum of cycles fhvd St
1 1
—ay,—| =¢€1,
1]1 wl 1
1
1 25, = €2, (23)
1—- Anjy, Eny
n
obtained from the cycles I'y, 5, by replacing z; = —.
J
The equation
1
‘1 — ajsj — | =&
Wy

defines a circle. Indeed, we rewrite it as

wj — ajs, | =elw;| or |wj — ajs, |* = %y,

then ) ) )
ajs, e* - lays, |
1— 2 L )85 _ )85
(= |w =15 1-e2)
or s ,
Qjs,; e - |afjs,-| .
‘wjl—fs? ey I b

for sufficiently small € the point a;,, lies outside the circle and, therefore, fh,a , is homologous
to the cycle fh%, :

|wy — aljl\ = €1,

|we — a2j2\ = &2,

Here some a;; can be zero.
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Lemma 2. The residue integral (19) is

—1)" dFy  dF, dF,
I, (t) = (=1) /uﬂl“ wPt ot A2 AL A (24)

@2mi)r ) ! PR F,
'y

Theorem 4. The following equalities are valid

P 1
Z 2 (O -z (824, ()t -

j=1 71
J K,J SK
- iy e < Bt 8
fon B( K J)! Ow (K,J) q (J) s

Since zeros of (22) are polynomials in ¢, the equality (4) also holds for ¢ = 1. We denote

P
1
Oy+1 = Z ML el AntD)
j=1 ~j1 j2 j

n

where 20) = (2;1,...,zjn) = (z71(1), .., 2 (1), 5 =1,...,m

Theorem 5. For the system (10) with functions f; defined in (12) and Q; defined in (20), the
following formulas hold:

P
1
Ty+l = Z NAT el et -
= E E in
1 n S
- X Oy
IK(>0 J
% A y1+1 Ynt+1 ]1€1 ) Qk d
wy w T ke w =
fh,aJ
)57 (K,J) K
-y - ||K|\+nz WO R ittt 9
Pt B( K D) owh(K,.J) ! gt tI(d)
=ayj

Consider the following system of equations in two complex variables:

(25)

fi(21,22) = (1 — a222)? + agz123 =0,
f2(21, ZQ) = (1 — b121)2(1 — bQZQ) + b3Z%ZQ =0.

Then Q,,, m = 1,2 have the form (20). The system (25) has, as is easy to verify, 5 roots (z;1, 2;2),
7 =1,2,3,4,5. If as # by, then these roots do not lie on the coordinate planes.

1
Let us change the variables z; = —, z5 = —. Our system will take the form
wq w2

JE = wi(wp — az)?® + az =0,
fg = (w1 — b1)2(’LU2 — bQ) + b3 = 0.

Jacobian of the system (26)

A — (U)Q — a2)2 2w1(w2 — CLQ) o

‘Z(wl —by)(wa —b2)  (wy —by)?
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= (w1 — b1)*(wo — az)? — 4wy (wy — by)(wy — az)(ws — by).

Then, by Theorem 5, we obtain

5 .
1 1 (—1)IIElI+s(7)
eyl Loy y by
j=1 2 i J KeR (2mi)?
" / w?ﬁl . wg”l . a§1 . b§2 A - dwy A dws .
w’f1+1(w2 _ a2)2(k1+1) . (U/1 _ b1)2(k2+1)(w2 _ b2)k2+1

Thiay

(27)

Here the multi-indices ® = {K = (k1,k2)| Im : v +2 > k1 + k2, m = 1,2}. The cycles
T'ya, are cycles of the form {|w1| = r11, |we — ba| = 722}, taken with positive orientation, and

{|wa — ag| = r12, |w1 — b1| = 721} are with negative orientation.
In particular, calculating J(g,0), after some transformations we obtain

asby

oy = dazb - (by — az)?

without finding the roots.
Consider a system of equations in three complex variables:

N
_
N
1Y)
N
w
~— — — ~— _ —
I
—_
|
(=
[y
I
_
I
=
no
N
V)
I
S
w
N
w
+
(=l
iy
=
no
I
—_
N
[ V)
+
S
iy
S
w
N
_
N
w
+
=
V)
S
w
I\
)
N
w
|

The roots of the system (29) are (21, zj2,2;3), 5 = 1,...,12.
1
Change the variables z; = —, 20 = — and z3 = —. Our system will take the form
w1 wao ws

J'Tl = W1W2W3 — A1 W2W3 — GW1W3 — G3W1W2 + G102W3 + G1a3W2 + A2G3W1 =
= (w1 — a1)(w2 — az)(ws — az) + arazaz = 0,
f2 = wiwaws — bywawsz — bywiwz — bswiwa + bybaws + byrbswy + babswy
= (w1 — b1) (w2 — ba) (w3 — bs) + bibabs = 0,
f3 = wiwows — crwaw3 — CoWIW3 — C3WI W2 + C1CoW3 + C1C3Wa + Cacawy =

= (w1 — Cl)(wg — Cg)(wg, — C3) + ci1eae3 = 0.

The Jacobian of the system (30)

(28)

A = (wg—ag)(wz—az)[(w1 —b1)(ws —b3) (w1 —c1)(we —ca) — (w1 —b1) (w2 —be) (w1 —c1 ) (w3 —c3)]—

— (w1 —a1) (w3 — a3)[(w2 — bz) (w3 — bs) (w1 — c1) (w2 — e2) — (w1 — b1) (w2 — b2 ) (w2 — c2) (w3 — c3)]+

+H(wr — a1) (w2 — az)[(w2 — b2)(ws — bz ) (w1 — c1) (w3 — c3) — (w1 — b1)(wz — b3) (w2 — c2) (w3 — c3)].

Then, by Theorem 5, we obtain J(g,0,0) = >_;(—1)*(J)

Z (—1)”k” / wiwaws - (alagag)kl (b1b2b3)k2 (610203)k3 . ﬁ
(2mi)? (w1 — ap)kr1+ (wy — ag)k1 1 (ws — az)k+l

2
Ikl < =

q,ay
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% dw1 A de A d’U.)g (31)
(wl — bl)k2+1(w2 — b2)k2+1(w3 _ bg)kz-‘rl . (wl _ cl)k3+1<w2 — C2)k3+1 (wS _ 03)k3+1 ’

where fq’a‘, are cycles of the form {|wy —a1| = 111, |wa — ba| = Taa, |wz — 3| = ras}; {Jws —as| =
ri3, w1 — bi| = 7o1, |we — co| = 132} {Jwa — az| = rig,|ws — b3| = res,|wy — 1| = rar},
taken with a positive orientation, and {|lwy — a1| = ri1,|ws — b3| = 723, |wa — ca| = raz};
{lwz —az| = ri2, w1 = b1| = ro1, Jwz —c3| = 733}; {|wz —as| = 113, |wa —ba| = rog, [w1 —c1| =131}
with negative orientation.

Calculating these integrals, we get

—o(1,1,1) = J0,0,0) = a1bacs + a1bsco + agbics + agbscy + asbica + asbaci+ (32)
asc1cac b b a1b1bab c c
+ 3¢102€3 1 2 + 1910293 3 + 2 +
as — C3 bl—Cl bz—Cg al—bl Cg—bg 02—b2
asb1b2b c c asb1bab c c
+ 2019203 3 + 1 + 3919293 2 + 1 +
G,Q—bg C3—b3 Cl—bl a3—b3 CQ—bQ Cl—bl
ai1cy bQCQC3 bgCQCg a2a3b2 a2a3b3
ay — C1 bQ—Cg b3—63 ag—bg a3—b3

asCa bicics bscics aiasbs aiasby
ag — Co b1—01 b3—63 a3—b3 al—bl ’

So, we found the sums of the roots o(1,1,1) without calculating the roots of the system them-
selves.

3. General systems of transcendental equations

Let f1(2),..., fn(2) be a system of functions holomorphic in a neighborhood of the origin in
the multidimensional complex space C", z = (z1,...,2,) .

We expand the functions fi(2),..., fn(z) in Taylor series in the vicinity of the origin and
consider a system of equations of the form

fi(z) = Pj(2) + Qj(2) =0, i=1,....n, (33)

where P; is the lowest homogeneous part of the Taylor expansion of the function f;(z). The
degree of all monomials (with respect to the totality of variables) included in P;, is equal to m;,
Jj=1,...,n. In the functions @;!, the degrees of all monomials are strictly greater than m,;.

The expansion of the functions @;, P;, 7 = 1,...,n in a neighborhood of zero in Taylor series
converging absolutely and uniformly in this neighborhood has the form

Qj(z) = Z al z®, (34)

llal| >m;

Pi(z2)= ) ;2 (35)
l|8ll=m;
j=1...,n,
where o = (a1,...,05), B = (B1,...,Pn) are multi-indexes, i.e. «; and B; are non-negative
integers, j = 1,...,n, |laf| = a1 + ... + an, |8 = B1 + ... + Bn, and monomials z* = 27" -
Zgz .. 'Zg", ZB = 2161 . 252 .. '25".
In what follows, we will assume that the system of polynomials P;(z),..., P,(z) is nonde-
generate, that is, its common zero is only point 0, the origin.
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Consider an open set (a special analytic polyhedron) of the form
Dp(ri,...,mn) ={z: |Pj(2)| <rj, t =74,...,n},
where r1,...,r, are positive numbers. Its skeleton has the form
Tp(ri,...,mn) =Tp(r)={2: |Pj(2)|=7j, 7=1,...,n}.
Let us start with a statement.

Lemma 3. The next equality is true

1 1 d
/ ho e dh
Y1+1
21 .

J, = . A =
K (27Ti)nF Z;2+1 tee Zg"Jrl fl f2 fn
P

—-1)" df, df: dfn .
:( ) /w1’1+1~w;2+1~-~wg"+1-£/\ f2 A /\i:(—l)"JV.

(QWi)"F fi for

P
For what follows, we need a generalized formula for transforming the Grothendieck residue.

Theorem 6. Let h(w) be a holomorphic function, and the polynomials fi(w) and g;(w),
7,k =1,...,n, are related by the relations

n
gj:Zajkfk, j:172a"'7na
k=1

the matriz A = ||ajx||} =1 consists of polynomials. Consider the cycles
Ff:{w: |fj(w)|:'rj7 j=1....n}
Iy={w: |lgj(z)|=r;, j=1,...,n},

where all r; > 0. Then the equality

det A ] a];;j dw

Jrnfi= ¥ P [ (36)

B
n . g
Ly K, 3 ksj =P S’El(ksﬂ)'l“g

holds. Here 8! = B1!82!...Bn, B = (B1,B82,...,0n), the summation in the formula is over all

n
non-negative integer matrices K = ||ks; || ;_; with the conditions that the sum }_ ksj = aj, then
s=1
n

ﬁj — Zlkjs' Herefa — f]al ...fT‘LXn7 gﬂ :.91/81 .. .ggn'
j=

Theorem 7. The next formulas are valid

Z Y Y: Y:
1 1 n+1
1+1 o1 +

j=1 %41 52 in

= (2mi)™) /wTJrl cwg et dh ydfz A
fl f2 fn

s
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(=1t +1 +1 +1
= X gy et e
llell<lIvII+n _
P
JAQP Q5 Qurdwn Adwy A A duw,

pai+1  paz+1 Py +1
Py - P§ ... P2

<
Il
—_

s,j=1

(—1)IEl+n 1] (Z k5j>! wt - A-det A-Q~ ] alsc;'j
m

n )

1K< IIvI+n 11 wf]‘NjJrﬁ.ﬁNj
s,7=1 =1
n
where | K| = Y ksj, and the functional MM assigns its free term to the Laurent polynomial.
s,j=1

In fact, in Theorem 7, analogs of the classical Waring formulas for finding power sums of

roots of a system of algebraic equations are obtained.

Consider a system of equations in two complex variables

fi(z1,22) = a121 — agzs + 27 =0,
fa(21,22) = b121 + baza + 23 = 0.

(37)

It satisfies the conditions on Q;(z) We will assume that aiby + azb; # 0, i.e. the system of

lower homogeneous polynomials is nondegenerate.

1
Let us change variables z; = —, 2o = —. Our system will take the form
w1

w3

f1 = —apw? + ajwiws + we = 0,
fo = bowiws + b1w§ +w; = 0.

This system has 4 roots, on the coordinate planes there is one root — (0,0).

The Jacobian of the system (38)

< —2aswy + ajws
A=
b2w2 +1

ajwy + 1 .
2b1w2 + b2w1 o

= —2@2[)211)% — 4asbiwiws + 2&1[)111)% —ajwy — bowy — 1.

Notice that

5 2
P = —awi + ajwiwa,

To find the matrix A we use Example 8.3 from [4].
We introduce the matrix

—ag ay 0

. 0 —as  ai
Res = 0 by by
0 0 b
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The determinant A of the matrix Res is A = agby(azb; + a1by). Let us calculate some minors
according to example 8.3 from [4]:

~ —as a1 O ~ az 0 0
Al = bg b1 0= —agb% — alblbz, AQ = — b2 b1 0= —alb%,
0 bg b1 0 b2 bl
_ a1 0 O ~ a1 0 0
Ag = |—az2 a1 0= a%bl, A4 = —|—a2 a1 0] =0.
O b2 bl b2 bl O
0 —Q2 Qi —a2 a1 0
Al =—10 b2 bl = 0, AQ = 0 b2 bl = —agbg,
0 0 bg 0 0 b2
—as a1 0 —as a1 0
As3=—1]0 —ay ay| = —ang, As=1|0 —ay a1| = a%bl + ajaqbs.
0 0 b 0 by b

Therefore, the elements a;; of the matrix A are

1 /- ~ 1
a1l = Z (Alwl + AQU}Q) = Z ((—agb% - alble)wl - a’lb%wQ) )
1, N a2biw 1 —asb3w
a2 = % (A3w1 + A4w2> - %’ oz = 7 (Arwr + Agwe) = %’
1 1
g2 =« (Azwy + Agwsy) = N (—a3bawy + (a3by + aasbs)ws) .

Then it is easy to check that
w:f =an P+ 61121527 w% = a1 Py + aga Ps.
We calculate det A :

1
det A = K (QQbQUJ% — a2b1w1w2 — alblwg) .

By Theorem 7

J(o,o) _ Z (—1)”1{” (k11 + ki2)! - (ko1 + kao)! %

., Finl - kgl kol ko)

A - det A - Qllc11+k21 . Q/2€12+k22 ,alﬁl ,a’féz . ag? . a;ﬂ;Q

th
w ( 11 12) W ( 21 22)

We denote A = agby + a1by. Cumbersome but simple calculations (using the definition of the
functional M) give that

1 _ 20,1()2 6@%[); bg a‘;’ 8a1b2 4

J(OVO) - Z agblﬁ a2b1A2 b1A2 + GQAQ AQ (12b1 B

CL? ay b2 3(12 b1 b%

o a252 A2 A2 B blA2'
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O TpaHCIIEHIEHTHBIX CUCTEMAaX ypaBHEHUI

Anekcanap M. KbeiTmaHnoB
Oabra B. Xomgoc

Cubupckuii deiepajbHbIl YHUBEPCUTET
Kpacnosipck, Poccuiickas @epeparims

Awnnorarusi. PaccMOTpeHBI pa3/indHble TUMBI CHCTEM TPAHCIEHIEHTHBIX YPaBHEHUIT: TpOoCTeIme, ce-
nurasbabie u obmrue. [TockobKy YncIo KOpHeit TaKuX CHCTEM, KaK MPABUI0, OECKOHETHO, TO HEOOXOAIMO
U3YYUTh CTEIEHHbIE CYMMbI KOPHEl B oTpuIaresbHoil crenenu. [Tomydennbr hopMysibl Jyist HAXOXKIEHUS
BBIYETHBIX MHTEIPAJIOB, UX CBSI3b CO CTENEHHBIMU CyMMAaMU KOPHEN B OTPUIIATEIHLHOM CTEeHN, MHOTOMEP-
uble aHasioru ¢popmyn Bapuura. [IpuBenensr pa3andHbie IpUMepbl TPAHCIIEHIEHTHBIX CIHCTEM YPABHEHUN
¥ BBIYUCJIEHBI CYMMbI MHOI'OMEPHBIX YUCJIOBBIX PSIJIOB.

KiroueBnle cioBa: TPpaHCHEHIACHTHBIEC CUCTEMbI ypaBHeHHﬁ, CTeneHHbIe CYyMMbI KOpHeﬁ, BbIYE€THBIE UH-

TerpaJibl.
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Introduction

We recall that the group G of permutations of the set F' (|F| > k) is called ezactly k-transitive
on F if for any two ordered sets (o, ..., o) and (51, ..., Bk) elements from F such that a; # «;
and 3; # f; for i # j, there is exactly one element of the group G taking o, to 3; (i =1,...,k).

In 1872, K. Jordan described the class of finite sharply k-transitive groups for k > 4 ([1,
page 215]).

In infinite groups J. Tits and M. Hall established that for k& > 4 infinite sharply k-transitive
groups do not exist ( [1, page 215], [2, page 86-87]).

Unlike the cases k > 4, the sets of finite exactly 2- and 3-transitive groups are countable, and
the locally finite sets are continuous.

Sharply 2- and 3-transitive groups are closely related algebraic structures such as near-fields,
near-domains, K7T-fields (Kerby-Tits fields), etc. (see [1, Ch. V], [2, chap. 20]).

Finite exactly 2- and 3-transitive groups and near-fields were classified by G. Zassenhaus [1,
ch. IV and Theorem V.5.2]. Complete description of locally finite sharply 3-transitive groups in
1967 got O. Kegel [3].

The study of the class of infinite exactly 2- and 3-transitive groups is actively continued at
the present time. In 2000 V.D. Mazurov in [4] fully described exactly 3 - transitive groups with
abelian stabilizers of two points. In 2011, T. Grundhofer and E. Jabara proved the local finiteness
of the binary finite sharply doubly transitive groups [5]. In 2013, in the paper [6], A.I. Sozutov
established a similar fact for the periodic groups of Shunkov.

In the paper [7], in the class of sharply triply transitive groups, the local finiteness of per-
mutation groups with a periodic stabilizer of two points was proved and, as a consequence, the
local finiteness of the periodic sharply 3-transitive groups.

In the papers [8,9]|, examples of sharply doubly transitive groups of characteristic 2 that
do not contain regular abelian normal subgroups are constructed, and in [10], there are similar
examples of sharply 3-transitive groups. These examples show that there are near-domains of
characteristic 2 that are not near-fields and K'T-fields, (F, ), in which near-domains (F, +,-) are
not near-fields. This provides a basis for studying these structures with additional restrictions.

*durakov@mail.ru
© Siberian Federal University. All rights reserved
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Recall that a nonidentity element k of a group G is called finite in G if for any g € G the
subgroup (k, k9) is finite.

Let G be sharply 3-transitive on X, J the set of involutions in G, J? = {kv|k,v € J}. The
characteristic G (Char(G)) is defined as follows [1]:

1. Char(G) = 2, if elements from J do not fix points from X;
2. Char(G) = 0 if each g € J? \ {1} is of infinite order;
3. Char(G) = p, where p is odd prime, if the order of each g € J% ~\ {1} is p.

In continuation of the research started in [7] and [11], in this work a special case of Theorem 6
announced in [12] is proved:

Theorem 1. A sharply triple transitive permutation group of characteristic p > 3, containing a
finite element of order p, is locally finite.

Proof of the theorem

Let G be an infinite sharply triply transitive permutation group of the set X = FU{co}. By
B we denote the stabilizer G, of the point @ € X and through H — stabilizer G4 3 = G4 N Gp
of two points @« = 0o € X, 8 € F. Let also J be the set of involutions of the group G, and J,,, be
the set involutions stabilizing exactly m points, m = 0,1, 2. Let us also formulate the well-known
properties of involutions from groups G = T3(F,v) and B = T5(F)(see, for example, [1, Ch. V])
with comments.

Lemma 1. The following statements are true:

1. The group B = G is regular on the set F an elementary abelian p-subgroup of U and
B =UX H — Frobenius group.

2. U — Sylow p -subgroup of the group G, B = Ng(U), U# = af, Cq(u) = U for any element
u € U¥ and UNU® =1 for any element v € G\ B.

3. H=Gux NGy, H contains the only involution z, z € Jy, Cq(z) = Ng(H).

4. Each subgroup of order qr in H, where q, r not necessarily different primes, cyclic, and
HNH?* =1 for any element x € G\ Ng(H).

5 N = Ng(H) = H X (v), where v is an involution from Jo, Cy(v) = (z).
6. If NNN® #1 forx e G~ N, then NN N® = (t), where t =t(z) is an involution.
7. G = BUBvU and BN B* = H® for any x € G setminusB and a suitable b = b(z) € B.

Proof. 1. The statement follows from [6, Theorem 2].

2. The statement easily follows from the exact 3-transitivity of G (see also 7, Lemma 1], [13],
item 1 of the lemma and finiteness of elements from U. Non-trivial element from U N U* must
stabilize two points, which is impossible in view of item 1.

3. The statement is well known [1,6, 14].

4. The statement follows from Burnside’s theorem [15, Theorem 1.2], 3-transitivity of G and
equality BN B? = G N Gooe.

5. This statement and statement 6 are obvious.
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7. Follows from 2- (and even 3-) transitivity and items 1,5 of the lemma.
The lemma is proved. O

The groups H and N = Cg(z) will also be denoted by H, and N,, and for k = 29 by Hy, and
Ny we will denote subgroups HY and NY.

Lemma 2. The following statements are true:
1. FEither J = Ja, or J = JyU Ja, while Jy = vE.
2. For each involution j the set vN N j€ is infinite.
3. For each involution j € J the set Jo N Cg(j) is infinite.

4. Bvery Sylow 2-subgroup in H is (locally) cyclic, or (locally) quaternionic; are they conju-
gate, isomorphic, we do not know yet.

5. Every Sylow 2-subgroup of T from N whose order is greater than 4, is a Sylow 2-subgroup
of G.

6. If a Sylow 2-subgroup T of N is a proper subgroup of a Sylow 2-subgroup R of G, then R
is a (locally) dihedral group.

7. G contains no elementary abelian subgroups of order 8, containing an involution from Js.
The rank of Sylow 2-subgroups in N is 2. The rank of any Sylow 2-subgroup of G containing
an involution from Ja, is equal to 2.

Proof. 1. The inequalities 0 < m < 2 follow from the sharply 3-transitivity of the group G.

Lemma 1 implies that the partitions J = J; U Js and J = Jy U J; U J, are impossible, and it is
obvious that the sets J; and Jy are conjugacy classes. Since Char G = p > 2, then either J = Jy
or J =JyU Js.

2. In each such class j¢ there is an involution & permuting the points o and 3. Further, we
apply Ditzmann’s lemma [16, Lemma 2.3].

3. The involution j is contained in the subgroup N5, if the permutation j contains a cycle
(7).

4. Follows from Shunkov’s theorem [16, Theorem 2.15].

5. The subgroup (z) is characteristic in T" and © € Ng(T) implies © € N = Cg(2).

6. Follows from the fact that Cr(z) = T. In particular, potentially R can be an infinite
locally dihedral group.

7. If Eg < N, then H N Ey = E4, which contradicts the uniqueness of the involution z.
Further we use item 6 of the lemma. The lemma is proved. O

Lemma 3. The set of all 2-elements of the group H invertible involution v, is a (locally) cyclic
2-subgroup of S. If x € H\ S and x? € S, then the order of the element x~ vv is infinite.

Proof. The assertions of the lemma are proved in [13, Lemmas 5, 6|

By the conditions of the theorem, all subgroups L, = (a,a”) in G are finite, and for z € J,
the subgroups K, are also finite. Let’s find out their structure. Let’s start with the subgroups
L= {(a,a"), K = (a,v).

Lemma 4. The subgroup L = {(a,a") is isomorphic to the group La(p™) for some n.
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Proof. Tt is clear that |K : L| < 2. According to Lemma 1, P = LNU and P, = LNU* —
elementary Abelian Sylow p-subgroups of L, with Silov p-subgroups of L are pairwise coprime,
in particular, L is not an abelian group.

It is clear that By = N (P) = LNB. If By = P, then PNP* =1 for any « € L\ P, and by the
Frobenius theorem L = M X P is the Frobenius group with nilpotent kernel M [15, Thompson’s
Theorem 1.5] and the cyclic complement P = (a) [15, Burnside’s Theorem 1.2]. By Lemma 2,
the 2-rank of the group K (and the group L) does not exceed 2, and if 2 € w(M), then the order
of the center of a Sylow 2-subgroup from the Frobenius kernel M is 4. By the conditions p > 3
and, therefore, 2 ¢ 7w(M).

Obviously, |BN K| = 2p and by Frattini’s argument and Lemma 1 Ng (P) = (a) X (k) = D —
dihedral group, where k € v, Hence, by virtue of the same Burnside theorem [15, Theorem 1.2]
Cz (k) # 1 for the center Z of each Sylow g-subgroups of M. Obviously, Cz(k) < H? for some z,
and in view of item 4 of Lemma 1, |Q;(Z)| = ¢. Hence, the dihedral group BN P is contained in
the group of automorphisms of a cyclic group of order g, a contradiction, therefore, BN P # P.

Note that by Frattini’s argument and Lemma 1 the group K contains the group anyway
dihedral D = (a) X (k), where k € v&. Let M be the minimal normal subgroup in K from L.
Consider the case when M — elementary abelian g-group. As proved above, ¢ # 2. Since P is
strongly isolated in L = (P, PV) as above, we have ¢ # p, M X P is a Frobenius group, P = {(a),
Cr (k) # 1, |[M| = g and D < Aut M, a contradiction. Hence, M is a direct product of non-
abelian simple groups, and since the 2-rank of the group M does not exceed 2, then M is a
simple group of 2-rank 2.

If P & M, then by Frattini’s lemma P N N7 (S) # 1 for some Sylow 2-subgroup S of M and
each element from P# N N1(S) acts on S regularly, which is impossible, since the 2-rank of G is
at most 2 and p > 3. Therefore, P < M and |L : M| < 2, and therefore M = (P, P") = L.

If a Sylow 2-subgroup S in L is dihedral (Lemma 2), then by the Gorenstein-Walter theorem
[17, p. 27] L ~ Ls(q), q is odd, or L ~ A.

Let’s exclude the group L ~ A;. For p = 7, by Kerby’s theorem, H contains a unique
subgroup of order 3, and in A7 is an elementary abelian subgroup Fg, which contradicts Lemma 1.
Hence, p = 5. The involution k inverting a cyclic subgroup of order 5 is obviously contained
in Jy. It is easy to check (see, for example, cite [Proposition 14] LSS), that Cp (k) contains the
only subgroup (b) < Eyg of order 3, which is contained in Hy. But Eg < CL(b) £ Hj, which
contradicts Lemma 1. Therefore, L cannot be isomorphic to Ar.

Let L ~ Lo(q). If ¢ # p™ then P = (a) and p divides either ¢ — 1 or ¢ + 1. Since Cg(P) —
2’ is a group, then either ¢ — 1 = 2p or ¢ + 1 = 2p. Note that then t € LN J, CL(t) < NL(P),
in this case either |C(t)] = ¢+ 1, or |CL(t)| = ¢ — 1. However, this is not possible. Therefore,
L~ Ly(p™). If v ¢ L, using Lemmas 1-3 and information from [19, p. 8-10], apparently it can
be shown that K ~ PGLa(p™).

Let a Sylow 2-subgroup S in L be not dihedral. Since v € Js, in view of item 6 of Lemma 2,
this means that J N L C J. As Alperin, Brower and Gorenstein proved [20] finite simple groups
of 2-rank 2, up to isomorphism, are the following groups: Ls(q), A7, Ls(s), Us(r), My, Us(4),
where ¢, s,r are odd and g > 3.

First, let’s exclude the groups Us(4) and Mj; from this list. In Us(4) all involutions are
conjugate and the Sylow 2-subgroup S is of order 64, all its involutions lie in the center of Z,
|Z| = 4 (see, for example, [18, Proposition 13|). If v € L, then Z# C .J,, which contradicts
Lemmas 1, 2. If Z# C Jy, then v ¢ L, which contradicts Lemma 2. In Mj; all involutions are
conjugate, the Sylow 2-subgroup S is a semidihedral group of order 16 and the centralizer of the
involution is isomorphic to GL2(3) (see, for example [18, clause 14]). As noted above, JNS C Jo.
Therefore, S < N}, where k is the central involution from S.

The group S contains a cyclic subgroup of index 2, suitable for the role intersection of SN Hy,
but each involution from S N H centralizes an element of order 4 in S N Hy, which is impossible
by Lemmas 1, 2. Hence, L cannot be isomorphic group M.
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Assume that L is isomorphic to Ls(s), or Us(r). Then, by [18, Proposition 11], all involutions
and quadruple groups in L are conjugate, L contains an element of order 8 and a Sylow 2-subgroup
S in L is isomorphic to either a semidihedral group

2m+1

SD,, = (s,k|s =k =1,5"=5s"2") m >2, or woven group (1)

om om 2 k k
WR,, = (s1,80,k | s7 =85 =k“=1, 8180 = 8281, 8] = S2, S5 = 81), m = 3. (2)

Recall that in the case under consideration SN J C J» and, therefore, S < N; for the involution
j € Z(S). In the group S = WR,, from (2), each subgroup of index 2 contains the subgroup FEj,
which is impossible by Lemma 1. And in the cyclic subgroup of order 8 from the group S = SD,,
is a subgroup of order 4 commuting with all involutions from .S, which again contradicts Lemma 1.
Therefore, in all cases L ~ Ls(q). As proved above, ¢ = p", and the lemma is proved. O

Lemma 5. For any element ¢ € UY the subgroup L = {a,c) is isomorphic to the group La(p™)
for some n = n(a,c).

Proof. By virtue of the finiteness condition for the element a and items 1-2 of Lemma 1 the
subgroup L is finite. Further, as in the proof of Lemma 4, P = LNU and P, = LNU* —
elementary Abelian Sylow p-subgroups in L, Sylow p-subgroups in L are pairwise coprime and L
is not an abelian group. To continue to follow the logic of the proof of Lemma 4, we prove that
the 2-rank of the group L does not exceed 2. If LN J5 is nonempty, then the desired follows from
Lemma 2. Let LN Jy = (). Note that by claim 3 of Lemma 1 the involution z € H, and by claim
1 of the same lemma, z inverts the elements a and ¢: a* = a~!, ¢* = ¢!. Therefore, 2 € Ng(L),
the subgroup K = (a,c,z) is finite, |[K : L| < 2, KN Jy # 2 and for K the boundedness of
the 2-rank follows from Lemma 2. Hence, the 2-rank of the group L does not exceed 2, and
D = {a,z) — dihedral group, D < K. Moreover, in the case L N J = (), by Lemma 2 the Sylow
2-subgroups in K (and in L) are dihedral. Taking into account these remarks, part of the proof
of Lemma 4, on the structure of L groups with dihedral Sylow 2-subgroup, carries over literally
to the case under consideration. The lemma is proved. O

Lemma 6. For any non-permutable elements x,s € a© the subgroup L = (s,x) is finite and
isomorphic to the group Lo(p™) for suitable n = n(s,x).

Proof. Due to the arbitrary initial choice of the element a from the class of conjugate elements
of a% it follows that statement of Lemma 5 is true for any s € U# and = € UY N a® = UY#.
Since G is 3-transitive on the set UY, we conclude that that the lemma is true. O

Proof of the theorem. According to [19, p. 9] the group L = (a, a"), isomorphic L2(q) by Lemma 4,
1 —1
aa+1) (e—1) (Cartan subgroups), of these, (BN L) U (B*NL)

has a 5 cyclic subgroups of order
a(g+1)
2

contains 2¢ — 1 such subgroups. Since > 2q — 1 for ¢ > 3, then there is a pair of

dots 7,9 € X \ {a, 8} for which the intersection L N G,g is cyclic subgroup conjugate to the

(¢—1)
2

since it is twice transitive on the set HY, and each the subgroup HY is defined by its unique
central involution 29 from Jy (Lemma 1). Hence we deduce that any pair of involutions from
H N J, is contained in an appropriate subgroup conjugate to the subgroup L. This means that
the involution v is finite in the group N, and by [16, Corollary 2.30] the subgroup N is locally
finite. By Theorem 2 in [21], the group G is locally finite. The theorem is proved. a

Cartan subgroup L N H of order

. The group G acts on the set Jo twice transitively,

This work was financially supported by the Russian Foundation basic research (grant 19-01-
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Touno TPpU2KIAbl TPaH3UTUBHBIEC I'PDYIIIIbI C KOHEYHbIM
QJIEMEHTOM

EBrennii B. /lypakoB
Cubupckuit deiepalibHblii YHUBEPCUTET
Kpacnosipck, Poccuiickass @eneparnys

AnaHoTauusa. B Hacrosmeit pabore MCCIEAYIOTCA TOYHO TPHKIbI TPAH3UTUBHBIE I'pymIbl. JlokazaHa
JIOKAJIbHASI KOHEYHOCTH TOYHO TPVKIbI TPAH3UTUBHBIX TPYIII IOJCTAHOBOK XapaKTEPUCTUKH p > 3,
COJIEPKAINX KOHEUHBIN 9JIEMEHT MOPSAIKA P.

KuaroueBrie cioBa: rpynma, TOYHO K-TpaH3UTHBHAS IPYIIA, TOYHO TPUXKJABI TPAH3UTUBHAS TPYIIIA,
JIOKQJIbHO KOHEYHAas I'PYIIIa, IOYTU-00/IaCTh, IIOYTHU-TI0JIE.
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Abstract. The paper is devoted to the construction of effective acoustic equations for a two-phase

layered viscoelastic material described by the Kelvin—Voigt model with fractional time derivatives. For
this purpose, the theory of two-scale convergence and the Laplace transform with respect to time are
used. It is shown that the effective equations are partial integro-differential equations with fractional
time derivatives and fractional exponential convolution kernels. In order to find the coefficients and the
convolution kernels of these equations, several auxiliary cell problems are formulated and solved.
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The study of macroscopic acoustic behavior of heterogeneous viscoelastic materials with peri-
odic microstructure is one of the most significant problems in acoustical engineering when dealing
with polymer based composites. The most rigorous and widely accepted mathematical tool for
the theoretical part of this study is the theory of homogenization. Using techniques of homog-
enization, the actual highly inhomogeneous periodic viscoelastic composite can be replaced by
the corresponding effective (homogenized) material with the similar acoustic properties.

It is well known that short memory effects in microheterogeneous viscoelastic Kelvin—Voigt
materials lead to the appearance of long memory effects in the corresponding effective media (see
[1-3]). In other words the acoustic equations for these materials, which are partial differential
equations, become partial integro-differential equations after homogenization. The same result
was observed for two-phase materials, in which the first phase is an elastic material whilst the
second one is a viscoelastic Kelvin-Voigt material [4, 5].

In recent years there has been an increasing number of papers devoted to the development
of fractional models in viscoelasticity (see, for instance, [6-8] and the reference therein). Such
models consist of differential or integro-differential equations with fractional derivatives. The
growing popularity of fractional models is explained by their ability of describing the complex
behaviour of viscoelastic materials using a small number of parameters.

In this paper, we consider a mathematical model describing small displacements of a two-
phase layered viscoelastic material whose behavior is described by the fractional Kelvin—Voigt
model. This model consists of a system of partial differential equations with fractional time

*https://orcid.org/0000-0003-2766-6382
fv.v.shumilova@mail.ru  https://orcid.org/0000-0003-3830-7924
(© Siberian Federal University. All rights reserved
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derivatives and rapidly oscillating piecewise constant coefficients, conditions of ideal contact
between layers, and homogeneous initial and outer boundary conditions. Using the two-scale
convergence method [9, 10] and applying the Laplace transform, we show that the corresponding
effective model involves a system of partial integro-differential equations with fractional time
derivatives and constant coefficients. By solving a number of auxiliary cell problems, we calculate
these coeflicients and find that the integral parts of the effective equations are of convolution type
and their kernels are fractional exponential Rabotnov’s functions. Thus, we rigorously establish
that long memory effects mentioned above also appear in the effective material that corresponds
to the fractional Kelvin—Voigt material.

1. Original acoustic equations

Consider a bounded domain Q = (0, L)? occupied by two-phase viscoelastic material with a
periodic microstructure. Let ¢ < L be a small positive parameter characterizing the heterogene-
ity period of the viscoelastic material. We suppose that every phase is isotropic and consists of
the union of layers that are parallel to the Ozsxz3 plane. More precisely, denote

DQ& = (OvL) N <U (E(hl + k),f(hQ + k))) ) DlE = (OaL) \ﬁQE?
k=0
1—h 1+h
hy = ——, hg—L 0<h<1

2 2
and assume that the sets Q1. = Dy x (0, L)? and Qo = Do, x (0, L)? are occupied by the first
and the second phase, respectively.

Note that the periodicity cell Y. of the above layered material may be extracted in different
ways. For our convenience, we will assume that Y. = €Y, where Y = (0, 1)? is a unite cube. The
cube Y can be decomposed into two parts Y7 and Y5 with a common boundary S as follows:

Y1 = ((0,h1) U (ho, 1)) x (0,1)%, Yy = (hy1, ha) x (0,1)%

S = ({h1} U{hy}) x (0,1)%

It is obvious that Y. = €Y; UeYs UeS. The part €Y7 represents the first phase and consists of
two layers with the same thickness €(1 — h)/2 while the part €Y represents the second phase of
the layered material and consists of one layer with the thickness eh (see Fig. 1).

The viscoelastic material we propose to study is described by the fractional Kelvin—Voigt
model. Its constitutive equations between the components of the stress and strain tensors have
the form

05 = aiipn(T)ern(u®) + b5k (v)exn (Dfu®), 0 <a <1, (1)
where u®(z,t) is the displacement vector, a®(z) = a(e~'z) and b°(z) = b(e~1z) are Y.-periodic
tensors describing the elastic and viscous properties of the material, o and e(u®) are the stress
and strain tensors, and Dy* is the Caputo fractional time derivative of order «,

1 [(0ug  Ous, 1 K o Ouf
=2k Diuf = ——— | (t—7)"T=d
ekn(u”) 2 <8wh + (‘3xk) e I'(l-a) /0 (t=7) ar 47

@ijkn(Y) = As0ijOrn + ts(0in0jn + 0indjx), y € Yy,
bijkn(y) = Cs0ij0kn + Ns(dirdjn + dindjx), y € Y,
y=¢c¢ 'z, s=1,2, 1<i,5,kh<3.

- 352 —



Alexey S.Shamaev, Vladlena V. Shumilova Effective Acoustic Equations for a Layered Material . ..

y

el,
<—— &Y}
ey —»
rrrrrrr ——
RY)
ch
£ ur

X

Fig. 1. The first and the second phases of the layered material

Here A and s are the Lamé parameters of ., (; and 7 are parameters describing the viscous
behavior of Qg., I'(«v) is Euler’s gamma function, and §;; is Kroneker’s delta. Note that in (1)
and everywhere below we assume summation with respect to repeated indices.
The motion of the viscoelastic material in the phase €2, is described by the system of partial
differential equations with fractional time derivative
0*us  0Jof

Ps o = 8%7 + filz,t) in Qe x (0,T), s=1,2, (2)

where ps = const > 0 is the density of the material in Q. and f;(z,t) are the components of the
volume external force vector.

On the boundaries between the layers we assume the condition of ideal contact. It means the
continuity of displacements and normal stresses at each layer interface and is written as

[wlls. =0, [o71]s. =0, 3)

where the square brackets [-]|s. denote the jump in the enclosed quantity across the boundary
Se = 001 N O0Ng,.

Finally, we accept that the boundary conditions on 0f) for displacements as well as the initial

conditions for displacements and velocities are homogeneous, i.e.
ou®

ulon =0, ufli—og =0, — =0. 4

jon =0 wlmo =0, S| (@

Problem (2)—(4) is a mathematical model describing the general motion of the two-phase

viscoelastic material. Our aim now is to deduce the corresponding effective (homogenized) model

that describes the limit dynamic behavior of the original two-phase viscoelastic material as ¢ — 0.

2. Effective acoustic equations

To construct the homogenized problem, we will use the method proposed in [5,11,12]. This
method was developed for the homogenization of acoustics equations in two-phase dissipative
media with periodic microstructure. Its main tools are the Laplace transform and the concept
of two-scale convergence introduced by G. Nguetseng [9].
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First, applying the Laplace transform u®(z,t) — u5(x) and f(z,t) — fa(z), we convert
the evolutionary problem (2)—(4) into the stationary one. As a result, we obtain the following
boundary value problem for Laplace transforms:

pAZUE,:agg\js_~_fA,<x) in O s=1,2
s i 85Ej 7 SE» 9 <y (5)

uloa =0, [u5]ls. =0, [03¥]ls. =0,

where
A
o= (afjkh(x) + )\abfjkh(l")) exn(uy)-
Next, using the basic properties of two-scale convergence and repeating the same arguments

as in [5, 11, 12], we can show that the homogenized problem that corresponds to problem (5) and
which is constructed for € — 0 has the form

A

9 80'ij )
poXux = ==+ fri(z) in Q, uslon =0, (6)
J

where

po = p1(1 = h) + pah, 075 = djppern(un),

dl\jkh = /Y (Ci\jkh(y) + Ci\jlm(y)e%n( ’;h)) dy, (7)
N 1 /0Q5  aQkh
Ci\jkh(y) = aien(y) + Xbijrn(y), el (Q5") = 5 ( ay;l + ay’\l) .

Here the vector-valued functions Q’ih(y) are Y -periodic solutions to the following cell problems:

0 .
g (i) + i)t (@51) =0 i ve [ @y =0,
" Y (8)

(@8], =0 [n®) + Num @)l (@ED]] _, =0, s=1.2

Now we apply the inverse Laplace transform to the homogenized stationary problem (6). We
have

PO 5 3 + fi(z,t) in Qx(0,7), (9)
ou
= =20 — =
uloo =0, uli=o =0, 3 o
with
Oij = dijkh(t) * ekh(u), (10)

where the symbol * denotes the operation of convolution with respect to time t.

3. Solutions of auxiliary cell problems

Passing to the inverse Laplace transforms in (8) we see that Q*"(y,t) depends on the Dirac
function §(¢) and cannot be expressed in explicit form without some additional explanations. In
order to do this and at the same time derive direct formula for calculation of components of
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the tensor d(t), we will proceed in the following way. Let us represent the solutions Q’f\h(y) to
problems (8) in the form

VER(y)

W, Mkh = COI’lSt7 (11)

N(y) = 2" (y) +

where vector-valued functions Z*"(y), V¥ (y) and parameters M*" are to be specified.
In a first step, let us define the vector-valued functions Z*"(y) as Y-periodic solutions to the
cell problems

0 .
B (bijrn(y) + bijim (v)eq,, (Z) =0 in Y, / ZMdy =0,
Y Y

[Zkh] ’

(12)

=0, [bijkh(y) + bijlm(y)e?m(Z’“h)] ‘ =0, s=1,2.

y1=hs y1=hs

In a second step, using the solutions Z*”(y) to problems (12), we define the vector-valued
functions V*"(y) as Y-periodic solutions to the cell problems

0 .
gy (@t (0) + aigim W)ed (2) 4 bigin (y)el (V1) =0 i Y,
J

[aijin (y) + Qijim (V) €l (ZF") + bijim (y)el, (V)] | =0, s=1,2, (13)

y1=hs
kh _ kh —
/YV dy=0, [V ]yylzhs =0.

To write out solutions to problems (12) and (13), we introduce l-periodic piecewise linear

function z(y;) defined by
y1h

1_ha yle(oahl)a
1
z2(y1) = —v1 + 3 WnE€ (h1,h2),
—1h
%, 1 € (ha,1).

It is easy to check that Z*(y) = Z"*(y) and V¥ (y) = V¥ (y), so that we need only to find
ZFh (y) and V*"(y) for k < h. Solving problems (12) for k < h, we obtain

Z%(y) = (e12(11),0,0), Z*(y) = Z%(y) = (c22(11),0,0),

Z2(y) = (0,e32(11),0), Z'(y) = (0,0,¢32(11)), Z**(y) = (0,0,0),
where

el == =), = (=G - ) e = (L= B~ ),
12 12 n2

b12:b1h+b2(1—h), 1’]12:771h+1’]2(1—h), bS:<S+2’I75.

Substituting Z*"(y) into problems (13) and solving them for k& < h, we derive
Vll(y) = (C4Z(y1),0,0)7 V22(y) = V33(y) = (C5z(y1)a070)7

V12(y> = (Ovcﬁz(yl),o)v V13(y> = (0’07063(91»7 VQS(:U) = (0,0,0),
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where ) 1—h
= bT(l —h)(biaz — baa1), c5 = —5— (A2 — A1)bi2 — (G2 — C1)aa2),
12

C4
btz

1
co = nT(l —h)(mpz —m2p1), a1z =ath+ax(l —h), a;= A+ 2p,.
12

Now, after defining Z*"(y) and V¥ (y) in (11), we can find parameters M*". Tt follows from
(8), (12), and (13) that M*" satisfies the system

0 .
dy; (@ijim (V) etm (V") + MM bjim (y)ef,, (V")) =0 in Y, (14)
J

[aijlm (y)elm(vkh) + Mkhbijlm (y)e?m(vkh)] |

Substitute V*"(y) found above into (14) and (15). It is easy to check that equations (14)
are always fulfilled for any parameters M*". Further, from the boundary conditions (15) we

pen, =0, s=1,2. (15)

calculate the required values of M*":
ML= 22— 33— M2
biz’

M2 — g2t gt — g3 = _H12
2
Applying the inverse Laplace transform to (11), we get

Q™" (y,t) = 6() 2" (y) + Raa(M™ )V (y),

where R, (3,t) denotes fractional exponential Rabotnov’s function [13]:

R
R,(B,t) =t ;m(Hn)(Hv)]'

Next we substitute the decomposition (11) into (7) to obtain
den = Aijin + A Bijin + Gijen(N),

where the components of the tensors A, B, and G()\) are given by the formulas

Aijkn = / (aijin(y) + aijim ()el, (Z") + bijim (y)e,,, (VF")) dy, (16)
Y

Bijkn = / (bijen(y) + bijlm(y)e?m(zkh)) dy, (17)
y

1
Gijen(A\) = o /Y (@ijim (Y)el, (V") + M bijun (y)ef,, (V")) dy.

Therefore, the constitutive equations (10) take the form
Oij = Aijkhekh(u) + Bijkhekh(Df‘u) + Gijkh(t) * ekh(u), (18)
where G;,n(t) are the inverse Laplace transforms of Gjjrn(N):

Gijkn(t) = Ra—1 (M*" 1) /Y (aijim(y)ewm (V") + M* b1 ()€l (VE)) dy. (19)

From (18) we see that the effective acoustic equations (9) are partial integro-differential
equations with fractional time derivative and constant coefficients. It is interesting to note
that their kernels are expressed via two different Rabotnov’s functions R,_1(—aj12/b12,t) and

Ro—1(—p12/ma2,t).
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4. Components of the tensors A, B, and G ()

Before proceeding to the calculation of the tensors A, B, and G(t), let us note that
Aijen = Ajikn = Aknij,  Agjen =0 whenever 0;;05n + 03051 + dindjx = 0,

Ago00 = Assss, Airi22 = Ar13s, Ai212 = Aiziz, Aosse — Aoz = 249303

and similarly for the tensors B and G(t). Moreover, it is easy to see that
Azzoz = (1 — h) + p2h, Basaz =m1(1 — h) +m2h, Gazzs(t) = 0.

Therefore, it is sufficient to find the components of A, B, and G(t) with indexes {1111},
{2222}, {1122}, and {1212}. To do this, we first substitute the found solutions to problems (12)
and (13) into formulas (16) and (17). This yeilds

A = a1(1 = h) + agh + cih(ay — az) + csh(by — b2),

Agzza = a1(1 = h) + azh + cah(A1 — A2) + csh(G1 — C2),

A1122 = M (1 = h) + Aah + coh(ar — az) + csh(by — ba),

Ar212 = p1(1 = h) + poh + esh(pr — p2) + cgh(m — n2),
Bii11 = bi(1 — h) + boh + c1h(by — b2), Baaze = b1(1 — h) + bah + c2h(C1 — C2),
Bi212 = m(1 = h) +n2h + czh(m —n2), Biiaz = Gi(1 = h) + G2h + cah(b1 — b2).

Taking into account the above values of constants ¢; and using trivial transformations, we
obtain

1 1
Ausns = - (axbth+ (L= ), Az = — (ot (1 - 1),
12 12

h(1—h)(¢1 —¢2)
b3y
1
— (b1 Aoh + b2 A1 (1 — h)) +
b12
b1b h
Bii11 = —2, By = bi(1 —h) + baoh — E(l —h) (G — )2,

b12
1
. (b1Cah + b2¢1(1 = h)), DBioiz = iz
12 2

A2222 = a1(1 — h) + agh —+

(a12(C1 — C2) — 2b12(A1 — A2)),

A1122 =

By =

In order to find the components of G(t), we substitute the solutions V*"(y) to problems (13)
and the parameters M*" into formulas (19). As a result, we get

h(l1—nh a
Gii(t) = — ( 3 )(a1b2 — agh1)*Ra—1 (—m,t) ;
by, bi2
h(1—nh a
Gaooa(t) = —¥ (M = A2)bri2 — (C1 — G2)a12)” Rai <—127t) ;
biy bia
h(l1—nh a
Gri2a(t) = — (b3 )(albz —azb1) (M — A2)biz — (C1 — (2)a12) Ra—1 <—b127t> ;
12 12
h(l—nh
Gi212(t) = —¥(M1772 — pom1)?Ra—1 (-m,t> :
Uip) N2
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To conclude, we note that our results can be considered as a generalization of those obtained
in the case of two-phase layered viscoelastic material described by a standard Kelvin-Voigt model
(a = 1). Indeed, the effective acoustic equations for the last material also have form (9) with the
constitutive equations (18), where A;;x;, and B, are defined by the same formulas as above.
Moreover, the components of G(t) are found by using the formulas presented here, in which we
should put oo = 1 and take into account that

t t
Ry (—am,t> = exp (_m) , Ry (—'ulz,t> = exp (_lﬂz) .
b2 bi2 2 UiP)

This work was accomplished within the Russian State Assignment under contract no. AAAA-
A20-120011690158-6.
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DddeKkTnBHBbIE ypaBHEHUSI aKYCTUKM JIJIs CJIOUCTOTO
MaTepHaJia, ONNCbIBAEMOT0 JAPOOHOIN MOIEJIbIO
KembBuna-®Poiirra

Agekceir C. ITTamaes

Baangnena B. IIlymunaoBa
NucruryT npobiem mexanuku um. A. FO. Unumnackoro PAH
Mocksa, Poccuniickast @enepariust

Awnnoranusi.  CrarTbsi HOCBsileHa MOCTPOEHUIO Y(MMEKTUBHBIX yPABHEHUN aKyCTUKU s JIByXdas-
HOT'O CJIONCTOTO BSI3KOYIIPYIOTO MaTepuaJa, OMUChIBaeMoro Mojesbio Kembpuna—Poiirra ¢ ApoOHBIMU
MPOU3BOAHBIMU IO BpeMmeHHu. J[jisi 9TO#l mesm MCIoIb3yeTcs TeOphsi ABYXMACIITAOHONW CXOJUMOCTH U
npeobpazosanue Jlammaca no Bpemenu. llokazano, uto addekTUBHbIE YPABHEHUS SABJISIOTCS HHTETPO-
muddepeHITNATBHBIMEA YPABHEHUSIMU B 9aCTHBIX MPOU3BOIHBIX C JPOOHBIMY ITPOW3BOIHBIMIY IO BPEMEHH
¥ TIPOOHO-IKCIIOHEHITHAIBHBIMA SApaMu CBepTKU. /Iyt Toro 9Tobnl HaiiTu KOI(MMUIMEHTHI U siIpa CBep-
TOK 9THX ypaBHEHUil, cOPMYIUPOBAHbI U PEIIEHbl HECKOJIBLKO BCIIOMOIATE/bHBIX 3a/1a4.

KuroueBbie cjioBa: ycpe/lHeHMEe, YPABHEHUsT aKYCTUKY, BSI3KOYIPYTOCTh, IpobHast Mojenb KeabpBuHna—
®Doiirra.
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1. Introduction and preliminaries

We use the notation C* for the one-dimensional complex torus C \ {0}. For vectors z =

= (21,...,2,)in C"or (C*)" and @ = (ay, ..., ;) in Z", denote by z the monomial 28" ... 207,
P(z)

Q(z)
F(z)= Z Coz®. (1)

acZm

Consider a Laurent series for a rational function F'(z) = of n complex variables centered

at the origin:

Let L C Z" be a sublattice of the n-dimensional integer lattice. Then the generating function
for the subsequence {Cq }acr of the coefficients indexed by L is called the complete diagonal of
the Laurent series (1). Throughout the paper, we consider the sublattice of rank 1 generated by
the irreducible vector ¢ = (¢1, ..., ¢,) from Z™ \ {0}. We will call the corresponding diagonal

dg(t) = Y Cout

k=—o00

a complete g-diagonal of the Laurent series (1). Such a diagonal can be written naturally as a sum
of two subseries dl‘]“ (t) and dy (t) with only non-negative and negative powers of ¢, correspondingly.
We call them one-sided g-diagonals. Clearly, we have the equality dq(t) = d}(t) in the case of
Taylor series. For the unit vector I = (1,...,1), we denote dy(t) by d(t), and refer to I-diagonal
simply as a diagonal.

Further, we consider irreducible polynomials P(z) and Q(z). It is well-known that domains
of absolute convergence of power series are logarithmically convex. In the case of the Laurent

*dpotchekutov@sfu-kras.ru  https://orcid.org/0000-0002-4545-2129
© Siberian Federal University. All rights reserved
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series (1), it is convenient to use the notion of an amoeba of the denominator Q(z) of the
rational function F(z) in the description of such domains. Recall [1, Section 6.1] that the
amoeba of a polynomial @ is the image of a hypersurface Z*(Q) under the logarithmic mapping
A (C*)" — R™ defined by

A(z) = (log |z, . .., log|zn]),
where Z*(Q) is defined in the complex torus (C*)" by zeroes of the polynomial Q.

The complement R™\ Ag consists of a finite number of connected components E that are open
and convex. The preimages A~!(E) of these components are domains of absolute convergence
for Laurent expansions (1) (centered at the origin) for the rational function F'(z) (see Section 2).

Amoebas are closely related to the notion of the logarithmic Gauss mapping

vq :reg ZX(Q) — CP" !

defined as 5 5
vo(z) = (zlag(z) Dol 2 32 (z)) (2)
in regular points z of the hypersurface Z*(Q). In fact, the set of critical points of the logarithmic
projection A : Z*(Q) — R™ contains the boundary 0.Ag and coincides with fyél(R]P’"_l).
The complete g-diagonal dg(t) of the Laurent series (1) that converges in the domain A~!(E)

for a rational function F' can be represented as the integral (see Section 2)
do(t) = 1 /P(z) z9 dzxy N...Ndzy
T m)n JrQ(z) 29—t 2.z,

over the n-dimensional cycle I' = A~(y,) — A~!(y;) in (C*)"\ {Z*(Q - (27 — t))}. The
parameter ¢ in the integral representation is chosen so that the amoeba of the polynomial 29 — ¢

(that is the hyperplane (g, u) = log|t| with the normal vector q) divides the component E into
two parts, and points y,, Yy, are chosen from different parts of this partition. The ramification
of the complete g-diagonal happens when a value of the parameter ¢ is such that the rank of the
n-dimensional homology group (C*)" \ {Z*(Q - (22 —t))} drops.

Since F is convex, the restriction of a linear function (g, u) to the closure of E in R™ attains
extreme values on the boundary 0F. Let ug = uo(g) be one of the points of the boundary 9F
such that the function specified above attains an extreme value. Then the branch points of dg(t)
should be among points of the form p?, where p = p(q) is a point of the hypersurface Z*(Q)
such that A(p) = uog.

The main result of the present paper is the theorem that characterises branch points of
diagonals.

Theorem 1. Let the Laurent series (1) for a rational function of n variables converge in the
domain A=Y (E), and let dg(t) be its complete q-diagonal. If ¢ = vo(p), where the point p is
regular for the logarithmic Gauss mapping and A(p) € OF, then

1. In the case n = 2k the point to = p? is a branch point of finite order 2 of dg(t).

2. In the case n = 2k + 1 the point tg = p? is a branch point of infinite order (logarithmic
branch point) of dg(t).

In the context of enumerative combinatorics (see. [2, Section 6.1]), there is the following
hierarchy of generating functions

{rational} C {algebraic} C {D — finite}.
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It was proven in [3] that complete g-diagonals of Laurent series for rational functions of two
complex variables are algebraic. In expositions that deals with diagonals (see, for instance, [4,
Section 2] or [2, Section 6.3]), treatment of the case of more than two variables is limited by
pointing at the example of non-algebraic diagonal of the Taylor series for the rational function
of three variables.

Since algebraic functions cannot have branch points of infinite order, Theorem 1 gives the
sufficient condition of non-algebraicity of a diagonal in the case when the dimension n is odd.

Corollary 1. Let the Laurent series (1) for a rational function of 2k + 1 variables converge in
the domain A=Y (E), and let dg(t) be its complete q-diagonal. If q = vo(p), where the point
p is regular for the logarithmic Gauss mapping and A(p) € OE, then dq(t) is a non-algebraic
Sfunction.

2. Amoebas and integral representation for diagonal

From the moment of diagonals appeared on the mathematical scene (see [5, p. 280]), the
important role in their study was played by integral representations. George Pdlya showed the
algebraicity of a diagonal of a bivariate rational Taylor series from a particular class in [6]. His
proof was based on a representation of the diagonal by an integral over a contour in the complex
plane. Exploiting a similar idea it was shown in [4,7] that the diagonal of an analytic power
series F' in a bidisk {|z1]| < A4, |22] < B} can be represented as

_ 1 LANS
=5 <|_EF(C’<> 3
1

where ¢ = (A + E) / 2. If, in addition, F' converges to a rational function, then evaluating the

integral by residues gives that the diagonal is algebraic, see [4, Section 2| and [2, Section 6.3].
Further, in [8] it was proved that the g-diagonal of the Taylor series for a rational function

P
F(z) = ngg of n complex variables holomorphic at the origin has the integral representation
z
1 P a1
dt) = o [ D E
@) Jo, Q=) 27—t
where the cycle I'y, = {z € C" : |z1| = p1,...,|2n] = pn} is chosen so that the closed polydisk
{lz1] < p1,---,|2n] < pn} contains no poles of the function F(z), and p? > |t|. It will be
convenient for us to use the following notation
w= ! P(z)z9 1dz
(2m)n '

In order to describe the integral representation for a complete g-diagonal of the Laurent
series (1), we list necessary facts about amoebas of polynomials.

Recall that the Newton polytope Ag of a polynomial @ is the convex hull in R™ of the set
of exponents of the monomials occuring with non-zero coefficients in Q). According to Proposi-
tions 2.4-2.6 in [9], on the set {E'} of connected components of R™ \ A there exists an injective
order mapping

v:{E}— AgNZ"
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such that the dual cone to Ag at the point v(E) coincides with the recession cone of the compo-
nent F. Then it follows from this fact that the number of connected components of the amoeba
complement is at most equal to the number of integer points in Ag (see [9, Theorem 2.8]). Note
that the proof of the injectivity of v also establishes that components E are convex in R™.

Corollary 1.6 in [1] says that all centered at the origin Laurent expansions (1) of a rational
P(z)
Q(z)
The sets A~1(E) are the convergence domains for the corresponding Laurent expansions. If the
rational function F'(z) is holomorphic at the origin, then its Taylor expansion converges in the
domain A~1(E), where v(E) = (0,...,0), and the point (0,...,0) is a vertice of the Newton
polytope Ag.

function F(z) = are in a bijective correspondence with the connected components {E}.

The following proposition from [3] generalizes the integral representation for diagonals of
Taylor series that have been mentioned above.

Proposition 1. Let the Laurent series (1) for a rational function of n variables converge in the
domain A=Y (E), where E is a connected component of the complement R" \ Ag, and let y;, y,
are points in E such that the inequality (q,y,) < (q,Yy,) holds for a non-zero q € Z™. Then the
complete q-diagonal dg(t) of the Laurent series (1) has the integral representation

0= | @

where (q,y,) <log|t| < (q,yy), and T = A~ (y,) — A~ (yy).

3. Proof of Theorem 1

Note that the differential form w is regular in (C*)", while the differential form in the integral
representation (3) is meromorphic in (C*)" with polar singularities on hypersurfaces

Si = 2%(Q), Sa=2%(z7-1).

Let y,, y5 be points in E chosen as specified in Proposition 1. The fibers A=*(y;), A= (y5) of
the logarithmic projection over these points are n-dimensional real tori (C*)™ that define classes
in the reduced homology group H, ((C*)™\ S; U Ss2) with compact supports.

We want to show that the family {S;,S2} has a so-called quadratic zero-pinch (see [10,
Section IV.1]) at the point p for t = ¢y, where t; = p?. For this purpose, we introduce new
coordinates w = (wy, ..., w,) in the n-dimensional torus (C*)".

We first note that since vector g is irreducible, according to the Invariant Factor Theorem (see
[11, Theorem 16.6]), there exists an unimodular transformation A : Z™ — Z™ that takes vector
q to vector e; = (1,0,...,0). This transformation induces the diffeomorphism (C*)" — (C*)"
defined as

wy = 2%, ..., w, = 297,

where a;’s are columns of the matrix for the transformation A, and a; = q. In new coordinates,
the hypersurfaces Sy, Sy are defined by equations

Q(w)=0, wy —t=0,

correspondingly.

- 363 —



Dmitry Pochekutov Analytic Continuation of Diagonals of Laurent Series for Rational Functions

Next, assume, without loss of generality, that le (p) # 0, where the point p = (p®,...,p").
Then, by the Implicit Function Theorem, there exists a sufficiently small neighbourhood U of
the point p such that S; is defined in U as a graph of some analytic function,

SiNU={welU:w = f(ws,...,wp)}
Therefore, the intersection S7 NSy is defined in U as the zero set of the system

{ wy — fwa, ..., wy) =0,

w1 — t=0.
From the definition of the logarithmic Gauss mapping (2), it follows that
’yQ('w) = (1: —wafu,(Way...;wy) 1ot =Wy fr, (Wa, ..., wy))

for w € U. In particular, y5(p) = (1 : 0... : 0). Since the (i, j)-component of the Jacobian
matrix of the logarithmic Gauss mapping Yo at the point p € U has the form

(_ﬁifwiwj (f)Za s ’f)n))z,j ) Z).] = 27 BN
the Jacobian determinant of Y5 at p and the Hessian determinant of the function f(ws,...,wy,)
at the point (pa, ..., P,) vanish simultaneously. If p is a regular point of v then p is a regular

point of 75. So the point (P2, -.,Dn) is a Morse critical point for the function f(wa,...,w,),
and by the Morse lemma, there exist local coordinates (ws, ..., @,) in a neighbourhood of this
point such that f = @3 + ... + w2 + p?. So the intersection S; N Sy is given locally by the
equation

W3+ ... +wp +p?—t=0.

Therefore, the family of the hypersurfaces S, Ss has the quadratic zero-pinch at the point p for
t = p9.

Thus, for the discriminant value ¢ty = p? of the parameter ¢, we have the standart degeneration
of type P; = P (in terms of the notation of [12, Section 1.8]). The monodromy operator

O H,((C¥)"\ S1USy) — Ha((C¥)"\ Sy USy),

defined by a small loop going around tg was calculated in [10, Part IV]. This operator reduces
to the standart Picard-Lefschetz formula for the Morse singularity in C*~#+! = Cn—1,
So, by Theorem 2.4 in [10, Part IV], we have that

O([I) = [T + ¢[X]

where ¢ is a non-zero integer, and the class [¥] is defined as follows. According to the Thom
Isotopy theorem, the monodromy acts identically outside a sufficiently small neighbourhood W
of the point p. Let o be the vanishing sphere of the dimension n — 2 in the intersection of S; N.Ss
and W. Then [¥] = 4,02[0], the homomorphism 4, is induced by the inclusion of W into (C*)",
and 0% : Hy,_2(S1 N Se NW) — H,(W \ (S; USy)) is 2-iterated coboundary operator of Leray
defined in Theorem 2 of [10, Part II].

Note that the Picard-Lefschetz formula also gives us

(=) = (-1)"'[=].
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Knowing the transformation of [I'] and [X] by ® allows us to continue the integral

0= gmEn

analytically along a small loop around the point ty. Let

) :/Ecxz)(zq—t)'

Then during one traversal of the mentioned loop the integral for dgq(t) goes to
dq(t) + 1q(t).
If the dimension n = 2k, the two traversals of the loop give
dg(t) +eq(t) + (=1)**"Leg(t) = dq(t).

So, the point ¢; is a branch point of order 2 for the diagonal dg(¢). If the dimension n = 2k + 1,
the two traversals of the loop give

dq(t) +1q(t) + (=1)*"eq(t) = dg(t) + 2eq(t).

In this case, to is a branch point of infinite order for the diagonal dg4(t). The theorem is proved.

4. The diagonal of the multivariate geometric series

The purpose of this section is to illustrate Theorem 1.
Consider the polynomial L(z) =1 — 23 — ... — z,. The multivariate geometric series

1 o1+ .. tap)!
5 Z( +...+ )z

gl arl...oap!
converges in the domain A=!(Ej), where Ej is the compoment of the complement R"™ \ Az, that
corresponds to the constant term of L.
For convenience, we denote the diagonal of this Taylor series by

= (Z"“)'n £k, (4)

k=0

The logarithmic Gauss mapping vz, : Z*(L) — CP" ! is a birational isomorphism with the

inverse given by
4;

T jzla"'ana
gi+...+aqn

Zj =
1 . 1 1y . .
where ¢ = (1 : ... : gn) € CP""". Also, the point p = (ﬁ”ﬁ) is projected by the
logarithmic mapping A to the point of the boundary 0Fy, so that, by Theorem 1, the point
to = pf = 1/n" is a branch point for the diagonal d,(t), and the type of this branch point
depends on the parity of n.

We note that )

0o(t) = ——
2(t) 1— 41

b
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by means of the generalized binomial expansion. Thus, the diagonal d5(¢) is an algebraic function
that has a branch point of the order 2 at t; = 1

In the case n = 3, the diagonal (4) is represented by the Gaussian hypergeometric function

a3(2‘:) = 2F1 (%7 %7 1727t) )

1
so that to = 77 is a branch point for the diagonal. Note that the parameters of this hypergeo-
metric function are not in Schwarz’s list of the cases when the Gaussian hypergeometric function
is algebraic.

Proposition 1. The diagonal 93(t) has the form

03(t) = as(t) log(1 — 27t) + bs(?),
1
in a neighbourhood of the point tg = 77 where the functions az(t) and bs(t) are holomorphic
and non-vanishing at the point tg = o7

Proof. According to [13, Section 16], we can write the hypergeometric function o F; (%, %7 1; 27t)
as the integral

1 1 2
R FOT) 1/ P(=QP(§ + QT3 + ()1 - 270
7§+2R

with the meromorphic integrand that has three groups of poles

1 2

The poles & lie on the complex plane to the right of the integration contour, while the poles (i,
Nk lie to the left of it.
Evaluating the integral as the sum of residues in poles & of the first group gives us the desired
representation. O
Further, it is clear from the representation

D4(t) = 3F2(ia %7 %7 1a 17 256t)
in the form of the generalized hypergeometric function that the diagonal 94(¢) has a branch point

1
at tO - %
By a happy coincidence, the generalized hypergeometric function 3F5 that corresponds to

this specific set of parameters can be written in the form
() = (F (L, %;1;256t))° (5)

1
with a help of Clausen’s formula [14]. Tt allows us to describe a type of the branch point ¢y = 256

in a way that is similar to the proof of Proposition 1.

Proposition 2. The diagonal 94(t) has the form
04(t) = aa(t)(1 — 256)% + ba (1),

where functions as(t) and by(t) are holomorphic and

1
in a neighbourhood of the point tg = %6’

non-vanishing at the point to = —.
g p 0 256
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Proof. According to [13, Section 16|, we can write the hypergeometric function o F} (%7 %7 1; 256t)
as the integral

21mF<§>1F<§> / F(=OT (5 = OT(§ + QT (§ +¢) (1~ 256¢)dC,

N
where the integration contour separates poles of the function I'(—=()I'(3 — ¢) of the form
&=k, G=3+k,
from the poles of F(é + C)F(% + C) of the form

1 3
T]}C:_g_k/’, %k:_§_k
The parameter k ranges over the set NU {0}.

We let b(t) denote the sum of residues of the integrand at the point &. It occurs that b(t)

is holomorphic at tg = 256 and does not vanish at this point. At the same time, the sum of
residues of the integrand at the points (; has the form a(t)(1 — 256t)'/2, where the function a(t)
is holomorphic at ty = 256 and is non-vanishing at this point.

Thus, the function 9 F (§,2,1;256t) has the representation

a(t)(1 — 256t)% + b(t)

1
in some neighbourhood of the point ty = 256 Then the Proposition follows directly from the
Clausen formula (5). O

The research is supported by grant of the Russian Science Foundation (project no. 20-11-
20117).
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AnasmTuyeckoe npogoJKeHne JauaroHaseii pgaos Jlopana
PaIMOHAJbHBIX (PYHKITU

Avutpuii FO. IToyekyToB
Cubupckuit derepaibHbIl YHIBEPCATET
Kpacnosipck, Poccuiickass @eneparms

AwnnHoranusi. Mbr onuckiBaeM TOYKW BETBJIEHUS IOJIHBIX @-AuaroHajeil psaos Jlopana parmoHaaIbHBIX
GYHKIIH HECKOIBKUX KOMILIEKCHBIX IIEPEMEHHBIX B TEPMHUHAX JIOrapudMuiIeckoro orobpaskenus [aycca.
JlokazaHO OCTATOYHOE yCJIOBUE HEAJreOpamTIHOCTH TAKOM JHaroHaJIu.

KuaroueBsblie cioBa: nuaronasnu psnos Jlopana, gorapudmudeckoe orobpaxkenune ['aycca, ameba rumep-

TOBEPXHOCTH, HYJIEBOH ITMHY, MOHO/IPOMHUS.
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Abstract. Removable singularities of separately harmonic functions are considered. More precisely, we
prove harmonic continuation property of a separately harmonic function u(x,y) in D \ S to the domain
D, when D C R"(z) x R™(y), n,m > 1 and S is a closed subset of the domain D with nowhere dense
projections S1 = {z € R" : (z,y) € S} and Sz = {y € R™ : (z,y) € S}.
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The theorem on removal of compact singularities (see [1,2]) is one of the most important
results in the theory of functions in several complex variables: if a function f is holomorphic
everywhere in the domain Q C C™ (n > 1) except a set K € (2, which does not divide the domain
(i.e. such that Q\K is connected), then f can be extended holomorphically to whole domain Q. In
the work [3], an analogue of this theorem was proved for separately harmonic functions, i.e. for
functions which are harmonic in each variable separately: let D be a domain in R™(z) x R™(y),
n,m>1, K D a compact set such that D\ K is connected. If the function u(x,y) is separately
harmonic in D\ K, then it harmonically continues to D.

1. Separately harmonic functions

Definition 1. If a function u(z,y) is defined in the domain D C R™(xz) x R™(y) and satisfies
the following properties:
1) for any fized 2° : {x = 2°}ND # 0, a function u(x°,y) is harmonic iny on {x = 2°}ND;
2) for any fived y° : {y = y°} N D # 0, a function u(z,y°) is harmonic in x on {y = y°} N D,
then it is called a separately harmonic function in the domain D.

One of the main methods of studying extension of harmonic functions is the transition to
holomorphic functions, and then using the principles of holomorphic extensions.

*sevdiyor i@mail.ru
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(© Siberian Federal University. All rights reserved
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Lemma 1 ([5]). For any domain D C R™(z) C C" there is a domain of holomorphy D C C"(z)
such that D C D and any harmonic function u(z) in D holomorphically extends into the domain
D, i.e. there is a holomorphic function f,(z) in D such that fy, |p= u.

The existence of the domain D follows easily from the representation of harmonic functions
by the Poisson integral. Indeed, let B = B(z°, R) € D be an arbitrary ball in D, and u(z) be a
harmonic function in D. Then the following formula holds

2y 402
utw) = = [t Lot

On R|$_y‘n

where o, is the surface area of the unit sphere. It is clear that the Poisson kernel

1 R? — |z — 27
Ple,y) = ——~ 721

(J"7y) on R|I7y|n
for any fixed y € 0B holomorphically extends to some domain Be Ccn, B> B. Eventually, B
is a Lie ball centered at 2° = (29,29, ...,2%) with the radius R (see [11])

? ’I’L

n 2

Z (2 — f”?)z

j=1

B={zeC": ||lz—aP+ ||z —a°* - <R

Consequently, every 1 harmonic in B function holomorphically extends to B which implies the
existence a domain D DcDccr satisfying the above propertles

It can be seen from the construction that for each fixed 2° € D there is a constant M 0 such
that

|fu(zo)| < MZOHUHD7 (1)

nevertheless, Mo is bounded on compact subsets of D and

lim M, =

z—x€eD

2. Separately analytic functions

Let two domains D C C"*, G C C™ and two subsets, £ C D, F C G be given. Assume that a
function f(z,w), determined firstly on the set E x F', has the following properties:

a) for any fixed w® € F, a function f(z,w") holomorphically extends to the domain D;

b) for any fixed 2" € E, a function f(z°, w) holomorphically extends to the domain G.

In this case f(z,w) defines some function on the set X = (D x F') U (E x G) and it is called a
separately-analytic function on X.

We will use the following theorem on analytic continuation of separately-analytic functions
(V. Zakharyuta [8], J.Sichak [9], and see also [7]): let two domains D C C™, G C C™ be strongly
pseudoconvexr and two subsets E C D, F C G be non-pluripolar Borel sets. If f(z,w) is a
separately analytic function on the set X = (D x F)U (E x G), then it extends holomorphically
to the domain

~

X ={(z,w) eDxG:w"(z,E,D) + w"(w, F,D) < 1}.
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Here w*(z, E, D) is the P-measure of the set E with respect to the domain D (see [7,8,10]). It
is defined as an extremal plurisubharmonic function

w*(Z7E7]D)) = PEW(C7E3D)7
—z

where
w(z, E,D) = sup{u(z) : u € psh(D), ulp < 1,u|g < 0}.

3. On Lelong’s theorem

P. Lelong [4] proved the following analogue of the fundamental theorem of Hartogs (see [1],
Ch. 1): if u(z,y) is separately harmonic in the domain D C R™(x) x R™(y), then it is harmonic
in D in both variables.

The proof of Lelong’s theorem can be obtained easily if we use the above theorem of
V.Zakharyuta and J.Sichak: if u(z,y) is separately harmonic in the domain D C R™ x R™
and B; C R”, Bo C R™ are arbitrary balls such that B; x Bs C D, then by Lemma 1 it extends
to the set X = (B x By)U(By x By) as a separately analytic function. Therefore, u(z, y) extends
holomorphically to the domain

~

X = {(z,w) S él X B\Q :w*(z,Bl,ﬁl) +UJ*(U},BQ,§2) < ].} .

Since By x By C X , the function w(z,y) is infinitely differentiable in By X By and therefore,
harmonic in both variables. Since the balls are arbitrary, it follows that u(z,y) is harmonic in
both variables in the domain D.

4. The main results

Now we are ready to prove the main results of this paper.

Theorem 1. Let S be a closed subset of the domain D C R™(x) x R™(y), n,m > 1, and its
orthogonal projections S1 = {x € R" : (z,y) € S} and S; = {y € R™ : (z,y) € S} are nowhere
dense. Then any function u(x,y) which is separately harmonic in the domain D\ S extends
harmonically to the domain D.

Proof. Let u(z,y) be a separately harmonic function in the domain D\ S and the projections of
the closed set S:

Si={zeR":(z,y) €S}, So={yeR™: (z,y) € S},

are nowhere dense. We denote by S C S the set of non-removable singularities for the function
u(z,y). Suppose that S # @&. We take arbitrary balls By C R"(z) and By C R™(y) such that
B; X By C D and (By x B2) NS # @. We denote by

Sl = {(E € By : (:L‘,y) S (B1 X 32)05}7 gg = {y € By : (:my) S (Bl X Bg)ﬂg}
Since (By x B) N S c S x 52, we have

(By x Bo)\ (81 x &) = (B1 % (By \ 5*2)) U ((31 \ §1) x Bg) C (By x Bu)\ 8.
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Hence, by Lemma 1, the function u(x,y) can be extended analytically to the set X =
= (§1 x (Ba\ 5'2)) U ((B1 \ 1) x EQ) as a separately analytic function. Consequently, u(x,y)

extends holomorphically to the domain

~

X = {(z,w) S El X Eg :w*(Z,B1 \§1,§1) +w*(w,B2\§2,§2) < 1}

Since the sets By \ S1, By \ Sy are locally pluri-regular, we get
X C X, ie (B xBy)\ (5 x8,) CX.

(About pluri-regular sets and their properties, see [6,12]). Now we take an arbitrary point a € S;
- 1
and 2° € U(a,e) \ S1, where U(a,e) = {z: |z —a|<e}, 0<e< 5 dist(a,0B1). For the point

20 there is a point a° € Sy such that
d=|2° —a| zinf{|x0—x| :xegl}.

It is clear that the intersection By N {xz : |2° — | < d} C By \ S; contains the interval (2°,a°),
which is not pluri-thin at the point a® € S; (see [6], Proposition 4.1). Hence, it follows that

w*(aO,B1 \ Sl,él) =0.

On the other hand, there is a point ° € Sy such that (a°,°) € S and by the definition of P-
measure there is also some number dy : w*(b°, By \ S, Ba) < 82 < 1. Now we take some number
61 > 0 so that d; + d2 < 1. Hence, an open neighborhood of the point

(ao,bo) € SI {Z : w*(z,Bl\Sl,ﬁl) < (51} X {'LU : w*(w,BQ\SQ,ﬁg) < 52},

is contained in X , i.e. the point (a®,b%) € S is a removable singularity and this contradicts our
assumption concerning S. Thus S = @. The theorem is proved. O

Using methods of V. Zahariuta on analytic extension of separately analytic functions we get

the following result which generalizes Hamano’s theorems [3].

Theorem 2. Let two domains D C R", G C R™ and two sets E C D, F C G be given. If
E € D is compact and F is a closed subset of G with nonempty complement G\ F # 0, then any

separately harmonic function u(z,y) in (D x G) \ (E x F) harmonically extends to the domain
D xG.

Proof. According to Lemma 1 there is a pseudoconvex domain G C C™ such that G C G
and for each fixed x € D\ E a function u(z,-) holomorphically extends to G. Moreover, there
is a sequence of strongly pseudoconvex domains Gj,7 = 1,2,... such that G; € G411 € G,

G= Ej @j and (GNG)\ F # 0. According to (1) for the set
j=1

K. ={z€ D:dist(z,F) <e} €D,
where € > 0 is a small enough number, there is a sequence of positive real numbers M; such that

Ju(z, w)| < M; ¥(z,w) € K. x Gjy1.
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)

Consequently, for any [ € N there is a sequence of positive numbers N ;l such that the inequality

| <1 </@
holds.

Now we take a closed ball B € (GN él) \ F and for a fixed j and a sequence of sets B € éj
we consider a Hilbert space Hy C Hy. For Hy we take the closure of the space

el (z, w)

ow?

2 2
‘ dv> <N vz € OK. (2)

O(G) N h(G) NWEG;), 1 > m.

(Here (9(@) is the space of holomorphic functions on @, h(QG) is the space of harmonic functions
on G and Wi(G;) is the Sobolev space.) For H; we take the closure of the space h(G)NLa(B, o),

where 1
Ly(B, ) = {f! (/B|f(w)|2da)2 < OO}

and do = (ddcw* (w, B, é])) (see [7,8,10]). Let {ex(w)}32, be the common orthogonal basis

1
for spaces Hy C Hi such that ||ex| g, = tk, |lexlla, = 1, Mk% < Inpy, < Mkw, and M is a
constant, k = 1,2,... (see [8,13]). -
From the continuous embedding of Hy C C(éj) N O(éj) it follows that

lex(w)| < Cllex|lm, = Cug, w € éj, (3)

where C' is a constant.
We consider the set Ay = {z € B : |ex(y)| > k}. By Chebyshev’s inequality we have

1 1 1
o(Ar) < 7L ek () Pdo(y) = ekl = =, k=1,2,....
K2 )5 2 2

Consequently, Y o(Ag) < oo and lim o ( U Ak> =0. Welet Uy =B\ U 4, U= U Us.
k=s k s=1

k=1 S5— 00 =5
Then (B \ U) = 0. Therefore, w*(w, B, G;) = w*(w,U, G;), i.e. w*(w,Us,G;) | w*(w,B,Gj),
w € G, (see [7,10]). Since |ex(y)| < k, w € Es, k > s, taking into account (3), by two constants

theorem we obtain the following estimation

w*(w,Us,é_')
ik

len(w)] < c(s)kp® >s, we G, (4)

where ¢(s) is a constant independent of k.
Now we compare the formal Fourier-Hartogs series to the function u(z,w), (z,w) C D x Gj,

(oo}
u(wi) ~ Zak(x)ek(w)a (5)
k=1
where the coefficients are defined by the usual formulas of the space Hj:

ag(z) = / u(z,w)ep(w)do, k=1,2,....

B

We show that the series (5) converges locally uniformly in the set K. x @j.
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Since the function u(z,y) is continuous and separately harmonic on the set D x B, it follows
that ax(x) is harmonic on D. Moreover, for any fixed 2 € OK, the function u(z,w) € Hy, then

lak(x)| = (u(z,-), ex)m, = ,u,;Q(u(x, -), ex) r,. Consequently,

1 ul\x, )| H
0k (@)] < — e, Y lex e < L& 0 ope,
[ Mk

Hence, by the estimation (2) and the maximum principle we get the following estimation

N
|ak(x)|<u—]z, k=1,2,..., z€K.. (6)

Comparing the estimates (4) and (6), we obtain

|ak(x)ek(w)| < C(S)Njku:*(w,Us,Gj)—l < C(S)Njkewﬂc%@d*(w,Us«Gj)fl) ’
k>s, (z,w) € K x CAv'j, where Us; C B, 0(Us) > 0. The last estimation shows that the series (5)
converges locally uniformly on the set K, x éj and its sum u(x, w) coincides with u(x,w) on the
set 0K X éj, i.e. u(x,w) is an analytic continuation of u(x,w). Finally, letting j tend to infinity
we obtain an analytic continuation of the function u(z,w) on the set K. x G which contains the
set E x F, that is the function u(z,y) can be separately harmonically extended to D x G. The
proof of Theorem 2 is completed. o

Comparing the ideas of proof of theorems above, one can easily prove the following theorem:
Theorem 3. Let two domains D C R™, G C R™ and two sets E C D, F C G be gwen. If E is
a nowhere dense closed subset of the domain D and F' is a closed subset of the domain G with a

non-empty complement G\ F # 0, then any separately harmonic function u(z,y) on the domain
(D x G)\ (E x F) can be extended harmonically to the domain D x G.
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CrtupaemMbie 0OCOODEHHOCTH CellapaTHO-TAPMOHUIECKNX
dbyHkImit

CeBauép A.lVmMmomKkyoB

Xopeamcknit obstactHo# dumnan Maremarmaeckoro nacturyta nMm. B. U. Pomanosckoro
Axanemus Hayk Pecrnybauku Ysbekucran

Ypreudu, Ysbekucran

Cyaraubait M. Ab6aukaaupoB
KapaxkaJsmakckunit rocyapcTBEeHHbBI YHUBEPCUTET
Hyxkyc, ¥Y36ekucran

AnnoTaiuda. B pabore paccMaTpuBaloTCs yCTpaHUMbIE OCOOEHHOCTH CelapaTHO-rapMOHUIECKUX (DYHK-
muit. Tounee, MOKazaHa TeopeMa O TAPMOHMYECKOM IPOJIOJIZKEHHH cerlepaTHO-rapMoHndeckoit 8 D \ S
dyukuun u(z,y) B obmnacrs D, rne D C R™(z) x R™(y), n,m > 1 u S — 3aMKHyTOe HIOIAMHOMXKECTBO
obsactu D, a ee npoekunu S; = {z € R" : (z,y) € S} u S2 = {y € R™ : (z,y) € S} Hurge He IIOTHLL.

KJIIO‘leBbIe cJioBa: celmapaTHO-TapMOHNYIeCKasd (byHKLH/ISI, IICEBJOBBIITYKJIast O6JIE;1,CTB7 nHTEerpaJl Hyac-
coHa, P-mepa.
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Introduction

In recent years noticeable interest has been shown in the study of initial and initial-boundary
value problems for equations of fractional order. This is due to the fact that fractional-integral
calculus have applications in the study of diffusion and dispersion processes in various fields of
science (see [1-5]).

The Schrodinger equation on metric graphs was studied (see [6,7] and references therein).
Such graphs sometimes called quantum graphs. The Schrodinger equation on the metric graph
was also studied with Fokas unified transformation method [8].

The Airy equation on an interval was studied with Fokas unified transform method [9] and [10].
The potential theory for solutions of this equation was developed [11] and [12]. The linearised
Airy equation on metric graphs was considered in [13-16] and [17]. M. Cavalcante considered
non linearised KdV equation [18].

A. Pskhu studied properties of the Airy equation with time-fractional derivative. Fundamental
solution of the equation was found and properties of potentials were studied (see [19]). Later,
second fundamental solution was found and the properties of the some additional potentials were

*kamoliddin _ru@inbox.ru
fsobirovzar@gmail.com
tjabborov61@mail.ru

© Siberian Federal University. All rights reserved
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studied [20,21]. Using this results solutions of initial and some IBVPs over infinite and finite
intervals were found.

In this paper we consider the initial boundary value problem (IBVP) on a closed star graph
with finite bonds. The solutions are found with the use of the potential method developed
in [19-21].

1. Basic concepts

The operator

o oy 1 AG)
oDy 19(t) = T —a) /n i §|ad£, 0<a<l, (1)

is called fractional derivative (Caputo derivative) (see [22]), where I'(x) is the Gamma function.
Inverse of this operator is called operator of fractional integration

Lot g9

Jog(t) = / deg. 2
w90 =10y ), e .

It is easy to show that
cDy19(t) = ¢ Dy _ng(2). 3)

Function
oo Zn’

¢()\7M§2)1:;m7 A>-1LueC (4)

is called Wright function (see [23]). Wright function can be represented as

_,\di

1
(N, s 2) 7/ e7t=e
Ha

2mi oh’

where the integral is taken along the Hankel contour (see [22]). We have following estimate
(see [19])
| (=X, 5 2)] < Cexp (—V‘Z|ﬁ) , C=C(\p,v), (5)

m—largz| 1+ A

whereu<(1—)\))\ﬁcos T 3

m < largz| < w. The value of integral of this

function is (see [19])
1

“+o0
/O A=A, s az)dz = YIS

(6)

2. Formulation of the problem

The Cauchy problem for time-fractional Airy equation on a metric graph with infinite bonds
was considered ([21]). Now we consider a graph with k incoming and m outgoing bonds. In the
incoming bonds coordinates are set from L; (L; <0, j = 1,k) to 0, and on the outgoing bonds
the coordinates are set from 0 to L; (L; > 0,4 = k+ 1,k +m). The bonds of the graph are
denoted by bj, j = 1,k +m (Fig. 1).

On each bond b; (j = 1,k + m) of the graph, we consider the Airy equation with a fractional

time derivative 5
oDg yuj(z,t) — @uj(xﬂt) = fi(z,t), 0<t<T. (7

=377 —



Kamoladdin Rakhimov ... The Time-fractional Airy Equation on a Metric Graph

Lk+1

L,
L
I- k+3
L Lyos
L k+m-2
L k+m-1
I- k+m

Fig. 1. Star-shaped graph

Let 0<t<T,and z € bj, j =1,k + m. We need to impose the following initial conditions

u(z,0) = up(z), (8)
vertex conditions
Au(0,t) =0, (9)
o 0
— t)=B—u (0,t 1
Zut(0,1) = B—u (0,1), (10)
ut
where u™ = (U’l) Uz, .- - auk)Ta U+ = (uk+1) U425 - - - 7uk+m)T7 u = ( u= ) )
—Aasg 0 0
1 0 as 0
A= ...
0 0 0
0 0 oo —Ak4m

and B is the constant m-by-k matrix.
We need impose the following conditions which are sometimes called the Kirchhoff conditions
or the condition of conservation of flow rate at the vertex of the graph

0?u~(z,t) 0?ut(z,t)
CT—= =Cr—27 ) 11
0z lz=0 0x?  lz=0 (11)
1 1 1 1 1 [
where O~ = (f,f,...,f), ot = ( —) ay =1 and aj # 0 for j = 2,k +m.
a; az Qg Ak+1 Ak+m
Boundary conditions are
ou™ (z,t)
L,t)=o(t), —f——— = Pt 12
a0 =), ZED) ), (12)

where Y = (9013 P2,y ‘Pk—&-m)T and (;5 = ((151, ¢2; c ¢k)T~
A regular solution of equation (7) is constructed on the graph defined above that satisfies

conditions (8)—(12).
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2.1. Uniqueness of solution

Theorem 1. Let BT B — I}, be negative defined matriz. Then problem (7), (8)—(12) has at most
one solution.

Proof. Let us consider the following inequality [24]

b b
1
/ ve D vde > 5o D3, / e
a a

. Using the Cauchy inequality and conditions (8)—(9), we have

cDf 4l < (u™)"(BTB — Ii) (u™) + 2llullollfllo < 2llullol fllo < [[ull§ + 1[5,

where
k+m

g =Y [
i=1"5

u = (ul,ug, PN 7uk+m)-
Using the analogue of Gronwall’s inequality [24], we obtain from the last inequality the
following a priori estimate

lull§ < [luol* Ba(2t%) + (@) Ba,o (2t*)cDE||£115- (13)

The proof of the theorem follows from (13). O

2.2. Fundamental solutions

We construct the solution of the problem with the use of the potential method. To begin
with, we need to obtain a special solution of equation (7) that is called fundamental solution. A
fundamental solution of the equation was found in the following form [19]

x
) ¢(—a/3,2a/3; a—) x <0,
G2 (x,t) = 212073 4 to/3 o (14)
3t —2Re [627”/3¢( - a/3,2a/3;62”/3m)], x> 0.
Using results from [21], second fundamental solution can be written in the following form
1 i xi/3 T
V2, t) = st [62 1/3¢>( — a/3,20/3; €2 1/3#%)}, 2> 0. (15)
These functions have the following properties (see [19])
PE
cDo,Go (e, t) = GE7"(x,1), 55Go(x,t) = Gg™%(2,1) (16)
with estimate
| Dg G, t)| < Ca 000371, (17)
where
07 - N )
) [0 e ENe
1, (_IJ’) € NO~

=379 -



Kamoladdin Rakhimov ... The Time-fractional Airy Equation on a Metric Graph

Using these functions we define functions that are called potentials

t t
w(a,1) = / G2/ (@ — ayt —)m(n)dn,  walw, ) = / V2S5 (0 — a,t - n)ma(n)dn,

0 0
t 02 t 92
n- [ Zg t d t 0" yza/3 t d
w3(xv )_ W a2a/3(x7a7 777)7-3(77) 7, ’LU4(.T ) @ @ (I*a, 777)7-4(77) 7,
(2.1) / 23w — €. 1)r3(€)dE and wg(a 1) / / G223 (@ — £, — ) (. n)dedn.
Let us show some properties of these functions in the following lemmas.
Lemma 1. Let functions 74(t), k= 1,2 are continuous and bounded on (0; +00). Then
1. Functions wi(x,t) and wa(x,t) are solutions of the equation

P3uj(z,t)

o DG (1) — L

2. Functions wy(z,t) and we(z,t) satisfy conditions
1er(l)u;k(gv,t) =0,k=1,2.
Lemma 2. Let 75(n),74(n) € CVL(0,h). Then

1 2
mganowg(x t) = ng(t), wgﬂowg(x t) = *ng(t), wlgr}rowzl(:c t) =0.

The proofs of these lemmas can be found in [21].

Lemma 3. Let 75(z) € Cla,b]. Then function ws(x,t) is the fundamental solution of equation
(7) and
tILH(l) CD(‘it_lw5(x,t) = 75(2).

Proof. Let us show that function ws(x,t) is the fundamental solution of equation (7). Using
relations (16), we obtain

b b
CD(()X,tw5(‘r> t) = / CD(O)t,tGia/S(‘T - €a t)7'5(§)d£ = / G;a/3(m - 5; t>7-5(§)d€
and

Ox? Ox3
Comparing these equalities, we obtain that function ws(z,t) is the fundamental solution of
equation (7).
Let us find

b
P sl t) = / 0 Gp0/3(q — ¢, tyms(€)de = / G/ — €, ) (€)de.

b
Dy ws (2, 1) / eD§T G2 (@ — &ty (€)deE :/ GL=o/3(z — &, t)m5(€)dE.

Using inequality (17), we have the following estimate

b
leDgy Mws (w0, t)| = / GLo3(x — &, t)m5(€)de| <

max, 75(x / Cle —&|70t(-9%

a<z<h
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where 1 > 6 > 0. It shows that the integral form converges. Replacing z—¢ with y and taking

te/3
into account that - -
| sty = [ Gl ey -

_toz/S 0 1 1 d 2toz/3R 27i/3 > 1 o 1 271'2/3 d
- . 3ta/3¢)( 57 _g ) Yy — €€ 0 3ta/3¢(_§a 37 ) Yy

10 omisz 1 a

_ = = = Ti/3 - = _ 2mi/3 _
3/_OO¢< 31 ,y)dy 2Re[e 3/0 ¢( 31— 3gse y)dy}

- % (F(l - a/13 Tap3)  2Re [_e2ﬂi/3 €230 (1 —1a/3 - a/3)D -

we obtain ,
}1_{11 CDOt w5(33 t)= }1_1?(1) Gl a/S(l, — & t)15(8)dE =
: 2 a/31—a/3(, sa/3 a/3 75(2) oo
=lim [ Gyt ) (v — ¢ y)dy = == ga(y)dy = 75().
:0—/3 — 00
The lemma is proved. |
3

Lemma 4. The equation ¢ D§u(z,t) — ﬁu(x,t) = f(=,t) with initial condition
i x
CDQ t u(ac t)|t:0 =0
has a solution in the form
t b
oot = [ an [ G2 - gt e me
0 a
Proof. Using the results given in [19], it is easy to show that solution of the Cauchy problem for
3

0
the homogeneous equation ¢ Dg ,v(z,t) — ﬁv(ac, t) = 0 with initial condition v(z,0) = vg(x) is
T

b
vla,t) = DGy / G203 (& — €, t)uo (€)d.

a

Let us determine the derivatives of function we(z, t)
d t b o N
oDi o) =5 [ dn [ D3GR - 6t = n)f(€mde =
0 a
b ¢ b
. a— a d a— a
—lim [ oDGGR e - gt e+ [ dn [ oDy G e - €t - mf(€mde.
a 0 a
Taking into account (3) and relation (16), we obtain
b
DTGRP o &t M€ = [ DR G €t~ 6 e =
- [[arone et mrema

a

- 381 —



Kamoladdin Rakhimov ... The Time-fractional Airy Equation on a Metric Graph

It follows from relation (5) that integral I; converges uniformly. Substituting (x)i/g for y in
t—mn
this integral and taking into account (6), we obtain

b b
I = lim / Dy G (@ = &t — ) (€ m)dé = limy / GL P (w — &t =) f(&m)dE =

st [ G ) Pt = - ) )= )y =
e
) —(t— a/3 t— a/3 ) .
= liny o @y =) g (e2eirig(- 21— e/ )yt
e 3(t —m)
r 1
: o o a/3 a/3
1 — (- 1—-7; —(t— t— dy =
+om 3(t_n)a/3¢( 3 37y)f(:c (t—=m)™ y,m)(t —n)" " dy
z—b
(t=m/3
(tjn_);/d
N 27i/3 g _g 27i/3 a/3
——glim [ Re (@70 (<51 5iem0) ) fla = (= )y mdy s
0
0
~ i _eq e _ a/3 _
wplm [ o (=50 Si) e - -0 Py
x—b
(t—n)®/3
2 too a a , 1[0 a a
- _- Ti/3 e = 2wi/3 - = R —
336(/0 e ¢( 31— gie y)f(x,t)dy>+3/_oo¢( Tk 3,y)f(x,t)dy

= ne (e e Y e+ 5 (<) St = S

93
Now we have I} = f(x,t). Furthermore we show that Iy = ﬁu(x, t). We begin with
B

t b d
= [Can [ GepiieEe =t - e.mie =
/ d”/ D8 GR P @ — 6t — ) f(6, m)dé = (18)

¢ b
= [Lan [ GE e - - e
To determine %u(m,t) we use relation (16). So, we have
83 o3 t b
gt = g [an [ G20 — et —mp(enas -
_ ! b 63 2c/3 _ ! b 2a/3—a _
~[an] Se (x—f,t—mf(&,n)ds—/o an [ G e @t = flemie = (19)
= [ ez - et mse i
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3

Comparing (18) and (19), we obtain I = %u(az,t). The Lemma is proved.
x

2.3. Existence of solutions

Let
F-=(F,....,F)",  F"=(F1, . Fegm)’
a” = (a,..,on)", @t = (kg akgm) T
B~ = (b, ,5k)T7 BT = Brgtr - Brgm)
=0T YT = (ks em) T
p~ = (p1,p2, --,pk) . P = (Pry1s -apk+m)T7

(L;j;0), j=1k

db; = - .

ana o {(O;Lj), j=kfLEktm
Let us find solutions in the form

t t
uj(x,t):/ Gia/s(x—Lj,t—T)aj(T)dTJr/ Vja/s(x—Lj,th)ﬁj(T)dTJr

0 0

t t
—|—/ Gia/g(x—o,t—T)’}/j(T)dT—l—/ Vjo‘/g‘(a:—O,t—T)pj(T)dT+Fj(m,t), i=1,k+m,
0 0

=1,k+m), B (j =1,k), p; (j =k+ 1,k +m) are unknown func-
tions, p;(t) = 0,(3—1,) Bi(t)=0,i=k+1,k+m and

t
Fj(x,t) = /b U0 (€)e D§ T G203 (x — €t — 0)dé + /O /b G2 /3w — &t — 0) f;(€, T)dedr.

J

where functions a;, v;

It follows from Lemma 4 and the results given in [19] that these functions are the solutions
of equation (7) and they satisfy initial conditions (8).
Taking into account condition (9), we have

t t
a) / G2 (Lt — Ty (T)dr + / V2 (~ Lyt — 7)B;(r)dr+

t t
+a / G213 (0, — ) 7 (r)dr + a; / V203 (0, — 7) py (7)d7 + a;F; (0,1) =
0 0

t t
= / Gia/?’ (=Li,t — 7)oy (T)dr + / Vfa/g (=Li,t —71) Bi(7)dT+
0 0

¢
+/ Gia/S(O,t—T)%(T)dT—FFl(O,t), j=2,k+m.
0

Furthermore

t
| (627 (it = ran(r) 4 V2 (<Lt = 1) () drt
0
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t a 2a
¢(_§7 3 70)
P8 30 ()dr + Fy (0,8) =
0 3(t )1 2&/3 ( ) 1( )

t
= q, / G2/3 ( Lj7t—T)aj(T)dT+aj/ V3 (= Lyt —7) Bj(r)dr+

0
b o(=5.%10)

T 7 (r)dr +1 /tem/g‘f’( 2550 (ir | + 0, (0,0)
aj | o5 (T)dr +1m ja; a3 PINTIAT) T a8 0
7o 3 — gyl "o syt o
So, we have

tf(” p;i(T) —a;

7( ) +7(7)
aij (O,t)—Fl (Oyt):/o (2a) — 1 2a/3 dr—
2a) (¢ —

t

t
—a; i G(?l‘%/3 (—Lj, t — 7)oy (T)dT — a; /0 VO?O‘/B (=Lj,t —7)Bj(T)dr+

t t
+/ G2a/3 (—Ll,t—r)al(r)d7+/ V2/3 (Lt — 1) By (r)dr

0 0

V3a,
2

and

Y1(7) — a;vi(T) +

pi(7) = 3Dy (a; F; (0,1) — F1 (0,1))
t t
73ach2a/3 </ Gia/3 (—Lj,t — 7)o (T)dT + / V(fa/s (—=Lj,t—7)B; (T)dT) —
0 0

t t
30D < [ @ = nainir+ [ vz - ﬂlde) .
0

0
From above relation we obtain

V3a,
2

n(r) = ajy(r) + pi(r) =3¢ D% (a; Fy (0,1) — Fy (0,t)) —

—3</G —Ly,t—7)ay(r dT+/V0 Ll,t—r)ﬁ(r)d7>+

+ 3a; (/ GO (— — 7)oy (T)dT + / VO(~Ljt—7) ﬁj(T)dT> , j=2,k+m. (20)
0
In a similar manner, we obtain from condition (10) that
_ V3 o _
B,Y (t) - ’Y+(t) + 7p+(t) = 3CD0,43 (F;(()’t) - BFac (Ovt)) B

¢

—3/ (BGa (L7t =) a™(7) + BV2/* (—L7 t = 7) B~(r)) dr+ (21)
0

+3/t (Gg/?’ (—L*,t—1) a+(7)) dr.
0

Taking into account condition (11) and using Lemmas given above, we have
2

t
C™ vy~ (t) +20FyT(t) = 3C hi% %/ G(Qﬁ/‘g(z C Lt — m)a(r)dr+

2 t
+3C lim ;7 / V23 (x — Lt — 7)B(7)dr 4+ 3CF,(0,1),
z—0
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where C = (—C~,CT).
Using conditions (12), we have

t
Joq"® (%‘ (t) + ?53‘(15)) +/0 G253 (Lt — 1) v (r)dr+

t
+/O Vja/?’(l/j,t—T)pj(T)dT—l—Fj(Lj,t)Z(pj<t), j=(1,k+m).

Applying the properties of fractional operators, we obtain

V3 o
aj(t) + =-55(t) = e Do (o (8) = Fy (L, 1)) —
t
_CDQO‘/?’ </ G2e/3 (Lj,t —7)vi(r)dr + / y2e/3 (Lj, t—1) pj(T)dT) , j=1Lk+m.
0 0
Equations given above can be written in the following form
t
alt) + 75 / GO (L )y(T)dr — / VO(L,t —1)p(T)dT+
0 (23)
+e Do (plt) = F(L,1).
In a similar manner, we have from condition (12) that
t t
a () — ﬁﬂf(t) = / Go(L™,t— 1)y~ (r)dr +/ VL™, t—1)p (1)dr+
2 0 0 (24)

+eDy} (8(t) — Fy (L7,1)) .

We obtain the following system of integral equations (20)—(24) with respect to unknowns A(t)
¢
QA(t)+ | K(t—7)A(r)dr = H, (25)
0
where A is the unknown functions, @ is the (3k 4+ 3m)-by-(3k + 3m) matrix, K is the matrix of
potentials. Using above system, the matrices can be written in the form
—34cD3Y*F(0,1)
3¢Dg)* (F(0.1) = BF; (0,1) @
H= 3CFy2(0,1) , A= b ,Q( 0 M),
~y
o D53 (o(t) = F(L,1)) p
D3y (6(0) = B (L7,1))

x

where M is the matrix on the form

Le—1)x1 —diag(as, ..., ax) 0
Limyx1  —diag(ary1,. .., Qrym) ;diag(akﬂ, ey Qhgm)
M= B I ?Im ’
— . — 2 . 2 0
ay ag ak+1 Ak+m
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I, 0 —I
2 K 0
Q1= 0 I, 0 and K = where
\/g O K2
I, 0 ——1I
2
—AGY(-L) —AV(-L)
Kos|  BGUEIGA-L) vo(-L7) |

2 2
C lim,_,0 %G?ﬁ/ Se—L) —C~ limy_yo % 2034 — 1)

—Go(L)  =VJ(L)

K =
T\ -Gl e
It is obvious that det(Q) # 0 and elements of matrix K (¢,7) are bounded and continuous
functions on (0,7"). It was proved that detM # 0 [21]. So, matrix integral equation (25) has
. . . 2k+m
unique solution in (C[0, t]) .
So, we arrive at the following theorem.

Theorem 2. Let BT B — I, be negative defined matrix, functions w;o(z) € C(b;), fi(z,t) €
COL(b; x [0,T)) for j = 1,k+m, ¢(t) and ¢(t) are differentiable functions on [0,T]. Then
problem (7)—(12) has unique solution on 0 <t < T.
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YpaBHeHne Diipu ¢ APoOHOII MPOM3BOJHOII IO BpeMeHN
Ha MeTpudeckKom rpade

Kamomaaganu PaxumoB
Harmumonaspubiit yauBepcurer Y30eKucTaHa
Tamxkent, Y3bekucran

3apud6oii CobuposB
YHUBEPCUTET TEOJIOTUIECKUX HAYK
Tamxkent, Y36ekucran

Hacpuaun 2Kab6opoB
Hanmonanwubrit yaHuBepCcuTeT ¥Y36eKucTaHa

TamkenT, Y36ekucran

Awnnoranusi. Mol paccmarpuBaem 3a7a4y Komm 1 HagaJlbHO-KPaeByIO 3aJ1a4dy Jjisl ypaBHEHUU Dipu ¢
APOGHOM MPOU3BOAHON 0 BPEMEHH HA METPUYECKOM rpade ¢ OrPDAHUYEHHBIMU U C HEOIPAHUYIEHHBIMU
BeTBIMU. MbI U3yJaum CBOHCTBA MOTEHITNAJIOB JIJIsi 9TOTO YPaBHEHWS W, WCIOJIb3ysl 9TU CBOWCTBA, Ha-
IIJTH PEIeHNs] pacCMaTpUBaeMoil 3agadu. TeopeMa eIMHCTBEHHOCTH ObLiIa JOKA3aHa C IIOMOIIBIO AHAJIOTA
HepaBeHCTBa 'ponyosuia—bBesiMana 1 anipruopHOil OIEeHKH.

KuroueBsbie ciioBa: ypapHeHue Jifpu ¢ ApoOHOM TPOM3BOIHON M0 BpEMEHN, HAYaJIbHO-KpaeBasl 3a/1a4a,
ypaBHEHUsI B YACTHBIX TPOU3BOJIHBIX HA METPUIECKOM rpade, PyHIaMeHTAIbHBIE PEIeHNSI, THTETPAJIb-

HOE IIpeJacTaBJICHUE.
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Abstract. The article is devoted to properties of a weighted Green function. We study the (d,1)-
extremal Green function Vi'(z, K,v) defined by the class L5 = {u(z) € psh(C") : u(z) < Cu +
Sint 2|, 2z € (C"}, 6 > 0. We see that the notion of regularity of points with respect to different
numbers § differ from each other. Nevertheless, we prove that if a compact set K C C" is regular, then
d-extremal function is continuous in the whole space C™.

Keywords: plurisubharmonic function, Green function, weighted Green function, §-extremal function.

Citation: N.Kh. Narzillaev, §-extremal Functions in C", J. Sib. Fed. Univ. Math. Phys., 2021, 14(3),
389-398. DOI: 10.17516/1997-1397-2021-14-3-389-398.

1. Introduction and preliminaries

The Green function in the multidimensional complex space C™ is one of the main objects for
the study of analytic and plurisubharmonic (psh) functions. The Green function was introduced
and applied in the works of P. Lelong, J. Sichak, V. Zaharyuta, A. Zeriahi, A. Sadullaev and others
(see [1-7]). Recall that a function u(z) € psh(C™) is said to be of logarithmic growth if there is
a constant C, such that

u(z) < C, +Int |z, ze€C",
where In" |z| = max{ln|z|,0}. The family of all such functions is called the Lelong class and
denoted by £. We also introduce a class £1 as follows:
£t = {u(z) € psh(C"), cy+In" |z| <u(z) < C, +In" |2]}.
For a fixed compact set K C C" we put
V(z, K) = sup{u(z) : u(z) € L£,u(2)|x < 0}.

Then the regularization of
V*(z,K) = lim V(w, K)

w—rz

is called the Green function of the compact set K. For a non-pluripolar compact set K, the
function V*(z, K) exists (V*(z, K) # +00) and belongs to the class £1. The Green function
V*(z,K) = 400 if and only if K is pluripolar.

*n.narzillaev@nuu.uz  https://orcid.org/0000-0002-3175-5516
(© Siberian Federal University. All rights reserved
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Definition 1. A compact set K C C" is called globally pluri-regular at a point zy if
V*(2Y, K) = 0. It is called locally pluri-regular at a point zo if V*(2°, K N B(z%,r)) = 0 for
any ball B(z°,7)), r > 0. A compact set K is globally pluri-reqular if it is globally pluri-regular at
every point of itself. A compact set K is locally pluri-reqular if it is locally pluri-regular at every
point of itself.

Theorem 1.1 (see for example, J. Siciak [4], V. Zakharyuta [3]). If a compact set K is globally
pluriregular, then the function V*(z, K) is continuous in C", and V*(z, K) = V(z, K).

2. Weighted Green functions in C”

Let ¢(z) be a bounded function on a compact set K C C™. Consider the class of functions
LK, ¢) = {u(z) € £, u(z)|lk <¥(2)}

and
Vi(z, K,¢) = sup{u(z) : u(z) € L(K,¥)}, z € C".

Then V*(z, K,v) = lim V(w, K, %) is said to be a weighted Green function of K with respect to
w—z

¥ (z). Note that in the case ¢(z) = 0 the function V*(z, K, 1) coincides with the Green function
V*(z,K), ie., V*(z,K,0) = V*(z, K, ). Extremal weighted Green functions are the subject of
study by many authors (see [7,10-13]). They are successfully applied in multidimensional com-
plex analysis, in the approximation theory of functions, in multidimensional complex dynamical
systems etc.

It is clear that for any compact set K C C™ we have the inequality

V*(z,K) + m}%nz/J(z) SV (2, K,¢) < V*(2,K) + m}gxqp(z). (1)

If a function 9(z) extends to the space C™ as a function from the class £, i.e. if there is a

function
Uel: Ug=1, (2)

then it is obvious V(z, K, ) > ¥(z) and
Viz,K,¢¥) =¢(z) Vz€ K. (3)
However, if the condition (2) is not met, then generally speaking, the equality (3) is not true.
Example 1. Let K = {|2|] <1} C C and 9(z) = 1 — |2|%. Then by the maximum principle
V(z, K,9)=V(2, K) =V(z,K) =In" |2].
Therefore, V(z, K,¢) =0<¢(z) V|z|< L

According to this example, in order to introduce the concept of regularity, below we assume
that the Green function satisfies the condition (3).

Definition 2. We say that a compact set K is globally -regular at 2° if V* (29, K, ) = (2°).
We say that a compact set K is locally 1-reqular at 2° if V*(2°, K N B(2°,7),%) = ¥(2°) for
every ball B(2°,r), r > 0.

A. Sadullaev [7] proved the following theorem.
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Theorem 2.1. Let K be a compact set, and ¥(z) is a weight on K such that there exists a
strictly plurisubharmonic function

Ve LNC?(CM): ddV >0, Ul =1p. (4)
Then K is locally v-regular at z° € K if and only if K is globally v-reqular at 2°.

Note that Theorem 2.1, generally speaking, is not true if ¥ is not a strictly plurisubharmonic
function. For the weight function ¢(z) = 0 and for the compact set K = {|z| = 1}U{z =0} Cc C
the point z = 0 is globally regular, but it is not locally regular. In this example K is not
polynomially convex K # K. In the work [5] A. Sadullaev constructed the following interesting
example.

Example 2. The compact set K = K1 U Ko C C?(21,22), where K1 = {|21] < 1,22 = 0}, Ky =
={z1=¢% Rezy =0,0 < Imz < e e ,—7 < @ < 7}, has the following properties:

a) K is polynomially convex, i.e., K= K;
b) K is globally pluri-regular, i.e., V*(2, K) =0,Vz € K ;
¢) K is not locally pluri-regular at the points z € K.
In connection with this example and with Theorem 2.1, the following problem arises (see [7]).

Problem 1. Let K be a compact set in C". Under a weaker condition that the weight function
¥(2) continues only to a neighbourhood U D K as a strictly plurisubharmonic function, prove
that K is locally ¥-regular at zo € K if and only if K is globally v-reqular at zy € K.

The following theorem relates to local regularity for different weight functions.

Theorem 2.2. Let K be a compact set, and ¥ (z) is a weight on K : 1(z) € C(K). Then K is
locally Y-reqular at 2° € K if and only if K is locally regular (case 1 =0) at 2°.

Proof. Indeed, we use the inequality (1). If the point 2 € K is not locally pluri-regular, i.e., if
V*(2°, K N B) = o > 0 for some neighborhood B : 2° € B C C", then V*(:°, K N By) > o for
any 2 € By C B. Therefore, by (1)

*r 0 * ¢ _0 . .
V*(z", KN B,y) 2V*(z ,KﬂB1)+%1§1w(z) ZU+II(I%1113111/)(Z). (5)

Since 9 (z) is continuous, choosing the neighborhood B; small enough we can make the right
part of (5) to be greater than 1(2°) i.e., V*(z, K N By,1) > 1(2°) and the point 2" is not locally
1p-regular.

Reversing the roles of V*(z, K N By,v) and V*(z, K N By) from (1) we can prove the second
part of the theorem: if the point 2 € K is not locally t-regular, then it is not locally pluri-
regular. O

It should be noted here that the conditions of continuity of the function ¥ (z) in Theorem 2.2
is essential. An example is given in [15], when the function (z) is discontinuous, Theorem 2.2
is false, i.e., some point 2’ € K C C is a 9-regular point, but it is not pluri-regular.

-391 -



Nurbek Kh. Narzillaev d-extremal Functions in C"

3. J-extremal functions

Let K C C™ be a compact set and 1 (z) be some bounded function on K. Consider the
following generalization of the Lelong class

Ls = {u(z) € psh(C"): u(z) < Cy +6In"|z], € C"}, 6§ > 0.
It is clear that if v(z) € L, then ¢-v(2) € Ls, where 0 < ¢ < §. Put

Ls(K, ) :={u(z) € Ls, uz)|x <¥(2)}-

Definition 3. The function Vi*(z, K,1) = @ Vs(w, K, 1) is called a d-extremal function of K
with respect to 1(z), where

Vs(z, K,v) :=sup{u(z) : u(z) € Ls(K,v¥)}, z€C™
We list simple properties of §-extremal functions:
1°. If &1 < 09, then Vi, (2, K, ) < Vi, (2, K, ).
2°. If oy < o, Vz € K, then Vs(z, K, 11) < Vi(z, K, 19).
3°. Vs(z, K,0) = 5V(Z,K, %), in particular Vs(z, K) = §V (2, K).
4°. Vs(z, K, +¢) = c+ Vs(2, K,v), Ve € R.

If a function (z) extends to the space C" as a function from the class Ls, i.e. if there is a
function
Uels: \IJ|KEQ/}, (6)

then it is obvious Vj(z, K,v) > ¥(z) and
Vs(z, K, ¢) = ¢(2) Vz € K. (7)

However, if the condition (6) is not met, then generally speaking, the equality (7) is not true. In
this section, as above we assume that the Green function Vs(z, K, 1)) satisfies the condition (7).
For such a function ¢ we can introduce the concept of (9, v)-regularity.

Definition 4. We say that a compact set K is globally (6,1)-reqular at 2° if V(2% K, ¢) =
= 1(2°). We say that a compact set K is locally (6,)-regular at 2° if Vi (2%, KN B(2°%r), )=
= 1(2%) for any ball B(z°,r),r > 0.

The following theorem is proved similarly to the proof of Theorem 2.2 and we omit it.

Theorem 3.1. Let K be a compact set and ¥(z) is a weight on K : ¥(z) € C(K), Vs(z, K,9) =
= () Vz € K. Then K s locally (8,v)-regular at 2° € K if and only if K is locally (3, 0)-reqular
at 2°.

Similarly to Theorem 1.1 the continuity of the §-extremal function takes place.

Theorem 3.2. Let ¥(z) be continuous on K. If K is globally (6,)-regular i.e. if K is globally
(8,9)-reqular at a point 2° € K, then Vi(z, K,¢) = Vs(z, K,v¥) and Vi (z, K,1) is continuous
in C".
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Proof. Let 9(z) be a function defined and continuous on K. It is well known that ¢(z) can be
extended continuously to K, i.e., there is a function ¥(z) € C(C™) such that ¥(2)|x = 1(z) (see
Whitney H. [8]). We use the standard approximation u; | V5*(z, K, ), where u; € LsNC>(C™).
Since Vj'(z, K,¢) = ¥(z), z € K, for any € > 0 there is an open set {z € C", Vj*(z,K,v¢) <
U(z) + e} contained K. Therefore, by the Hartogs lemma, there exists jo € N such that u;(z) <
U(z) 4+ 2e =1(2) +2¢, Vz € K, j > jo. From here, u; — 2¢ € L5(¢, K) and

Uj — 2e < V5(2’7K7¢) g %*(Zvaw) < Uyj s .] > j07 S (Cn

This means that the sequence u; converges to Vi(z, K,®) uniformly and Vj'(z, K,¢) =
= Vs(z, K,¢) € C(C"). O

In the case when § = 1 and ¥(z) continues throughout C™ as a continuous function of the
class £, Theorem 3.2 was proved by A.Sadullaev.

4. H-extremal functions for different o

Note that in the general case Vs(z, K,v) and the weight function ¢ do not have to be equal
on K for all §. In other words, the condition (7) may not be satisfied.

Example 3 (see Alan [10]). Let K = B(0,1) and ¢(z) = |z|>. Then one can prove that

5 )
4P A< /2,
6ln|z|+§—§ln‘§)7 |z|>\/;

We see Vs(z, K, ) = |2]?, Vz € {z| < \/g} and Vs(z, K,v) < |z|%, Vz € {\/g <|z| € 1}

We denote by A = A(K, 1) the set of numbers § for which the equality of type (7) holds, i.e.
A= AK ) = {5> 0: V(e K. )i = (=)}

For Alan’s example, A = [2,+00). In fact,

|2, 2l <1,

Va(z, K ) =
2 ) {2ln|z+1, 2] > 1.

So, Va(z, K,v)|x = 1(z) and by property 1° from Section 3 Vs(z, K,v¢) > Va(z, K, v) for all
§ € [2,+00). If § € (0,2) then there is a point 2 € K such that V5(2°, K,¢) < 1(z°), that is
(0,2)NA=1.
The sets A may be empty. For example, for K = {|z] < 1} € C and (z) = 1 — |z|%, by
property 3° we have
Vs(z, K1) = Vs(2,K) = 6V (2, K) = d1In™ |2].

Therefore, for any 6 > 0, V5(z, K,v) < ¢(z), V|z| < 1. That is, in this case A = ().

If ¢(z) = ¢, where c is a constant, then Vs(z, K,¢) = ¢+ V5(z, K) = ¢+ §V (2, K). Since the
Green function V(z,K) > 0,, for any § > 0 and z € K the equality V5(z, K,c¢) = ¢ holds. This
means that A = (0, +00).

Let A # (. If § € A, then from property 1° we easily get §; € A for §; > §. On the other
hand
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Proposition 1. If ; € A, Vj € N and J; | do # 0 as j — oo then dy € A.

Proof. Indeed, by the hypothesis we have Vs, (z, K,v) = 9 (z),z € K. Using properties 2° and
3°, we get
Vs, (2, K,9) = 8,V (2, K, 5&) <oV(z K, £).

Consequently, Vj € N we have ¢(z) = Vs, (2, K,v) < 6jV(z,K, %), z € K. As j tends to infinity,
we get
U(2) <0V (2, K, £) = Vs (2, K, ¢), 2z €K,
ie. P(2) =60V (2, K, &) = Vs, (2, K,1), z € K and 6y € A. O
Proposition 1 follows, if A # @ then A = (0,00) or A = [dg, +00),d9 > 0. Note that if

§ € A(K,), then Vs(z, K 1) = ¥(z), z € K. Therefore, by monotonicity Vs(z, K N B,¢) =
Y(2), 2 € KN B, for any ball BN K # (. Tt follows that if § € A(K,), then 6 € A(K N B, ).

Definition 5. Let § € A(K). A compact set K is called globally (8,)-regular at a point 2° € K
if V(29 K, ) = (2°). It is called locally (8,)-regular at a point z2° € K if for every nonempty
ball B(z°,r) : V(2% KN B(2%7),9) = ¥(2°). A compact set K is globally (3,)-reqular if it is
globally (8, )-regular at every point of itself. A compact K is locally (8,)-regular if it is locally
(6, 9)-regular at every point of itself.

Note that global or local (0, %)-regularity can only be defined for § € A. It is easy to see that
any locally (6, )-regular point is globally (4, )-regular. We denote by Ayeqg = Ayeg(K, ) the
set of numbers § C A, for which K is globally regular, we denote by Al%¢ = Alo¢ (K ) the set

reg reg

of numbers § C A, for which K is locally regular. We see, Al2¢ C Apeg CA.

reg

Proposition 2. Let 01,62 € A and 6; < 0. If a point 2° is (62,)-reqular, then it is (81,1)-
regular.

The proof follows from property 1° of Section 3. For a continuous function v there holds

Theorem 4.1. Let 6 € A, and a function (z) be continuous on K. Then a fized point 20 €
K C C™ is locally (6,¢)-regular if and only if it is locally pluri-reqular.

Proof. We show that for any compact set K C C" the following is true:
oV*(z,K) + m}}nt/)(z) < Vi'(z, K,¢) < V¥ (2, K) + m}z(xxw(z). (8)
In fact, if u € L5(K, 1), i.e., u € L5, u|rx <1, then
u(z) — m[zgxt/)(z) € L5(K).

Therefore
u(z) —maxy(z) < Vg'(z K)

and
Vs (z, K,¢) — m}:gxd)(z) Vi (2, K)=06V*(2,K), VzeC".

Conversely, if u € L5(K), then u(z) + m}}n ¥(z) € L5(K, ). Therefore,
Vi (2 )+ minth(2) = 6V (2, ) + minv(z) < V5 (2, K1),

so that (8) holds.
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Using (8) we can now prove the theorem. If a fixed point 2" € K is not locally pluri-regular,
ie., if V*(2°, KNB) = ¢ > 0 for some neighborhood B : 2° € B C C", then V*(2°, KNB;) > o
for any 2° € By C B. Therefore, by (8)

*(,,0 00 . .
Vs (2", KN By,¥) 2 6V*(z", KN By) +&1§1w(z) > 50—}—&1{3&1&(2). (9)

Since 1 (z) is continuous, choosing a neighborhood B; small enough we can make the right part
of (9) to be greater than ¢(2°) i.e., Vi*(z, K N By, 1) > 9(2"). This means that the point 20 is
not locally (4, ¢)-regular.

Reversing the roles of V5 (z, K N By,v¢) and V*(2, K N By) from (8) we can prove the second
part of the theorem: if a point z° € K is not locally (§,)-regular, then it is not locally pluri-
regular. O

Corollary 1. Let 61,0 € A and a function (z) be continuous on K. Then a fived point z° €
K C C™ is locally (01,%)-regular if and only if it is locally (d2,)-regular.

Proposition 3. If 6; € Ayeg, Vi €N and §; 10 as j — 0o, then 0 € Ayeq.
Proof. In fact, since ¢ (z) = V5 (2, K,9),z € K, we get
U(z) = Vi (2, K,9) = 6,V (2, K, %) > 6,V (2, K, %).
Therefore, Vj € N we have ¢(z) > 6;V* (z7 K, %), z € K. As j tends to infinity, we get

Y(z) =0V (2, K, L) = Vi (2, K,¢), 2 € K.

This means that § € Ayeq. -
Corollary 2. If A = [dy,00), then Aveyg = or [do, 1]

or [dg,00).
Corollary 3. If A = (0,00), then e, = or (0,01]

or (0,00).

In the paper [10] M. Alan studied the concepts of (§,1))-regularity and posed the following
problem

Problem 2 ([10]). Let K be a compact set in C™, (z) extends to L}'l (see (6)) and 0 < 01 < d2.
If K is (01,%)-regular at zg € K, then K is (02,%)-regular at zp.

5. The property of (0, )-regularity
Further properties of J-extremal function are associated with pluri-thin sets.

Definition 6. Let E C C" and let E' be its limit point set. Then E is said to be pluri-thin
at 20 if either 2° ¢ E' or 2° € E' but there exists a neighbourhood U of 2° and a function
u(z) € psh(U) such that

m  u(z) < u(2°).

z—2°
2€E\{2°}
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So, if the set E is not thin at the point 2°, then for any plurisubharmonic function u(z) in
the neighborhood of 2°

lim u(z) = limou(z) =u(zY).
zEZE*\?zD} ZZZ%

Proposition 4 ([16]). If E C C" is pluri-thin at a limit point 2° of E, then there exists a
plurisubharmonic function u € LT such that

im  wu(z) = —0o < u(2°).
2—2°
ZGE\{ZO}

Theorem 5.1. If 2° is a pluri-thin point of K, then 2° is locally (8,v)-irregular point of K.
Here the function ¢ € L™ (K) and ¢ € A.

Proof. Let K be pluri-thin at the point z° € K. Then, according to Proposition 4, there exists
a function u(z) € Ls such that

lim  u(z) = —oco < u(2).
2—2°
ZGE\{ZO}

Without loss of generality, we can assume u(z°) > 0 and find a ball B(2%,r) such that

u(z) < inf $(z) - (") for 2 € K1 B\ {'},

u(z%) > 0.

Put w(z) = u(z) + ¥(2Y). It is easy to see that w(z) € Ls(x, K N B\ {z°}), because for
ze KNB\{°}

w(z) = u(z) + ¥(=°) < Inf 9(2) - ¥(2") +9(2%) = inf ¥(z) <Y(2).

zeK
Consequently,
w(z) < V§(z, KN B\ {2°},v) = Vi (2, KN B,y), Vz € C".
From here
w(2%) < V5 (2, K N B,v).
On the other hand
w(2%) = u(2®) + ¥(2%) > ¥(2°).
Therefore
() < w(z?) < V5 (2% KN B,y).

Hence, the point 2" is a locally (d,) irregular point of the compact set K. O

Note that if n > 1, the necessary condition of Theorem 5.1, generally speaking, is not true.
Example 4. Let (6,7)= (1,0) and K = {(21,22) € C?: |2| <1} U {(21,22) € C%: 25 = 0, |21| <2}.

The compact set K is a union of the unit ball in C? and a pluripolar set. We have
Int|z|  for zp #2
V(z, K) = +|*1
In ‘5’ for 20 =0

and
V*(z,K) =In" |z
A point (2,0) € K is an irregular point, but it is not pluri-thin.
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HenbTa-3kcTpeMajibHag hyHKIUSA B npoctpancTBe C”

Hyp6ek X. Hap3uinaen
Harmumonanbuberit yauBepcurer Y30eKucTaHa
Tamxkent, Y3bekucran

Anporanus. B s1oii crarbe Mbl n3ydaeM (4, ¥)-sxcrpemansuyio dyuknuio 'puna V' (z, K, 1), KoTopas
ompezenstercst npu nomomw Kinacca L5 = {u(z) € psh(C") : u(z) < Cu +6In" |z|, 2 € C"}, § > 0.
ITokaxkeM, YTO HOHATHE PETYIAPHOCTH TOYEK I PA3HbIX 0 He COBIAJAIOT. TeM He MeHee Mbl JOKa3bIBa-
eM, uto eciu komnakT K C C™ perynsipen, To d-skcrpeMaJibHas byHKIMs [ puHa HENpepbIBHA BO BCEM
npocrpancrse C".

KuaroueBrbie cioBa: maopucybrapmMonndeckne GyHKINH, SKCTpeMasibHasds GyHKnusa ['puna, dyHKIms
I'puna ¢ BecoM, J-3kcTpemMasbHasA DYHKIAS.
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