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This issue of the journal is dedicated to the memory of Professor Yuri
Belov.

Yuri Ya.Belov, a founder of the Krasnoyarsk School of inverse problems of mathematical
physics, died December 9, 2019

Yuri Belov graduated the faculty of mechanics and mathematics at Novosibirsk state uni-
versity. In 1970 he was assigned to work at Krasnoyarsk state university upon graduation of
doctor’s course where he held the position of assistant professor at the department of applied
mathematics. In 1971 Yuri Belov defended Cand. Sc. (Phd) thesis on the topic "Certain mathe-
matics aspects of the gas dynamics with viscosity". In 1982 he successfully defended the doctor’s
thesis "The approximation and correctness of boundary value problems for the systems of differ-
ential equations" and gotten the Doctor’s degree (Doctor of Science). In 1986 he was given the
academical title of professor.

In 1972 Yu.Ya. Belov took up his post as a head of the department of mathematical analysis
and differential equations and was at the head of it to the last days. The department was found
by professor L. A. Aizenberg as the department of mathematical analysis at Krasnoyarsk branch
of Novosibirsk state university in 1965 and renamed in 1972. All next work activities of Yuri
Yakovlevich were concerned with the science, the university and this department.

Yu.Ya.Belov is the recognized specialist on the boundary value problems for the partial dif-
ferential equations and the inverse problems of mathematical physics. He published two mono-
graphs and more then 120 research papers and methodical works. His main works are on the
unique solvability and approximation of certain boundary value problems for the systems of equa-
tions describing the ocean flows (1979); the decomposition of degenerate quasi-linear parabolic
equation (1989); inverse problems for parabolic equations (1993).

At different times Yuri Yakovlevich held the position of dean at the faculty of mathematics
and pro-rector at Krasnoyarsk state university. Hi showed exceptional talent as a teacher, admin-
istrator and scientist. Professor Yu.Ya.Belov directed his efforts towards creating good traditions
at the faculty of mathematics and then the school of mathematics and computer science. These
traditions took all the best of that Yu.Ya. Belov brought as the pupil of the schools of thought
of Novosibirsk Academgorodok and his outstanding teacher academician N. N. Yanenko.

Yuri Belov gave impetus to many young researchers which became Candidates of Sciences
and work on the doctor’s thesis. At present time his pupils I. V. Frolenkov, O. N. Cherepanova,
T.N. Shipina, A. Sh. Lyubanova, R.V. Sorokin, S. V. Polintseva work at the department of math-
ematical analysis and differential equations and continue his research. The memory of professor
Yu.Ya.Belov lives in his collegues and pupils.
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Abstract. The Ostroumov–Birikh type exact solution of thermodiffusion convection equations is con-
structed in the frame of mathematical model considering evaporation through the liquid–gas interface
and the influence of direct and inverse thermodiffusion effects. It is interpreted as a solution describing
steady flow of evaporating liquid driven by co-current gas-vapor flux on a working section of a plane
horizontal channel. Functional form of required functions is presented. An algorithm for finding all the
constants and parameters contained in the solution is outlined, and their explicit expressions are written.
The solution is derived for the case of vapor absorption on the upper wall of the channel which is set
with the help of the first kind boundary condition for the function of vapor concentration. Applicability
field of the solution is briefly discussed.

Keywords: mathematical model, boundary value problem, exact solution, evaporative convection
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Introduction

The widespread use of two-phase systems in different technologies motivates the intensive
development of the experimental and theoretical methods for studying the features of convective
flows accompanied by evaporation in the frame of various approaches [1]. Examples of such tech-
nologies are the fluidic cooling, thermal coating or drying processes etc. Full-scale experimental
elaboration and testing of the real technological systems can be very expensive and sometimes
impossible (for example, if it is expected that these systems will be used in microgravity). Thus,
preliminary theoretical investigation based on the mathematical modeling is the necessary re-
quirement and an indispensable part when solving the optimization problems of fluid technologies
and in the search for innovative technical solutions.
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Currently, mathematical models built on the basis of the Navier–Stokes and heat transfer
equations or their approximations are the most widely used ones for theoretical investigations
of the processes in the two-phase systems. These equations are the results of symmetry of the
space-time, i. e. the fulfilment of the fundamental conservation laws was implied in deriving
the equations. This fact enables to obtain the significant results in the study the problems of
the fluid flows with heat and mass transfer at the thermocapillary interfaces. We focus on the
search and investigation of an exact solution of the governing system of differential equations,
since the solution inherit basic properties of symmetry of the space-time and of a fluid moving
in the space, thereby ensuring feasibility of physical processes described by this solution.

Among possible solutions of the evaporative convection problems are especially highlighted
the Ostroumov–Birikh type solutions [1]. They take into account the presence of temperature
gradient which can appear both due to evaporation and applied outside or interfacial thermal
load. The applicability of such a class of solutions for describing the two-layer flows with diffusive
type evaporation at the interface in a horizontal channel is confirmed by a good qualitative
agreement between the experimental data and theoretical results [2]. The specific feature of
these solutions is that they allow one to test various types of boundary conditions for the vapor
concentration and temperature functions, to correctly take into account the influence of the
external controlling actions (thermal, mechanical, fluid flow rate etc.) as well as the gravity and
thermodiffusion effects [3, 4].

For the first time, the problem of unidirectional two-layer flows induced by the gravity and
Marangoni forces was considered in [5]. The first results of the study the flows with evaporation
in a bilayer system based on an analogue of the Ostroumov–Birikh solution were presented in [6].
2D and 3D generalizations of the solution obtained in the framework of the evaporative convection
problem in the liquid – gas system with the sharp interface admitting the phase transition were
constructed in [7,8]. The uniform character of evaporation was considered in all the listed works.

In the present paper, an exact solution of the convection equations to describe joint flow of
the evaporating liquid and gas-vapor mixture in a horizontal minichannel under conditions of
the given gas flow rate and full vapor absorption on the upper channel boundary is constructed.
The aim of this work is to take into account an inhomogeneous with respect to the longitudinal
coordinate character of evaporation at the interface.

1. Problem statement and form of exact solution

The stationary flow of two viscous incompressible media (of the liquid and gas-vapor mix-
ture) filling the plane channel and having the common thermocapillary interface Γ is considered
(Fig. 1). In the Cartesian coordinate system (x, y) the gravity acceleration vector g has the
coordinates g = (0, −g). The upper and lower boundaries of the channel y = h and y = −l are
the rigid walls. The interface remains to be flat, it is given by the equation y = 0.

The Oberbeck–Boussinesq approximation of the Navier–Stokes equations is used to describe
the flow in each phase. In two-dimensional case the constitutive equations have the following
form:

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2.1)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
+ g (βT + γC) , (2.2)

– 405 –



Victoria B. Bekezhanova . . . Solution of a Two-Layer Flow Problem with Inhomogeneous . . .

Fig. 1. Flow scheme.

∂u

∂x
+
∂v

∂y
= 0, (2.3)

u
∂T

∂x
+ v

∂T

∂y
= χ

(
∂2T

∂x2
+
∂2T

∂y2
+ δ

(
∂2C

∂x2
+
∂2C

∂y2

))
. (2.4)

The vapor transfer in the gas phase is governed by the convective diffusion equation, which is
the result of the Fick’s law [9]:

u
∂C

∂x
+ v

∂C

∂y
= D

(
∂2C

∂x2
+
∂2C

∂y2
+ α

(
∂2T

∂x2
+
∂2T

∂y2

))
. (2.5)

The terms γC in (2.2) and δ∆C in (2.4) are taken into account by modeling of flows in the
gas-vapor layer. In equations (2.1)–(2.5) the following notations are used: u, v are the longi-
tudinal and transversal components of the velocity vector, p is the deviation of pressure from
the hydrostatic one, T is the temperature, C is the vapor concentration in background gas, ρ
is the density of the liquid and gas (some reference value of the density), ν is the kinematic
viscosity coefficient, χ is the heat diffusivity coefficient, D is the coefficient of vapor diffusion in
the gas, β is the coefficient of thermal expansion, γ is the concentration coefficient of density,
the parameters δ and α characterize the Dufour and Soret effects (the effects of diffusive thermal
conductivity and thermodiffusion, correspondingly) [10].

Let the exact solution of the governing equations (2.1)–(2.5) be of a special type, when
only the longitudinal velocity component is not equal to zero and depends on the transverse
coordinate; functions of temperature and vapor concentration have the linear components with
respect to the longitudinal coordinate:

ui = ui(y), vi = 0, Ti = Ti(x, y) =
(
ai1 + ai2y

)
x+ ϑi(y),

C = C(x, y) = (b1 + b2y)x+ ϕ(y), pi = pi(x, y).
(2.6)

Index i denotes characteristics of corresponding fluid: i = 1 relates to the liquid in the lower
layer, i = 2 regards to the gas-vapor mixture filling the upper layer. Parameters ai2, bj (i = 1, 2;

j = 1, 2) are the constants, their values will be determined with the help of boundary conditions.
Furthermore, the boundary conditions will dictate certain linking relations for the parameters.
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2. Boundary conditions

The boundary conditions will be written subject to the form of exact solution (2.6) of equa-
tions (2.1)–(2.5). The no-slip conditions are fulfilled on the fixed impermeable channel walls

u1 (−l) = 0, u2 (h) = 0, (3.1)

and the linear temperature distribution is prescribed on these walls

T1 (x,−l) = A1x+ ϑ−, T2 (x, h) = A2x+ ϑ+. (3.2)

The condition for vapor concentration on the upper wall is determined by the property of
this wall to instantaneously completely absorb the vapor:

C (x, h) = 0. (3.3)

In some real physical cases the vapor absorbtion property is confirmed by a possibility of a freezing
out of the vapor. The applicability of boundary condition of such a type in this problem in frame
of 3D statement is discussed in [11].

On the thermocapillary interface Γ given by the equation y = 0 the kinematic and dynamic
conditions as well as the condition of heat balance should be set [12]. The kinematic condi-
tion is fulfilled automatically in view of the form of the velocity vector components (see (2.6)).
Projection of the dynamic condition on the unit tangential vector to the interface is written as
follows:

ρ1ν1u1y = ρ2ν2u2y − σTTx
∣∣
y=0

, (3.4)

where σT > 0 is the temperature coefficient of the surface tension σ which linearly depends on
the temperature, σ = σ0 − σT (T − T0), σ0 > 0 is the characteristic value of the surface tension
at a relative temperature T0. Projection of the dynamic condition on the unit normal vector to
the interface leads to the equality

p1 = p2. (3.5)

We demand the fulfilment of continuity conditions for the tangential component of velocity
vector and temperature at the interface:

u1 = u2, T1 = T2. (3.6)

The continuity of normal component of the velocity vector ensues from the kinematic condition.
The heat transfer condition and the mass balance equation are stated as follows:

κ1T1y − κ2T2y − δκ2Cy
∣∣
y=0

= −λM, (3.7)

M = −Dρ2 (C y + αT2y|y=0) . (3.8)

The relations include the effects of the thermodiffusion and duffusive thermal conductivity char-
acterized by coefficients α and δ; λ is the latent heat of evaporation. In the present paper, the
exact solution is constructed under assumption, that the evaporation mass flow rate of the liquid
at the interface linearly depends on the longitudinal coordinate:

M =M(x) =M0 +Mxx. (3.9)

The presupposition implies that nonuniform (inhomogeneous) character of phase transition is
examined. The evaporation mass flow rate M is one of the important characteristics of the

– 407 –



Victoria B. Bekezhanova . . . Solution of a Two-Layer Flow Problem with Inhomogeneous . . .

evaporative convection. The positive values of M correspond to evaporation of the liquid into
the gas flow; the negative values regards to the vapor condensation.

The saturated vapor concentration is defined with the help of the relation being a sequence
of the Clapeyron–Clausius and Mendeleev–Clapeyron equations [6, 7, 13]:

C
∣∣
y=0

= C∗[1 + ε(T2
∣∣
y=0

− T0)]. (3.10)

In this equation ε = λµ0/(RT
2
0 ), µ0 is the molar mass of the evaporating liquid, R is the universal

gas constant, C∗ is the saturated vapor concentration at T2 = T0. Equation (3.10) is valid under
assumption of smallness of the dimensionless parameter εT∗ (T∗ is a characteristic temperature
drop), that is provided by moderate values of temperature and temperature drops.

To close the problem statement the condition of a given gas flow rate is assumed to be
satisfied:

Q =

∫ h

0

ρ2u2(y) dy. (3.11)

Used form of the boundary conditions allows one to correctly describe the phase transition of
diffusive type. Thus, boundary-value problem (2.1)–(2.5), (3.1)–(3.11) presents the mathematical
model to simulate convection in multiphase system under conditions of weak evaporation.

3. The class of the exact solutions

The fulfilment of condition of temperature continuity (3.6) at the interface dictates the fol-
lowing equality: ai1 = A (i = 1, 2). The value determines the longitudinal temperature gradient
presetting the intensity thermal effects on the interface, and as consequence, the intensity of
evaporation and surface tension-driven convection.

Deriving the solution of equations (2.1)–(2.5) in the form (2.6) results in the explicit expres-
sions for the required functions which define basic characteristics of the bilayer system (velocity
ui, pressure pi, temperature Ti in i-th phase and vapor concentration C in gas layer):

ui (y) = ci3 + ci2y + ci1
y2

2
+ Li3

y3

6
+ Li5

y4

24
,

pi (x, y) =

(
di1 + di2y + di3

y2

2

)
x+ ci8 +Ki

1y +Ki
2

y2

2
+Ki

3

y3

3
+Ki

4

y4

4
+

+Ki
5

y5

5
+Ki

6

y6

6
+Ki

7

y7

7
+Ki

8

y8

8
,

Ti (x, y)=
(
A+ ai2y

)
x+ ci5+ ci4y+N i

2

y2

2
+N i

3

y3

6
+N i

4

y4

24
+N i

5

y5

120
+N i

6

y6

720
+N i

7

y7

1008
,

C (x, y)= (b1 + b2y)x+ c7 + c6y + S2
y2

2
+ S3

y3

6
+ S4

y4

24
+ S5

y5

120
+ S6

y6

720
+ S7

y7

1008
.

(3.12)

Coefficients Li4, Li3, Sj , Ki
m (i = 1, 2; j = 2, . . . , 7; m = 1, . . . , 8) are expressed by physical

parameters of the problem g, βi, νi, χi, ρi, D, γ, coefficients defining the longitudinal temperature
and vapor concentration gradients A, ai2, bi (i = 1, 2), and by integration constants cij (i = 1, 2;
j = 1, . . . , 5; 8), c6, c7. Exact representations of the listed coefficients are given in Appendix.
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4. The common scheme for finding the governing
parameters and integration constants

Implementation of boundary conditions (3.1)–(3.11) will lead to a system of equations for
calculation of the integration constants cij (i = 1, 2; j = 1, . . . , 5; 8), c6, c7. Determining these
constants, the velocity and temperature profiles, the pressure distributions for both fluids and
the vapor concentration in the gas are calculated with the help of formulas (3.12).

Below, the algorithm for finding all the unknown parameters and constants is outlined. Let
the gas flow rate (3.11) and certain values of the longitudinal temperature gradients A, A1 (see
expression for the temperature functions in (3.12) and boundary conditions (3.2) be given.

(i) In the consequence of the heat transfer and mass balance conditions (3.7), (3.8) at the
interface a relationship relating the longitudinal temperature gradients A, A1 and A2 is
derived. It should be noted that both boundary gradients A1 and A2 can be given, then
the corresponding relation to calculate the interfacial gradient A is obtained.

(ii) Parameters b1, b2, Mx characterizing the flow regime (2.6), (3.9) with nonuniform evapo-
ration are determined with the help of A, A2 on the basis of (3.3), (3.8), (3.10).

(iii) Solving the system of the linear algebraic equations being a consequence of the no-slip
conditions (3.1), dynamic conditions (3.4), (3.5), condition of velocity continuity (3.6) and
equality (3.11) defining the gas flow rate, the values of the unknowns {ci1, ci2, ci3} (i = 1, 2)
are calculated.

(iv) Conditions determining the thermal and vapor concentration boundary regimes (3.2), (3.3),
conditions at interface setting the temperature continuity (3.6) and saturated vapor con-
centration (3.10), and heat balance equation (3.7) lead to the system of the linear algebraic
equations for calculation {c24, c25, c6} and {c14, c15, c7}.

(v) The value of M0 will be computed with the help of obtained values c24 and c6.

Following this algorithm, all the required functions of the form (2.6) and the mass evaporation
rate at the interface M =M(x) in the form (3.9) are determined.

5. Concluding remarks with regard to conditions
of applicability of the solution

To use the obtained solution for describing convection with evaporation in real physical
systems, it should define conditions ensuring the correct application of the approach based on
the utilization of the exact solutions of the fluid mechanics equations in the Oberbeck–Boussinesq
approximation.

First of all, it must be remembered that the principal limitation for the use of the Oberbeck–
Boussinesq approximation is to consider the heat and mass transfer processes occurring under
moderate temperature drops. The equations of thermal-concentration convection written in form
(2.1)–(2.4) present the “diffusive” laws of the transfer of mass, momentum and energy which
adequately govern these processes near the thermodynamical equilibrium state. The moderate
temperature drops, in turn, result in small variations of concentration. The latter ensures the
correct using of the Fick’s law written in form of convection-diffusion equation (2.5) and interface
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boundary condition (3.10). These requirements concerning quantitative changes in temperature
and concentration in the system allow one to consider the processes of phase transition as the
diffusive ones, and consequently, to believe that we deal with “weak” evaporation. It means that
the phase transitions induced by critical thermal loads as, for example, while boiling are not
considered.

The second point is to regard the flows with small velocities. It allows one to suppose that the
gas in two-phase systems under study is an incompressible medium. It is worth to noting that for
the mini- and microscale fluidic systems this assumption is quite justified [14]. Simultaneously,
the requirement concerning the scale of the system is the condition when the Ostroumov–Birikh
type solution gives plausible description of all the basic characteristics for a two-phase system
with evaporation through the sharp interface [6].

Finally, taking into account the character of dependence of the temperature and vapor con-
centration functions on the longitudinal coordinate x specified in (2.6), one can conclude that
these functions will grow with growth of x. Then, according to the given physical interpretation
of solution (2.6), it will give appropriate (physically feasible) results if the convective regimes are
considered in the domain of finite size. One should control the values of C function; they cannot
be more than 1, since we treat this function as mass fraction of the evaporating component in the
background gas. If its values becomes more than 1, it will immediately mean, that the solution
gives “purely mathematical solution” of the boundary-value problem under consideration.

Appendix. Formulas for calculating the coefficients
in expressions (3.12)

Coefficients Li4, Li3:

L1
4 =

gβ1a
1
2

ν1
, L1

3 =
gβ1A

ν1
, L2

4 =
g

ν2

(
β2a

2
2 + γb2

)
, L2

3 =
g

ν2
(β2A+ γb1) .

Coefficients N i
7, N

i
6, N

i
5, N

i
4, N

i
3, N

i
2:

N1
7 =

gβ1(a
1
2)

2

ν1χ1
, N1

6 = 5
gβ1Aa

1
2

ν1χ1
, N1

5 =
1

χ1

(
gβ1(A)

2

ν1
+ 3a12c

1
1

)
,

N1
4 =

1

χ1

(
Ac11 + 2a12c

1
2

)
, N1

3 =
1

χ1

(
Ac12 + a12c

1
3

)
, N1

2 =
A

χ1
c13, N2

7 = B2
g

ν2

(
β2a

2
2 + γb2

)
,

N2
6 =

g

ν2

[
B1

(
β2a

2
2 + γb2

)
+ 4B2 (β2A+ γb1)

]
, N2

5 = B1
g

ν2
(β2A+ γb1) + 3B2c

1
2,

N2
4 = B1c

2
1 + 2B2c

2
2, N2

3 = B1c
2
2 + 2B2c

2
3, N2

2 = B1c
2
3.

Coefficients S7, S6, S5, S4, S3, S2:

S7 =
g

ν2

(
β2a

2
2 + γb2

)(b2
D

− αB2

)
,

S6 =
g

ν2

[(
b1
D

− αB1

)(
β2a

2
2 + γb2

)
+ 4

(
b2
D

− αB2

)
(β2A+ γb1)

]
,

S5 =
g

ν2

[(
b1
D

− αB1

)
(β2A+ γb1) + 3

(
b2
D

− αB2

)
c21

]
,
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S4 =

(
b1
D

− αB1

)
c21 + 2

(
b2
D

− αB2

)
c22,

S3 =

(
b1
D

− αB1

)
c22 +

(
b2
D

− αB2

)
c23, S2 =

(
b1
D

− αB1

)
c23.

Coefficients di3, di2, di1:

d13 = ρ1gβ1a
1
2, d12 = ρ1gβ1A, d11 = ρ1ν1c

1
1,

d23 = ρ2gβ2a
2
2 + ρ2gγb2, d22 = ρ2gβ2A+ ρ2gγb1, d21 = ρ2ν2c

2
1.

Coefficients Ki
8, K

i
7, K

i
6, K

i
5, K

i
4, K

i
3, K

i
2, K

i
1:

K1
8 =

1

1008

(gβ1a
1
2)

2ρ1
ν1χ1

, K1
7 =

1

144

(gβ1)
2ρ1

ν1χ1
Aa12,

K1
6 =

1

120

gβ1ρ1
χ1

(
gβ1(A)

2

ν1
+ 3a12c

1
1

)
, K1

5 =
1

24

gβ1ρ1
χ1

(
Ac11 + 2a12c

1
2

)
,

K1
4 =

1

6

gβ1ρ1
χ1

(
Ac12 + a12c

1
3

)
, K1

3 =
1

2

gβ1ρ1
χ1

Ac13, K1
2 = gβ1ρ1c

1
4, K1

1 = gβ1ρ1c
1
5;

K2
8 =

1

1008

g2ρ2
ν2

(
β2a

2
2 + γb2

)(
B2(β2 − αγ) +

γb2
D

)
,

K2
7 =

1

720

g2ρ2
ν2

[
(
β2a

2
2 + γb2

)(
B1(β2 − αγ) +

γb1
D

)
+

+4 (β2A+ γb1)

(
B2(β2 − αγ) +

γb2
D

)
],

K2
6 =

1

120
gρ2

[
g

ν2
(β2A+ γb1)

(
B1(β2 − αγ) +

γb1
D

)
+ 3

(
B2(β2 − αγ) +

γb2
D

)
c21

]
,

K2
5 =

1

24
gρ2

[(
B1(β2 − αγ) +

γb1
D

)
c21 + 2

(
B2(β2 − αγ) +

γb2
D

)
c22

]
,

K2
4 =

1

6
gρ2

[(
B1(β2 − αγ) +

γb1
D

)
c22 +

(
B2(β2 − αγ) +

γb2
D

)
c23

]
,

K2
3 =

1

2
gρ2

(
B1(β2 − αγ) +

γb1
D

)
c23, K2

2 = gβ2ρ2c
2
4 + gγρ2c

2
6, K2

1 = gβ2ρ2c
2
5 + gγρ2c

2
7.

Here, B1 =
DA− χ2δb1
Dχ2(1− αδ)

, B2 =
Da22 − χ2δb2
Dχ2(1− αδ)

.

V.B.Bekezhanova and I. A. Shefer are thankful for the support provided by the Krasnoyarsk
Mathematical Center and financed by the Ministry of Science and Higher Education of the
Russian Federation in the framework of the establishment and development of regional Cen-
ters for Mathematics Research and Education (Agreement no. 075- 02-2020-1631). The work
of O.N.Goncharova was carried out in accordance with the State Assignment of the Russian
Ministry of Science and Higher Education entitled "Modern methods of hydrodynamics for envi-
ronmental management, industrial systems and polar mechanics" (Govt. contract code: FZMW-
2020-0008)

– 411 –



Victoria B.Bekezhanova . . . Solution of a Two-Layer Flow Problem with Inhomogeneous . . .

References

[1] V.B.Bekezhanova, O.N.Goncharova, Problems of the evaporative convection (review), Fluid
Dyn., 53(2018), no. 1, S69–S102.

[2] O.N.Goncharova, E.V.Rezanova, Yu.V.Lyulin, O.A.Kabov, Analysis of a convective fluid
flow with a concurrent gas flow with allowance for evaporation, High Temperature, 55(2017),
no. 6, 887–897.

[3] V.B.Bekezhanova, O.N.Gocnahrova, I.A.Shefer, Analysis of an exact solution of problem
of the evaporative convection (Review). Part I. Plane case, Journal of Siberian Federal
University. Mathematics & Physics, 11(2018), no. 2, 178–190.
DOI: 10.17516/1997-1397-2018-11-2-178-190.

[4] V.B.Bekezhanova, O.N.Goncharova, Influence of the Dufour and Soret effects on the char-
acteristics of evaporating liquid flows Int. J. Heat Mass Transfer, 154(2020), art. 119696.
DOI: 10.1016/j.ijheatmasstransfer.2020.119696

[5] L.G.Napolitano, Plane Marangoni–Poiseuille flow two immiscible fluids, Acta Astronaut,
7(1980), 461–478.

[6] M.I.Shliomis, V.I.Yakushin, Convection in a two-layers binary system with an evapora-
tion, Collected papers: Uchenye zapiski Permskogo Gosuniversiteta, seriya Gidrodinamika,
4(1972), 129–140 (in Russian).

[7] O.N.Goncharova, E.V.Rezanova, Example of an exact solution of the stationary problem
of two-layer flows with evaporation at the interface, J. Appl. Mech. Tech. Phys., 55(2014),
no. 2, 247–257. DOI: 10.1134/S002189441402007

[8] O.N.Goncharova, O.A.Kabov, Investigation of the two-layer fluid flows with evaporation at
interface on the basis of the exact solutions of the 3D problems of convection, J. Phys.:
Conf. Ser., 754(2016), art. 032008.

[9] L.D.Landau, E.M.Lifshitz, Course of Theoretical Physics, Vol. 6, Fluid Mechanics (2nd
ed.), Butterworth–Heinemahh, Oxford, 1987.

[10] S.R. De Groot, P.Mazur, Non-equilibrium Thermodynamics, Dover, London, 1984.

[11] V.B.Bekezhanova, O.N.Goncharova, Modeling of three dimensional thermocapillary flows
with evaporation at the interface based on the solutions of a special type of the convection
equations Appl. Math. Model., 62(2018) 145–162. DOI: 10.1016/j.apm.2018.05.021

[12] V.K.Andreev, Yu.A.Gaponenko, O.N.Goncharova, V.V.Pukhnachev, Mathematical Models
of Convection, De Gruyter, Berlin, Boston, 2020.

[13] B.Haut, P.Colinet, Surface-tension-driven instability of a liquid layer evaporating into an
inert gas, J. of Colloid and Interface Science, 285(2005), 296–305.

[14] H.Machrafi, Y.Lyulin, C.S.Iorio, O.Kabov, P.C.Dauby, Numerical parametric study of the
evaporation rate of a liquid under a shear gas flow: experimental validation and the impor-
tance of confinement on the convection cells and the evaporation rate, Int. J. Heat Fluid
Flow, 72(2018) 8–19.

– 412 –



Victoria B.Bekezhanova . . . Solution of a Two-Layer Flow Problem with Inhomogeneous . . .

Решение задачи о двухслойном течении с неоднородным
испарением на термокапиллярной границе раздела

Виктория Б. Бекежанова
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация
Ольга Н. Гончарова

Алтайский государственный университет
Барнаул, Российская Федерация

Илья А. Шефер
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. В рамках математической модели, учитывающей испарение на межфазной грани-
це и влияние прямого и обратного термодиффузионных эффектов, строится аналог решения
Остроумова–Бириха для уравнений термоконцентрационной конвекции. Полученное решение ин-
терпретируется как решение, описывающее установившееся течение испаряющейся жидкости, увле-
каемой спутным газопаровым потоком, на рабочем участке плоского горизонтального канала. При-
ведены точные представления искомых функций. Описан алгоритм определения констант и пара-
метров, которые содержит решение, выписан их явный вид. Решение построено для случая аб-
сорбции пара на верхней стенке канала, которое задаётся граничным условием первого рода для
функции концентрации пара. Кратко обсуждается область применимости полученного решения.

Ключевые слова: математическая модель, краевая задача, точное решение, испарительная кон-
векция.
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Abstract. The paper discusses the regularity of the solutions to the inverse problems on finding un-
known coefficients dependent on t in the pseudoparabolic equation of the third order with an additional
information on the boundary. By the regularity is meant the continuous dependence of the solution on
the input data of the inverse problem. The regularity of the solution is proved for two inverse prob-
lems of recovering the unknown coefficient in the second order term and the leader term of the linear
pseudoparabolic equation.
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Introduction

In this paper we discuss inverse problems for the pseudoparabolic diffusion equation

(νu+ ηMu)t + kMu+ gu = f. (0.1)

Here M is an elliptic linear differential operator of the second order in the space variables,
ν > 0 is a constant, the coefficients η and k depends on t, the functions g and f depends
on t, x. We establish the regularity of the strong solution of two inverse problems for (0.1)
with unknown coefficients η and k dependent on t under the Dirichlet boundary condition and
additional integral boundary data akin to the conditions of overdetermination considered in [5,6].
An exact statement of the problems will be given below. In [6], the regularity of the strong
solution was investigated for the inverse problem on finding an unknown coefficient k(t) with
given constant η and function g(t, x) in the sense that the smoothness of the solution increases
with increasing the smoothness of the input data. In this paper by the regularity of the solution
is meant its continuous dependence on the input data of the inverse problem. The regularity
of solution, as used here, was established for the inverse problem of finding an unknown lower
coefficient g = g(t) in equation (0.1) [7].

In [5,6], following the idea of [9] the existence of the strong solutions of the inverse problems
was proved by reducing the inverse problem to an operator equation of the second type for the

∗lubanova@mail.ru
c⃝ Siberian Federal University. All rights reserved
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unknown coefficient. It was shown that the operator of this equation is a contraction on a set
constructed with the use of the comparison theorems for pseudoparabolic equations.

Applications of such problems deal with the recovery of unknown parameters indicating phys-
ical properties of a medium (the heat conductivity, the permeability of a porous medium, the
elasticity, the absorption (also known as potential) in the diffusion etc.). An exact statement
of the problem will be given below. Since the natural stratum is involved, the parameters in
(0.1) should be determined on the basis of the investigation of its behavior under the natural
non-steady-state conditions (see [1,12,13] for more details). This leads to the interest in studying
the inverse problems for (0.1) and its analogue.

The study of inverse problems for pseudoparabolic equations goes back to 1980 s. The first
result [11] refers to the inverse problems of determining a source function f of equation

(u+ L1u)t + L2u = f (0.2)

in case L1 = L2 where L1 and L2 are the linear differential operators of the second order
in spacial variables. We should mention also the results in [2, 8] concerning with coefficient
inverse problems for the linear equation (0.1). In [8], the uniqueness theorem is obtained and an
algorithm of determining the coefficients of L2 is constructed. In [2], the solvability is established
for two inverse problems of recovering the unknown coefficients in terms u (the lowest term of
L2u) and ut of (0.2). In [10], an inverse problem of recovering time-depending right-hand side
and coefficients of (0.2) is considered. The values of the solution at separate points are employed
as overdetermination conditions. The existence and uniqueness theorems are proven for this
problem and the stability estimates of the solution are exposed.

The paper is organized as follows. Section 1 discusses the statement of the inverse problems.
In Section 2 the regularity of the solution is investigated for the problem on recovering an
unknown coefficient k(t) in the second order term of the equation (0.1). Section 3 is devoted
to the regularity of the solution to the problem on identification of the leader coefficient η(t)
in (0.1).

1. The statement of the problems

Let Ω be a bounded domain in Rn with a boundary ∂Ω ∈ C2, Ω be the closure of Ω. T is
an arbitrary real number, QT = Ω× (0, T ) with the lateral surface ST = (0, T )× ∂Ω, QT is the
closure of QT and the pair (t, x) is a point of QT .

From now on we keep the notations: (·, ·)R is the inner product of Rn; ∥ · ∥ and (·, ·) are
the norm and the inner product of L2(Ω), respectively; ∥ · ∥j is the norm of W j

2 (Ω), j = 1, 2;
and

〈
·, ·
〉
1

is the duality relation between W̊ j
2 (Ω) and W−j

2 (Ω); ∥ · ∥p/2 is the norm of W p/2
2 (∂Ω),

p = 1, 3.
We introduce a linear differential operator M = −div(M(x)∇) + m(x)I where M(x) ≡

(mij(x)) is a matrix of functions mij(x), i, j = 1, 2, . . . , n; I — the identity operator. We also
keep the notation

〈
Mv1, v2

〉
M

=

∫
Ω

((M(x)∇v1,∇v2)R +m(x)v1v2)dx

for v1, v2 ∈W 1
2 (Ω) and assume that the following conditions are fulfilled.
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I. mij(x), ∂mij/∂xl , i, j, l = 1, 2, . . . , n, and m(x) are bounded in Ω. Operator M is elliptic,
that is, there exist positive constants m1 and m2 such that for all v ∈W 1

2 (Ω)

m1∥v∥21 6
〈
Mv, v

〉
M

6 m2∥v∥21. (1.1)

II. M is a selfadjoint operator, that is, mij(x) = mji(x), i, j = 1, 2, . . . , n for x ∈ Ω.
In this paper we are studying the inverse problems of recovering unknown coefficients of the

equation (0.1) with the initial data

(νu+ ηMu)|t=0 = U0(x), (1.2)

and the boundary condition
u|∂Ω = β(t, x). (1.3)

We investigate the regularity of the solutions of two inverse problems.

Problem 1. For ν = 1, given functions g(t, x), f(t, x), U0(x), β(t, x), ω(t, x), φ(t) and a constant
η find the pair of unknown functions {u, k}, k = k(t), satisfying the equation (0.1), the initial
data (1.2), the boundary condition (1.3) and the condition of overdetermination∫

∂Ω

{
η
∂ut

∂N
+ k

∂u

∂N

}
ω(t, x)ds+ kφ1(t) = φ2(t). (1.4)

Problem 2. For ν = 0, k = 1, given functions g(t, x), f(t, x), U0(x), β(t, x), ω(t, x), φ(t) and real
constants µ1, µ2, find the pair of unknown functions {u, η}, η = η(t), satisfying the equation (0.1),
the initial data (1.2), the boundary condition (1.3) and the conditions of overdetermination∫

∂Ω

{(
η
∂u

∂N

)
t
+
∂u

∂N

}
ω(t, x)ds+ (ηφ1(t))t = φ2(t), (1.5)

η(0)

∫
∂Ω

∂u(0, x)

∂N
ω(0, x) ds+ µ1η(0) = µ2. (1.6)

Here
∂

∂N
= (M(x)∇,n), n is the unit outward normal to the boundary ∂Ω.

If ω ≡ 1, then the integral conditions (1.5)–(1.6) means a given flux of a liquid through the
surface ∂Ω, for instance, the total discharge of a liquid through the surface of the ground. Similar
nonlocal conditions were applied to control problems in [3].

We introduce functions a(t, x), b(t, x) as the solutions of the Dirichlet problems

Ma = 0 in Ω, a
∣∣
∂Ω

= β(t, x); Mb = 0 in Ω, b
∣∣
∂Ω

= ω(t, x), (1.7)

Ψ(t) =
〈
Ma, b

〉
1,M

, F (t, x) = at − f(t, x) + g(t, x)a,

Ψ = max
t∈[0,T ]

⟨Ma, b⟩1,M , φ1 = max
t∈[0,T ]

φ1(t),

2. The regularity of the solution to Problem 1

By the strong solution of Problems 1 is meant the pair {u, k} ∈ C1([0, T ];W 2
2 (Ω))×C([0, T ])

satisfying the equation (0.1) almost everywhere in QT and the conditions (1.2)–(1.4) for almost
all (t, x) ∈ ST .
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In addition to the notations of Section 2 we introduce the function hη(t, x) as the solution of
the Dirichlet problem

hη + ηMhη = 0 in Ω, hη
∣∣
∂Ω

= ω(t, x), (2.1)

and the notations

Φη(t) = φ2(t)−
η

2
⟨Mat, h

η⟩1,M + (f(t, x)− at, h
η), Φ

η
= max
t∈[0,T ]

Φη(t).

The existence and uniqueness of the strong solution to Problems 2 is established by the
following theorem [6].

Theorem 2.1 Let the assumptions I–III be fulfilled and η be a positive constant. Assume that
(i) f ∈ C([0, T ];L2(Ω)), β ∈ C1([0, T ];W

3/2
2 (∂Ω)), U0 ∈ L2(Ω), g ∈ C(QT ),

ω ∈ C1([0, T ];W
3/2
2 (∂Ω)), φ1 ∈ C1([0, T ]), φ2 ∈ C([0, T ]);

(ii) f , U0, β, ω, φ1 are nonnegative and∫
Ω

hη dx > h0 = const > 0, t ∈ [0, T ];

(iii) there exist positive constants αi, i = 0, 1, 2, such that α0, α1 6 1, α0 + α1 < 2,

(1− α0)φ1(t) + (1− α1)Ψ(t) > α2, t ∈ [0, T ],

χ(0) + a(0, x)− U0(x) > 0 for almost all x ∈ Ω,

g(t, x)χ(t) + χ′(t) + F (t, x) > 0 for almost all (t, x) ∈ QT ,

where

χ(t) = η (α0φ1(t) + α1Ψ(t))

[∫
Ω

hη dx

]−1

;

(iv) for any t ∈ [0, T ]

Φη(t) > Φη0 = const > 0

holds and g(t, x) satisfies the inequality

max
QT

g(t, x) 6 Φη0
η

[
φ1 +Ψ+ η−1 max

[0,T ]
(a, hη)

]−1

≡ k0
η
.

Then Problem 1 has a unique solution (u, k) ∈ C1([0, T ];W 2
2 (Ω)) × C([0, T ]). Moreover, the

estimates
0 6 u(t, x) 6 χ(t) + a(t, x) for almost all (t, x) ∈ QT , (2.2)

∥u∥22 + ∥ut∥22 6 C1, t ∈ [0, T ] (2.3)

are fulfilled and the coefficient k(t) satisfies the inequalities

K0 6 k(t) 6 K1 (2.4)

with some positive constants C1, K0 and K1.

In the hypotheses of Theorem 2.1 the strong solution of Problem 2 depends continuously on the
input data of the problem.
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Theorem 2.2 Let the pair {ui, ki} be the strong solution of Problem 1 with η > 0 and the
input data {fi, gi, βi, U i0, ωi, φi1, φi2} satisfying the hypotheses of Theorem 2.1, i = 1, 2. Then the
estimates

∥k̃∥C([0,T ]) 6 C2

{ 1

α2
∥φ̃2∥C([0,T ]) +K1∥φ̃1∥C([0,T ]) + ∥Ũ0∥+

+ max
t∈[0,T ]

[
∥f̃∥+ ∥β̃∥

W
1/2
2 (∂Ω)

+ ∥β̃t∥W 1/2
2 (∂Ω)

+ ∥g̃∥C(Ω) + ∥ω̃∥
W

1/2
2 (∂Ω)

]}
, (2.5)

∥ũ∥C1([0,T ];W 2
2 (Ω)) 6 C3

{ 1

α2
∥φ̃2∥C([0,T ]) +K1∥φ̃1∥C([0,T ]) + ∥Ũ0∥+

max
t∈[0,T ]

[
∥f̃∥+ ∥β̃∥

W
3/2
2 (∂Ω)

+ ∥β̃t∥W 3/2
2 (∂Ω)

+ ∥g̃∥C(Ω) + ∥ω̃∥
W

1/2
2 (∂Ω)

]}
, (2.6)

are valid for the difference {ũ, k̃} = {u1 − u2, k1 − k2} with certain positive constants C2 and C3

where φ̃j = φ1
j −φ2

j , j = 1, 2, Ũ0 = U1
0 −U2

0 , β̃ = β1−β2, f̃ = f1− f2, g̃ = g1− g2, ω̃ = ω1−ω2.

Proof. The difference {ũ, k̃} obeys the relations{
ũt + ηMũt + k1(t)Mũ+ g1ũ = f̃ − g̃u2 − kMu2,

(ũ+ ηMũ)
∣∣
t=0

= Ũ0, ũ
∣∣
ST

= β̃,
(2.7)

and the condition∫
∂Ω

{
∂

∂N

[
ηũt + k1ũ+ k̃u2

]
ω1 +

∂

∂N

[
ηu2t + k2u2

]
ω̃

}
dS + φ̃1k

1 + φ2
1k̃ = φ̃2. (2.8)

Multiplying the first equality of (2.7) by ũ− ã in terms of the scalar product of L2(Ω), integration
by parts in the second and third term of the left part and in the last term of the right side of
the resulting relation gives

1

2

∂

∂t

(
∥ũ− ã∥2 + η⟨M(ũ− ã), ũ− ã⟩1

)
+ k1(t)∥M(ũ− ã)∥2 + (g1(ũ− ã), ũ− ã) =

= (f̃ , ũ− ã)− (g̃u2, ũ− ã)− k̃⟨Mu2, ũ− ã⟩1.

Integrating this equation with respect to t on (0, τ), 0 < τ 6 T , and estimating the right part
with the help of (1.1), (2.2)–(2.4) and the Cauchy inequality one can obtain the estimate

∥ũ− ã∥2 + η⟨M(ũ− ã), ũ− ã⟩1 6
∫ τ

0

[
2

K0m1

(
∥f̃∥2 + ∥ãt∥2 + C1∥g̃∥2C(Ω)

)
+
ḡ1
2
∥ã∥2

]
dt+

+ (∥Ũ0∥+ ∥ã0∥)2 + C1m2

∫ τ

0

|k̃|2dt (2.9)

where ḡ1 = ∥g1∥c(QT ), ã0 = ã(0, x). Furthermore, multiplying the first equality of (2.7) by Mũ

in terms of the scalar product of L2(Ω), integration by parts in the first term of the left part,
integrating the result with respect to t on (0, τ), 0 < τ 6 T , and estimating the right part with
the help of (1.1), (2.2)–(2.4), (2.9) and the Cauchy inequality we can get the estimate

∥ũ∥2 6 C4

{∫ t

0

[
∥ã∥2W 2

2 (Ω) + ∥ãt∥2W 2
2 (Ω) + ∥f̃∥2 + ∥g̃∥2

C(Ω)
+ |k̃|2

]
dτ

}1/2

+

+ ∥Ũ0∥+ c0∥ã∥W 2
2 (Ω). (2.10)
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Here c0 is the constant in the inequality

∥ũ− ã∥2 6 c0∥Mũ∥ (2.11)

following from the second energy estimate for an elliptic operator [4, Ch. 2]; the constant C4 > 0

depends on η, m1, m2, K0, K1, T , C1, ∥gi∥C(QT ), i = 1, 2. In a similar manner, multiplying the
first equality of (2.7) by Mũt in terms of the scalar product of L2(Ω), integrating by parts in the
first term of the left part, rearranging the third and fourth terms to the right side of the result
we are led to the equation

⟨ũt − ãt,Mũt⟩1 + η∥Mũt∥2 = (−ãt − k1(t)Mũ− g1ũ+ f̃ − g̃u2 − kMu2,Mũt)

whence it follows by (1.1), (2.2)–(2.4), (2.9)–(2.11) and the Cauchy inequality that

∥ũt∥2 6 C5

{
max
t∈[0,T ]

[
∥ã∥W 2

2 (Ω) + ∥ãt∥W 2
2 (Ω) + ∥f̃∥+ ∥g̃∥C(Ω)

]
+ ∥Ũ0∥+

+ |k̃|+
[ ∫ t

0

|k̃|2dτ
]1/2}

. (2.12)

The positive constant C5 depends on η, m1, m2, K0, K1, T , C1, C4 ∥gi∥C(QT ), i = 1, 2.
On the other hand, as is shown in [6], following the idea of [9] we can reduce Problem 2 to

an equivalent inverse problem with a nonlinear operator equation for ki(t). Really, let hηi be the
solution of the problem (2.1) with the boundary data ωi instead of ω. Multiplying (0.1) for ui, ki

by hη(t, x) in terms of the inner product in L2(Ω), integrating by parts twice, substituting (1.6)
into the resulting equation and taking into account (2.8) and the fact that∫

∂Ω

(ηβit + ki(t)βi)
∂hηi
∂N

ds = −η⟨Mait, b
i⟩M − (ait, h

η
i ) + ki(t)Ψi(t) +

ki(t)

η
(ai, h

η
i ),

we obtain

ki(t)
(
φi1(t) + Ψi(t) +

1

η
(ai − ui, hηi )

)
= Φηi (t)−

(
giu

i, hηi
)
, i = 1, 2, (2.13)

where Ψi(t) =
〈
Mai, bi

〉
1,M

, Φηi (t) = φi2(t) −
η

2
⟨Mait, bi⟩1,M + (fi − ait, h

η
i ), the functions ai

and bi are the solutions of the problems (1.7) with the boundary data βi and ωi instead of β and
ω, respectively.

Setting up the difference of the operator equations (2.13) for i = 1 and i = 2 we are led to
the equation

k̃(t)
(
φ1
1 +Ψ1 +

1

η
(a1 − u1, hη1)

)
= Φ̃η −

(
g1ũ, h

η
1

)
−
(
g̃u2, hη1

)
−

−
(
g2u

2, h̃η
)
− k2

(
φ̃1 + Ψ̃ +

1

η

(
ã− ũ, hη1

)
+

1

η

(
a2 − u2, h̃η

))
,

where ã = a1 − a2, Φ̃η = Φη1 − Φη2 , h̃
η = hη1 − hη2 , Ψ̃ = Ψ1 − Ψ2. Estimating the right side of

this equation with the use of (2.2)–(2.4), (2.9) one can obtain the inequality

|k̃| 6 C6

[
∥ãt∥1 + ∥ã∥+ ∥b̃∥1 + ∥h̃η∥+ ∥f̃∥+ ∥g̃∥C(Ω) + ∥Ũ0∥+ ∥ã0∥

]
+

+
1

α2

(
|φ̃2|+K1|φ̃1|

)
+ C7

∫ τ

0

|k̃|2dt, (2.14)
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where positive constants C6, C7 depends on K0, K1, η, T , m1, m2, C1, ∥gi∥C(Ω), φ1,
maxt∈[0,T ]

{
∥ai∥, ∥ait∥, ∥bi∥, ∥fi∥

}
, i = 1, 2. By Gronwall’s lemma and the inequality

∥v∥j 6 cj∥v∥W j−1/2
2 (∂Ω)

(2.15)

valid for all v ∈ W j
2 (Ω) and an integer j > 1 (see [4, Ch. 2]), (2.14) implies (2.5). Now the

estimate (2.6) follows from (2.5), (2.10), (2.12) and (2.15). Theorem is proved. �

3. The regularity of the solution to Problem 2

By the strong solution of Problem 2 is meant the pair {u, η} ∈ C1([0, T ];W 2
2 (Ω))×C1([0, T ])

satisfying the equation (0.1) almost everywhere in QT and the conditions (1.2), (1.3), (1.5), (1.6)
for almost all (t, x) ∈ ST .

The existence and uniqueness of the strong solution to Problem 2 is established by the fol-
lowing theorem [5].

Theorem 3.1 Let the assumptions I–II be fulfilled and ∂Ω ∈ C2. Assume that

i) f ∈ C([0, T ];L2(Ω)), β ∈ C1([0, T ]; W
3/2
2 (∂Ω)), U0 ∈ L2(Ω), g ∈ C(QT ),

ω ∈ C1([0, T ];W
3/2
2 (∂Ω)), φ1 ∈ C1([0, T ]), φ2 ∈ C([0, T ]);

ii) f , U0, β, ω and φ1 are nonnegative, g 6 0, µ2 > 0 and φ1(0) = µ1;

iii) Ψ(t) > 0 and there exist a positive constant α such that

φ1(t) + Ψ(t) > α, t ∈ [0, T ], (3.1)

Φ(t) ≡ φ2(t)−Ψ(t) + (f, b) > 0.

Then Problem 2 has a unique solution {u, η} in the class

V =
{
{u, η}

∣∣ u ∈ C1([0, T ];W 2
2 (Ω)), η ∈ C1([0, T ])

}
.

Moreover, there are positive constants η0 and η1 such that for all t ∈ [0, T ]

η0 6 η(t) 6 η1 (3.2)

and the estimates
|η′| 6 C8, (3.3)

∥u∥2 + ∥ut∥2 6 C9 (3.4)

holds with certain constants C8 and C9.

In the hypotheses of Theorem 3.1 the strong solution of Problem 2 depends continuously on the
input data of the problem.

Theorem 3.2 Let the pair {ui, ηi} be the strong solution of Problem 2 with the input data
{fi, gi, βi, U i0, ωi, φi1, φi2, µi1, µi2} satisfying the hypotheses of Theorem 3.1, i = 1, 2. Then the
estimates

∥η̃∥C1([0,T ]) 6 C10

{
∥φ̃1∥C1([0,T ]) + ∥φ̃2∥C([0,T ]) + ∥Ũ0∥+ ∥g̃∥C(QT ) + |µ̃2|+

+ max
t∈[0,T ]

[
∥f̃∥+ ∥β̃∥

W
1/2
2 (∂Ω)

+ ∥β̃t∥W 1/2
2 (∂Ω)

+ ∥ω̃∥
W

1/2
2 (∂Ω)

+ ∥ω̃t∥W 1/2
2 (∂Ω)

]}
, (3.5)
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∥ũ∥C1([0,T ];W 2
2 (Ω)) 6 C11

{
∥φ̃1∥C1([0,T ]) + ∥φ̃2∥C([0,T ]) + ∥Ũ0∥+ ∥g̃∥C(Ω) + |µ̃2|+

+ max
t∈[0,T ]

[
∥f̃∥+ ∥β̃∥

W
3/2
2 (∂Ω)

+ ∥β̃t∥W 3/2
2 (∂Ω)

+ ∥ω̃∥
W

1/2
2 (∂Ω)

+ ∥ω̃t∥W 1/2
2 (∂Ω)

]}
, (3.6)

are valid for the difference {ũ, η̃} = {u1 − u2, η1 − η2} with certain positive constants C10 and
C11 where again φ̃j = φ1

j − φ2
j , j = 1, 2, Ũ0 = U1

0 −U2
0 , β̃ = β1 − β2, f̃ = f1 − f2, g̃ = g1 − g2,

ω̃ = ω1 − ω2.

Proof. The difference {ũ, η̃} obeys the relations (η1Mũ)t +Mũ+ g1ũ = f̃ − g̃u2 − (η̃Mu2)t,

(η1Mũ)
∣∣
t=0

= Ũ0 − (η̃Mu2)
∣∣
t=0

, ũ
∣∣
ST

= β̃,
(3.7)

and the conditions∫
∂Ω

{
∂

∂N

[
(η1ũ)t + (η̃u2)t + ũ

]
ω1 +

∂

∂N

[
(η2u2)t + u2

]
ω̃

}
ds+ (η̃φ1

1)t + (η2φ̃1)t = φ̃2,∫
∂Ω

{
∂

∂N

[
η1ũ+ η̃u2

]
ω1 + η2

∂u2

∂N
ω̃

}
ds

∣∣∣∣
t=0

+ µ̃1η
1(0) + µ2

1η̃(0) = µ̃2.

Multiplying the first equality of (3.4) by exp

(
t∫
0

(η1(τ))−1dτ

)
, integration with respect to t from

0 to θ, 0 < θ 6 T , and solving the resulting equation for Mũ gives

Mũ =
1

η1(θ)

{
Ũ0 exp

(
−
∫ θ

0

dτ

η1(τ)

)
+

∫ θ

0

(f̃ − g1ũ− g̃u2) exp

(
−
∫ θ

t

dτ

η1(τ)

)
dt−

− η̃Mu2 +

∫ θ

0

η̃

η1(t)
Mu2 exp

(
−
∫ θ

t

dτ

η1(τ)

)
dt

}
. (3.8)

Furthermore, multiplying this equation by ũ−ã in terms of the inner product of L2(Ω), integrating
by parts in the left side of the resulting equation and estimating the right one with (3.2), (3.4)
one can obtain the inequality

∥ũ∥1 6 C12

{
∥ã∥C([0,T ];W 1

2 (Ω)) + ∥Ũ0∥+
∫ T

0

(
∥f̃∥+ ∥g̃∥C(Ω)

)
dt+

(∫ t

0

|η̃|2dθ
)}

(3.9)

where the constant C12 > 0 depends on m1, T , c0, ∥g1∥C(QT ) and the constant m3 > 0 from the
inequality

∥Mv∥2 6 m3∥v∥2 (3.10)

valid for all v ∈ W 2
2 (Ω). Now we estimate the left and right sides of (3.8) in the norm of L2(Ω)

with the use of (2.11), (3.2), (3.4). Taking into account (3.10) we get

∥ũ∥2 6 ∥ã∥2 + c0∥Mũ∥ 6 ∥ã∥2 + C13

{
∥Ũ0∥+

∫ θ

0

(
∥f̃∥+ ∥g̃∥C(Ω)

)
dt+ |η̃|+

∫ θ

0

|η̃|dt
}
+

+ḡ1

∫ θ

0

∥ũ∥2dt,

whence in accordance with Gronwall’s lemma

∥ũ∥2 6 C14

{
∥ã∥C([0,T ];W 2

2 (Ω)) + ∥Ũ0∥+
∫ T

0

(
∥f̃∥+ ∥g̃∥C(Ω)

)
dt+

∫ t

0

|η̃|dθ
}
. (3.11)
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Here the positive constants C13 and C14 depends on η0, T , m3, c0, ∥g1∥C(QT ).
On the other hand, it is shown in [6] that following the idea of [9] one can reduce Problem 2

to an equivalent inverse problem with a nonlinear operator equation for ηi(t). Really, let us
multiply (2.4) by b in terms of the inner product of L2(Ω) and integrate by parts twice in the
second and third terms. In view of (1.5)–(1.7) we have

d

dt

(
ηi(φi1 +Ψi)

)
− ηi

〈
Mai, bit

〉
1
= Φi − (giu

i, bi)

where Φi = Φi(t) ≡ φi2(t) − Ψi(t) + (fi, bi), the functions ai and bi are again the solutions of
the problems (1.7) with the boundary data βi and ωi instead of β and ω, respectively. By (1.5),

multiplying this equation by ζi(t) ≡ exp
(
−

t∫
0

〈
Mai, biτ

〉
1
(φi1 + Ψi)

−1dτ
)

and integration with

respect to t from 0 to θ, 0 < θ 6 T gives

ηi(θ)
(
φi1(θ) + Ψi(θ)

)
ζi(θ) = ηi(0)

(
φi1(0) + Ψi(0)

)
+

∫ θ

0

[
Φi − (giu

i, bi)
]
ζi dt, i = 1, 2. (3.12)

Furthermore, we multiply the second relation in (3.7) by bi(0, x) = b0i (x) in terms of the inner
product of L2(Ω) and integrate by parts twice in the resulting equation. Taking into account
(1.3) for t = 0 and (1.6), we obtain

ηi(0)
(
µi1 +Ψi(0)

)
= µi2 + (U i0, b

0
i ), i = 1, 2. (3.13)

Substituting (3.13) into the operator equation (3.12) and setting up the difference of the
resulting equations for i = 1 and i = 2 we are led to the equality

η̃(θ)
(
φ1
1(θ) + Ψ1(θ)

)
ζ1(θ) = −η2(θ)

[ (
φ̃1(θ) + Ψ̃(θ)

)
ζ1(θ) +

(
φ2
1(θ) + Ψ2(θ)

)
ζ̃(θ)

]
+

+ µ̃2 + (Ũ0, b
0
1) + (U2

0 , b̃
0) +

∫ θ

0

[
Φ̃− (g̃u1, b1)− (g2ũ, b1)− (g2u

2, b̃)
]
ζ1 dt+

+

∫ θ

0

[
Φ2 − (g2u

2, b2)
]
ζ̃ dt (3.14)

where ζ̃ = ζ1 − ζ2, b̃0 = b01 − b02, Φ̃ = Φ1 −Φ2. Let yi(t) =
t∫
0

〈
Mai, biτ

〉
1
(φi1 +Ψi)

−1dτ , i = 1, 2.

By (3.1) and the definition of functions ζ, a and b,

|ζ̃| =
∣∣∣ ∫ y2(t)

y1(t)

e−ydy
∣∣∣ 6 exp(max

i=1,2
|yi(t)|) |y1 − y2| 6 C15

∫ t

0

[
∥ã∥1 + ∥b̃τ∥1 + |φ̃1|+ |Ψ̃|

]
dτ. (3.15)

The constant C15 depends on m2, ∥φi1∥C([0,T ]), maxt∈[0,T ]

{
∥ai∥, ∥bi∥, ∥bit∥

}
, i = 1, 2. Estimating

the right side of the equation (3.14) with regard to (3.2)–(3.4), (3.9) and (3.15) one can obtain
the inequality

|η̃| 6 C16

{
∥φ̃1∥C([0,T ]) + ∥ã∥C([0,T ];W 1

2 (Ω)) + ∥b̃∥C1([0,T ];W 1
2 (Ω)) + |µ̃2|+ ∥Ũ0∥+

+∥φ̃2∥C([0,T ]) + ∥f̃∥L2(QT ) + ∥g̃∥C(QT )

}
+ C17

∫ t

0

|η̃|dτ
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which implies by Gronwall’s lemma that

|η̃| 6 C16e
C17T

{
∥φ̃1∥C([0,T ]) + ∥ã∥C([0,T ];W 1

2 (Ω)) + ∥b̃∥C1([0,T ];W 1
2 (Ω)) + |µ̃2|+ ∥Ũ0∥+

+ ∥φ̃2∥C([0,T ]) + ∥f̃∥L2(QT ) + ∥g̃∥C(QT )

}
. (3.16)

Here the positive constants C16 and C17 depend on η0, η1, T , m2, C9 C14, C15, ∥gi∥C(QT ),
∥φi1∥C([0,T ]), maxt∈[0,T ]

{
∥ai∥, ∥ait∥, ∥bi∥, ∥bit∥, ∥fi∥

}
, i = 1, 2.

We are now in a position to obtain the estimates for η̃′ and ũt. Solving the first equation
of (3.7) for Mũt and estimating the right side of the resulting equation with the use of (2.11),
(3.2)–(3.4), (3.10), (3.11) yields

∥ũt∥2 6 ∥ãt∥2 + C18

{
∥Ũ0∥+ max

t∈[0,T ]

{
∥ã∥2 + ∥f̃∥+ |η̃|

}
+ ∥g̃∥C(QT ) + |η̃′|

}
(3.17)

where the constant C18 > 0 depends on m3, η0, T , c0, C8, C9, C14, ∥g1∥C(QT ). Furthermore,
differentiating (3.14) and estimating the right part of the resulting equation with (3.2)–(3.4),
(3.9) and (3.15) we are led to the relation

|η̃′| =
∣∣∣− η̃

[
((φ1

1)
′ + (Ψ1)

′)ζ1 + (φ1
1 +Ψ1)ζ

′
1

]
− (η2)′

[
(φ̃1 + Ψ̃)ζ1 + (φ2

1 +Ψ2)ζ̃
]
−

− η2
[
(φ̃′

1 + Ψ̃′)ζ1 + ((φ2
1)

′ +Ψ′
2)ζ̃ + (φ̃1 + Ψ̃)ζ ′1 + (φ2

1 +Ψ2)ζ̃
′
]
+ (Φ2 − (g2u

2, b2))ζ̃+

+
[
Φ̃− (g̃u1, b1)− (g2ũ, b1)− (g2u

2, b̃)
]
ζ1

∣∣∣((φ1
1 +Ψ1)ζ1

)−1

6 C19

[
∥φ̃1∥C1([0,T ]) + ∥Ũ0∥+

+ ∥φ̃2∥C([0,T ]) + ∥g̃∥C(QT ) + max
t∈[0,T ]

{
∥f̃∥+ ∥ã∥1 + ∥ãt∥1 + ∥b̃∥1 + ∥b̃t∥1

}
+ |µ̃2|

]
(3.18)

Here the positive constants C19 depends on η0, η1, T , m2, C9 C14, C15, C16, C17, ∥gi∥C(QT ),
∥φi1∥C1([0,T ]), maxt∈[0,T ]

{
∥ai∥, ∥ait∥, ∥bi∥, ∥bit∥, ∥fi∥

}
, i = 1, 2. By (2.15), the inequalities (3.16)

and (3.18) imply (3.5). Now the estimate (3.6) follows from (2.15), (3.11), (3.16)–(3.18). �
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Регулярность решений обратных задач для псевдопарабо-
лических уравнений

Анна Ш. Любанова
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. В работе обсуждается регулярность решений обратных задач отыскания неизвестно-
го коэффициента, зависящего от времени, в псевдопараболическом уравнении третьего порядка по
дополнительной информации о решении на границе. Доказана регулярность решения двух обрат-
ных задач восстановления неизвестного коэффициента в члене второго порядка и старшем члене
линейного псевдопараболического уравнения.

Ключевые слова: непрерывная зависимость от исходных данных, априорная оценка, обратная
задача, псевдопараболическое уравнение.
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Introduction
The article is devoted to the study of the solvability of boundary value problems for differential

equations

D4
t u+

3∑
k=0

AkD
k
t u = f(x, t)

(
Dk
t =

∂k

∂tk
, k = 0, 4

)
(∗)

with operators Ak of the form

Ak =
∂

∂xi

(
aij,k(x)

∂

∂xj

)
+ a0,k(x)

(here and below, summation over repeated indices from 1 to n is carried out).
The differential equations (∗) are recently attributed to the class of Sobolev-type equations.

Various aspects of the theory of Sobolev-type equations are reflected in monographs [1–7] and
also in numerous journal articles (it is impossible to mention even a small part of such articles
just because they are numerous).

For Sobolev-type differential equations, best studied is the solvability of the Cauchy problem
and initial boundary value problems. At the same time, as is shown in [3, 8], in some case,
for Sobolev-type equations, simultaneously with initial boundary value problems, other problems
can also be well-posed; these include problems with data both at the initial and final time
moments. In the present article, for equations (∗), we study the solvability both of initial
boundary value problems and problems with data at different time moments.

Clarify that the goal of the present article is to prove the solvability of some problem for equa-
tions (∗) in the classes of regular solutions, i.e., solutions having all weak derivatives in the sense
of Sobolev [9–11] occurring in the equation.

Formally, equation (∗) with the above operators is a fifth-order equation. The use of the term
"fourth-order Sobolev equation" in the title and the article means that the equations under study

∗kozhanov@math.nsc.ru
c⃝ Siberian Federal University. All rights reserved
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are fourth-order equations with respect to the time (distinguished) variable, which is the leading
variable and defines the statements of the problems.

One more remark: Equations (∗) have model and the simplest form. We will speak of some
more general equations and of generalizations of the results at the end of the article.

1. Statements of the Problems
Suppose that Ω is a bounded domain in Rn with smooth (for simplicity, infinitely differen-

tiable) boundary Γ, Q is the cylinder Ω×(0, T ) of finite height T , and S = Γ×(0, T ) is the lateral
boundary of Q. Furthermore, let aij,k(x), a0,k(x), i, j = 1, . . . , n, k = 0, . . . , 3, f(x, t) be given
functions defined for x ∈ Ω and t ∈ [0, T ] and let Ak and L be the differential operators whose
action at a given function v(x, t) is defined by the equalities

Akv =
∂

∂xi

(
aij,k(x)vxj

)
+ a0,k(x)v,

Lv = Dk
t v +

3∑
k=0

AkD
k
t v.

Boundary Value Problem I: Find a function u(x, t) that is a solution to the equation

Lu = f(x, t) (1)

in the cylinder Q such that
u(x, t)|S = 0, (2)

Dk
t u(x, t)

∣∣
t=0, x∈Ω

= 0, k = 0, 1, 2, 3. (3)

Boundary Value Problem II: Find a function u(x, t) that is a solution to equation (1) in Q and
satisfies conditions (2) and also the condition

Dk
t u(x, t)

∣∣
t=0, x∈Ω

= 0, k = 0, 1, 2, D3
t u(x, t)

∣∣
t=T, x∈Ω

= 0. (4)

Boundary Value Problem III: Find a function u(x, t) that is a solution to equation (1) in Q that
satisfies conditions (2) and also the condition

u(x, t)|t=0, x∈Ω = D2
t u(x, t)

∣∣
t=0, x∈Ω

= Dtu(x, t)|t=0, x∈Ω = D3
t u(x, t)

∣∣
t=0, x∈Ω

= 0. (5)

Boundary Value Problem I is a usual initial boundary value problem for nonstationary dif-
ferential equations of the fourth order (with respect to time). Boundary Value Problem II is
a modified V.N. Vragov’s problem (see [12–14]) for fourth-order quasihyperbolic equations. Fi-
nally, Boundary Value Problem III is in fact an elliptic boundary value problem.

In the present article, we propose sufficient conditions on the coefficients of (1) new com-
pared to the previous works that guarantee the existence and uniqueness of regular solutions
to boundary value problems I, II, or III.

2. Solvability of boundary value Problems I-III
Theorem 1. Suppose the fulfillment of the conditions

aij,k(x) ∈ C1(Ω), i, j = 1, . . . , n, a0,k(x) ∈ C(Ω), k = 0, 1, 2; (6)

aij,3(x) ∈ C2(Ω), aij,3(x) = aji,3(x), i, j = 1, . . . , n, a0,3(x) ∈ C(Ω), (7)

−aij,3(x)ξiξj > m0|ξ|2, m0 > 0, x ∈ Ω, ξ ∈ Rn. (8)

Then, for every function f(x, t) in L2(Q), Boundary Value Problem I has a solution u(x, t) such

that Dk
t u(x, t) ∈ L2(0, T ;W

2
2 (Ω) ∩

◦
W 1

2(Ω)), k = 0, 1, 2, 3, D4
t u(x, t) ∈ L2(Q).
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Proof. Make use of the method of continuation in a parameter. Let λ ∈ [0, 1]. Consider
the following problem: Find a function u(x, t) that is a solution to the equation

D4
t u+A3D

3
t u+ λ

2∑
k=0

AkD
k
t u = f(x, t) (9)

and Q that satisfies conditions (2) and (3). Note that, for λ = 0, this problem has a solu-
tion u(x, t) belonging to the desired class; this follows from the fact that, for λ = 0, equa-
tion (9) is a usual parabolic equation with respect to uttt(x, t). Furthermore, by the theorem
on the method of extension in a parameter (see [15, Chapter III, Sec. 14], the boundary value
problem (9), (2), (3) has a regular solution u(x, t) if f(x, t) ∈ L2(Q) and problem (9), (2), (3) is
solvable in the class of regular solutions for λ = 0 if all derivatives occurring in (9) are uniformly
bounded in L2(Q).

For proving the desired boundedness, let us first consider the equality∫ t

0

∫
Ω

[
D4
τu+A3D

3
τu+ λ

2∑
k=0

AkD
k
τu

]
D3
τu dx dτ =

∫ t

0

∫
Ω

fD3
τu dx dτ. (10)

Integrating by parts, applying Young’s inequality and the inequality∫
Ω

w2(x, t) dx 6 T

∫ t

0

∫
Ω

w2
τ (x, τ) dx dτ, (11)

which is valid for functions w(x, t) vanishing for t = 0, and using conditions (6)–(8) and Gron-
wall’s lemma, it is not hard to obtain from (10) the estimate∫

Ω

[
D3
t u(x, t)

]2
dx+

n∑
i=1

∫ t

0

∫
Ω

(
D3
τuxi

)2
dx dτ 6 C1

∫
Q

f2 dx dt, (12)

where the constant C1 is defined only by the functions aij,k(x), i, j = 1, . . . , n, a0,k(x),
k = 0, 1, 2, 3, and the number T .

Now, consider the equality

−
∫ t

0

∫
Ω

(
D4
τu+A3D

3
τu+ λ

2∑
k=0

AkD
k
τu

)
A3D

3
τu dx dτ = −

∫ t

0

∫
Ω

fA3D
3
τu dx dτ.

Integrating by parts once again, applying Young’s inequality, inequality (11), estimate (12),
conditions (6)–(8), and also the second main inequality for elliptic operators (see [10, Chap-
ter III, Stc. 8], and Gronwall’s lemma, we conclude that solutions u(x, t) to the boundary value
problem (9), (2), (3) satisfy the second a priori estimate

n∑
i=1

∫
Ω

[
D3
t uxi

(x, t)
]2
dx+

n∑
i,j=1

∫ t

0

∫
Ω

(
D3
τuxixj

)2
dx dτ 6 C2

∫
Q

f2 dx dt, (13)

where the constant C2 is defined only by the functions aij,k(x), a0,k(x), i, j = 1, . . . , n,
k = 0, 1, 2, 3, the domain Ω, and the number T .

Estimates (12) and (13) imply the obvious third estimate∫ t

0

∫
Ω

(
D4
τu
)2
dx dτ 6 C3

∫
Q

f2 dx dt, (14)
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of solutions u(x, t) to the boundary value problem (9), (2), (3); the constant C3 in this estimate is
again defined only by the functions aij,k(x), a0,k(x), i, j = 1, . . . , n, k = 0, 1, 2, 3, the domain Ω,
and the number T .

Estimates (12)–(14) give the desired uniform boundedness over λ in L2(Q) of all derivatives
occurring in (9). As we already said above, this boundedness and the solvability of the boundary
value problem (9), (2), (3) for λ = 0 give the solvability of this problem in the desired class also
for λ = 1. This exactly means the validity of the theorem.

The theorem is proved. 2

Before proving the following theorem on the solvability of Problem I in the class of regular
solutions, we formulate an auxiliary assertion on the nonnegativity of the scalar product of a pair
of second-order differential operators.

Let A and B be differential operators whose action is defined by the equality

Av =
∂

∂xi

(
aij(x)vxj

)
+ a0(x)v,

Bv =
∂

∂xi

(
bij(x)vxj

)
+ b0(x)v.

Proposition 1. Suppose the fulfillment of the conditions

aij(x) ∈ C2(Ω), bij(x) ∈ C2(Ω), aij(x) = aji(x), bij(x) = bji(x), x ∈ Ω, i, j = 1, . . . , n;

a0(x) ∈ C1(Ω), b0(x) ∈ C1(Ω), a0(x) 6 −a0 < 0, b0(x) 6 −b0 < 0, x ∈ Ω;

∃αi(x) : αi(x) ∈ C(Ω), αi(x) > 0, x ∈ Ω, i = 1, . . . , n,

αi(x)ξ2i 6 aij(x)ξiξj 6M0α
i(x)ξ2i , x ∈ Ω, ξ ∈ Rn;

|aijxk
(x)| 6M1

√
αi(x), x ∈ Ω, i, j, k = 1, . . . , n;

aij(x)νiνj = 0 for x ∈ Γ;

bij(x)ξiξj > m0|ξ|2, m0 > 0, x ∈ Ω, ξ ∈ Rn;[
a0(x)b

ij(x) + b0(x)a
ij(x) +

1

2

(
aijxk

(x)bkl(x)
)
xl

+
1

2

(
bijxk

(x)akl(x)
)
xl
−

−
(
ailxk

(x)bjkxl
(x)
) ]
ξiξj 6 0, x ∈ Ω, ξ ∈ Rn;

a0(x)b0(x) +
1

2

(
a0xi(x)b

ij(x)
)
xj

+
1

2

(
b0xi(x)a

ij(x)
)
xj

> 0, x ∈ Ω.

Then every function v(x) ∈W 2
2 (Ω) ∩

◦
W 1

2(Ω) satisfies the inequality∫
Ω

AvBv dx > 0

This assertion is proved in [16].
We say that operators A and B of the above form satisfy the (A,B)–condition if the coeffi-

cients of these operators satisfy all conditions of Proposition 1.

Theorem 2. Suppose the fulfillment of the (−A3,−A2)–condition and also of the condition

aij,k(x) ∈ C1(Ω), i, j = 1, . . . , n, a0,k(x) ∈ C(Ω), k = 0, 1. (15)

Then, for every function f(x, t) such that f(x, t) ∈ L2(Q), ft(x, t) ∈ L2(Q), f(x, 0) = 0 for
x ∈ Ω, Boundary Value Problem I has a solution u(x, t) such that Dk

t u(x, t) ∈ L∞(0, T ;W 2
2 (Ω)∩

◦
W 1

2(Ω)), k = 0, 1, 2, 3, D4
t u(x, t) ∈ L∞(0, T ;L2(Ω)).
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Proof. Observe first of all that the (−A3,−A2)–condition in particular means that −A3 is
an elliptic-parabolic operator in Ω and −A2 is an elliptic operator.

Let ε be a positive number. Define operators A3,ε and Lε:

A3,ε = A3 + εA2, Lε = L+ εA2D
3
t .

Consider the following boundary value problem: Find a function u(x, t) that is a solution
to the equation Lεu = f in Q that satisfies conditions (2) and (3). Obviously, this bound-
ary value problem is Boundary Value Problem I and that it satisfies all conditions of Theorem 1.
Moreover, due to the condition f(x, t) ∈ L2(Q), ft(x, t) ∈ L2(Q), a solution u(x, t) to this
problem satisfies the memberships

Dk
t u(x, t) ∈ L∞(0, T ;W 2

2 (Ω) ∩
◦
W

1
2(Ω)), k = 0, 1, 2, 3, 4, D5

t u(x, t) ∈ L2(Q) (16)

(this fact stems from its validity for the “shortened” equation D4
t u + A3,εD

3
t u = f(x, t) and

the corresponding a priori estimates).
Differentiate the equation Lεu = f(x, t) with respect to t (this is possible due to memberships

(16)), multiply it by D4
t u(x, t), and integrate it over the cylinder {x ∈ Ω, 0 < τ < t}. Involving

the ellipticity of the operators −A3,ε and −A2, applying Young’s inequality, inequality (11), and
Gronwall’s lemma, we obtain the estimate

ε

∫ t

0

∫
Ω

(
A2D

4
τu
)2
dx dτ +

n∑
i=1

∫
Ω

[
D4
t uxi

(x, t)
]2
dx+

∫
Ω

[
A2D

3
t u(x, t)

]2
dx 6 C4

∫
Q

f2t dx dt, (17)

where the constant C4 is defined only by the functions aij,k(x), a0,k(x), i, j = 1, . . . , n, k = 0, 1,
and also the number T .

Let {εm}∞m=1 be a sequence of positive numbers converging to zero and let {um(x, t)}∞m=1

be a sequence of solutions to the equation Lεmu = f satisfying (2) and (3). Estimate (17),
the second main inequality for elliptic operators, and the reflexivity of a Hilbert space mean
that there exists a sequence {uml

(x, t)}∞l=1 and a function u(x, t) that satisfy the following weak
convergences as l → ∞ in L2(Q):

εml
A2D

3
t u(x, t) → 0,

D4
t uml

(x, t) → D4
t u(x, t),

AkD
k
t uml

(x, t) → AkD
k
t u(x, t), k = 0, 1, 2, 3.

Obviously, the limit function u(x, t) is a solution to Boundary Value Problem I and this solution
still satisfies (17). Therefore, the function u(x, t) is the desired solution to the problem under
study.

The theorem is proved. 2

Turn to investigating the solvability of Boundary Value Problem II.
The main difference of Boundary Value Problem II from Boundary Value Problem I is that,

in its study, it is impossible to use Gronwall’s lemma. Gronwall’s lemma can be replaced by small-
ness conditions.

We will give the simplest version of the theorem in the solvability of a Boundary Value
Problem II, whose prove involves smallness conditions.

Let operators A0 and A1 be defined with the use of the parameter β and the operators Ã0

and Ã1:

A0 = βÃ0, A1 = βÃ1, Ãk =
∂

∂xi

(
ãij,k(x)

∂

∂xj

)
+ ã0i(x), k = 0, 1. (18),
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Theorem 3. Suppose the fulfillment of the conditions

aij,k(x) ∈ C2(Ω), aij,k(x) = aji,k(x), i, j = 1, . . . , n, k = 2, 3;

ãij,k(x) ∈ C1(Ω), i, j = 1, . . . , n, ã0,k(x) ∈ C(Ω), k = 0, 1;

aij,k(x)ξiξj > m0|ξ|2, m0 > 0, x ∈ Ω, ξ ∈ Rn, k = 2, 3;

a0,k(x) ∈ C(Ω), k = 0, 1, 2, 3, a0,k(x) 6 0, k = 2, 3.

Then there exists a positive number β0 such that for |β| < β0 and f(x, t) ∈ L2(Q), Bound-

ary Value Problem II has a solution u(x, t) such that Dk
t u(x, t) ∈ L2(0, T ;W

2
2 (Ω) ∩

◦
W 1

2(Ω)),
k = 0, 1, 2, 3, D4

t u(x, t) ∈ L2(Q).

Proof. For λ = 0, Boundary Value Problem II for equation (9) has a solution u(x, t) in the desired
class; this follows from the fact that for λ = 0 equation (9) is an inverse parabolic equation
with respect to D3

t u(x, t). Further, consider (10). Integrating by parts and estimating the last
two summands on the left-hand side (10) from above with the use of (11), we infer that there
exists a positive number β1 such that for |β| < β0 we have the a priori estimate

n∑
i=1

∫
Q

(
D3
t uxi

)2
dx dt 6 C5

∫
Q

f2 dx dt (19)

with the constant C5 defined only by the coefficients of the operators Ak, k = 0, 1, 2, 3.
At the next step, consider the equality∫

Q

[
D4
t u+A3D

3
t u+ λ

2∑
k=0

AkD
k
t u

]
A2D

3
t u dx dt =

∫
Q

fA2D
3
t u dx dt.

Reckoning with the ellipticity of A2 and A3 and using the second main inequality for a pair
of elliptic operators [10, Chapter III, Sec. 8], it is not hard to show that there exists a number β0
such that 0 < β0 6 β1, and for |β| < β0, for solutions u(x, t) to Boundary Value Problem II
for equation (9), estimate (13) holds with some constant C6 on the right-hand side that is defined
only by the coefficients of the operators Ak, k = 0, 1, 2, 3, and the domain Ω.

Estimate (14) with the corresponding constant C7 on the right-hand side obviously follows
from the previous estimates.

The obtained estimates of solutions to Boundary Value Problem II for equation (9) and
the theorem on the method of continuation in a parameter and give the solvability of Boundary
Value Problem II for equation (1) in the desired class.

The theorem is proved. 2

Theorem 4. Suppose the fulfillment of the conditions

aij,k(x) ∈ C2(Ω), aij,k(x) = aji,k(x), a0,k(x) ∈ C(Ω), i, j = 1, . . . , n, k = 0, 1, 2, 3; (20)

aij,k(x)ξiξj > m0|ξ|2, m0 > 0, x ∈ Ω, ξ ∈ Rn, a0,k(x) 6 0, k = 2, 3; (21)

−aij,k(x)ξiξj > m1|ξ|2, m1 > 0, x ∈ Ω, ξ ∈ Rn, a0,k(x) > 0, k = 0, 1; (22)

A0 = βÃ0. (23)

Then there is a positive number β0 such that, for |β| < β0 and f(x, t) ∈ L2(Q), Boundary Value

Problem III has a solution u(x, t) such that Dk
t u(x, t) ∈ L2(0, T ;W

2
2 (Ω)∩

◦
W 1

2(Ω)), k = 0, 1, 2, 3,
D4
t u(x, t) ∈ L2(Q).
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Proof. Show that solutions u(x, t) to Boundary Value Problem III of the class mentioned
in the statement of the theorem satisfy the desired a priori estimates.

Multiply equation (1) by D2
t u(x, t). Integrating over Q, applying integration by parts, and

using (20)–(22), it is not hard to obtain the first a priori estimate for solutions u(x, t) to Boundary
Value Problem III: ∫

Q

[ (
D3
t u
)2

+

n∑
i=1

(
D2
t uxi

)2 ]
dx dt 6 C8

∫
Q

f2 dx dt; (24)

here the constant C8 is defined only by the coefficients of the operators Ak, k = 0, 1, 2, 3.
At the next step, multiply equation (1) by A2D

3
t u(x, t) and integrate it over Q. Using

conditions (20)–(23), inequality (11), and also the second main inequality for a pair of elliptic
operators, we conclude that there exists a number β0 such that for |β| < β0 we have a second
estimate

n∑
i,j=1

∫
Q

(
D3
t uxixj

)2
dx dt 6 C9

∫
Q

f2 dx dt; (25)

with the constant C9 defined only by the coefficients of the operators Ak, k = 0, 1, 2, 3, and
the domain Ω.

The last a priori estimate ∫
Q

(
D4
t u
)2
dx dt 6 C10

∫
Q

f2 dx dt (26)

obviously stems of the previous two estimates.
Using estimates (24)–(26) and the method of continuation in a parameter (for example,

with the use of the equation

D4
t u+A2D

2
t u+ λ(A3D

3
t u+A1Dtu+A0u) = f(x, t)

)
,

it is not hard to obtain the desired solvability of Boundary Value Problem III.
The theorem is proved. 2

3. Conclusion.

Observe first of all that the conditions of Proposition 1 are fulfilled, for instance, if the num-
bers a0 and b0 are large.

Furthermore, it is not hard to generalize the obtained results to equations more general
than (1); for example, to equations with general second-order elliptic operators Ak.

Some of the conditions of the proven theorems can be changed: for example, we can discard
the sign-definiteness of the operator A0 from Theorem 4.

Observe finally that conditions (18) and (23) mean that Ã1 and Ã0 are fixed operators,
whereas the number β is a parameter (namely, a smallness parameter).

The work of the author was carried out in the framework of the State Contract of the Sobolev
Institute of Mathematics (Project 0314–2019–0010).
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Краевые задачи для уравнений соболевского типа
четвертого порядка

Александр И. Кожанов
Институт математики им. С. Л. Соболева СО РАН

Novosibirsk, Российская Федерация

Аннотация. Целью статьи является исследование разрешимости в пространствах Соболева кра-
евых задач для некоторых классов линейных уравнений четвертого порядка соболевского типа.
Докажем, что начально-краевые задачи с данными как в начальный момент времени, так и в
конечные моменты времени могут быть корректными для исследуемых уравнений.

Ключевые слова: дифференциальное уравнение четвертого порядка соболевского типа, краевая
задача, существование, единственность.
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Abstract. The field programmable gates array (FPGA) microchip is applied to achieve considerable
performance gain in simulation of tsunami wave propagation using personal computer. The two-step
Mac-Cormack scheme was used for approximation of the shallow water equations. An idea of PC-based
tsunami wave propagation simulation is described. Comparison with the available analytic solutions
and numerical results obtained with the reference code show that developed approach provides good
accuracy in simulations. It takes less then 1 minute to compute 1 hour of the wave propagation in
computational domain that contains 3000× 2500 nodes. Using the nested greed approach, it is possible
to decrease the size of space step from about 300 meters to 10 m. Using the proposed approach, the
entire computational process (to calculate the wave propagation from the source area to the coast) takes
about 2 min. As an example the distribution of maximal heights of tsunami wave along the coast of the
Southern part of Japan is simulated. In particular, the interrelation between maximal wave heights and
location of tsunami source is studied. Model sources of size 100× 200 km have realistic parameters for
this region. It was found that only selected parts of the entire coast line are exposed to tsunami wave
with dangerous height. However, the occurrence of extreme tsunami wave heights at some of those areas
can be attributed to the local bathymetry. The proposed hardware acceleration to compute tsunami
wave propagation can be used for rapid (say, during few minutes) evaluation of danger from tsunami
wave for a particular location of the coast.

Keywords: numerical modelling, tsunami wave propagation, computer code acceleration.
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Early warning of dangerous tsunami waves at a particular coastal location is crucially im-
portant to reduce human losses and minimize possible impact on economy. Unfortunately, the
problem of tsunami early warning after the major offshore earthquake is still unresolved, de-
spite the rather large number of publications on this issue (see, for example, [1]). In the case
of the seismic event offshore Japan, tsunami wave approaches the nearest point at the coast in
approximately 20 minutes. It means that just a few minutes are available for the analysis to
provide the authorities with evaluation of the expected tsunami wave danger. In the case of
the strong earthquake the electric power supply may be disrupted, so it would be better not
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to use supercomputer facilities. Advantages of the modern computer architectures to accelerate
numerical simulation of tsunami wave propagation can be used. An approach based on the spe-
cialized FPGA (Field Programmable Gates Arrays) have been developed and tested. A number
of numerical tests demonstrate the advantages of the new fast method for modelling tsunami
wave propagation. In the present paper we briefly describe the proposed approach and show the
numerical results obtained in the recent years.

Our point is to use just a personal computer (PC) and to achieve performance gain using
Graphic Processing Units (GPUs) and FPGAs as co-processors. So, we propose a specific hard-
ware configuration and the corresponding code.

Robust evaluation of tsunami wave danger should be based on the correct process simulation:
wave generation, wave propagation, and inundation of dry land. In the study we deal with
the stages of wave formation and propagation only to decrease computation time and keep
at the same time sufficient accuracy. So, we suppose that the tsunami wave is caused by a
certain disturbance of sea surface. From this initial disturbance follows initial conditions for
the governing evolution type equations (shallow water equations). The issue of the inundation
mapping was not considered. Therefore, we do not compute waves when depth is small (below 5

m) where reflection type boundary conditions are suggested at such depth to estimate the wave
height in the near-shore area and to account for reflected waves. On the parts of the boundary
which separate our computational domain from the ocean, conditions for free passage of the
wave out of the domain are used. There are several application programs to simulate the wave
propagation over the real digital bathymetry [2–6].

Among the most popular programs the MOST (Method of Splitting Tsunamis) package of
programs should be mentioned. This package is used by the USA NOAA tsunami warning centres
to simulate all tsunami phases – generation, propagation, and inundation of the dry land [2, 4].
Simulation of the wave propagation over chosen water area is based on the numerical solution of
linear or non-linear shallow water differential equations.

Alternatively, the Mac-Cormack scheme for numerical approximation of the shallow water
equations was implemented [7, 8]. Comparison with the exact solutions (in special cases of sea
bed relief) shows a very good accuracy of the implemented method [9, 10]. It shows better
tracking of the wave front in comparison with the MOST program.

A number of numerical tests where real digital bathymetry of the offshore Japan and Kam-
chatka Peninsula was used prove that it takes about 50 sec to solve numerically the shallow water
equations for the computational domain with 107 nodes [11, 12]. Nested grid approach was also
tested [13, 14].

1. Formulation of the problem

The referred program MOST (like many other tools) uses the following equivalent form of
the shallow water equations which does not take into account such external forces as sea bed
friction, Coriolis force and others [4]:

∂H

∂t
+
∂uH

∂x
+
∂vH

∂y
= 0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂H

∂x
= g

∂D

∂x
, (1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂H

∂y
= g

∂D

∂y
,

– 434 –



Mikhail M. Lavrentiev, Andrey G. Marchuk Fast Modelling of Tsunami Wave Propagation . . .

where H(x, y, t) = η(x, y, t) +D(x, y, t) is the entire height of water column, η(x, y, t) is the sea
surface disturbance (wave height), D(x, y) — depth (which is supposed to be known at all grid
points), u and v are components of flow velocity vector, g — acceleration of gravity.

The system of shallow-water equations can be solved using the difference scheme. In this
case values of tsunami wave parameters η(x, y, t), u, and v are defined in nodes of the regular
grid linked to geographical coordinates. To begin with, the initial conditions are set in all grid
nodes. For example, everywhere besides the source area, the values of the grid variables η0ij , u0ij ,
v0ij , (i = 1, . . . , N , j = 1, . . . ,M) are equal to zero. Further, according to the difference scheme
that approximates system of differential equations (1), the wave parameters ηnij , unij , vnij at the
grid nodes on subsequent time layers tn = nτ are calculated. Here, the value of the time step
τ is usually determined from the stability condition. This condition requires that wave can not
travel more than one spatial step (∆x or ∆y) in one time step.

Shallow water equations (1) are approximated at the grid nodes on the n-th time step with
the help of explicit two-step Mac-Cormack finite difference scheme of the second order of approx-
imation [15]:

First half-step:

Ĥn+1
ij −Hn

ij

τ
+
Hn
iju

n
ij −Hn

i−1ju
n
i−1j

∆x
+
Hn
ijv

n
ij −Hn

ij−1v
n
ij−1

∆y
= 0,

ûn+1
ij − unij

τ
+ unij

unij − uni−1j

∆x
+ vnij

unij − unij−1

∆y
+ g

ηnij − ηni−1j

∆x
= 0, (2)

v̂n+1
ij − vnij

τ
+ unij

vnij − vni−1j

∆x
+ vnij

vnij − vnij−1

∆y
+ g

ηnij − ηnij−1

∆y
= 0.

Second half-step:

Hn+1
ij − (Ĥn+1

ij +Hn
ij)/2

τ/2
+
Ĥn+1
i+1j û

n+1
i+1j − Ĥn+1

ij ûn+1
ij

∆x
+
Ĥn+1
ij+1v̂

n+1
ij+1 − Ĥn+1

ij v̂n+1
ij

∆y
= 0,

un+1
ij − (ûn+1

ij + unij)/2

τ/2
+ unij

ûn+1
i+1j − ûn+1

ij

∆x
+ vnij

ûn+1
ij+1 − ûn+1

ij

∆y
+ g

η̂n+1
i+1j − η̂n+1

ij

∆x
= 0, (3)

vn+1
ij − (v̂n+1

ij + vnij)/2

τ
+ unij

v̂n+1
i+1j − v̂n+1

ij

∆x
+ vnij

v̂n+1
ij+1 − v̂n+1

ij

∆y
+ g

η̂n+1
ij+1 − η̂n+1

ij

∆y
= 0.

Here F̂n+1
ij are intermediate values of wave parameters after the first time half-step.

Usually, the real tsunami wave simulation is performed in the spherical or geodetic coordinate
system (λ, ϕ), where λ is the longitude and ϕ is the latitude in arc degrees. Accordingly, the
following relations are used to calculate the differences ∆x and ∆y:

∆xij =
π(λi+1 − λi)

180◦
RE cos(ϕi), ∆yij =

π(ϕi+1 − ϕi)

180◦
RE ,

where RE is the Earth radius. This scheme looks similar to the splitting method (with respect
to space variables) which is used in the referred MOST program package. Indeed, in order to
calculate the values of the sought functions at grid-point (i, j, n + 1) the values at 3 points of
the previous time step, (i, j, n), (i − 1, j, n), and (i, j − 1, n) are used during the first half-step
in (2), and the values at the points (i, j, n), (i + 1, j, n), and (i, j + 1, n) are used in the second
half-step in (3). Comparison of the known analytic solutions with the numerical solutions shows
that the proposed attempt to realize the three-points calculation stencil (Mac–Cormack scheme)
seems to be preferable compared to the one from the MOST software package [9, 10]
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2. FPGA based calculator

In order to achieve performance gain, the FPGA-based Calculator has been developed.
To employ advantages of the FPGA microchip features, the stream processor architecture was

proposed for this algorithm implementation. The proposed Calculator contains several processor
elements (PEs). Each elements performs a pipeline with a sequential data stream. "On board"
memory contains all the necessary information. The calculation speed-up by FPGA architecture
is based on the inner memory (BRAM) access for implementing stencil buffer.

The Calculator architecture allows one to process several nodes in parallel. At the same
time, the user can connect a number of PEs to make several iterations. So, the computation
pipeline can be optimized considering features of the FPGA microchip in use. The Mac–Cormack
finite difference approximation fits very well with the Calculator architecture presented in Fig. 1,
processing 1 node at one computer clock cycle.

Calculator based of FPGA microchip Xilinx Virtex-7 VC709 was used for numerical tests
(see [7, 8] for details).

Fig. 1. Calculator architecture. To implement the FPGA algorithm the following architecture of
the stream processor was proposed. It consists of processor elements (PE). Such PE executes a
version of 2-dimension run, a pipeline with a sequential data stream. In addition to the calculator
itself, the processor has memory controllers DDR3, PCIe controller, and DMA module responsible
for the interaction between the calculator and the memory of the host computer. Such interaction
is arranged as a direct memory access (DMA)

3. Comparison with exact solutions and reference code

In order to verify results obtained by the described method, a number of numerical tests have
been carried out. The first test consists of simulation of the tsunami wave propagation from a
round source in the area with the sloping bottom topography. The water area of 1000 × 1000

km was considered. Computational grid has equal spatial steps in both directions, namely,
∆x = ∆y = 1000 m. The centre of the circular tsunami source with the radius of 50 km was
located in the middle of the region (horizontally) 300 km from the lower boundary where the
depth was vanishing. The depth is linearly increased according to the formula D(x, y) = 0.01y,
where y is the distance from the lower boundary of the region. The initial vertical displacement
h of the tsunami source is determined by the formula

h(r) = 1 + cos

(
πr

r0

)
, 0 6 r 6 r0. (4)
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Here, r is the distance to the centre of the source of radius r0. Thus, in the centre of the
source area the initial displacement of the water surface was +2 m. This source generates a
circular wave with the height of 0.95 m at 50 km from the centre. It is the wave height that was
used as initial circular wave front with the radius of 50 km to estimate the wave amplitude at
all points of the region according to the ray approximation [17, 18]. This distribution of tsunami
wave amplitude (given in the analytic form) was compared with the distribution obtained with
the use of the MOST program and the proposed Mac-Cormack algorithm (Fig. 2).

Fig. 2. Left: Isolines of maximal wave heights distribution above bottom slope: exact solution of
shallow water equations [17, 18] (brown lines), numerical solution with the FPGA based Calcula-
tor (red dashed lines), the MOST program (blue lines). The offshore distance is measured along
vertical axis relative to the figure bottom boundary. Right: Isolines of maximal wave heights
distribution above the parabolic bottom topography [16]: the wave-ray solution to shallow water
equations (brown lines), numerical solution with the FPGA based Calculator (dashed lines), the
MOST program (blue lines). The offshore distance is measured along vertical axis relative to the
figure bottom boundary

Fig. 2 (left) shows that at sufficiently large depths (exceeding 500 m) the contours of all three
distributions of tsunami height maxima are quite close to each other. The proximity of results
of numerical calculations for the two algorithms under consideration is also preserved near the
coast. The discrepancy between numerical and wave-ray approach results in the coastal zone is
caused by the neglect of the effect of increasing wave height due to reflection from the coast.

Another numerical test is similar to the first one and considers the case of the parabolic bottom
relief. Let us consider the same computational area of 1000 × 1000 km with the computational
grid having spatial steps ∆x = ∆y = 1000 m. The centre of the circular source with 50 km
radius is also located in the middle of the area at 300 km from the lower boundary where the
depth is equal to zero. The depth increased according to the formula D(x, y) = 10−8y2, where
y is the distance from the lower boundary of the region. The initial vertical displacement inside
the circular source is determined by (4). Fig. 2 (right) presents the isolines of distributions
of tsunami height maxima calculated by the MOST program and the Mac–Cormack algorithm
together with the estimates of these maxima obtained in the framework of the ray model [16].

Fig. 2 (right) shows that at sufficiently large depths (more than 200 m) the contours of all
three distributions of tsunami height maxima are quite close to each other. Here, the similarity
of the results of numerical simulations with two algorithms under consideration is observed up
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to the coastline (the lower boundary of the region). The discrepancy between numerical and
wave-ray approximation results is increased in the coastal zone.

Based on the results of the wave propagation over a bottom slope the correctness of the
wave front kinematics modelling is also estimated. Fig. 3 shows the comparison of the wave
front position with an interval of 5 minutes obtained with the McCormack scheme with the
exact solution of the kinematic problem at the same time points. In order to prevent the points
from merging (as it happens at the initial moment) the moments of output of the points of the
calculated wave front are taken 3 seconds later than the moment of the corresponding exact
solution of the kinematic problem [17, 18]. The wave front positions obtained with the MOST
program are not presented since these positions of the front points exactly coincide with the
positions obtained with the McCormack scheme.

Fig. 3. Comparison of the tsunami wave isochrones over the sloping bottom: numerical ex-
periments with the MOST and Mac-Cormack algorithms (grey lines) and exact solution (blue
points)

Additional numerical test was carried out in order to verify the correctness of modelling the
reflection of wave from a completely reflecting boundary positioned at 45 degrees to the direction
of motion of the flat wave front. Let us consider rectangular 1000 × 2000 nodes computational
domain. A long wave about 1 m height generated by a one-dimensional source parallel to the lower
boundary of the region propagates over the region and it is reflected from the inner boundary
positioned at 45 degrees to ordinate axis (Fig. 4).

Fig. 4 shows the distribution of the vertical displacement of the water surface in the entire
region calculated with the Mac–Cormack scheme (left figure) and the MOST algorithm (right
figure). The dark line shows the tsunami height isoline corresponding to the value of 0.4 m.
The grey line outlines the water area with the surface displacement less then −0, 4 m. Both
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Fig. 4. Water surface after 3, 000 sec of wave propagation using the Mac-Cormack scheme with
the FPGA (left figure) and the MOST program (right figure). Thin black line indicates the 0.4
m isoline, and the gray line shows −0.4 m isoline

figures confirm the correctness of numerical modelling of the process of wave reflection from a
completely reflecting boundary. One can see that the direction of motion of the reflected wave
in both cases is orthogonal to the direction of the incident wave.

4. Distribution of maximal wave heights along the shoreline

The acceleration of numerical calculations of the tsunami propagation is required, first of all,
by tsunami warning services to fast estimate the expected wave height at various points on the
coastline. Therefore, this estimation is required before tsunami wave reaches the shore. The
ability of the proposed approach to solve this problem in the area with real bathymetry within
a few tens of seconds is demonstrated in this section.

The series of numerical experiments were performed for the areas around Kii Peninsula and
Shikoku Island (southern part of Japan). Japanese bathymetric data produced by the Japan
Oceanographic Data Center (JODC) (see [19]) were used, and they are presented in Fig. 5.

The above bathymetry and the computational grid have the following characteristics:
(1) Computational domain contains 3000 × 2496 nodes; (2) Grid steps are 0.003 and 0.002

degrees (which means 280.6 and 223 meters, respectively); (3) The grid covers the area between
131◦ and 140◦ E, 30.01◦ and 35◦ N; (4) Time step used in computations is equal to 0.5 sec.

The shape of model tsunami sources used in numerical experiments are based on the available
geological and geophysical information. The typical for subduction zone seabed displacement area
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Fig. 5. Digital bathymetry around Kii Peninsula and Shikoku Island (Japan). Positions of model
tsunami sources are indicated

for 8.0 M earthquake was approximated by 100× 200 km rectangle having maximum height 300
cm. The initial seabed displacement for the model source is shown in Fig. 6.

Fig. 6. 3D image of the model tsunami source used in numerical simulation

Positions and shapes of the sources used for tsunami modelling are shown in Fig. 5, where
geography of the computational domain is also presented. In this figure only the closest to the
coast sources Si − a (i = 1, . . . 4) and most distant to the coast sources Si − c (i = 1, . . . 4) are
indicated. Their positive parts are shaped by pink colour, and negative parts (water surface
depression) are outlined by yellow colour. Intermediate sources Si − b (i = 1, . . . 4) are located
between sources Si − a and Si − c.

The distributions of the wave height maxima in the entire area generated by some model
sources are presented in Fig. 7. In the right part of each drawing the legend for colour-height
relation is presented.

As is observed from Fig. 7 (left), the same shape of the initial sea surface displacement causes
the tsunami wave heights of up to 6 m at certain areas of the Shikoku Island and the Kyushu
Island coasts. At the same time, the Kii Peninsula coast is practically safe with wave heights
limited by 0.5 m. Otherwise, the source located opposite Kii peninsula seriously affects only its
coast and it has no effect on Shikoku Island (see Fig. 7 (right)).

Distribution of tsunami wave maxima along the shoreline is also important information for
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Fig. 7. Calculated height maxima in entire computational domain from tsunami wave generated
by the source S0 − c (left) and S3 − b (right) (see Fig. 3)

tsunami warning. Figs. 8(A) and 8(D) show such distribution for 6 model sources S0−a, b, c and
S3 − a, b, c. Numerical experiments were performed for the same shape of the initial see surface
displacement (given in Fig. 6). Positions of the model source along the shore and the distance
of the model source from the shore were varied. Numbers along the horizontal axis indicate the
horizontal indexes of coastal computational grid points.

Fig. 8. Distributions of tsunami wave maxima along the shore generated by the sources S0−a, b, c
(A) and S3 − a, b, c (D). Wave height maxima: yellow lines — Si − a sources; blue lines — Si − b
sources; pink lines — Si − c sources

Let us say few words about digital bathymetry. The grid step 250 m used in our numerical
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experiments is considered too large these days. However, the size of grid step depends on the goal
of simulation. If a detailed evaluation of the expected wave heights along the entire shore line is
needed then it is necessary to carry out numerical simulation with the corresponding fine mesh
size in the near-coastal regions. It can be done by choosing the sufficiently small grid step in the
whole area. However, the number of computational nodes is increased by 2–3 orders. It results
in the necessity to extend computational facilities or, alternatively, in a dramatic increase of the
CPU time required for simulation. As for the proposed FPGA-based Tsunami Wave Calculator,
the available memory resources permits the use of approximately 50 millions computational
nodes.

The Calculator with a regular modern PC needs 25 sec to simulate wave propagation from
the southern edge of the computational domain shown in Fig. 5 to the shore. The estimated
travel time for the wave is 3200 sec. So, realization of Mac-Cormack scheme on FPGA hardware
allows one to estimate the expected wave height distribution along the coastline before tsunami
arrival.

Conclusion

In order to accelerate the calculation of tsunami wave propagation over the deep water area,
a special FPGA based Calculator has been developed. The Mac–Cormack scheme was used for
numerical solution of the shallow water equations. Accuracy of the solution obtained with the
use of the Calculator was tested by comparison with the known analytic solutions. Similar or
even better accuracy is achieved in comparison with the MOST program. These results show
the possibility of tsunami danger forecast in the real time mode.

This work was supported by ICMMG SB RAS (state contract 0315-2019-0005) and by IAE
SB RAS.
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Быстрое моделирование распространения волны цунами
на ПК за счет аппаратного ускорения исполнения кода

Михаил М. Лаврентьев
Институт автоматики и электрометрии СО РАН

Новосибирск, Российская Федерация
Андрей Г.Марчук

Институт вычислительной математики и математической
Новосибирск, Российская Федерация

Аннотация. За счет применения микросхемы вентильной матрицы, программируемой пользо-
вателем (Field Programmable Gates Array – FPGA), достигается значительное ускорение расчета
распространения волн цунами на современном обычном персональном компьютере. Для числен-
ной аппроксимации системы уравнений мелкой воды использовалась двухступенчатая схема Мак-
Кормака. На базе проведенных численных тестов авторы описывают идею моделирования распро-
странения волн цунами на базе ПК. Проведенное сравнение с известными аналитическими решени-
ями и с эталонным кодом показывает хорошую точность разработанного программного приложе-
ния. Расчет одного часа распространения волны занимает меньше 1 минуты на сетке 3000 х 2500
узлов. Используя технологию вложенных сеток, можно перейти от расчетной сетки с шагом 300 м
до сетки с шагом 10 м. При использовании предложенного Калькулятора, весь вычислительный
процесс (для расчета распространение волны от очага до берега) занимает около 2 мин. Полу-
чено распределение максимальных высот волн цунами вдоль побережья южной части Японии. В
частности, исследуется зависимость максимальных высот волн от конкретного местоположения ис-
точника цунами. Модельный источник размером 100 х 200 км имеет реалистичные параметры для
этого географического региона. Результаты численных экспериментов показывают, что только на
отдельных участках всей береговой линии наблюдаются опасные амплитуды волн цунами. Наличие
аномально высоких волн цунами в некоторых из этих районов могут быть вызваны особенностями
локальной батиметрии. Предлагаемое аппаратное ускорение вычисления распространения волны
цунами может быть использовано для быстрой (скажем, за несколько минут) оценки опасности
цунами для конкретного населенного пункта или промышленного объекта на побережье.

Ключевые слова: численное моделирование, распространение волны цунами, ускорение испол-
нения программного кода.
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Abstract. The second initial-boundary value problem for a parabolic equation is under study. The
term in the source function, depending only on time, is to be unknown. It is shown that in contrast
to the standard Neumann problem, for the inverse problem with integral overdetermination condition
the convergence of it nonstationary solution to the corresponding stationary one is possible for natural
restrictions on the input problem data.
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1. Introduction and preliminaries

We consider the parabolic equation with second-type boundary conditions

ut = νuxx + f(t) + g(x, t) in QT = (0, l)× [0, T ]; (1)

u(x, 0) = u0(x), x ∈ (0, l); (2)

−ux(0, t) = q1(t), ux(l, t) = q2(t), (3)∫ l

0

u(x, t)dx = q3(t), t ∈ [0, T ]. (4)

In (1)–(4) the functions g(x, t), u0(x), qi(t), i = 1, 2, 3, and positive constants ν, T , l are assumed
to be given. The problem of finding a pair u(x, t) and f(t) is called inverse one.

Definition. The pair f(t) and u(x, t) from the class C[0, T ]×C2,1(QT )∩C1,0(Q̄T ), for which
equation (1) and conditions (2)–(4) are satisfied, is called a classical solution of the posed inverse
problem.
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It is clear that for existence of smooth solution the consistency conditions should be fulfilled.
They are the following

−u0x(0) = q1(0), u0x(l) = q2(0),

∫ l

0

u0(x)dx = q3(0).

From the physical point of view the posed problem (1)–(4) allows to describe a motion of
viscous fluid in the flat layer with two free boundaries. The function u(x, t) is the velocity in
this case, f(t) is unknown pressure gradient, condition (4) means flow rate through the section
of layer. The solution of the inverse problem in this case gives an answer on a question: what is
pressure gradient needed for providing the given flow rate?

It is necessary to mention that there are many known results concerning to the inverse
problems close to the posed problem. Among of them it can be distinguish the coefficient inverse
problems (see, e. g. [1–3]), problems with unknown source function [4–6] and problems, where
unknown function in the boundary condition occurs [7]. The authors, dealing with finding the
source function, usually assume, that this function is included into the equation by multiplicative
way (see, for example, [4]).

The overdetermination conditions can be nonlocal integral ones [1, 8, 9]. One-point and two-
point overdetermination conditions are considered in [5, 10]. As a rule, in the cited papers and
books the existence and uniqueness of solution are proved, some asymptotic methods of solution
construction are described. It is common situation when existence and uniqueness of solution
are proved in the Sobolev’s spaces. Usually, the same questions are considered in the uniform
metric for 1-dimensional problems only. Concerning to different kinds of inverse problems and
qualitative properties of their solutions we should also mention the monographs authored by
Prilepko et al [11], Alifanov [12] and Belov [13].

1.1. Some remarks on corresponding direct problem

If the function f = 0 in equation (1), and condition (4) is not taken into account, then we
deal with standard Neumann problem for the function u(x, t). It is well known that the direct
initial boundary problem

ut = ν∆u+ g(x, t), x ∈ Ω ⊂ Rn, t ∈ [0, T ]; (5)

u(x, 0) = u0(x), x ∈ Ω;
∂u

∂n
= φ(x), x ∈ ∂Ω, t ∈ [0, T ] (6)

has unique solution if the functions g(x, t), u0(x) and φ(x) are smooth ones. The corresponding
stationary problem

ν∆us = −gs(x), x ∈ Ω ⊂ Rn,
∂u

∂n
= φs(x), x ∈ ∂Ω

has a countable number of solutions us(x) + const if and only if the following condition

1

ν

∫
Ω

gsdΩ+

∫
∂Ω

φsdΓ = 0

is fulfilled. For the separation of unique solution it is necessary to give additional functional of
us(x). For example, it could be us(x0), where x0 ∈ ∂Ω.

It should be noted that if g(x, t) → gs(x) and φ(x, t) → φs(x) in the uniform metric at t→ ∞
for all x ∈ Ω̄, then it is not difficult to prove that nonstationary solution u(x, t) does not tend
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to us(x) at t → ∞. We confirm this fact using an example. For the problem in the space R1

we consider equation (5) with conditions u0(x, 0) = x, ux(0, t) = ux(l, t) = 1 and the right hand
side in the form

g(x, t) =
cos lnM

M
, M = 1 +

ν

l2
t.

It has the solution

u(x, t) = x+
l2

ν
sin lnM,

which has no a limit at t→ ∞ while the corresponding stationary solution is us(x) = x+ const

at φs1 = φs2 = 1 and gs(x) = 0.
We should also mention that for the Dirichlet and Robin problems for multidimensional

linear parabolic equation (5) the sufficient convergence conditions of solution of nonstationary
problem to corresponding stationary one are described in [14]. According to the example above,
for the Neumann problem there is no such convergence. However, it turn out well to show the
convergence of nonstationary solution to the corresponding stationary one for the posed inverse
problem (1)–(4).

Below, using the specific features of the considered problem and their 1-dimensionality, we
derive sufficient conditions for the initial data for which the nonstationary solution tends to
stationary one at t→ ∞ in the uniform metric.

2. Analysis of the inverse problem (1)–(4)

Integrating equation (1) by x from 0 till l and using condition (4), the function f(t) can be
found in the form

f(t) =
1

l

[
∂q3
∂t

− ν (q1(t) + q2(t))−
∫ l

0

g(x, t)dx

]
. (7)

Substitution expression (7) into equation (1) leads to direct problem for the function u(x, t) with
conditions (2) and (3). The solution of the obtained problem can be constructed as follows [15]

u(x, t) =

∫ l

0

u0(y)G(x, y, t)dy +

∫ t

0

∫ l

0

F (y, τ)G(x, y, t− τ) d ydτ+

+ ν

∫ t

0

q1(τ)G(x, 0, t− τ) dτ + ν

∫ t

0

q2(τ)G(x, l, t− τ) dτ,

where G is the Green’s function:

G(x, y, t) =
1

l
+

2

l

∞∑
n=1

cos
(nπx

l

)
cos
(nπy

l

)
exp

(
−νn

2π2t

l2

)
, F (x, t) = f(t) + g(x, t).

The examples of construction of a priori estimate for the functions presented as series with
the Green’s functions are given in [16,17]. As it can be observed in those works, the deriving the
estimate of the function |u(x, t)|, x ∈ [0, l], t ∈ [0, T ] from this expression is a cumbersome task.
We suggest another way and reduce problem (1)–(4) to the axillary problem with the first-type
boundary conditions.
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Differentiating equation (1) with respect to variable x, we obtain the initial boundary value
problem for the function w(x, t) = ux(x, t):

wt = νwxx + gx(x, t), x ∈ (0, l), t ∈ [0, T ];

w(x, 0) = w0(x) = u0x(x), x ∈ [0, l]; (8)

w(0, t) = −q1(t), w(l, t) = q2(t), t ∈ [0, T ].

The corresponding stationary problem has the solution

ws(x) = −qs1 +
x

l

[
qs1 + qs2 +

1

ν

∫ l

0

gs(y)dy

]
− 1

ν

∫ x

0

gs(y)dy, (9)

where qs1, qs2, gs(x) are given constants and function respectively.
Let the functions q1,2(t) be known for all t > 0 and the following inequalities be fulfilled

|qj(t)| 6 Nj(1 + τ)−α, j = 1, 2, |g(x, t)| 6 N3(1 + τ)−α, |gx(x, t)| 6 N4(1 + τ)−α (10)

with some positive constants N1, . . . , N4 and α for all x ∈ [0, l], where τ = νt/l2 is the dimen-
sionless time here and below. Then with respect to the results from [14] it can be concluded that
the function w(x, t) can be restricted as

|w(x, t| 6 N5(1 + τ)−α (11)

with constant N5 > 0 at x ∈ [0, l].
In order to find the stationary solution us(x), expression (9) should be integrated

us(x) = −qs1x− 1

ν

(
fs
x2

2
+

∫ x

0

(x− y)gs(y)dy

)
+ C. (12)

Here

fs = −ν
l

(
qs1 + qs2 +

1

ν

∫ l

0

gs(y)dy

)
, (13)

C =
qs3
l
+
qs1l

3
− lqs2

6
+

1

νl

(∫ l

0

∫ x

0

(x− y)gs(y)dydx− l2
∫ l

0

gs(y)dy

)
.

After that the stationary solution of the posed inverse problem is constructed, we can start
obtaining a priori estimates of the corresponding nonstationary solution.

2.1. A priori estimates of the solution of problem (1)–(4)

It should be noted that if the following conditions are fulfilled

∂q3
∂t

→ 0, qj(t) → qsj , g(x, t) → gs(x)

at t→ ∞ and x ∈ [0, l], then it can be concluded that

f(t) → fs at t→ ∞
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is valid. The function f(t) is from formula (7), and fs is from (13).
According to the integral mean-value theorem there is the point x0 ∈ (0, l) such that

u(x0, t) = l−1q3(t) (see (4)). That is why for every x ∈ [0, l], t > 0 it follows that

u(x, t) = u(x0, t) +

∫ x

x0

uy(y, t)dy = l−1q3(t) +

∫ x

x0

w(y, t)dy.

Using estimate (11), it can be obtained that

|u(x, t)| 6 l−1|q3(t)|+
∫ l

0

|w(y, t|dy 6 l−1|q3(t)|+N5l(1 + τ)−α. (14)

Let the following inequalities should be fulfilled

|qj(t)− qsj | 6 Dj(1 + τ)−α, j = 1, 2, 3;∣∣∣∂q3
∂t

∣∣∣→ 0, t→ ∞, |g(x, t)− gs(x)| 6 D4(1 + τ)−α, (15)

|gx(x, t)− gsx(x)| 6 D5(1 + τ)−α

with constants Di > 0 (i = 1, . . . , 5), α > 0 for every x ∈ [0, l]. Then the following estimates can
be provided

|u(x, t)− us(x)| 6 D6(1 + τ)−α,

|ux(x, t)− usx| 6 D7(1 + τ)−α, (16)

|f(t)− fs| 6 D8(1 + τ)−α,

where D6, D7, D8 are positive constants.
For the deriving the estimates in (16) it needs to make a change ũ(x, t) = u(x, t) − us(x),

w̃(x, t) = w(x, t) − ws(x) and f̃(t) = f − fs in equation (1) and condition (4). The boundary
conditions should be rewritten as q̃j(t) = qj(t) − qsj , j = 1, 2, 3, and g̃(x, t) = g(x, t) − gs(x) in
this case. Applying estimates (14) and (11), formulas (7) and (13), using assumptions (15) we
derive estimates (16). It concludes that the solution of inverse problem (1)–(4) converges to the
corresponding stationary solution (12), (13) in the class C[0,∞]× C2,1(QT ) ∩ C1,0(Q̄T ).

Conclusion

For the conclusion some remarks can be made. The first one is following. If the right
hand sides of inequalities (15) are restricted by exponent function (exp(−ατ) , α > 0), then the
solution of problem (1)–(4) tends to stationary regime us(x), fs (see (12), (13)) with respect
to exponent law at t → ∞. The second remark is concerned to question of stabilization. The
results obtained can be interpreted as stability of stationary solution (12), (13) if conditions (15)
are fulfilled.

The authors were surprised at research of some aspects of solution stabilization in problems
on binary mixtures motion that the question on solutions solvability and stability in the problems
close to (1)–(4) was not described anywhere in literature. And we were glad to fill this gap in
the investigation of such problems.
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Обратная задача определения функции источника
для параболического уравнения c краевыми
условиями Неймана

Виктор К. Андреев
Ирина В. Степанова

Институт вычислительного моделирования СО РАН
Красноярск, Российская Федерация

Аннотация. В работе изучается вторая начально-краевая задача для параболического уравнения,
когда часть функции источника, зависящая только от времени, неизвестна. Показано, что в отличие
от классической задачи Неймана для обратной задачи с интегральным условием переопределения
возможна сходимость ее нестационарного решения к соответствующему стационарному при есте-
ственных ограничениях на входные данные.

Ключевые слова: параболическое уравнение, обратная задача, функция источника, априорная
оценка, нелокальное условие переопределения.
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Abstract. The global solvability of the inhomogeneous mixed boundary value problem and control prob-
lems for the reaction–diffusion–convection equation are proved in the case when the reaction coefficient
nonlinearly depends on the concentration. The maximum and minimum principles are established for
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1. Introduction. Solvability of the boundary value problem

In recent years, there has been an increasing interest in the study of inverse and control
problems for models of heat and mass transfer, electromagnetism and acoustics. A number of
papers are devoted to the theoretical analysis of these problems, of which we note [1–16]. In
these papers, the solvability of boundary value problems, inverse and extremum problems for
the specified models was proved, and the questions of uniqueness and stability of their solutions
were studied. Related problems for models of complex heat transfer were studied in [17,18].

This paper which continues a series of papers by the authors [10–14] is devoted to the theo-
retical analysis of the boundary value and control problems for the nonlinear reaction–diffusion–
convection equation, considered under inhomogeneous mixed boundary conditions on the bound-
ary of the domain.

In bounded domain Ω ⊂ R3 with boundary Γ, consisting of two parts ΓD and ΓN , the following
boundary value problem for nonlinear reaction–diffusion–convection equation is considered:

−div(λ(x)∇φ) + u · ∇φ+ k(φ,x)φ = f in Ω, (1.1)

φ = ψ on ΓD, λ(x)(∂φ/∂n+ α(x)φ) = χ on ΓN . (1.2)

Here the function φ means the concentration of the substance, u is a given vector of velocity,
f is a volume density of external sources of substance, λ(x) is a diffusion coefficient, function
k(φ,x) is a reaction coefficient, x ∈ Ω. Below we will refer to the problem (1.1), (1.2) for the
given functions λ, k, f, ψ, α and χ as Problem 1.

∗alekseev@iam.dvo.ru
†mlnwizard@mail.ru

c⃝ Siberian Federal University. All rights reserved
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In this paper, we first prove the global solvability of Problem 1 and the nonlocal uniqueness
of its solution in the case, when the reaction coefficient k(φ,x) is sufficiently arbitrarily depends
on both the concentration φ and the spatial variable x, and the nonlinearity k(φ,x)φ is mono-
tone. Under additional conditions on the functions λ, f, χ, α, ψ and the reaction coefficient k the
minimum and maximum principles are established for the concentration φ. Further, a control
problem is formulated, in which the role of controls is played by the diffusion coefficient λ, the
volume density of external sources of substance f and the density of boundary sources χ and
its solvability is proved. For the mentioned problems, with specific reaction coefficients, an opti-
mality system is derived and, based on its analysis a theorem on the local stability estimates of
optimal solutions is formulated. This theorem can be proved according to the scheme described
in detail in [11–16].

When analyzing the problems under study, we will use the Sobolev functional spaces Hs(D),
s ∈ R. Here D means either a domain Ω, or some subset Q ⊂ Ω, or part ΓD of the boundary Γ.
By ∥ · ∥s,Q, | · |s,Q and (·, ·)s,Q we will denote the norm, seminorm and scalar product in Hs(Q).
The norms and scalar products in L2(Q), L2(Ω) or in L2(ΓN ) will be denoted by ∥·∥Q and (·, ·)Q,
∥ · ∥Ω and (·, ·) or ∥ · ∥ΓN

and (·, ·)ΓN
, respectively. Let Lp+(D) = {k ∈ Lp(D) : k > 0}, p > 3/2,

Z = {v ∈ L4(Ω)3 : divv = 0 in Ω, v · n|ΓN
= 0}, Hs

λ0
(Ω) = {h ∈ Hs(Ω) : h > λ0 > 0 in Ω},

s > 3/2, T = {φ ∈ H1(Ω) : φ|ΓD
= 0}. Here and below φ|Γ0

denotes the trace of a function
φ ∈ H1(Ω) on the part Γ0 of the boundary Γ. For any function φ ∈ T the Friedrichs–Poincaré
inequality ∥∇φ∥2Ω > δ0∥φ∥21,Ω holds, where positive constant δ0 does not depend on φ.

Let the following conditions hold:
(i) Ω is a bounded domain in R3 with boundary Γ ∈ C0,1, consisting of closures of two

non-intersecting open parts ΓD and ΓN (Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅), and meas ΓD > 0;
(ii) λ ∈ Hs

λ0
(Ω), s > 3/2, f ∈ L2(Ω), χ ∈ L2(ΓN );

(iii) u ∈ Z, ψ ∈ H1/2(ΓD), α ∈ L2
+(ΓN ).

(iv) The function k : R × Ω → R is nonnegative. In addition, for any function v ∈ H1(Ω)
the embedding k(v, ·) ∈ Lp+(Ω) holds for some p > 3/2, independent of v, and on any ball
Br = {v ∈ H1(Ω) : ∥v∥1,Ω 6 r} of radius r the following inequality holds:

∥k(v1, ·)− k(v2, ·)∥Lp(Ω) 6 Lr∥v1 − v2∥L4(Ω) ∀v1, v2 ∈ Br. (1.3)

Here the constant Lr depends on r but does not depend on v1, v2 ∈ Br;
(v) (k(φ1, ·)φ1 − k(φ2, ·)φ2, φ1 − φ2) > 0 for all φ1, φ2 ∈ H1(Ω);
(vi) ∥k(φ, ·)∥Lp(Ω) 6 A∥φ∥r1,Ω+B for all φ ∈ H1(Ω), where number p is defined in (iii), r > 0

is a fixed number, A and B are nonnegative constants.
Let us note that the condition (iv) describes an operator acting fromH1(Ω) to Lp(Ω), p > 3/2,

allowing to take into account the rather arbitrary dependence of the reaction coefficient k on
both the concentration φ and the spatial variable x. Condition (v) means that the nonlinearity
k(φ, ·)φ is monotone [19, p. 182], and condition (vi) restricts the growth in φ of the reaction
coefficient by a power function with exponent r.

The specified conditions will provide a proof of the solvability of Problem 1 considered under
the inhomogeneous Dirichlet condition on the part ΓD of the boundary Γ. As an example of the
function k(φ, ·) satisfying (iv)–(vi) we give the function k : R × Ω → R, such that k(φ,x) = φ2

for x ∈ Q where Q is a subdomain of domain Ω, k(φ,x) = k0(x) ∈ L
3/2
+ (Ω \Q) for x ∈ Ω \Q.

Let us also remind that, by the Sobolev embedding theorem, the space H1(Ω) is embedded
into the space Ls(Ω) continuously at s 6 6 and compactly at s < 6 and, with a certain constant
Cs, depending on s and Ω, we have the estimate

∥φ∥Ls(Ω) 6 Cs∥φ∥1,Ω ∀φ ∈ H1(Ω). (1.4)

The following technical lemma holds (see details in [7]).
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Lemma 1.1. Let, in addition to condition (i)–(iii), u ∈ Z, k1(·) ∈ Lp+(Ω), p > 3/2. Then the
following relations hold:

|(λ∇φ,∇η)| 6 γs∥λ∥s,Ω∥φ∥1,Ω∥η∥1,Ω ∀φ, η ∈ H1(Ω),

(λ∇h,∇h) > λ∗∥h∥21,Ω ∀h ∈ T , λ∗ ≡ δ0λ0,
(1.5)

|(u · ∇φ, η)| 6 γ1∥u∥L4(Ω)3∥φ∥1,Ω∥η∥1,Ω ∀φ, η ∈ H1(Ω), (u · ∇h, h) = 0 ∀h ∈ T , (1.6)

|(χ, φ)ΓN
| 6 γ2∥χ∥ΓN

∥φ∥1,Ω ∀χ ∈ L2(ΓN ), φ ∈ H1(Ω), (1.7)

|(λαφ, η)ΓN
| 6 γs3∥λ∥s,Ω∥α∥ΓN

∥φ∥1,Ω∥η∥1,Ω ∀φ, η ∈ H1(Ω), (1.8)

|(k1φ, η)| 6 γp∥k1∥Lp(Ω)∥φ∥1,Ω∥η∥1,Ω ∀φ, η ∈ H1(Ω). (1.9)

Here λ∗ = δ0λ0, constants γ1 and γ2 depend on Ω, constants γs and γs3 depend on Ω and s, γp
depends on Ω and p.

Let us multiply the equation (1.1) by h ∈ T and integrate over Ω using Green’s formulae.
Taking into account (1.2), we obtain

(λ∇φ,∇h)+(k(φ, ·)φ, h)+(u·∇φ, h)+(λαφ, h)ΓN
= (f, h)+(χ, h)ΓN

∀h ∈ T , φ|ΓD
= ψ. (1.10)

Definition 1.1. The function φ ∈ H1(Ω), which satisfies (1.10), will be called a weak solution
of Problem 1.

To prove the solvability of Problem 1, we need the following lemma [12].

Lemma 1.2. Let condition (i) holds. Then for any function ψ ∈ H1/2(ΓD) there exists a
function φ0 ∈ H1(Ω), such that φ0 = ψ on ΓD and with some constant CΓ, depending on Ω and
ΓD, the estimate ∥φ0∥1,Ω 6 CΓ∥ψ∥1/2,ΓD

holds.

We represent the solution to Problem 1 as the sum φ = φ̃+ φ0 where φ0 is a given function
from Lemma 1.2 and φ̃ ∈ T is unknown function. Substituting φ = φ̃+φ0 in (1.10) we will have

(λ∇φ̃,∇h) + (k(φ̃+ φ0, ·)(φ̃+ φ0), h) + (u · ∇φ̃, h) + (λαφ̃, h)ΓN
=

= (f, h) + (χ, h)ΓN
− (λ∇φ0,∇h)− (u · ∇φ0, h)− (λαφ0, h)ΓN

∀h ∈ T . (1.11)

Adding the term −(k(φ0, ·)φ0, h) to both parts of (1.11), we obtain

(λ∇φ̃,∇h) + (k(φ̃+ φ0, ·)(φ̃+ φ0)− k(φ0, ·)φ0, h) + (u · ∇φ̃, h) + (λαφ̃, h)ΓN
=

⟨l, h⟩≡(f, h)+(χ, h)ΓN
−(λ∇φ0,∇h)−(u·∇φ0, h)−(k(φ0, ·)φ0, h)−(λαφ0, h)ΓN

∀h∈T . (1.12)

Using the Holder inequality, Lemmas 1.1, 1.2, estimate (1.4) and condition (vi), it is easy to
show that l ∈ T ∗ and, moreover, the following estimate holds:

∥l∥T ∗ 6Ml ≡ ∥f∥Ω + γ2∥χ∥ΓN
+ CΓ(γs∥λ∥s,Ω + γ1∥u∥L4(Ω)3)∥ψ∥1/2,ΓD

+

+CΓ[γp(AC
r
Γ∥ψ∥r1/2,ΓD

+B) + γs3∥λ∥s,Ω∥α∥ΓN
]∥ψ∥1/2,ΓD

. (1.13)

Let us introduce the nonlinear operator A : T → T ∗ by

⟨A(φ̃), h⟩ ≡ (λ∇φ̃,∇h) + (k(φ̃+ φ0, ·)(φ̃+ φ0)− k(φ0, ·)φ0, h) + (u · ∇φ̃, h)+

+(λαφ̃, h)ΓN
∀ φ̃, h ∈ T . (1.14)
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It is clear that the problem (1.12) is equivalent to the operator equation A(φ̃) = l. According
to [19, p. 182], to prove the existence of a solution φ̃ ∈ T of problem (1.12) it suffices to show
that: 1) the operator A is monotone on T , that is ⟨A(u)−A(v), u−v⟩>0 for all u, v ∈ T ; 2) the
operator A : T →T ∗ is continuous and bounded; 3) the operator A is coercive on T .

To prove the monotonicity of the operator A we subtract the relation (1.14) for φ̃ = φ̃2 from
(1.14) for φ̃ = φ̃1 where φ̃1 and φ̃2 ∈ T are arbitrary elements. We obtain

⟨A(φ̃1)−A(φ̃2), h⟩ = (λ∇(φ̃1 − φ̃2),∇h) + (k(φ̃1 +φ0, ·)(φ̃1 +φ0)− k(φ̃2 +φ0, ·)(φ̃2 +φ0), h)+

+(u · ∇(φ̃1 − φ̃2), h) + (λα(φ̃1 − φ̃2), h)ΓN
∀h ∈ T . (1.15)

For h = φ̃1 − φ̃2 all terms in the right-hand side of (1.15) are nonnegative due to the properties
of the functions λ, α,u indicated in (ii), (iii) and monotonicity of nonlinearity k(φ)φ. Therefore

⟨A(φ̃1)−A(φ̃2), φ̃1 − φ̃2⟩ > 0 ∀φ̃1, φ̃2 ∈ T .

To prove the continuity and boundedness of the operator A we rewrite (1.15) in the form

⟨A(φ̃1)−A(φ̃2), h⟩ = (λ∇(φ̃1 − φ̃2),∇h) + (k(φ̃1 + φ0, ·)− k(φ̃2 + φ0, ·), φ̃1 + φ0, h)+

+(k(φ̃2 + φ0, ·)(φ̃1 − φ̃2), h) + (u · ∇(φ̃1 − φ̃2), h) + (λα(φ̃1 − φ̃2), h)ΓN
∀h ∈ T . (1.16)

Using the estimates of Lemma 1.1, the estimates (1.4), (1.9), and condition (iii), from (1.16) we
deduce that

|⟨A(φ̃1)−A(φ̃2), h⟩| 6 (γs∥λ∥s,Ω + γpLC4∥φ1∥1,Ω)∥φ̃1 − φ̃2∥1,Ω∥h∥1,Ω+

+(γp∥k(φ̃2 + φ0, ·)∥Lp(Ω) + γ1∥u∥L4(Ω)3 + γs3∥λ∥s,Ω∥α∥ΓN
)∥φ̃1 − φ̃2∥1,Ω∥h∥1,Ω ∀h ∈ T . (1.17)

The inequality (1.17) implies the continuity and boundedness of the operator A. Finally, setting
h = φ̃ in (1.14) and using conditions (ii), (iv), and (1.6), we arrive at the following inequality
which implies the coercivity of the operator A:

⟨A(φ̃), φ̃⟩ = (λ∇φ̃,∇φ̃) + (k(φ̃+ φ0, ·)(φ̃+ φ0)− k(φ0, ·)φ0, φ̃)+

+(λαφ̃, φ̃)ΓN
> λ∗∥φ̃∥21,Ω ∀φ̃ ∈ T . (1.18)

As a result we conclude that the solution φ̃ ∈ T of the problem (1.11) exists and the estimate
∥φ̃∥1,Ω 6 C∗∥l∥T ∗ , C∗ = λ−1

∗ takes place. In this case, the function φ = φ0 + φ̃ is the desired
weak solution to Problem 1 and the following estimate holds:

∥φ∥1,Ω 6Mφ ≡ C∗Ml + CΓ∥ψ∥1/2,ΓD
(C∗ = λ−1

∗ ). (1.19)

Here the constant Ml was defined in (1.13) and CΓ is the constant from Lemma 1.2.
Let us show that the solution to Problem 1 is unique. Let φ1 and φ2 ∈ H1(Ω) be any two

solutions to Problem 1. Then their difference φ = φ1 − φ2 ∈ T satisfies the identity

(λ∇φ,∇h) + (k(φ1, ·)φ1 − k(φ2, ·)φ2, h) + (u · ∇φ, h) + (λα(φ1 − φ2), h)ΓN
= 0 ∀h ∈ T .

Setting here h = φ, by virtue of conditions (iii), (v) and (1.6) we arrive at the inequality
λ∗∥φ∥1,Ω 6 0, from which it follows that φ1 = φ2 in Ω. This proves the following theorem.

Theorem 1.1. Let conditions (i)–(vi) hold. Then there exists a unique weak solution φ ∈ H1(Ω)
of Problem 1 and the estimate (1.19) holds.
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Within the framework of the approach of [20] we prove the maximum and minimum principles
for a weak solution φ to Problem 1. To this end, we assume, in addition to (i)–(vi), that the
following conditions are satisfied:

(vii) ψmin 6 ψ 6 ψmax a.e. on ΓD, fmin 6 f 6 fmax and λmin 6 λ 6 λmax a.e. in Ω,
αmin 6 α 6 αmax and χmin 6 χ 6 χmax a.e. on ΓN .
Here ψmin, ψmax, fmin, fmax, χmin, χmax are nonnegative numbers, while αmin, αmax and λmin,
λmax are positive numbers;

Besides, we will assume also that the reaction coefficient k satisfies the following conditions:
(viii) the reaction coefficient k has the form k = k1(φ) where k1(·) : R → R is a continuous

nonnegative function, satisfying conditions (iv)–(vi), in which one should set k(φ, ·) = k1(φ),
and every of functional with respect to M1 and m1 equations

k1(M1)M1 = fmax and k1(m1)m1 = fmin (1.20)

has at least one solution.
We set

M = max{ψmax, χmax/λminαmin,M1}, m = min{ψmin, χmin/λmaxαmax,m1}. (1.21)

Theorem 1.2. Let conditions (i)–(iii), (vii), (viii) hold. Then for the solution φ ∈ H1(Ω) of
Problem 1 the following maximum and minimum principle holds:

m 6 φ 6M a.e. in Ω. (1.22)

Here the constants m and M are defined in (1.21) where M1 is a minimum root of the first
equation in (1.20) and m1 is a maximum root of the second equation in (1.20).

Proof. Firstly, we prove the validity of the maximum principle in the form of the estimate
φ 6 M in Ω. For this purpose we introduce a nonnegative function v = max{φ −M, 0}. From
the definition of v it follows that the estimate φ 6M holds if and only if v = 0 in Ω. We denote
by ΩM ⊂ Ω a measurable subset of Ω, at the points of which the inequality φ > M holds, by ΓM
we denote the measurable subset of the part ΓN , at the points of which the condition v|ΓM

> 0 is
satisfied. Set Ω1 = Ω \ΩM , Γ1 = ΓN \ΓM . From [21, p. 152] and [22] it follows by the definition
of the constant M in (1.21) that v ∈ T , and the following relations hold:

v = φ−M > 0 and ∇v = ∇φ in ΩM ; v = 0 and ∇v = 0 in Ω1; v|Γ1 = 0,

(λ∇φ,∇v) = (λ∇v,∇v)ΩM
= (λ∇v,∇v), (u · ∇φ, v) = (u · ∇φ, v)ΩM

= (u · ∇v, v) = 0.

We set h = v in (1.10) at k(φ) = k1(φ) and add to both sides of the resulting equality the term
−(k1(M)M, v)QM

− (λαM, v)ΓM
. Taking into account the properties of v we obtain

(λ∇v,∇v) + (k1(v +M)(v +M)− k1(M)M, v)QM
+ (λαv, v)ΓM

=

= (f − k1(M)M, v)QM
+ (χ− λαM, v)ΓM

. (1.23)

From the definition of the constant M in (1.21), relations (1.20) and conditions (ii),(iii),
(vi) and (vii) it follows that the right-hand side in (1.23) is non-positive while the second and
third terms in the left-hand side are nonnegative. Taking into account this fact and the second
inequality in (1.5) from (1.23) we arrive at the estimate ∥v∥21,Ω 6 0, from which it follows that
v = 0. This means the validity of the estimate of φ 6M in Ω.

To prove the minimum principle in the form of the estimate φ > m in Ω we introduce a
non-positive function w = min{φ−m, 0} and note that the validity of the minimum principle is
equivalent to the condition w = 0 in Ω. Let us denote by Ωm a measurable subset of Ω, at the
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points of which φ < m. By Γm we denote a measurable subset of the part ΓN , at the points of
which φ|Γm < m. Set Ω2 = Ω \ Ωm, Γ2 = ΓN \ Γm. By definition of Ωm and Γm we have

w = φ−m < 0 and ∇w = ∇φ in Ωm; w = 0 and ∇w = 0 in Ω2, w = 0 on Γ2.

Setting h = w in (1.10) at k(φ) = k1(φ) we add to both sides of the resulting relation the term
−(k1(m)m,w)Qm

− (λαm,w)Γm
. Taking into account the properties of the function w we obtain

(λ∇w,∇w) + (k1(w +m)(w +m)− k1(m)m,w)Qm
+ (λαw,w)Γm

=

= (f − k1(m)m,w)Qm
+ (χ− λαm,w)Γm

. (1.24)

From the definition of the constant m in (1.21), (1.20) and conditions (ii), (iii) (v), (vii) it follows
that the right-hand side in (1.24) is non-positive while the second and third terms in the left-hand
side are nonnegative. Taking into account this fact, from (1.24) we derive that w = 0. 2

Remark 1.2. For power-law reaction coefficients, the parameters M1 and m1 are easily calcu-
lated. For example, for k1(φ) = φ2, we easily deduce that M1 = f

1/3
max, m1 = f

1/3
min.

2. Formulation and solvability of control problem

To formulate the control problem we divide the set of initial data of Problem 1 into two
groups: a group of fixed data, to which we assign the functions u, k(φ, ·), α and ψ, and the
control group, to which we assign the functions λ, f and χ, assuming that they can change in
some sets K1,K2 and K3 satisfying the condition

(j) K1 ⊂ Hs
λ0
(Ω), K2 ⊂ L2(Ω) and K3 ⊂ L2(ΓN ) are nonempty convex closed sets.

Define the space Y = T ∗×H1/2(ΓD). Setting u = (λ, f, χ), K = K1×K2×K3 we introduce
the operator F = (F1, F2) : H

1(Ω)×K → Y by formulae: F2(φ) = φ|ΓD
− ψ and

⟨F1(φ, u), h⟩ = (λ∇φ,∇h) + (k(φ, ·)φ, h) + (u · ∇φ, h) + (λαφ, h)ΓN
− (f, h)− (χ, h)ΓN

and rewrite (1.10) in the form F (φ, u) = 0. Considering this equality as a conditional restriction
on the state φ ∈ H1(Ω) and control u ∈ K, we introduce the cost functional I and formulate the
following conditional minimization problem:

J(φ, u) ≡ µ0

2
I(φ) +

µ1

2
∥λ∥2s,Ω +

µ2

2
∥f∥2Ω +

µ3

2
∥χ∥2ΓN

→ inf,

F (φ, u) = 0, (φ, u) ∈ H1(Ω)×K.
(2.1)

We denote by Zad = {(φ, u) ∈ H1(Ω)×K : F (φ, u) = 0, J(φ, u) < ∞} the set of admissible
pairs for the problem (2.1) and suppose that the following condition is satisfied:

(jj) µ0 > 0, µi > 0, i = 1, 2, 3, and K is a bounded set or µi > 0, i = 0, 1, 2, 3 and functional
I is bounded below.

We use the following cost functionals:

I1(φ) = ∥φ− φd∥2Q =

∫
Q

|φ− φd|2dx, I2(φ) = ∥φ− φd∥21,Q. (2.2)

Here φd ∈ L2(Q) (or φd ∈ H1(Q)) is a given function in some subdomain Q ⊂ Ω.

Theorem 2.1. Let, in addition to conditions (i), (iii)–(vi), and (j), (jj), I : H1(Ω) → R be a
weakly semicontinuous below functional and let Zad ̸= ∅. Then there exists at least one solution
(φ, u) ∈ H1(Ω)×K of the control problem (2.1).
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Proof. Let (φm, um) ∈ Zad be a minimizing sequence for which the following is true

lim
m→∞

J(φm, um) = inf
(φ,u)∈Zad

J(φ, u) ≡ J∗.

Condition (jj) and Theorem 1.1 yield the following estimates:

∥λm∥s,Ω 6 c1, ∥fm∥Ω 6 c2, ∥χm∥ΓN
6 c3, ∥φm∥1,Ω 6 c4 (2.3)

where the constants ci, i = 1, 2, 3, 4 don’t depend on m.
From the estimates (2.3) and from the condition (j) it follows that there exist weak limits

λ∗ ∈ K1, f∗ ∈ K2, χ∗ ∈ K3 and φ∗ ∈ H1(Ω) of some subsequences of sequences {λm}, {fm},
{χm} and {φm}, respectively. Corresponding subsequences will be also denoted by {λm}, {fm},
{χm} and {φm}. Moreover, due to the compactness of the embeddings H1(Ω) ⊂ Lp(Ω) for p < 6,
H1/2(ΓN ) ⊂ Lq(ΓN ) for q < 4, Hs(Ω) ⊂ L∞(Ω) and Hs−1/2(ΓN ) ⊂ L∞(ΓN ) for s > 3/2 we can
assume for m→ ∞, that

φm → φ∗ weakly in H1(Ω), weakly in L6(Ω) and strongly in Ls(Ω), s < 6,

φm|ΓN
→ φ∗|ΓN

weakly in H1/2(ΓN ), weakly in L4(ΓN ) and strongly in Lq(ΓN ), q < 4,

fm → f∗ weakly in L2(Ω), χm → χ∗ weakly in L2(ΓN ),

λm → λ∗ weakly in Hs(Ω) and strongly in L∞(Ω),

λm|ΓN
→ λ∗|ΓN

weakly in Hs−1/2(ΓN ) and strongly in L∞(ΓN ), s > 3/2.

(2.4)

It is clear, that F2(φ
∗) = 0. Let us show that F1(φ

∗, u∗) = 0, that is, that

(λ∗∇φ∗,∇h)+(k(φ∗, ·)φ∗, h)+(u ·∇φ∗, h)+(λ∗αφ∗, h)ΓN
= (f∗, h)+(χ∗, h)ΓN

∀h ∈ T . (2.5)

To this end we note that the pair (φm, um) satisfies the identity

(λm∇φm,∇h) + (k(φm, ·)φm, h) + (u · ∇φm, h) + (λmαφm, h)ΓN
=

= (fm, h) + (χm, h)ΓN
∀h ∈ T . (2.6)

Let us pass to the limit in (2.6) as m → ∞. From (2.4) it follows that all linear terms in (2.6)
pass into corresponding ones in (2.5).

Let us study the behaviour of nonlinear terms for m→ ∞ starting with (k(φm, ·)φm, h). To
prove the convergence

(k(φm, ·)φm, h) → (k(φ∗, ·)φ∗, h) as m→ ∞ ∀h ∈ T (2.7)

it is enough to show that k(φm, ·)φm → k(φ∗, ·)φ∗ weakly in L6/5(Ω) as m → ∞. From (1.3)
it follows that k(φm, ·) → k(φ∗, ·) strongly in L3/2(Ω), and from (2.4) it follows that φm → φ∗

weakly in L6(Ω) as m → ∞. We derive from these properties that k(φm, ·)φm → k(φ∗, ·)φ∗

weakly in L6/5(Ω) and therefore (2.7) also holds.
For the term (λm∇φm,∇h) the following equality holds:

(λm∇φm,∇h)− (λ∗∇φ∗,∇h) = ((λm − λ∗)∇φm,∇h) + (∇(φm − φ∗), λ∗∇h). (2.8)

Since λ∗∇h ∈ L2(Ω)3, then from (2.4) it follows that (∇(φm − φ∗), λ∗∇h) → 0 as m → ∞ for
all h ∈ T . Using Holder’s inequality, (2.3) and (2.4) we easily deduce for the first term in the
right-hand side of (2.8) that

|((λm − λ∗)∇φm,∇h)| 6 ∥λm − λ∗∥L∞(Ω)∥∇φm∥Ω∥∇h∥Ω → 0 as m→ ∞ ∀h ∈ T .
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Then from (2.8) we obtain that (λm∇φm,∇h) → (λ∗∇φ∗,∇h) as m→ ∞ ∀h ∈ T .
Similarly, for the nonlinear term (λmαφm, h)ΓN

we have that

(λmαφm, h)ΓN
− (λ∗αφ∗, h)ΓN

= ((λm − λ∗)αφm, h)ΓN
+ (λ∗α(φm − φ∗), h)ΓN

. (2.9)

Since λ∗αh ∈ L4/3(ΓN ) then by virtue of (2.4) (φm−φ∗, λ∗αh)ΓN
→ 0 for all h ∈ T as m→ ∞.

Using Holder inequality, (2.4) and the uniform boundedness of the quantity ∥φm∥L4(ΓN ) for any
m, we deduce for the first term in the right-hand side of (2.9), that

|((λm − λ∗)αφm, h)ΓN
| 6 ∥λm − λ∗∥L∞(ΓN )∥α∥ΓN

∥φm∥L4(ΓN )∥h∥L4(ΓN ) → 0 as m→ ∞.

To complete the proof notice that the fact J(φ∗, u∗) = J∗ follows from aforesaid and from the
weakly continuity below on H1(Ω)×Hs(Ω)× L2(Ω)× L2(ΓN ) of the functional J . 2

Remark 2.1. The functionals defined in (2.2) satisfy the conditions of Theorem 2.1.

3. Derivation of the optimality system and stability
estimates

The next stage in the study of the control problem (2.1) is the derivation of the optimality
system. It provides valuable information about additional properties of optimal solutions for
specific reaction coefficients, for example, in the case when k(φ, ·) = φ2|φ|. Based on its analysis,
one can establish, in particular, the uniqueness and stability of the optimal solutions More
details about the method for deriving estimates of local stability of optimal solutions can be
found in [11–16].

Based on the theory developed in [11–16] we introduce the space Y ∗ = T ×H1/2(ΓD)
∗ dual

of the space Y . It is easy to show that for the case k(φ, ·) = φ2|φ| the Fréchet derivative of the
operator F = (F1, F2) : H

1(Ω) ×K → Y with respect to φ at any point (φ̂, û) = (φ̂, λ̂, f̂ , χ̂) is
a linear continuous operator F ′

φ(φ̂, û) : H
1(Ω) → Y that maps each element τ ∈ H1(Ω) into an

element F ′
φ(φ̂, û)(τ) = (ŷ1, ŷ2) ∈ Y . Here the elements ŷ1 ∈ T ∗ and ŷ2 ∈ H1/2(ΓD) are defined

by φ̂, λ̂ and τ with the help of the following relations:

⟨ŷ1, h⟩ = (λ̂∇τ,∇h) + 4(φ̂2|φ̂|τ, h) + (λ̂ατ, h)ΓN
+ (u · ∇τ, h) ∀h ∈ T , y2 = τ |ΓD

. (3.1)

By F ′
φ(φ̂, û)

∗ : Y ∗ → H1(Ω)∗ we denote an operator adjoint of F ′
φ(φ̂, û).

According to the general theory of smooth-convex extremum problems [23], we introduce an
element y∗ = (θ, ζ) ∈ Y ∗, to which we will refer as to an adjoint state and we will define the
Lagrangian L : H1(Ω)×K × Y ∗ → R by

L(φ, u,y∗) = J(φ, u)+⟨y∗, F (φ, u)⟩Y ∗×Y≡J(φ, u) + ⟨F1(φ, u), θ⟩T ∗×T + ⟨ζ, F2(φ, u)⟩ΓD
,

where ⟨ζ, ·⟩ΓD
= ⟨ζ, ·⟩H1/2(ΓD)∗×H1/2(ΓD).

Since φ̂2|φ̂| ∈ L2
+(Ω) then from [12] it follows that for any f ∈ T ∗ and ψ ∈ H1/2(ΓD) there

exists a unique solution τ ∈ H1(Ω) of the linear problem

(λ̂∇τ,∇h) + 4(φ̂2|φ̂|τ, h) + (λ̂ατ, h)ΓN
+ (u · ∇τ, h) = ⟨f, h⟩ ∀h ∈ T , τ |ΓD

= ψ. (3.2)

Therefore the operator F ′
φ(φ̂, û) : H1(Ω) → Y is an isomorphism and from [23] the following

assertion follows.

Theorem 3.1. Let, under conditions (i), (iii)–(vi) and (j), (jj), k(φ, ·) = φ2|φ|, the functional
I : H1(Ω) → R is continuously differentiable with respect to φ at the point φ̂ and let an element
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(φ̂, û) ∈ H1(Ω) × K be a local minimizer for the problem (2.1). Then there exists a unique
Lagrange multiplier (adjoint state) y∗ = (θ, ζ) ∈ Y ∗, such that the Euler–Lagrange equation
F ′
φ(φ̂, û)

∗y∗ = −J ′
φ(φ̂, û) in H1(Ω)∗ takes place which is equivalent to the relation

(λ̂∇τ,∇θ) + 4(φ̂2|φ̂|τ, θ) + (λ̂ατ, θ)ΓN
+ (u · ∇τ, θ) + ⟨ζ, τ⟩ΓD

=

= −(µ0/2)⟨I ′φ(φ̂), τ⟩ ∀τ ∈ H1(Ω), (3.3)

and the minimum principle L(φ̂, û,y∗) 6 L(φ̂, u,y∗) ∀u ∈ K holds which is equivalent to the
inequalities

µ1(λ̂, λ− λ̂)s,Ω + ((λ− λ̂)∇φ̂,∇θ) + ((λ− λ̂)αφ̂, θ)ΓN
> 0 ∀λ ∈ K1, (3.4)

µ2(f̂ , f − f̂)Ω − (f − f̂ , θ) > 0 ∀f ∈ K2, (3.5)

µ3(χ̂, χ− χ̂)ΓN
− (χ− χ̂, θ)ΓN

> 0 ∀χ ∈ K3. (3.6)

The relations (3.3)–(3.6) together with the operator restriction F (φ̂, û) = 0 comprise an
optimality system for problem (2.1). It plays an important role in the study of uniqueness and
stability of its solutions.

In conclusion, we formulate a theorem on the local stability of optimal solutions of problem
(2.1) for I(φ) = ∥φ− φd∥2Q, which is proved according to the scheme proposed in [11].

Theorem 3.2. Assume that the conditions (i), (iii)–(vi) and (j), (jj) take place and k(φ, ·) =
= φ2|φ|. Let the quadruple (φi, λi, fi, χi) ∈ X ×K be a solution of the problem (2.1) at I(φ) =
= ∥φ−φdi ∥2Q, which corresponds to a specified function φdi ∈ L2(Ω), i = 1, 2. Let the data of the
problem (2.1) or parameters µ0, µ1, µ2 and µ3 be such that the following condition hold:

η21µ0 6 (1− ε)µ1, η22µ0 6 (1− ε)µ2, η23µ0 6 (1− ε)µ3, (3.7)

where ε∈(0, 1) is an arbitrary number, the parameters ηk, k=1, 2, 3, 4, monotonically depend on
the norms of the initial data of the problem (2.1). Then the following local stability estimates
hold:

∥λ1 − λ2∥s,Ω 6
√
µ0/(εµ1)(0.5 + η4)∥φd1 − φd2∥Q, (3.8)

∥f1 − f2∥Ω 6
√
µ0/(εµ2)(0.5 + η4)∥φd1 − φd2∥Q, (3.9)

∥χ1 − χ2∥ΓN
6
√
µ0/(εµ3)(0.5 + η4)∥φd1 − φd2∥Q, (3.10)

∥φ1 − φ2∥1,Ω 6 (ω1

√
µ0/(εµ1) + ω2

√
µ0/(εµ2) + ω3

√
µ0/(εµ3))(0.5 + η4)∥φd1 − φd2∥Q. (3.11)

Here ω1 = C∗(γ
s
3∥α∥ΓN

Mφ + γsMφ), ω2 = C∗, ω3 = γ2C∗, where λ∗, γ2, γs3 , γs, C∗ = 1/λ∗ are
the constants from Lemma 1.1 and Mφ is defined in (1.19).

A similar theorem can be formulated and proved for the functional I2(φ) in (2.2). The authors
plan to devote a separate paper to a more detailed study of the issues of uniqueness and stability
of optimal solutions.

The work was carried out within the framework of the state assignment of the Institute of
Applied Mathematics, FEB RAS (Theme no. 075-01095-20-00).
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Анализ краевых задач и задач управления
для нелинейного уравнения
реакции-диффузии-конвекции

Геннадий В.Алексеев
Роман В. Бризицкий

Институт прикладной математики ДВО РАН
Владивосток, Российская Федерация

Аннотация. Доказывается глобальная разрешимость неоднородной смешанной краевой задачи и
задач управления для уравнения реакции-диффузии-конвекции в случае, когда коэффициент реак-
ции нелинейно зависит от концентрации. Для решения краевой задачи устанавливаются принципы
максимума и минимума. Для задач управления с конкретными коэффициентами реакции выво-
дятся системы оптимальности и устанавливаются оценки локальной устойчивости оптимальных
решений.

Ключевые слова: нелинейное уравнение реакции-диффузии-конвекции, смешанные граничные
условия, принцип максимума, задачи управления, системы оптимальности, оценки локальной
устойчивости.
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Introduction

We consider inverse problems with pointwise overdetermination for a parabolic system of the
form

Lu = ut +A(t, x,D)u = f(x, t), (t, x) ∈ Q = (0, T )×G, G ⊂ Rn, (1)

where

A(t, x,D)u = −
n∑

i,j=1

aij(t, x)uxjxj
+

n∑
i=1

ai(t, x)uxi
+ a0(t, x)u,

G is a bounded domain with boundary Γ ∈ C2, aij , ai are matrices of dimension h× h, and u is
a vector of length h. The system (1) is supplemented by the initial and boundary conditions

u|t=0 = u0, Bu|S = g, S = (0, T )× Γ, (2)

where Bu =
n∑
i=1

γi(t, x)uxi + γ0(t, x)u. The overdetermination conditions are as follows:

< u(xi, t), ei >= ψi(t), i = 1, 2, . . . , r, (3)

where the symbol < ·, · > stands for the inner product in Ch, {ei} is a collection of vectors of
unit length and among the points {xi} as well as the vectors {ei} can be coinciding points and
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vectors. The right-hand side is of the form f =
m∑
i=1

fi(x, t)qi(t) + f0(x, t). The problems is to

find the unknowns qi(t) occurring into the right-hand side and the operator A as coefficients
and a solution u to the system (1) satisfying (2) and (3). The conditions (3) generalized the
conventional pointwise overdetermination conditions of the form u(xi, t) = ψi(t). In particular,
it is possible that only part of the coordinates of the vector u at a point xi is given. These
problems arise of describing heat and mass transfer, diffusion, filtration, and in many other fields
(see [1–3]) and they are studied in many articles. First, we should refer to the fundamental ar-
ticles by A. I. Prilepko and his followers. In particular, an existence and uniqueness theorem for
solutions to the problem of recovering the source f(t, x)q(t) with the overdetermination condition
u(x0, t) = ψ(t) (x0 is a point in G) is established in [4,5]. Similar results are obtained in [6] for the
problem of recovering lower-order coefficient p(t) in the equation (1). The Hölder spaces serve as
the basic spaces in these articles. The results were generalized in the book [7, Sec. 6.6, Sec. 9.4],
where the existence theory for the problems (1)–(3) was developed in an abstract form with the
operator A replaced with −L, L is generator of an analytic semigroup. The main results employ
the assumptions that the domain of L is independent of time and the unknown coefficients occur
into the lower part of the equation nonlinearly. Under certain conditions, existence and unique-
ness theorems were proven locally in time in the spaces of functions continuously differentiable
with respect to time. We note also the article [8], where an existence and uniqueness theorem
in the problem of recovering a lower-order coefficient and the right-hand was established with
the overdetermination condition u(xi, t) = ψ(t) (xi are interior points of G, i = 1, 2). There are
many articles devoted to the problems (1)–(3) in model situations, especially in the case of n = 1

(see, for instance, [9–14]). In these articles different collections of coefficients are recovered with
the overdetermination conditions of the form (3), in particular, including boundary points xi. In
this case the boundary condition and the overdetermination condition define the Cauchy data at
a boundary point. Many results in the case of n = 1 are exhibited in [15]. Note the book [16],
where the solvability questions for inverse problems with the overdetermination conditions being
the values of a solution on some hyperplanes (sections of a space domain) are studied. The
problems (1)–(3) were considered in authors’ articles in [17, 18], where conditions on the data
were weakened in contrast to those in [7, Sec. 9.4] and the solvability questions were treated in
the Sobolev spaces. In contrast to the previous results, we examine the case of the points {xi}
lying on the boundary of G as well and the special overdetermination conditions (only some
combinations of the coordinate of a solution are given). These overdetermination conditions also
arise in applications (see [3]). Note that numerical methods for solving the problems (1)–(3)
have been developed in many articles (see [2, 3, 19]).

1. Preliminaries

First, we introduce some notations. Let E be a Banach space. Denote by Lp(G;E) (G
is a domain in Rn) the space of strongly measurable functions defined on G with values in
E and the finite norm ∥∥u(x)∥E∥Lp(G) [20]. We employ conventional notations for the space
of continuously differentiable functions Ck(G;E) and the Sobolev space W s

p (Q;E), W s
p (G;E),

etc. (see [20, 21]). If E = C or E = Cn then the latter space is denoted simply by W s
p (G).

Therefore, the membership u ∈W s
p (G) (or u ∈ Ck(G)) or a ∈W s

p (G) for a given vector-function
u = (u1, u2, . . . , uk) or a matrix function a = {aij}kj,i=1 mean that every of the components ui
(respectively, an entry aij) belongs to the space W s

p (G) (or Ck(G)). Given an interval J = (0, T ),
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put W s,r
p (Q) =W s

p (J ;Lp(G))∩Lp(J ;W r
p (G)), Respectively, we have W s,r

p (S) =W s
p (J ;Lp(Γ))∩

Lp(J ;W
r
p (Γ)). The anisotropic Hölder spaces Cα,β(Q) and Cα,β(S) are defined by analogy.

The definition of the inclusion Γ ∈ Cs can be found in [22, Chapter 1]. In what follows we
assume that the parameter p > n + 2 is fixed. Let Bδ(xi) be a the ball of radius δ centered at
xi (see (3)). The parameter δ > 0 will be referred to as admissible if Bδ(xi) ⊂ G for interior
points xi ∈ G, Bδ(xi) ∩ Bδ(xj) = ∅ for xi ̸= xj , i, j = 1, 2, . . . , r, and, for every point xi ∈ Γ,
there exists a neighborhood U (the coordinate neighborhood) about this point and a coordinate
system y (local coordinate system) obtained by rotation and translation of the origin from the
initial one such that the yn-axis is directed as the interior normal to Γ at xi and the equation of
the boundary U ∩Γ is of the form yn = ω(y′), ω(0) = 0, |y′| < δ0, y′ = (y1, . . . , yn−1); moreover,
we have ω ∈ C3(B′

δ(0)) (B′
δ(0) = {y′ : |y′| < δ}) end G ∩ U = {y : |y′| < δ, 0 < yn − ω(y′) < δ1},

(Rn \G)∩U = {y : |y′| < δ,−δ1 < yn − ω(y′) < 0}. The numbers δ, δ1 for a given domain G are
fixed and without loss of generality we can assume that δ1 > (M + 1)δ, with M the Lipschitz
constant of the function ω. Assume that Qτ = (0, τ)×G, Gδ = ∪i(Bδ(xi)∩G), Qδ = (0, T )×Gδ,
Qτδ = (0, τ)×Gδ, Sδ = (0, T )× ∪i(Bδ(xi) ∩ Γ).

Consider the parabolic system

Lu = ut +A(t, x,D)u = f(t, x), (t, x) ∈ Q = (0, T )×G, G ⊂ Rn, (4)

where

A(t, x,D)u = −
n∑

i,j=1

aij(t, x)uxjxj
+

n∑
i=1

ai(t, x)uxi
+ a0(t, x)u,

aij , ai are matrices of dimension h× h, and u is a vector of length h. The system (4) is supple-
mented with the initial and boundary conditions (2). We assume that there exists an admissible
number δ > 0 such that

aij ∈ C(Q), ak ∈ Lp(Q), γk ∈ C1/2,1(S), aij ∈ L∞(0, T ;W 1
∞(Gδ)); (5)

ak ∈ Lp(0, T ;W
1
p (Gδ)), i, j = 1, 2, . . . , n, k = 0, 1, . . . , n. (6)

The operator L is considered to be parabolic and the Lopatiskii condition holds. State these

conditions. Introduce the matrix A0(t, x, ξ) = −
n∑

i,j=1

aij(t, x)ξiξj (ξ ∈ Rn), and assume that

there exists a constant δ1 > 0 such that the roots p of the polynomial

det
(
A0(t, x, iξ) + pE

)
= 0

(E is the identity matrix) meet the condition

Re p 6 −δ1|ξ|2 ∀ξ ∈ Rn ∀(x, t) ∈ Q. (7)

The Lopatinskii condition can be stated as follows: for every point (t0, x0) ∈ S and the operators

A0(x, t,D) and B0(x, t,D) =
n∑
i=1

γi(t, x)∂xi , written in the local coordinate system y at this

point
(
the axis yn is directed as the normal to S and the axes y1, . . . , yn−1 lie in the tangent

plane at (x0, t0)
)
, the system(
λE +A0(x0, t0, iξ

′, ∂yn)
)
v(z) = 0, B0(x0, t0, iξ

′, ∂yn)v(0) = hj , (8)

where ξ′ = (ξ1, . . . , ξn−1), yn ∈ R+, has a unique solution C
(
R+)

decreasing at infinity for all
ξ′ ∈ Rn−1, | arg λ| 6 π/2, and hj ∈ C such that |ξ′|+ |λ| ̸= 0.
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We also assume that there exists a constant ε1 > 0 such that

Re (−A0(t, x, ξ)η, η) > ε1|ξ|2|η|2 ∀ξ ∈ Rn, η ∈ Ch, (9)

where the brackets (·, ·) denote the inner product in Ch (see [22, Definition 7, Sec. 8, Ch. 7]).
Let ∣∣∣det( n∑

i=1

γiνi

)∣∣∣ > ε0 > 0, (10)

where ν is the outward unit normal to Γ, ε0 is a positive constant, and

u0(x) ∈W 2−2/p
p (G), g ∈W k0,2k0

p (S), B(x, 0)u0(x)|Γ = g(x, 0) ∀x ∈ Γ, (11)

where k0 = 1/2−1/2p. Fix an admissible δ > 0. Construct functions φi(x) ∈ C∞
0 (Rn) such that

φi(x) = 1 in Bδ/2(xi) and φi(x) = 0 in Rn \B3δ/4(xi) and denote φ(x) =
r∑
i=1

φi(x). Additionally

it is assumed that

φ(x)u0(x) ∈W 3−2/p
p (G), φg ∈W k1,2k1

p (S) (k1 = 1− 1/2p), (12)

Γ ∈ C2, γk ∈ C1,2(Sδ) (k = 0, 1, 2, . . . , n). (13)

The proof of the following theorem can be found in [18].

Theorem 1. Assume that the conditions (5)–(13) hold for some sufficiently small admissible
δ > 0 and the function φ, f ∈ Lp(Q

τ ), fφ ∈ Lp(0, τ ;W
1
p (G)), and τ ∈ (0, T ]. Then there exists

a unique solution u ∈ W 1,2
p (Qτ ) to the problem (4), (2). Moreover, φut ∈ Lp

(
0, τ ;W 1

p (G)
)

and
φu ∈ Lp

(
0, τ ;W 3

p (G)
)
. If g ≡ 0 and u0 ≡ 0 then we have the estimates

∥u∥W 1,2
p (Qτ ) 6 c∥f∥Lp(Qτ ),

∥u∥W 1,2
p (Qτ )+ ∥φut∥Lp(0,τ ;W 1

p (G))+ ∥φu∥Lp(0,τ ;W 3
p (G))6 c

[
∥f∥Lp(Qτ )+ ∥φf∥Lp(0,τ ;W 1

p (G))

]
,

(14)

where the constant c is independent of f , a solution u, and τ ∈ (0, T ].

2. Main results

Consider the problem (1)–(3), where

A = L0 −
r∑

k=m+1

qk(t)Lk, Lku = −
n∑

i,j=1

akij(t, x)uxjxj +

n∑
i=1

aki (t, x)uxi + ak0(t, x)u,

and k = 0,m + 1,m + 2, . . . , r. The unknowns qi are sought in the class C([0, T ]). Construct a
matrix B(t) of dimension r × r with the rows

< f1(t, xj), ej >, . . . , < fm(t, xj), ej >,< Lm+1u0(t, xj), ej >, . . . , < Lru0(t, xj), ej > .

We suppose that

ψj ∈ C1([0, T ]), < u0(xj), ej >= ψj(0) (j = 1, 2, . . . , r), γl ∈ C1/2,1(S) ∩ C1,2(Sδ), (15)

akij ∈ C(Q) ∩ L∞(0, T ;W 1
∞(Gδ)), akl ∈ Lp(Q) ∩ L∞(0, T ;W 1

p (Gδ)) (i, j = 1, . . . , n), (16)
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fi ∈ Lp(Q) ∩ L∞(0, T ;W 1
p (Gδ)) (i = 0, 1, . . . ,m), (17)

foe some admissible δ > 0, p > n+ 2, and k = 0,m+ 1, . . . , r, l = 0, 1, . . . n;

aki (t, xl), fi(t, xl) ∈ C([0, T ]) (18)

for all possible values of i, k, l. We also need the condition
(C) there exists a number δ0 > 0 such that

|detB(t)| > δ0 a. e. on (0, T ).

Note that the entries of the matrix B belong to the class C([0, T ]). Consider the system

ψjt(0)+ < L0u0(0, xj), ej > − < f0(0, xj), ej >=

=

m∑
k=1

q0k < fk(0, xj), ej > +

m1∑
k=m+1

q0k < Lku0(0, xj), ej >, j = 1, . . . , r, (19)

where the vector q⃗0 = (q01, q02, . . . , q0r) is unknown. Under the condition (C), this system is

uniquely solvable. Let A1 = L0 −
r∑

k=m+1

q0kLk. Now we can state our main result.

Theorem 2. Let the conditions (9)–(13), (C), (15)–(18) hold. Moreover, we assume that the
conditions (7), (8) are fulfilled for the operator ∂t + A1. Then there exists a number τ0 ∈ (0, T ]

such that, on the interval (0, τ0), there exists a unique solution (u, q1, q2, . . . , qr) to the problem
(1)–(3) such that u ∈ Lp(0, τ

0;W 2
p (G)), ut ∈ Lp(Q

τ0

), qi(t) ∈ C([0, τ0]), i = 1, . . . , r. Moreover,
φu ∈ Lp(0, τ

0;W 3
p (Gδ)), φut ∈ Lp(0, τ

0;W 1
p (Gδ)).

Proof. First, we find a solution to the problem

Φt +A1Φ = f0 +

m∑
k=1

q0ifi ((x, t) ∈ Q), Φ|t=0 = u0(x), BΦ|S = g. (20)

By Theorem 1, Φ ∈W 1,2
p (Q), φΦt ∈ Lp(0, T ;W

1
p (G)), φΦ ∈ Lp(0, T ;W

3
p (G)). As a consequence

of Theorem III 4.10.2 in [24] and embedding theorems [20, Theorems 4.6.1,4.6.2.], we infer φΦ ∈
C([0, T ];W

3−2/p
p (G)) ⊂ C([0, T ];C3−2/p−n/p(G)). Hence, φΦ ∈ C([0, T ];C2(G)) after a possible

change on a set of zero measure. The equations (20) and (18) imply that Φt(t, xj) ∈ C([0, T ]).
Note that this function is defined, since every summand in (20) with the weight φ belongs to
Lp(0, T ;W

1
p (G)) ⊂ Cα(G;Lp(0, T )) (α 6 1− n/p) (see the embedding theorems in [25] and the

arguments below). Multiply the equation (20) scalarly by ej and take x = xj . We obtain the
equality

< Φt(0, xj), ej > + < L0u0(0, xj), ej > − < f0(0, xj), ej >=

=

m∑
k=1

q0k < fk(0, xj), ej > +

r∑
k=m+1

q0k < Lku0(0, xj), ej >, j = 1, . . . , r. (21)

The relations (19) and (21) imply that < Φt(0, xj), ej >= ψjt(0). After the change of variables
q⃗ = q⃗0 + q⃗1 and u = w +Φ in (1), we arrive at the problem

Lw = wt+A1w−
r∑

k=m+1

q1kLkw =

m∑
i=1

fiq1i+

r∑
i=m+1

q1iLiΦ = F, w|t=0 = 0, Bw|S = 0, (22)
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< w(t, xj), ej >= ψ̃j(t) = ψj(t)− < Φ(t, xj), ej >∈ C1([0, T ]), ψ̃j(0) = ψ̃jt(0) = 0. (23)

Fixing the vector q⃗1 = (q11, . . . , q1r) ∈ C([0, τ ]) and determining a solution w to the problem
(22) on (0, τ), we construct a mapping w = w(q⃗1) = L−1F . Demonstrate that there exists R0 > 0

such that, for q⃗1 ∈ BR0 , the problem

Lv = g, v|t=0 = 0, Bv|S = 0 (24)

for every g ∈ Hτ и τ ∈ (0, T ] has a unique solution in the class v ∈ W 1,2
p (Qτ ), φvt ∈

Lp(0, τ ;W
1
p (G)), φv ∈ Lp(0, τ ;W

3
p (G)) satisfying the estimate

∥v∥W 1,2
p (Qτ ) + ∥φvt∥Lp(0,τ ;W 1

p (G)) + ∥φv∥Lp(0,τ ;W 3
p (G)) 6 c∥g∥Hτ

(25)

where the constant c is independent of τ and the vector q⃗1 ∈ BR0
and the space Hτ is endowed

with the norm
∥f∥Hτ

= ∥f∥Lp(Qτ ) + ∥φf∥Lp(0,τ ;W 1
p (Q)).

In accord with Theorem 1, the problem

L01v = vt +A1v = g, v|t=0 = 0, Bv|S = 0

for every g ∈ Hτ has a unique solution such that v ∈ W 1,2
p (Qτ ), φvt ∈ Lp(0, τ ;W

1
p (G)), φv ∈

Lp(0, τ ;W
3
p (G)) and

∥v∥W 1,2
p (Qτ ) + ∥φvt∥Lp(0,τ ;W 1

p (G)) + ∥φv∥Lp(0,τ ;W 3
p (G)) 6 c1∥g∥Hτ , (26)

where the constant c1 is independent of τ . In this case the question of solvability of the problem
(24) is reduced to the same question for the equation

f −
r∑

i=m+1

q1iLiL
−1
01 f = g, (27)

where f = L01v. We have the estimate∥∥∥− r∑
i=m+1

q1iLiv
∥∥∥
Hτ

6 c∥q⃗1∥C([0,τ ])

(
∥v∥W 1,2

p (Qτ )+∥φvt∥Lp(0,τ ;W 1
p (G))+∥φv∥Lp(0,τ ;W 3

p (G))

)
, (28)

where the constant c depends on the coefficients of the operators Lk in Q and is independent of
τ and q⃗1. Indeed, the following estimate is obvious∥∥∥− r∑

k=m+1

q1kLkv
∥∥∥
Hτ

6 ∥q⃗1∥C([0,τ ])

r∑
k=m+1

∥Lkv∥Hτ
. (29)

Estimate the quantity ∥Lkv∥Hτ
. To this aim, we estimate the norms of every of the summands

in this quantity. For example, estimate the norm

∥akijvxixj
∥Hτ

6 c0
(
∥akijvxixj

∥Lp(Qτ ) +

n∑
l=1

∥φ(akijvxixj
)xl

∥Lp(Qτ )

)
6

6 c1
(
∥v∥Lp(0,τ ;W 2

p (G)) + ∥φv∥Lp(0,τ ;W 3
p (G))

)
+

n∑
l=1

∥φakijxl
vxixj

∥Lp(Qτ ), (30)
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where the constant c1 depends on the norms ∥akij∥L∞(Q). The last summand here is estimated
as follows:

n∑
l=1

∥φakijxl
vxixj

∥Lp(Qτ ) 6 c2
(
∥φv∥Lp(0,τ ;W 2

∞(G)) + ∥v∥Lp(0,τ ;W 1
∞(G))

)
6

6 c3
(
∥φv∥Lp(0,τ ;W 3

p (G)) + ∥v∥Lp(0,τ ;W 2
p (G))

)
, (31)

where the constant c2 depends on the norms ∥∇akij∥Lp(0,T ;L∞(Gδ)). Thus, we infer

∥akijvxixj∥Hτ 6 c4
(
∥v∥Lp(0,τ ;W 2

p (G)) + ∥φv∥Lp(0,τ ;W 3
p (G))

)
, (32)

where the constant c4 is independent of τ . Similarly, we derive that

∥aki vxi∥Hτ 6 c0
(
∥aki vxi∥Lp(Qτ ) +

n∑
l=1

∥φ(aki vxi)xl
∥Lp(Qτ )

)
6

6 c1
(
∥∇v∥L∞(Qτ ) + ∥φv∥Lp(0,τ ;W 2

p (G))

)
, (33)

where the constant c1 depends on the norms of aki , akixl
in Lp(Q) and the norms of aki in L∞(Qδ).

However (see Lemma 3.3 in [22]), we have

∥∇v∥L∞(Qτ ) 6 c1∥v∥W 1,2
p (Qτ ),

where the embedding constant is independent of τ . Summing the estimates obtained we justify
(28). Using (28) and the estimate of Theorem 1, we conclude that

∥∥∥ r∑
i=m+1

q1iLiL
−1
01 f

∥∥∥
Hτ

6 c2∥q⃗1∥C([0,τ ])∥f∥Hτ
, (34)

where c2 is independent of τ and q⃗1 ∈ BR0
. Let R0 = 1/2c2. In this case c2∥q⃗1∥C([0,τ ]) 6 1/2

and thereby the equation (27) has a unique solution satisfying the estimate ∥f∥Hτ 6 2∥g∥Hτ ,

which along with Theorem 1 ensures (25).
Assume that w is a solution to the problem (22), (23). Take x = xj in (22) and multiply the

equation scalarly by ej . The traces of all function occurring into the equation exist. First, our
conditions for coefficients and embedding theorems yield φw ∈ C([0, T ];C2(G)) (see the above
arguments for the function Φ). Second, as we have indicated above, every of the summands
in (22) with the weight φ belongs to Lp(0, T ;W

1
p (G)) ⊂ Cα(G;Lp(0, T )) (α 6 1 − n/p) (see

embedding theorems in [25]). We arrive at the system

< ψ̃jt, ej > + < A1w(t, xj), ej > −
r∑

i=m+1

q1i < Liw(t, xj), ej >=

=

m∑
i=1

< fi(t, xj), ej > q1i(t) +

r∑
i=m+1

q1i < LiΦ(t, xj), ej > (j = 1, 2, . . . , r), (35)

which can be rewritten in the form

B̃q⃗1 = ψ⃗ +R(q⃗1),
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where coordinates of the vectors ψ⃗ and R(q⃗1) agree with the functions < ψ̃jt, ej > and <

A0w(t, xj), ej > −
∑r
i=m+1 q1i < Liw(t, xj), ej > (w = w(q⃗1)); respectively, j-th row of the

matrix B̃(t) of dimension r × r is written as

< f1(t, xj), ej >, . . . , < fm(t, xj), ej >, < Lm+1Φ(t, xj), ej >, . . . , < LrΦ(t, xj), ej >,

where j = 1, . . . , r. This matrix differs from B by the entries < LiΦ(t, xj), ej >. It is easy to
prove that this matrix is nondegenerate as well on some segment [0, τ0]. Indeed, the embedding
theorems (see Lemma 3.3 of Chapter 1 in [22]) imply that ∇Φ,Φxixj ∈ Cβ/2,β(Qδ/2) for β <

1− (n+ 2)/p and all i, j and, therefore,

| < LkΦ(t, xj)− Lku0(t, xj), ej > | 6
n∑

i,k=1

sup
t∈[0,T ]

∥akik(t, xj)∥|Φxkxi(t, xj)− u0xkxi(xj)|+

+

n∑
i=1

sup
t∈[0,T ]

∥aki (t, xj)∥|Φxi
(t, xj)− u0xi

(xj)|+ sup
t∈[0,T ]

∥ak0(t, xj)∥|Φ(t, xj)− u0(xj)| 6 ctβ/2,

on [0, T ], where, by the norm of a matrix (for example, ∥aki (t, xj)∥), we mean the norm of the
corresponding linear operator aki (t, xj) : Ch → Ch. Taking the condition (C) into account, we
can say that there exists τ0 > 0 such that

|detB̃(t)| > δ0/2 ∀t 6 τ0. (36)

We thus obtain the integral equation

q⃗1 = B̃−1ψ⃗ +R0(q⃗1), R0(q⃗1) = B̃−1R(q⃗1), (37)

where the operator R0(q⃗1) : C([0, τ ]) → C([0, τ ]) (τ 6 τ0) is bounded. Check the conditions of
the fixed point theorem. Denote R0τ = 2∥B̃−1ψ⃗∥C([0,τ ]). Let q⃗01, q⃗02 be two vectors of length r

with coordinates qji (i = 1, 2, . . . , r, j = 1, 2) lying in the ball BR0
= {q⃗ : ∥q⃗∥C([0,τ ]) 6 R0}. The

functions w1 = w(q⃗01), w2 = w(q⃗02) are solutions to the equation (22) satisfying homogeneous
initial and boundary conditions. Let v = w1 − w2. We infer

Lv = vt +A1v −
r∑

i=m+1

q2iLiv =

m∑
i=1

fi(q
1
i − q2i ) +

r∑
i=m+1

(q1i − q2i )Liw1, v = w1 − w2. (38)

In view of (23) and the definition of R0τ , R0τ → 0 as τ → 0. Hence, there exists a parameter
τ1 6 τ0 such that, for τ 6 τ1, R0τ 6 R0. Let R = R0τ1 . We now derive that there exists a
parameter τ0 6 τ1 such that the equation (37) has a unique solution in the ball BR of the space
C([0, τ0]). Take τ 6 τ1. Let q⃗01, q⃗02 ∈ BR. We have

∥R0(q⃗01)−R0(q⃗02)∥C([0,τ ]) 6 c1∥R(q⃗01)−R(q⃗02)∥C([0,τ ]) 6

6 c2

r∑
j=1

(∥L0v(t, xj)∥C([0,τ ]) +

r∑
i=m+1

∥q2iLiv(t, xj)∥C([0,τ ])) 6

6 c3

r∑
j=1

(∥L0v(t, xj)∥C([0,τ ]) +

r∑
i=m+1

∥Liv(t, xj)∥C([0,τ ])), (39)

where v is a solution to the problem (38). Note that

∥Lkv(t, xj)∥C([0,τ ]) 6 cτβ(∥φ∇v∥W 1,2
p (Qτ ) + ∥v∥W 1,2

p (Qτ )), (40)
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where the constant c is independent of τ ∈ (0, T ] and β > 0. Validate this inequality. In view of
the conditions on the coefficients akil, a

k
il(t, xj) ∈ C([0, T ]). Fix an arbitrary s ∈ (n/p, 1 − 2/p).

The embedding W s
p (Gδ/2) ⊂ C(Gδ/2) [20, Theorems 4.6.1,4.6.2.] yields

∥akil(t, xj)vxixl
(t, xj)∥C([0,τ ]) 6 c∥vxixl

(t, xj)∥C([0,τ ]) 6 c1∥vxkxl
(t, x)∥L∞(0,τ ;W s

p (Gδ/2)) 6
6 c2∥∇v(t, x)∥L∞(0,τ ;W 1+s

p (Gδ/2))
. (41)

Next, we employ the interpolation inequality (see [20])

∥v∥W s0
p (G) 6 c∥v∥θ

W
s1
p (G)

∥v∥1−θ
W

s2
p (G)

, s1 < s0 < s2, θs1 + (1− θ)s2 = s0 (42)

and the inequality

∥g∥L∞(0,τ ;E) 6 τ (p−1)/p∥gt∥Lp(0,τ ;E), ∀g ∈W 1
p (0, τ ;E), g(0) = 0, (43)

resulting from the Newton-Leibnitz formula. Here E is a Banach space. We obtain that

∥∇v(t, x)∥L∞(0,τ ;W 1+s
p (Gδ/2))

6 c∥∇v(t, x)∥θ
L∞(0,τ ;W

2−2/p
p (Gδ/2))

∥∇v(t, x)∥(1−θ)L∞(0,τ ;Lp(Gδ/2))
6

6 c1τ
(1−θ)(p−1)/p(∥φ∇v∥W 1,2

p (Q) + ∥v∥W 1,2
p (Q)), (2− 2/p)θ = 1 + s. (44)

Here we have used the inequality

∥∇v(t, x)∥
L∞(0,τ ;W

2−2/p
p (Gδ/2))

6 c∥∇v(t, x)∥W 1,2
p (Gδ/2))

, (45)

where the constant c is independent of τ (in the class of functions vanishing at t = 0). Estimate
the lower-order summands of the form aki vxi

(t, xj), ak0v(t, xj) in Liu(t, xj). We conclude that
(s ∈ (n/p, 1− 2/p), (2− 2/p)θ1 = 1 + s)

∥aki vxi
(t, xj)∥C([0,τ ]) 6 c∥vxi

(t, xj)∥C([0,τ ]) 6 c1∥v(t, x)∥L∞(0,τ ;W 1+s
p (Gδ/2))

6

6 ∥v(t, x)∥θ1
L∞(0,τ ;W

2−2/p
p (Gδ/2))

∥v(t, x)∥1−θ1L∞(0,τ ;Lp(Gδ/2))
6 c2τ

(1−θ1)(p−1)/p∥v∥W 1,2
p (Qτ ). (46)

We have used the estimate (45) applied to v rather than ∇v. The second summand is estimated
similarly. The estimates (39)–(46) ensure that

∥R0(q⃗01)−R0(q⃗02)∥C([0,τ ]) 6 c4τ
β(∥φ∇v(t, x)∥W 1,2

p (Qτ ) + ∥v(t, x)∥W 1,2
p (Qτ )), (47)

where the constant c4 is independent of τ and β = min(1 − θ, (1 − θ1)(p − 1)/p). Since v is a
solution to the problem (38) and τ 6 τ1, we can employ (25) and obtain that

∥φ∇v(t, x)∥W 1,2
p (Qτ ) + ∥v(t, x)∥W 1,2

p (Qτ ) 6 c
∥∥∥ m∑
i=1

fi(q
1
i − q2i ) +

r∑
i=m+1

(q1i − q2i )Liw1

∥∥∥
Hτ

, (48)

where the constant c is independent of τ . Every of the functions w1, w2 is a solution to the
problem (22), where the right-hand side contains the components of the vector q⃗01 or q⃗02. The
estimate (25) yields

∥φ∇wj(t, x)∥W 1,2
p (Qτ ) + ∥wj(t, x)∥W 1,2

p (Qτ ) 6 c
∥∥∥ m∑
i=1

fiq
j
i +

r∑
i=m+1

qjiLiΦ
∥∥∥
Hτ

. (49)
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The estimate (48), (49) and the conditions on the coefficients imply that

∥φ∇wj(t, x)∥W 1,2
p (Qτ ) + ∥wj(t, x)∥W 1,2

p (Qτ ) 6 c1(R). (50)

∥φ∇v(t, x)∥W 1,2
p (Qτ ) + ∥v(t, x)∥W 1,2

p (Qτ ) 6 c2∥q⃗01 − q⃗02∥C([0,τ ]), (51)

where the constant ci are independent of τ . In turn, these estimates and those in (47) validate
the estimate

∥R0(q⃗01)−R0(q⃗02)∥C([0,τ ]) 6 c5τ
β∥q⃗01 − q⃗02∥C([0,τ ]) (52)

with a constant c5 independent of τ . Choose a parameter τ0 6 τ1 such that c5(τ0)β 6 1/2. The
fixed point theorem ensures solvability of the equation (37) in the ball BR.

Show that w satisfies the overdetermination conditions (23). Multiply the equation (22)
scalarly by ej and take x = xj in the equation. We obtain the equality

< w(t, xj), ej >t + < L0w(t, xj), ej > −
r∑

i=m+1

qi < Liw(t, xj), ej >=

=

m∑
i=1

< fi(t, xj), ej > qi(t) +

r∑
i=m+1

qi < LiΦ(t, xj), ej >, j = 1, 2, . . . , r, (53)

Subtracting this equality from (35), we obtain that ψ̃jt− < w(t, xj), ej >t= 0. Integrating this
equality from 0 to t, we derive that ψ̃j(t)− < w(t, xj), ej >= 0, since the agreement conditions
imply that ψ̃j(0) = 0, < w(0, xj), ej >= 0. Thus, we infer ψ̃j(t) =< w(t, xj), ej > and the
equality (23) holds. 2

In the case of the unknown lower-order coefficients, the results can be reformulated in a more
convenient form. In this case the operator A is assumed to be representable in the form

A = L0 −
r∑

i=m+1

qi(t)li, L0u = −
n∑

i,j=1

aij(t, x)uxjxj +

n∑
i=1

ai(t, x)uxi + a0(t, x)u,

liu =
n∑
j=1

bij(t, x)uxj
+ bi0(t, x)u. (54)

Moreover, the rows of the matrix B(t) of dimension r × r are as follows:

< f1(t, xi), ei >, . . . , < fm(t, xi), ei >,< lm+1u0(t, xi), ei >, . . . , < lru0(t, xi), ei > .

We suppose that

ψj ∈W 1
p (0, T ), < u0(xj), ej >= ψj(0), j = 1, 2, . . . , r, (55)

fi, bkj ∈ L∞(0, T ;W 1
p (Gδ)) ∩ L∞(0, T ;Lp(G)), f0 ∈ Lp(Q) ∩ Lp(0, T ;W 1

p (Gδ)), (56)

for some admissible δ > 0, where i = 1, . . . ,m, j = 0, 1, . . . , n, k = m+ 1, . . . , r. The remaining
coefficients satisfy the conditions

aij ∈ C(Q), ak ∈ Lp(Q), γk ∈ C1/2,1(S) ∩ C1,2(Sδ), aij ∈ L∞(0, T ;W 1
∞(Gδ)); (57)

ak ∈ Lp(Q) ∩ Lp(0, T ;W 1
p (Gδ)), i, j = 1, 2, . . . , n, k = 0, 1, . . . , n. (58)

The corresponding theorem is stated in the following form.
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Theorem 3. Assume that the parabolicity condition and the Lopatinskii condition (7), (8) for
the operator ∂t + L0, the conditions (9)–(13), (55)–(58), (С) for some admissible δ > 0 and
p > n + 2 hold. Then, for some γ0 ∈ (0, T ], on the interval (0, γ0), there exists a unique
solution (u, q1, q2, . . . , qr) to the problem (1)–(3) such that u ∈ Lp(0, γ0;W

2
p (G)), ut ∈ Lp(Q

γ0),
φu ∈ Lp(0, γ0;W

3
p (G)), φut ∈ Lp(0, γ0;W

1
p (G)), qi(t) ∈ Lp(0, γ0), i = 1, . . . , r.

The proof is omitted, since it is quite similar to that of the previous theorem.
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О некоторых классах параболических обратных задач
с точечным переопределением

Сергей Г.Пятков
Владислав А. Баранчук

Югорский государственный университет
Ханты-Мансийск, Российская Федерация

Аннотация. В работе рассматривается вопрос о корректности в пространствах Соболева обрат-
ных задач о восстановлении коэффициентов параболической системы, зависящих от времени. В
качестве условий переопределения рассматриваются значения решения в некотором наборе точек
области, лежащих как внутри области, так и на ее границе. Приведены условия, гарантирующие
существование и единственность решений задачи в классах Соболева.

Ключевые слова: параболическая система, обратная задача, конвекция-диффузия, точечное пе-
реопределение.
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1. Introduction and preliminaries
Viscous fingering occurs in the flow of two immiscible, viscous fluids between the plates of a

Hele-Shaw cell ([3]). Due to pressure gradients or gravity, the initially planar interface separating
the two fluids undergoes a Saffman–Taylor instability ([5]), and develops finger-like structure (see
also [4] and the literatures therein).

In [9,10] we established the existence of solutions belonging to the standard Hölder spaces for
two-phase and one-phase radial viscous fingering problems in a Hele–Shaw cell, without surface
tension effect, by the parabolic regularization and by vanishing the coefficient of the derivative
with respect to time in parabolic equations (cf. [1, 2]). However, our results in [9, 10] are only
the existence of the solutions because of the sub-sequential limiting procedure.

The aim of this paper is to prove the uniqueness of such solutions to the respective problems.
This paper consists of three sections. In the rest of this section, we give a brief formulation of

the problem in the two-phase case that we discuss. In Section 2, we give a proof of the uniqueness
of the classical solution to the two-phase problem, and in Section 3 to the one-phase problem.

1.1. Formulation of the two-phase problem
The motion of a slow quasistationary displacement of a fluid by another fluid in a Hele–Shaw

cell is described by

∇ · vi = 0, vi = −Mi∇pi in Ωi(t), t > 0 (i = 1, 2). (1.1)
∗tani@math.keio.ac.jp
†hisasitani@gmail.com

c⃝ Siberian Federal University. All rights reserved
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Here Mi = b2/12µi is mobility; µi is the fluid viscosity; b is the width of two plates; vi is the
velocity vector field in the fluid and pi is the pressure (i = 1 and 2 for the displacing and the
displaced fluid, respectively). For a radial fingering problem it is sufficient to consider (1.1) under
the following geometric situation:

Ω1(t) =

{
x ∈ R2

∣∣ R∗ < |x| < R(t) + ζ

(
x

|x|
, t

)}
,

Ω2(t) =

{
x ∈ R2

∣∣ R(t) + ζ

(
x

|x|
, t

)
< |x| < R∗

}
,

where R∗ is the radius of the hole through which the displacing fluid is injected or driven by
suction at a flow rate Q(t), R∗ is the radius of the Hele–Shaw cell occupied by the displaced
fluid, R(t) is the time-dependent unperturbed radius satisfying

πR(t)2 = πR2
0 +

∫ t

0

Q(τ) dτ, R0 ≡ R(0) > R∗,

and ζ is the perturbed radius.
The boundary and initial conditions for (1.1) are as follows:

 v1 · n =
Q(t)

2πR∗
on Γ∗, t > 0, p2 = pe on Γ∗, t > 0,

v1 · n = v2 · n = Vn, p1 = p2 on Γ(t), t > 0,

(1.2)

{
vi|t=0 = v0

i , pi = p0i on Ωi(0) ≡ Ωi (i = 1, 2),

ζ|t=0 = ζ0 ∈ (R∗ −R0, R
∗ −R0) on Γ(0) ≡ Γ,

(1.3)

where Γ∗ = {x ∈ R2 | |x| = R∗}, Γ(t) =
{
x ∈ R2

∣∣ |x| = R(t) + ζ(x/|x|, t)
}
, Γ∗ = {x ∈ R2 | |x| =

R∗}; Vn is the normal velocity of the interface Γ(t); n is the unit normal vectors, outward to Γ∗
or to Γ(t) in the direction from Ω1(t) to Ω2(t); pe is the surface pressure acting on Γ∗.

Our two-phase problem is to find (vi, pi) (i = 1, 2) and ζ satisfying (1.1)–(1.3), which is
reduced to find (p1, p2) and ζ satisfying



∆pi = 0 in Ωi(t), t > 0 (i = 1, 2),

−M1∇p1 · n =
Q(t)

2πR∗
on Γ∗, t > 0, p2 = pe on Γ∗, t > 0,

−M1∇p1 · n = −M2∇p2 · n = Vn, p1 = p2 on Γ(t), t > 0,

pi
∣∣
t=0

= p0i on Ωi (i = 1, 2), ζ
∣∣
t=0

= ζ0 on Γ.

(1.4)

As the compatibility conditions p01 and p02 are assumed to satisfy


∆p0i = 0 in Ωi (i = 1, 2),

−M1∇p01 · n =
Q(0)

2πR∗
on Γ∗, p02 = pe|t=0 on Γ∗, p01 = p02 on Γ.

(1.5)
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In polar coordinates (r, θ) problem (1.4) is written as

1

r

∂

∂r

(
r
∂p1
∂r

)
+

1

r2
∂2p1
∂θ2

= 0 (r ∈ (R∗, R(t) + ζ), θ ∈ [0, 2π), t > 0) ,

1

r

∂

∂r

(
r
∂p2
∂r

)
+

1

r2
∂2p2
∂θ2

= 0 (r ∈ (R(t) + ζ,R∗), θ ∈ [0, 2π), t > 0) ,

M1
∂p1
∂r

∣∣∣
r=R∗

= − Q(t)

2πR∗
p2
∣∣
r=R∗= pe (θ ∈ [0, 2π), t > 0) ,

− ∂

∂t
(R(t) + ζ) =M1

(
∂p1
∂r

− 1

r2
∂ζ

∂θ

∂p1
∂θ

)
=M2

(
∂p2
∂r

− 1

r2
∂ζ

∂θ

∂p2
∂θ

)
, p1 = p2

(r = R(t) + ζ, θ ∈ [0, 2π), t > 0) ,

p1
∣∣
t=0

= p01
(
r ∈ (R∗, R0 + ζ0), θ ∈ [0, 2π)

)
,

p2
∣∣
t=0

= p02
(
r ∈ (R0 + ζ0(θ), R∗), θ ∈ [0, 2π)

)
,

ζ
∣∣
t=0

= ζ0 (θ ∈ [0, 2π)) .

(1.6)

Now let us transform the free boundary problem (1.6) into the problem on fixed do-
mains. Introduce the transformations from Ω1(t) = {R∗ < r < R(t) + ζ(θ, t), 0 6 θ < 2π} onto

Ω1 =
{
R∗ < r′ < R0 + ζ0(θ′), 0 6 θ′ < 2π

}
by the change of the variables r′ =

R0 + ζ0 −R∗

R+ ζ −R∗
×

× (r − R∗) + R∗, θ
′ = θ, t′ = t, and Ω2(t) = {R(t) + ζ(θ, t) < r < R∗, 0 6 θ < 2π} onto

Ω2 =
{
R0 + ζ0(θ′) < r′ < R∗, 0 6 θ′ < 2π

}
by r′ =

R0 + ζ0 −R∗

R+ ζ −R∗ (r −R∗) +R∗, θ′ = θ, t′ = t.

Moreover, by letting pi(r, θ, t) = p′i(r
′, θ′, t′) (i = 1, 2), ζ(θ, t) = ζ ′(θ′, t′), and by omitting the

primes for simplicity, problem (1.6) takes the form

Liζpi = 0 in Ωi, t > 0 (i = 1, 2),

∂p1
∂r

= − Q(t)

2πR∗M1

R+ ζ −R∗

R0 + ζ0 −R∗
on Γ∗ ≡ {r = R∗, θ ∈ [0, 2π]}, t > 0,

p2 = pe on Γ∗ ≡ {r = R∗, θ ∈ [0, 2π]}, t > 0,

∂ζ

∂t
− b12(ζ)

∂p1
∂r

− b11(ζ)
∂p1
∂θ

− b22(ζ)
∂p2
∂r

− b21(ζ)
∂p2
∂θ

= −Q(t)

2πR
,

b12(ζ)
∂p1
∂r

+ b11(ζ)
∂p1
∂θ

= b22(ζ)
∂p2
∂r

+ b21(ζ)
∂p2
∂θ

, p1 = p2

on Γ ≡ {r = R0 + ζ0, θ ∈ [0, 2π]}, t > 0,

pi
∣∣
t=0

= p0i on Ωi (i = 1, 2), ζ
∣∣
t=0

= ζ0 on [0, 2π].

(1.7)

Here Liζ ≡ Liζ(r, θ; ∂/∂r, ∂/∂θ) is a Laplace operator represented by the composite change of
variables of polar coordinates (r, θ) and the mapping from Ωi(t) to Ωi (i = 1, 2), and

bj2(ζ) =
Mj

2

[(
1 +

1

(R0 + ζ0)2

(
∂ζ

∂θ

)2
)
R0 + ζ0 −R∗

R+ ζ −R∗
− 1

(R0 + ζ0)2
∂ζ

∂θ

dζ0

dθ

]
,

bj1(ζ) = −Mj

2

1

(R0 + ζ0)2
∂ζ

∂θ
(j = 1, 2).

In detail, see [9].
We consider problem (1.7) in the standard Hölder spaces, Cl+α(Ω̄), Cl+α,(l+α)/2x,t (Q̄T ) (Q̄T ≡

Ω̄× [0, T ]; Ω ⊂ Rn (n ∈ N), a domain; T , any positive number; l > 0, an integer; α ∈ (0, 1)) with
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the norms:

|u|(α) = |u|(0) + ⟨u⟩(α), |u|(0) = sup
(x,t)∈Q̄T

|u(x, t)|, ⟨u⟩(α) = ⟨u⟩(α)x + ⟨u⟩(α/2)t ,

⟨u⟩(α)x ≡ sup
x,y∈Ω̄, t∈[0,T ]

|u(x, t)− u(y, t)|
|x− y|α

, ⟨u⟩(α)t ≡ sup
x∈Ω̄, t,t′∈[0,T ]

|u(x, t)− u(x, t′)|
|t− t′|α

.

We also use the semi-norm

[u](α,β) ≡ sup
x,y∈Ω̄

t,t′∈[0,T ]

|u(x, t)− u(y, t)− u(x, t′) + u(y, t′)|
|x− y|α |t− t′|β

(α, β ∈ (0, 1)),

and introduce the Banach spaces Ek+α(Q̄T ) (k = 0, 1, 2) which are the completion of infinitely
differential functions in respective norms

∥u∥α = ∥u∥Eα(Q̄T ) ≡ Eα,α/2[u] = |u|(0) + ⟨u⟩(α) + [u](α,α/2),

Dα,α[u] = |u|(0) + ⟨u⟩(α)x + ⟨u⟩(α)t + [u](α,α),

∥u∥k+α = ∥u∥Ek+α(Q̄T ) = Eα,α/2[Dkxu] +

k−1∑
j=0

Dα,α[Djxu]

(
Dkx =

∑
|j|=k

∂j

∂xj
, k = 1, 2

)
;

Ê2+α(Q̄T ) =
{
u
∣∣ ∥u∥Ê2+α(Q̄T ) <∞

}
, ∥u∥Ê2+α(Q̄T ) = ∥u∥2+α +

∥∥∥∥∂u∂t
∥∥∥∥
1+α

.

The function spaces on a smooth manifold Γ in Rn are defined with the help of partition of
unity and of local maps.

2. Uniqueness of the solution to problem (1.7)
Our main result for two-phase problem (1.7) is as follows:

Theorem 2.1. Let T > 0 and α ∈ (0, 1). Assume that (p01, p
0
2, ζ

0) ∈ C3+α(Ω̄1) × C3+α(Ω̄2)×
C4+α([0, 2π]) satisfy the compatibility conditions, ∂p01/∂r − ∂p02/∂r > 0 on Γ, Q ∈ Cα([0, T ])

and pe ∈ C
3+α,(3+α)/2
θ,t (Γ∗

T ) with ∂pe/∂t|t=0 = 0. Then there exists T ∗
0 > 0 depending on the

data of the problem such that problem (1.7) has a unique solution (p1, p2, ζ) ∈ E2+α(Q̄1,T∗
0
) ×

E2+α(Q̄2,T∗
0
)× Ê2+α(ΓT∗

0
) except for the extension of ζ0 to [0, 2π]× [0, T ] satisfying

∥p1∥E2+α(Q̄1,T∗
0
) + ∥p2∥E2+α(Q̄2,T∗

0
) + ∥ζ∥Ê2+α(ΓT∗

0
) 6 C. (2.1)

In [9] we showed the existence of the solution to problem (1.7) on some time interval
[0, T0] (0 < T0 6 T ) in the form p1 = p∗1 + p01 +

r −R∗

R+ ζ̄ −R∗

∂p01
∂r

ζ∗, p2 = p∗2 + p02 +
r −R∗

R+ ζ̄ −R∗
∂p02
∂r

ζ∗,

ζ = ζ∗ + ζ̄
(2.2)

by the parabolic regularization and by vanishing the coefficient of the derivative with respect to
time in a parabolic equation. Here ζ̄ ∈ C

4+α,(4+α)/2
θ,t ([0, 2π] × [0, T ]) is an extension of ζ0 such

that (ζ̄, ∂ζ̄/∂t, ∂2ζ̄/∂t2)|t=0 = (ζ0, ∂ζ/∂t, ∂2ζ/∂t2)|t=0 whose right hand side are obtained from
the fourth equation in (1.7) and its derivative in t at t = 0.
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Then (1.7) becomes

Li∗p∗i = Φi in Ωi, t > 0 (i = 1, 2),

∂p∗1
∂r

= Ψ∗ on Γ∗, t > 0, p∗2 = Ψ∗ on Γ∗, t > 0,

∂ζ∗

∂t
− b12(ζ̄)

∂p∗1
∂r

− b11(ζ̄)
∂p∗1
∂θ

− b22(ζ̄)
∂p∗2
∂r

− b21(ζ̄)
∂p∗2
∂θ

= Ψ1 +Ψ2,

b12(ζ̄)
∂p∗1
∂r

+ b11(ζ̄)
∂p∗1
∂θ

− b22(ζ̄)
∂p∗2
∂r

− b21(ζ̄)
∂p∗2
∂θ

= −Ψ1 +Ψ2,

p∗1 − p∗2 + d(ζ̄)ζ∗ = Ψ3 on Γ, t > 0,

p∗i
∣∣
t=0

= 0 on Ωi (i = 1, 2), ζ∗
∣∣
t=0

= 0 on [0, 2π].

(2.3)

Here Li∗ is the principal part of Liζ with ζ replaced by ζ̄,

Φi = Φi(p
∗
i , ζ

∗) = −Liζpi + Li∗p∗i (i = 1, 2), Ψ∗ = pe − p02,

Ψ∗ = Ψ∗(ζ
∗) = − ∂

∂r

(
p01 +

r −R∗

R+ ζ̄ −R∗

∂p01
∂r

)
ζ∗ − R+ ζ −R∗

R0 + ζ0 −R∗

Q(t)

2πR∗M1
,

Ψj = Ψj (p
∗
1, p

∗
2, ζ

∗) = bj2(ζ)
∂pj
∂r

+ bj1(ζ)
∂pj
∂θ

− bj2(ζ̄)
∂p∗j
∂r

− bj1(ζ̄)
∂p∗j
∂θ

− Q(t)

4πR
− 1

2

∂ζ̄

∂t
(j = 1, 2),

Ψ3 = p02 − p01, d(ζ̄) =
R0 + ζ0 −R∗

R+ ζ̄ −R∗

∂p01
∂r

− R0 + ζ0 −R∗

R+ ζ̄ −R∗
∂p02
∂r

with (p1, p2, ζ) replaced by (2.2).
If problem (2.3) admits a unique solution on some time interval [0, T ∗

0 ] (0 < T ∗
0 6 T0), then

the limit process holds for the full sequence, not the subsequence, on [0, T ∗
0 ], so that the proof of

Theorem 2.1 is completed.
In what follows we shall prove the uniqueness of solution to problem (2.3).
Let (p∗1, p

∗
2, ζ

∗) and (p∗∗1 , p
∗∗
2 , ζ

∗∗) be two solutions of (2.3) satisfying

∥p†1∥E2+α(Q̄1,T0
) + ∥p†2∥E2+α(Q̄2,T0

) + ∥ζ†∥Ê2+α(ΓT0
) 6 C1 († = ∗, ∗∗). (2.4)

To the end, as the same way as in [9] it is essential to consider the following four model
problems in the whole- and half-spaces:

Lu = f in R2, t > 0, u
∣∣
t=0

= 0; (2.5)

Lu = f (x1 ∈ R, x2 > 0, t > 0) , u
∣∣
x2=0

= 0, u
∣∣
t=0

= 0; (2.6)

Lu = f (x1 ∈ R, x2 > 0, t > 0) ,
∂u

∂x2

∣∣∣
x2=0

= 0, u
∣∣
t=0

= 0; (2.7)


Lu+ = 0 (x1 ∈ R, x2 > 0, t > 0) , Lu− = 0 (x1 ∈ R, x2 < 0, t > 0) ,

∂ϱ

∂t
− b+

∂u+

∂x2
− b−

∂u−

∂x2

∣∣∣
x2=0

= g1, −b+ ∂u
+

∂x2
+ b−

∂u−

∂x2

∣∣∣
x2=0

= g2,

−u+ + u− + dϱ
∣∣
x2=0

= g3, (u+, u−, ϱ)
∣∣
t=0

= 0.

(2.8)

Moreover, it suffices to assume that L = ∆, and b± and d are positive constants, and set
b ≡ (2db+b−)/(b+ + b−) in (2.5)–(2.8).
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In estimating the difference (p∗1, p
∗
2, ζ

∗)− (p∗∗1 , p
∗∗
2 , ζ

∗∗), we trace a proof in [9] with the help
of a fundamental solution and Green functions of (2.5)–(2.8) instead of Γε, Gε, Nε and Zε in [9].
It is clear that the solutions to problems (2.5)–(2.7) for L = ∆ are given by

u(x, t) =

∫
R2

Γ0(x− y)f(y, t) dy, u(x, t) =

∫
R2

G0(x− y)f(y, t) dy,

u(x, t) =

∫
R2

N0(x− y)f(y, t) dy,

respectively, where Γ0(x) = − log |x|/(2π), G0(x1, x2) = Γ0(x1, x2) − Γ0(x1,−x2), and
N0(x1, x2) = Γ0(x1, x2) + Γ0(x1,−x2). Whereas, the solution (u+, u−, ϱ) = (FL)−1[(ũ+, ũ−, ϱ̃)]
of problem (2.8) is represented by virtue of Green function

Z0(x1, t) = (FL)−1[Z̃0] = (FL)−1

[
1

s+ b|ξ|

]
:

ũ+ = (FL)[u+] = ṽ+(ξ, s) e−|ξ|x2 (x2 > 0), ũ− = (FL)[u−] = ṽ−(ξ, s) e|ξ|x2 (x2 < 0),

ṽ+ =
1

(b+ + b−) |ξ|
g̃2 −

b−

b+ + b−
g̃3 + Z̃0

(
db−

b+ + b−
g̃1 −

b− db−

b+ + b−
g̃2 +

bb−

b+ + b−
|ξ|g̃3

)
,

ṽ− =
1

(b+ + b−) |ξ|
g̃2 +

b+

b+ + b−
g̃3 + Z̃0

(
− db+

b+ + b−
g̃1 −

b− db+

b+ + b−
g̃2 −

bb+

b+ + b−
|ξ|g̃3

)
,

ϱ̃ = Z̃0

(
g̃1 −

b+ − b−

b+ + b−
g̃2 +

2b+b−

b+ + b−
|ξ|g̃3

)
.

Here ũ = (FL)[u] is the Fourier transformation in x1 and Laplace transformation in t of u, and
(FL)−1[ũ] is its inverse transformation.

Lemma 2.2. When b = 1, we have the following estimates of Z0:

|Z0(x1, t)| 6 C2
1√

x21 + t2
,

∣∣∣∣ ∂∂t Z0(x1, t)

∣∣∣∣+ ∣∣∣∣ ∂∂x1 Z0(x1, t)

∣∣∣∣ 6 C2
1

x21 + t2
,∣∣∣∣ ∂2

∂t∂x1
Z0(x1, t)

∣∣∣∣+∣∣∣∣ ∂2∂x21 Z0(x1, t)

∣∣∣∣6C2
1

(x21 + t2)3/2
.

Using Lemma 2.2, we estimate these solutions of (2.5)–(2.8) in the same way as in [9] (cf. [1,2]).
For a general domain by using the regularizer method for elliptic system ([6–8]), we finally obtain
the estimate of (p∗1, p∗2, ζ∗)−(p∗∗1 , p

∗∗
2 , ζ

∗∗) with the help of Young’s and interpolation inequalities
and (2.4):

∥p∗1 − p∗∗1 ∥E2+α(Q̄1,t) + ∥p∗2 − p∗∗2 ∥E2+α(Q̄2,t) + ∥ζ∗ − ζ∗∗∥Ê2+α(Γt)
6 (2.9)

6 C3

(
2∑
i=1

(
∥Φi(p∗, ζ∗)− Φi(p

∗∗, ζ∗∗)∥Eα(Q̄i,t)
+ ∥Ψi(p∗, ζ∗)−Ψi(p

∗∗, ζ∗∗)∥E1+α(Γ̄t)

)
+

+ ∥Ψ∗(ζ
∗)−Ψ∗(ζ

∗∗)∥E1+α(Γ̄∗t)

)
6

6 C3 (β + Cβt
χF (4C1))

(
∥p∗1 − p∗∗1 ∥E2+α(Q̄1,t) + ∥p∗2 − p∗∗2 ∥E2+α(Q̄2,t) + ∥ζ∗ − ζ∗∗∥Ê2+α(Γt)

)
for any t ∈ (0, T0) and any β > 0, where Cβ is a positive constant depending on β non-increasingly,
χ is a constant depending on α, F (·) is a polynomial in its argument.
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Now choosing first β = 1/(4C3), and then

T ∗
0 = min

{
T0,

(
1

4C3CβF (4C1)

)1/χ
}
,

we conclude from (2.9) that the solution to problem (2.3) is unique on [0, T ∗
0 ].

3. Uniqueness of the solution to the one-phase problem
Our next main result for one-phase problem is as follows:

Theorem 3.1. Let T > 0 and α ∈ (0, 1). Assume that (p0, ζ0) ∈ C3+α(Ω̄)×C4+α([0, 2π]) satisfy
the compatibility conditions, ∂p0/∂r < 0 on Γ, Q ∈ Cα([0, T ]) and pe ∈ C

3+α,(3+α)/2
θ,t (Γ∗

T ) with
∂pe/∂t|t=0 = 0. Then there exists T ∗

0 > 0 depending on the data of the problem such that one-
phase problem has a unique solution (p, ζ) ∈ E2+α(Q̄T∗

0
) × Ê2+α(ΓT∗

0
) except for the extension

of ζ0 to [0, 2π]× [0, T ] satisfying

∥p∥E2+α(Q̄T∗
0
) + ∥ζ∥Ê2+α(ΓT∗

0
) 6 C ′. (3.1)

Like the two-phase problem we transform the one-phase problem into just the same equations
as (2.3). In [10] the existence of the solution (p∗, ζ∗) (cf. (2.2)) to one-phase problem on some
time interval [0, T0] (0 < T0 < T ) was shown.

Let (p∗, ζ∗) and (p∗∗, ζ∗∗) be two solutions satisfying

∥p†∥E2+α(Q̄T0
) + ∥ζ†∥Ê2+α(ΓT0

) 6 C ′
1 († = ∗, ∗∗). (3.2)

For one-phase case the essential model problems are the same as (2.5), (2.7), (2.8) with
(u+, u−, ϱ) replaced by (u, 0, ϱ).

Lu = f in R2, t > 0, u
∣∣
t=0

= 0; (3.3)

Lu = f (x1 ∈ R, x2 > 0, t > 0) ,
∂u

∂x2

∣∣∣
x2=0

= 0, u
∣∣
t=0

= 0; (3.4)
Lu = 0 (x1 ∈ R, x2 > 0, t > 0) ,

∂ϱ

∂t
− b

∂u

∂x2

∣∣∣
x2=0

= g1, u− dϱ
∣∣
x2=0

= g2, (u, ϱ)
∣∣
t=0

= 0.
(3.5)

The solution (u, ϱ) = (FL)−1[(ũ, ϱ̃)] of problem (3.5) is represented by virtue of Green func-
tion Z0 (cf. in Sec. 2):

ũ = ṽ(ξ, s) e−|ξ|x2 (x2 > 0), ṽ = d ϱ̃+ g2, ϱ̃ = Z̃0 (g̃1 − b d |ξ| g̃2) .

Just in the same way as the two-phase problem, we can estimate the solutions of (3.3)–(3.5)
with the help of Lemma 2.2, and for a general domain the regularizer method for elliptic system
leads to the estimate of (p∗, ζ∗)− (p∗∗, ζ∗∗):

∥p∗ − p∗∗∥E2+α(Q̄t) + ∥ζ∗ − ζ∗∗∥Ê2+α(Γt)
6

6 C ′
3

(
β7 + Cβ′tχ

′
F ′(4C ′

1)
)(

∥p∗ − p∗∗∥E2+α(Q̄t) + ∥ζ∗ − ζ∗∗∥Ê2+α(Γt)

)
(3.6)

for any t ∈ (0, T0) and any β′ > 0, where Cβ′ is a positive constant depending on β′ non-
increasingly, χ′ is a constant depending on α, F ′(·) is a polynomial of its argument.

Now choosing first β′ = 1/(4C ′
3), and then

T ∗
0 = min

{
T0,

(
1

4C ′
3Cβ′F ′(4C ′

1)

)1/χ
}
,

we conclude from (3.6) that the solution to one-phase problem is unique on [0, T ∗
0 ].
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О единственности классических решений задач
радиальной вязкой пальцеобразной структуры
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Иокогама, Япония
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Аннотация. В [9, 10] мы установили существование классических решений двухфазной и одно-
фазной задач радиальной вязкой аппликатуры соответственно в ячейке Хеле-Шоу параболической
регуляризацией и обращением в нуль коэффициента производной по времени в параболическом
уравнении. В этой статье мы показываем единственность таких решений соответствующих задач.

Ключевые слова: классическое решение, уникальное наличие, радиальная вязкая пальцеобраз-
ная структура.
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The research scheme in these works, as a rule, assumes that we first have to investigate the
solvability of the auxiliary approximating problem (in an unbounded domain with Cauchy data
and / or in a bounded domain with boundary conditions of the first or second kind), since these
problems are nonclassical problems for loaded equations, and investigate the necessary properties
of solutions that obviously depend on the parameter ε. And then the second step is to obtain
estimates that will guarantee the convergence of the sequence of solutions of the approximating
problem to the solution of the original problem as ε approaches zero.

In this paper, a quasilinear system of two parabolic equations with one unknown coefficient of
the source function is considered. The question of a solution existence to this problem is studied.
This is a model problem in which the authors set the goal of working out the splitting algorithm
and obtaining a priori estimates for quasilinear systems, which is much more complicated than in
the linear case. It is also important to note that the system under consideration contains a small
fixed parameter ε > 0, which does not affect the study of the question of a solution existence, but
allows using this system subsequently as an approximating model for the problem of identifying
the source function in a quasilinear parabolic-elliptic system.

1. Formulation of the problem and reduction it to the direct
problem

Consider in the strip G[0,T ] = {(t, x) | 0 6 t 6 T, x ∈ E1} the problem of determining
real-valued functions

(
u(t, x), v(t, x), r(t)

)
, satisfying the system of equationsut(t, x) + a11(t)u(t, x) + a12(t)v(t, x) = µ1uxx(t, x) + v(t, x)ux(t, x) + r(t)f(t, x),

εvt(t, x) + a21(t)u(t, x) + a22(t)v(t, x) = µ2vxx(t, x) + u(t, x)vx(t, x) + g(t, x),
(1)

where ε ∈ (0, 1] is a const, with initial conditions

u(0, x) = u0(x), v(0, x) = v0(x), (2)

and the over determination condition

u(t, x0) = φ(t), (3)

where φ(t) is a given function on [0, T ], 0 6 t 6 T , x0 is a fixed point.
System (1), for example, can be an approximation of the parabolic-elliptic system of equationsũt(t, x) + a11(t)ũ(t, x) + a12(t)ṽ(t, x) = µ1ũxx(t, x) + ṽ(t, x)ũx(t, x) + r̃(t)f(t, x),

a21(t)ũ(t, x) + a22(t)ṽ(t, x) = µ2ṽxx(t, x) + ũ(t, x)ṽx(t, x) + g(t, x).

Note that the study of the behavior of the solution when ε approaches zero is beyond the
scope of this study, and in our work ε is a nonnegative fixed constant.

Let the functions aij(t), i, j = 1, 2, be defined on [0, T ] and let the functions f(t, x), g(t, x)
be defined on G[0,T ]. Let µ1, µ2 > 0 be given constants.

Let the relationship ∣∣f(t, x0)∣∣ > δ > 0, t ∈ [0, T ] (δ is a const) (4)

hold.
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Assume that the following consistency condition is fulfilled

u0(x
0) = φ(0). (5)

Reduce the inverse problem (1)–(2) to an auxiliary direct problem. In system (1) we set
x = x0:φ

′(t) + a11(t)φ(t) + a12(t)v(t, x
0) = µ1uxx(t, x

0) + v(t, x0)ux(t, x
0) + r(t)f(t, x0),

εvt(t, x
0) + a21(t)φ(t) + a22(t)v(t, x

0) = µ2vxx(t, x
0) + φ(t)vx(t, x

0) + g(t, x0).
(6)

From (6) we obtain

r(t) =
ψ(t) + a12v(t, x

0)− µ1uxx(t, x
0)− v(t, x0)ux(t, x

0)

f(t, x0)
. (7)

where ψ(t) = φ′(t) + a11(t)φ(t) is known.
Substituting expression for r(t) in (1) we obtain the following direct problem:

ut(t, x) + a11(t)u(t, x) + a12(t)v(t, x) = µ1uxx(t, x) + v(t, x)ux(t, x)+

+
ψ(t) + a12(t)v(t, x

0)− µ1uxx(t, x
0)− v(t, x0)ux(t, x

0)

f(t, x0)
f(t, x),

εvt(t, x) + a21(t)u(t, x) + a22(t)v(t, x) = µ2vxx(t, x) + u(t, x)vx(t, x) + g(t, x),

(8)

u(0, x) = u0(x), (9)

v(0, x) = v0(x). (10)

2. Proof of solvability of the problem (1)–(3)

To prove the existence of a solution to the auxiliary problem (1)–(3), we use the weak ap-
proximation method [5, 6]. We split the problem (8)–(10) and linearize it by shifting in time
by

τ

4
. u

τ
t (t, x) = 4µ1u

τ
xx(t, x),

εvτt (t, x) = 4µ2v
τ
xx(t, x), jτ < t 6

(
j +

1

4

)
τ,

(11)

u
τ
t (t, x) + 4a11(t)u

τ (t, x) = 0,

εvτt (t, x) + 4a22(t)v
τ (t, x) = 0,

(
j +

1

4

)
τ < t 6

(
j +

1

2

)
τ,

(12)


uτt (t, x) = 4vτ

(
t− τ

4
, x
)
uτx(t, x),

εvτt (t, x) = 4uτ
(
t− τ

4
, x
)
vτx(t, x),

(
j +

1

2

)
τ < t 6

(
j +

3

4

)
τ,

(13)



uτt (t, x) + 4a12(t)v
τ (t− τ

4
, x) =

= 4
ψ(t) + a12(t)v

τ (t− τ
4 , x

0)− µ1u
τ
xx(t− τ

4 , x
0)− vτ (t− τ

4 , x
0)uτx(t− τ

4 , x
0)

f(t, x0)
f(t, x),

εvτt (t, x) + 4a21(t)u
τ
(
t− τ

4
, x
)
= 4g(t, x),

(
j +

3

4

)
τ < t 6 (j + 1) τ,

(14)
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uτ (t, x)|t60 = u0(x), (15)

vτ (t, x)|t60 = v0(x). (16)

Here j = 0, 1, . . . , N − 1; τN = T.

Concerning the input data, assume that they are sufficiently smooth, have all continuous
derivatives occurring in the next lower relations of (17)–(19) and satisfy them:

|aij(t)| 6 C, i = 1, 2, j = 1, 2, (17)∣∣∣∣ ∂k∂xk f(t, x)
∣∣∣∣+ ∣∣∣∣ ∂k∂xkF (t, x)

∣∣∣∣+ ∣∣∣∣ dkdxk u0(x)
∣∣∣∣+ ∣∣∣∣ dkdxk v0(x)

∣∣∣∣ 6 C, k = 0, . . . , p+ 6, (18)

|φ(t)|+
∣∣∣φ′

(t)
∣∣∣ 6 C, (t, x) ∈ G[0,T ]. (19)

Below, for convenience, we consider some proofs assuming that the constant C is greater than 1
and that the constant p > 6 is an even number.

For the solution uτ (t, x), vτ (t, x) of the split linearized problem (9)–(12) are obtained a priori
estimates uniform in τ for j = 0, 1, . . . , p+ 1, k = 0, 1, . . . , p, (t, x) ∈ G[0,T ]∣∣∣∣ ∂p+4

∂xp+4
uτt (t, x)

∣∣∣∣+ ∣∣∣∣ ∂p+4

∂xp+4
vτt (t, x)

∣∣∣∣ 6 C, (t, x) ∈ G[0,t∗], (20)

where t∗ does not depend on τ and depends on ε.
By virtue of the (20), the theorem of Arzela [7] and the convergence theorem of the weak

approximation method [6], it follows that the limit functions u(t, x), v(t, x) for τ → 0 are a
solution to the direct problem (8)–(10), and u(t, x), v(t, x) and r(t, x) defined by relation (7) are
solutions of problem (1), (2).

The uniqueness of the found solution is proved in a standard way, by obtaining estimates
showing that the difference of two possible solutions in G[0,t∗] is equal to zero.

The following theorem gives sufficient conditions for the existence and uniqueness of a solu-
tion.

Theorem 2.1. Let the conditions (4), (5), (17)–(19) hold. Then there exists a unique solution
u(t, x), v(t, x), r(t) of problem (1)–(3) in the class

Z(t∗) =
{
u(t, x), v(t, x), r(t)|u(t, x) ∈ C1,p+4

t,x (G[0,t∗]), v(t, x) ∈ C1,p+4
t,x (G[0,t∗]),

r(t) ∈ C([0, t∗])} ,

and the following relations hold

p+4∑
k=0

(∣∣∣∣ ∂k∂xk u(t, x)
∣∣∣∣+ ∣∣∣∣ ∂k∂xk v(t, x)

∣∣∣∣)+ ||r(t)||C1[0,t∗] +

∣∣∣∣ ∂∂tu(t, x)
∣∣∣∣+ ∣∣∣∣ ∂∂tv(t, x)

∣∣∣∣ 6 C(ε),

(t, x) ∈ G[0,t∗]. (21)

where

C1,p+4
t,x (G[0,t∗]) =

{
u(t, x)|ut ∈ C(G[0,t∗]),

∂k

∂xk
u ∈ C(G[0,t∗]), k = 0, . . . , p+ 4

}
.

Obviously, the solution depends on the constant ε, just as the constant C(ε) depends on ε

and the input data.
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3. Periodicity

In the domain Qt∗ = {(t, x) | 0 < t < t∗, 0 < x < l} consider the boundary value problemut(t, x) + a11(t)u(t, x) + a12(t)v(t, x) = µ1uxx(t, x) + v(t, x)ux(t, x) + r(t)f(t, x),

εvt(t, x) + a21(t)u(t, x) + a22(t)v(t, x) = µ2vxx(t, x) + u(t, x)vx(t, x) + g(t, x),
(22)

ε is a const, ε ∈ (0, 1],

u(0, x) = u0(x), x ∈ [0, l], (23)

v(0, x) = v0(x), x ∈ [0, l], (24)

u(t, 0) = u(t, l) = v(t, 0) = v(t, l) = 0, t ∈ [0, t∗], (25)

u(t, x0) = φ(t), 0 < x0 < l, (26)

u0(x
0) = φ(0). (27)

Let us extend the functions u0(x), v0(x), f(t, x), g(t, x) to the segment [−l, l]:

u0(x) = −u0(−x), for − l 6 x < 0,

v0(x) = −v0(−x), for − l 6 x < 0.

Then we continue the functions from [−l, l] to ℜ in a periodic manner.
Extend the functions f(t, x) and g(t, x) from [0, t∗]× [0, l] to [0, t∗]× ℜ to periodic and odd

in x functions.
Note that the functions u0(x), v0(x), f(t, x), g(t, x), according to the construction method,

satisfy the conditions:

u0(−x) = −u0(x), u0(l − x) = −u0(l + x), (28)

v0(−x) = −v0(x), v0(l − x) = −v0(l + x), (29)

f(t,−x) = −f(t, x), f(t, l − x) = −f(t, l + x), (30)

g(t,−x) = −g(t, x), g(t, l − x) = −g(t, l + x), (31)

The functions u0(x), v0(x), f(t, x), g(t, x) continued in this way are used as the input data for
the Cauchy problemut(t, x) + a11(t)u(t, x) + a12(t)v(t, x) = µ1uxx(t, x) + v(t, x)ux(t, x) + r(t)f(t, x),

εvt(t, x) + a21(t)u(t, x) + a22(t)v(t, x) = µ2vxx(t, x) + u(t, x)vx(t, x) + g(t, x),
(32)

ε is const, ε ∈ (0, 1],
u(0, x) = u0(x), x ∈ (−∞,+∞), (33)

v(0, x) = v0(x), x ∈ (−∞,+∞). (34)

Split the problem (32)–(34):
uτt (t, x) = 4µ1u

τ
xx(t, x),

εvτt (t, x) = 4µ2v
τ
xx(t, x), jτ < t 6

(
j +

1

4

)
τ,

(35)
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u
τ
t (t, x) + 4a11(t)u

τ (t, x) = 0,

εvτt (t, x) + 4a22(t)v
τ (t, x) = 0,

(
j +

1

4

)
τ < t 6

(
j +

1

2

)
τ,

(36)


uτt (t, x) = 4vτ

(
t− τ

4
, x
)
uτx(t, x),

εvτt (t, x) = 4uτ
(
t− τ

4
, x
)
vτx(t, x),

(
j +

1

2

)
τ < t 6

(
j +

3

4

)
τ,

(37)


uτt (t, x) + 4a12(t)v

τ
(
t− τ

4
, x
)
=

= 4
ψ(t) + a12(t)v

τ
(
t− τ

4 , x
0
)
− µ1u

τ
xx

(
t− τ

4 , x
0
)
− vτ

(
t− τ

4 , x
0
)
uτx
(
t− τ

4 , x
0
)

f(t, x0)
f(t, x),

εvτt (t, x) + 4a21(t)u
τ
(
t− τ

4
, x
)
= 4g(t, x),

(
j +

3

4

)
τ < t 6 (j + 1) τ,

(38)
uτ (0, x) = u0(x), (39)

vτ (0, x) = v0(x). (40)

Let uτ (t, x), vτ (t, x) be a solution to the split problem. Let us show that uτ (t, x), vτ (t, x)
satisfy the conditions

uτ (t,−x) = −uτ (t, x), uτ (t, l − x) = −uτ (t, l + x), (41)

vτ (t,−x) = −vτ (t, x), vτ (t, l − x) = −vτ (t, l + x). (42)

At the first fractional step, using the integral representation, we obtain

uτ (t, x) =

∫ +∞

−∞
u0(ξ)

1

4
√
πtµ1

e−
(x−ξ)2

12µ1t dξ. (43)

vτ (t, x) =

∫ +∞

−∞
v0(ξ)

1

4
√
πtµ2

e−
(x−ξ)2

12µ2t dξ. (44)

Let us check the first conditions from (41) and (42)

uτ (t,−x) + uτ (t, x) =

∫ +∞

−∞
u0(ξ)

1

4
√
πtµ1

(e−
(x−ξ)2

12µ1t + e−
(x+ξ)2

12µ1t )dξ. (45)

vτ (t,−x) + vτ (t, x) =

∫ +∞

−∞
v0(ξ)

1

4
√
πtµ2

(e−
(x−ξ)2

12µ2t + e−
(x+ξ)2

12µ2t )dξ. (46)

The integrand changes sign when ξ is replaced by −ξ, therefore, the integrals are equal to
0. The second conditions from (41) and (42) are verified similarly by replacing η = l − ξ the
variable of integration.

At the second fractional step, uτ (t, x), vτ (t, x) have the form

uτ (t, x) = uτ
(τ
4
, x
)
e
4

t∫
τ
4

a11(η)dη

,
τ

2
< t 6 τ

4
, (47)

vτ (t, x) = vτ
(τ
4
, x
)
e
4

t∫
τ
4

a22(η)dη

,
τ

2
< t 6 τ

4
. (48)
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Consequently,

uτ (t,−x) + uτ (t, x) =
(
uτ
(τ
4
,−x

)
+ uτ

(τ
4
, x
))

e
4

t∫
τ
4

a11(η)dη

,
τ

2
< t 6 τ

4
, (49)

vτ (t,−x) + vτ (t, x) =
(
vτ
(τ
4
,−x

)
+ vτ

(τ
4
, x
))

e
4

t∫
τ
4

a22(η)dη

,
τ

2
< t 6 τ

4
. (50)

The conditions (41) and (42) follows from the first fractional step.
At the third fractional step, we use Lemma 1.

Lemma 1. Let the function u(t, x) be a solution to the equation ut = a(t, x)ux in the domain
D = {(t, x)|t0 < t < t1, x ∈ ℜ} with the initial condition u(t0, x) = u0(x). Let the function
(a, t, x) satisfy the Lipschitz condition in x and the relations

a(t, c+ x) = −a(t, c− x), u0(c+ x) = u0(c− x), c is a const

hold. Then the function u(t, x) satisfies the relation u(t, c+ x) = −u(t, c− x).

The proof of Lemma 1 is presented in [8].
Where do we get the fulfillment of the conditions (41) and (42).
At the fourth fractional step, we get

uτ (t, x) = uτ
(3τ
4
, x
)
+ 4

∫ t

3τ
4

(a12(η)v
τ
(
η − τ

4
, x
)
+

+
ψ(η) + a12(t)v

τ
(
η − τ

4 , x
0
)
− µ1u

τ
xx

(
η − τ

4 , x
0
)
− vτ

(
t− τ

4 , x
0
)
uτx
(
t− τ

4 , x
0
)

f(η, x0)
f(η, x))dη, (51)

vτ (t, x) = vτ
(3τ
4
, x
)
+ 4

1

ε

∫ t

3τ
4

(
a21(η)u

τ
(
η − τ

4
, x
)
+ g(η, x)

)
dη, (52)

Let us check the first conditions from (41) and (42)

uτ (t,−x) + uτ (t, x) = uτ
(3τ
4
, x
)
+ uτ

(3τ
4
,−x

)
+

+ 4

∫ t

3τ
4

(a12(η)
(
vτ
(
η − τ

4
, x
)
+ vτ

(
η − τ

4
,−x

))
+

+
ψ(η) + a12(t)v

τ
(
η − τ

4 , x
0
)
− µ1u

τ
xx

(
η − τ

4 , x
0
)
− vτ

(
t− τ

4 , x
0
)
uτx
(
t− τ

4 , x
0
)

f(η, x0)
×

× (f(η, x) + f(η,−x)))dη = 0, (53)

vτ (t,−x) + vτ (t, x) = vτ
(3τ
4
, x
)
+ vτ

(3τ
4
,−x

)
+

+ 4
1

ε

∫ t

3τ
4

(
a21(η)

(
uτ
(
η − τ

4
, x
)
+ uτ

(
η − τ

4
,−x

))
+
(
g(η, x) + g(η,−x)

))
dη = 0. (54)

The second conditions from (41) and (42) are obviously also satisfied.
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We have proved that the conditions (41) and (42) are satisfied at the zero integer step.
Arguing in the same way at the next steps, we obtain that the conditions (41) and (42) are
satisfied for all t ∈ [0, t∗]. Substituting x = 0 in (41) and (42), we get

uτ (t, 0) = uτ (t, l) = 0, t ∈ [0, t∗] (55)

vτ (t, 0) = vτ (t, l) = 0, t ∈ [0, t∗]. (56)

Theorem 3.1. Let conditions (28)-(31) and the conditions of Theorem 1 hold. The components
u, v of the solution (u, v, r) to problem (1)–(3) are periodic functions in the variable x with period
2l and satisfy

∂2mu(t, 0)

∂x2m
=
∂2m+1u(t, l)

∂x2m
=
∂2m+1v(t, 0)

∂x2m
=
∂2m+1v(t, l)

∂x2m
= 0, m = 0, 1, . . . ,

p+ 4

2
. (57)
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О разрешимости задачи идентификации функции
источника в квазилинейной параболической системе
уравнений в ограниченных и неограниченных областях

Вера Г.Копылова
Игорь В. Фроленков

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. В работе рассматривается задача идентификации функции источника в одном из
двух уравнений квазилинейной системы двух параболических уравнений. Рассматривается случай
данных Коши в неограниченной области, а также случай краевых условий первого рода в пря-
моугольной области. Изучен вопрос существования и единственности решения. Для доказатель-
ства используется метод расщепления на дифференциальном уровне, известный как метод слабой
аппроксимации. Решение получено на малом временном интервале в классе достаточно гладких
ограниченных функций.

Ключевые слова: обратная задача, система квазилинейных уравнений, определение функции
источника, метод слабой аппроксимации, малый параметр.
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Abstract. A problem of distribution of zones of elastic and plastic deformation appearing in a layer of
elasto-plastic material under compression by two rigid parallel plates, for the case of plane strain state
with Tresca – Saint-Venant yield criterion is solved. The technique based on application of conservation
laws is used to solve the problem.
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It this work, a problem of compression of a layer of elasto-plastic material between two
rigid parallel plates is considered, and a distribution of zones of elastic and plastic deformation
appearing in the layer for the case of a plane strain state is obtained. An elasto-plastic problem
is solved to find zones of deformation. As it is known, the complexity of such problems is in
finding of an elasto-plastic boundary separating regions of elastic and plastic deformation. An
overview of elasto-plastic problems and the methods of their solving are presented in [1]. One
should note that the methods of functions of the complex variable theory are the main tool of
solving of these problems.

In the present work, a technique based on construction of conservation laws for differential
equations is used to solve the considered problem [2–4]. The proposed technique has been applied
successfully to find solutions of elasto-plastic problems of the torsion of rods and the bending
of uniform cross-section beams [5–6], and to solve the problem of construction of elasto-plastic
boundary in a deformed rectangular plate weakened by holes [7].
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1. Problem statement

We study a layer of elasto-plastic material of the length l and the width h compressed between
two rigid parallel plates (Fig. 1).

Fig. 1. Layer of Material Compressed Between Two Rigid Plates

The contour Γ = Γ1 + Γ2 + Γ3 + Γ4 bounding the layer is given as follows:

Γ1 : y =
l

2
,

h

2
< x < −h

2
; Γ2 : x = −h/2, l

2
< y < − l

2
;

Γ3 : y = − l

2
, −h

2
< x <

h

2
; Γ4 : x = h/2, − l

2
< y <

l

2
.

(1)

It worth noting that for further numerical calculations the following values of the layer size
are chosen: l = 0.1 m and h = 0.02 m.

The layer is compressed along the axis Ox. The boundaries Γ1 and Γ3 are free from external
loading. It is supposed that the contour Γ is in plastic state.

One should solve an elasto–plastic problem for the domain bounded by Γ to determine zones
of elastic and plastic deformation. In the case of plane strain state, components of the stress
tensor σx, σy, τ satisfy the equilibrium equations:

∂σx
∂x

+
∂τ

∂y
= 0,

∂σy
∂y

+
∂τ

∂x
= 0. (2)

The compatibility equation holds in elastic domain:

∆(σx + σy) = 0. (3)

The yield criterion of Tresca – Saint-Venant for the case of plane strain state on the contour
Γ has the form:

(σx − σy)
2 + 4τ2 = 4k2, (4)

where k is a constant of material plasticity.
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The boundary conditions for the layer are written as:

σxn1 + τn2 = X, σyn2 + τn1 = Y. (5)

Here X, Y are the components of external force and n1, n2 are the components of normal
vector to the contour Γ.

Taking into consideration the last equations and the yield criterion (4), one can obtain the
following values of normal and tangential stresses on Γ: on the boundaries Γ1, Γ3

σx = ±2k, σy = 0, τ = 0 (6)

and on the boundaries Γ2, Γ4

σx = −2k, σy = 0, τ = 0. (7)

2. Solving the problem using conservation laws

A technique based on application of conservation laws is used to solve this elasto-plastic
problem. One can find the description of the technique in details in [7].

Solution of the problem consists of three main steps.
First, the Laplace equation ∆F = 0 with boundary conditions F |Γ = σx+σy is solved (where

σx, σy are functions from (4)–(5), F = σx + σy is a harmonic function from (3)).
Let σx = 2k on Γ1,Γ3 (see (6)), then one gets F |Γ1,Γ3

= 2k. Also, from (7), F |Γ2,Γ4
= −2k.

Further on, the finite element method is employed to find the values of the function F in
every point (x0, y0) of region bounded by the contour Γ.

Second, values of the functions σx, τ are found in each point (x0, y0) of the region applying
the formulae obtained using the conservation laws:

σx(x0, y0) =
1

2π

∫
Γ

(ω1
1σx + ω2

1τ + f1)dy − (−ω2
1σx + ω1

1τ + g1)dx, (8)

where f1 = 0, g1 =

∫
ω2
1dyF and ω1

1 =
x− x0

(x− x0)2 + (y − y0)2
, ω2

1 = − y − y0
(x− x0)2 + (y − y0)2

;

τ(x0, y0) =
1

2π

∫
Γ

(ω1
2σx + ω2

2τ + f2)dy − (−ω2
2σx + ω1

2τ + g2)dx. (9)

Here f2 = 0, g2 =

∫
ω2
2dyF ; ω1

2 =
y − y0

(x− x0)2 + (y − y0)2
, ω2

2 =
x− x0

(x− x0)2 + (y − y0)2
.

Note that a detailed derivation of formulae (8–9) is given in [7].
From the definition of F one can get values of the function σy in points (x0, y0) of the region

bounded by Γ:
σy(x0, y0) = F − σx(x0, y0). (10)

The third step of solving of the problem is in the yield criterion (4) verification in all inner
points of the considered region. If the stresses in a point (x0, y0) satisfy the condition

(σx − σy)
2 + 4τ2 < 4k2,

the point belongs to the elastic zone. If the inequality is not fulfilled, the point (x0, y0) gets into
the zone of plastic deformation.

Fig. 2 shows distribution of points forming zones of elastic and plastic deformation in the
compressed layer.
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Fig. 2. Distribution of Zones of Elastic (×) and Plastic (·) Deformation in the Layer under
Compression

Conclusion

A problem of compression of an elasto-plastic layer between two rigid parallel plates is con-
sidered for the case of plane strain state. Zones of plastic and elastic deformations are obtained
using the technique based on the conservation laws application. Distribution of the zones of
deformation is given using finite element method.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Centers for Mathematics Research and Education (Agreement
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Распределение областей упругих и пластических
деформаций, возникающих при сжатии слоя двумя
жесткими параллельными плитами

Ольга В. Гомонова
Сергей И. Сенашов
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Ольга Н. Черепанова
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Аннотация. В работе решена задача о распределении областей упругого и пластического дефор-
мирования, возникающих в слое упруго-пластического материала, сжимаемого двумя жесткими
параллельными плитами, для случая плоского деформированного состояния с условием текучести
Треска – Сен-Венана. При решении задачи была использована методика, основанная на примене-
нии законов сохранения.

Ключевые слова: сжатие слоя, упруго-пластическая задача, законы сохранения, плоское дефор-
мированное состояние.
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Abstract. We consider the problem of determining the source function and the leading coefficient in a
multidimensional semilinear parabolic equation with overdetermination conditions given on two different
hypersurfaces. The existence and uniqueness theorem for the classical solution of the inverse problem in
the class of smooth bounded functions is proved. A condition is found for the dependence of the upper
bound of the time interval, in which there is a unique solution to the inverse problem, on the input data.
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Introduction

The purpose of this work is to investigate the unique solvability of the problem of determining
the source function and the coefficient at the second derivative in the spatial variable in a multi-
dimensional semilinear parabolic equation with Cauchy data and overdetermination conditions,
given on two different hypersurfaces. The unique solvability in classes of smooth bounded func-
tions of various inverse problems of determining two coefficients of semilinear parabolic equations,
different from the inverse problem considered in this article, was studied, for example in [1–3].

Using the overdetermination conditions, the initial inverse problem is reduced to the direct
auxiliary Cauchy problem for the nonlinear loaded equation. The solvability of the direct problem
is proved, for this purpose rather smooth input data and the method of weak approximation are
used [4, 5]. The solution of the original inverse problem is written out explicitly through the
solution of the direct problem. On this basis, the existence and uniqueness theorem for the
classical solution of the inverse problem in the class of smooth bounded functions is proved for
t∗ ∈ (0, T ], T > 0, T − const. The condition for the dependence of t∗ on the constants of the
sufficiently smooth input data is formulated.
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1. Statement of the problem

We consider in G[0,T ] = {(t, x, z)
∣∣ 0 6 t 6 T, x ∈ En, z ∈ E1} the Cauchy problem

∂u

∂t
= Lx(u) + a(t, x)uzz + β1(t, x)uz + β2(t, x)u

2 + b(t, x)f(t, x, z), (1)

u(0, x, z) = u0(x, z), (x, z) ∈ En+1. (2)

Here Lx(u) =
n∑

i,j=1

αij
∂2u

∂xi∂xj
+

n∑
i=1

αi
∂u

∂xi
, the functionsu0(x, z), f(t, x, z) are given in En+1

and G[0,T ] respectively, the coefficients αij(t), αi(t), i, j = 1, n, β1(t, x), β2(t, x) are continuously
differentiable real-valued functions of the variable t, and t, x respectively, 0 6 t 6 T , T > 0,
T — const, En is the n-dimensional Euclidean space, n > 1, n ∈ N.

Let be αij(t) = αji(t) and the relation
n∑

i,j=1

αijξiξj > 0 ∀ξ ∈ En\{0}, t ∈ [0, T ] is true.

The coefficients a(t, x), b(t, x) and the solution u(t, x, z) of (1), (2) are unknown.
We assume that overdetermination conditions are given on two different hypersurfaces

z = d1(t) and z = d2(t):

u(t, x, d1(t)) = ϕ(t, x), u(t, x, d2(t)) = ψ(t, x), (3)

where (t, x) ∈ Π[0,T ], Π[0,T ] = {(t, x)| 0 6 t 6 T, x ∈ En}; d1(t), d2(t) are continuously differen-
tiable functions of the variable t, d1(t) ̸= d2(t); ϕ(t, x), ψ(t, x) are given functions satisfying the
matching conditions

ϕ(0, x) = u0(x, d1(0)), ψ(0, x) = u0(x, d2(0)), (4)

where x ∈ En.

The solution of the inverse problem (1)–(3) in G[0,t∗], 0 < t∗ 6 T , is a triple of functions
u(t, x, z), a(t, x), b(t, x), that satisfies relations (1)–(3). Below we consider classical (sufficiently
smooth) solutions.

2. The transition from an inverse problem to
a direct problem

We reduce the problem (1)–(3) to some auxiliary direct problem. Let be z = d1(t), z = d2(t)

in (1) and in view of (3), we obtain

P = a(t, x)uzz|z=d1(t) + b(t, x)f(t, x, d1(t)),

Q = a(t, x)uzz|z=d2(t) + b(t, x)f(t, x, d2(t)),

where

P = P (t, x) = F1 − (β1(t, x) + d′1(t))uz|z=d1(t), Q = Q(t, x) = F2 − (β1(t, x) + d′2(t))uz|z=d2(t),

F1 = ϕt(t, x)− Lx(ϕ(t, x))− β2(t, x)ϕ
2(t, x), F2 = ψt(t, x)− Lx(ψ(t, x))− β2(t, x)ψ

2(t, x).
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Using the Cramer’s method, we find:

a(t, x) =
Pf(t, x, d2(t))−Qf(t, x, d1(t))

uzz|z=d1(t)f(t, x, d2(t))− f(t, x, d1(t))uzz|z=d2(t)
,

b(t, x) =
Quzz|z=d1(t) − Puzz|z=d2(t)

uzz|z=d1(t)f(t, x, d2(t))− f(t, x, d1(t))uzz|z=d2(t)
.

(5)

We denote:
N1 =N1(t, x) = Pf(t, x, d2(t))−Qf(t, x, d1(t)),

N2 = N2(t, x) = uzz|z=d1(t)f(t, x, d2(t))− f(t, x, d1(t))uzz|z=d2(t),

N3 =N3(t, x) = Quzz|z=d1(t) − Puzz|z=d2(t).

(6)

Then, substituting (5) into (1), we turn to the following problem:

ut = Lx(u) +
N1

N2
uzz(t, x, z) + β1(t, x)uz(t, x, z) + β2(t, x)u

2(t, x, z) +
N3

N2
f(t, x, z), (7)

u(0, x, z) = u0(x, z). (8)

We introduce the cutoff function Sδ(y) ∈ C4(E1), with the following properties:

Sδ(y) >
δ

3
> 0, Sδ(y) =


y, y > δ

2
,

χ(y),
δ

3
< y <

δ

2
,

δ

3
, y 6 δ

3
,

(9)

where y ∈ E1, δ = const, χ(y) ∈ C4(E1).
We replace in (7) N1 and N2 by Sδ1(N1(t, x)), Sδ2(N2(t, x)) respectively, we obtain

ut = Lx(u) +
Sδ1(N1(t, x))

Sδ2(N2(t, x))
uzz + β1(t, x)uz + β2(t, x)u

2 +
N3(t, x)

Sδ2(N2(t, x))
f(t, x, z). (10)

We assume that the input data are sufficiently smooth and it has all the continuous derivatives
contained in the following relation∣∣∣Dγ

x

∂k

∂zk
∂g

∂tg
f(t, x, z)

∣∣∣+∣∣∣Dγ
x

∂k

∂zk
u0(x, z)

∣∣∣+∣∣∣Dγ
x

∂g

∂tg
β1(t, x)

∣∣∣+∣∣∣Dγ
x

∂g

∂tg
Fs(t, x)

∣∣∣+| d
s1

dts1
ds(t)| 6 C,

k = 0, 10− 2|γ|, |γ| 6 4, g = 0, 1, s = 1, 2, s1 = 1, 2. (11)

Here (t, x, z) ∈ G[0,T ], γ = (γ1, . . . , γn) is multi-index, |γ| =
n∑
i=0

γi, D
γ
x =

∂|γ|

∂xγ11 . . . ∂xγnn
, C is

a constant more than one. Generally speaking, constants C here and throughout are different.
Let us suppose that the following conditions are true

N1(0, x) = P (0, x)f(0, x, d2(0))−Q(0, x)f(0, x, d1(0)) > δ1, (12)

N2(0, x) =
∂2u0(x, d1(0))

∂z2
f(0, x, d2(0))−

∂2u0(x, d2(0))

∂z2
f(0, x, d1(0)) > δ2,

where (t, x) ∈ Π[0,T ], δ1, δ2 > 0, δ1, δ2 = const, and

P (0, x) = ϕt(0, x)− Lx(ϕ(0, x))− (β1(0, x) + d′1(0))u0z|z=d1(0) − β2(0, x)ϕ
2(0, x),

Q(0, x) = ψt(0, x)− Lx(ψ(0, x))− (β1(0, x) + d′2(0))u0z|z=d2(0) − β2(0, x)ψ
2(0, x).

Let us prove the existence of a solution of the auxiliary direct problem (10), (8).
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3. Solvability of the direct problem

We apply the method of weak approximation [4, 5] to prove the existence of the solution of
the problem (10), (8). We split the problem and linearize it by a

τ

3
time shift in the nonlinear

terms
uτt = 3Lx(u

τ ), nτ < t 6
(
n+

1

3

)
τ, (13)

uτt = 3

(
Sδ1(N

τ
1 (t, x))

Sδ2(N
τ
2 (t, x))

uτzz + β1(t, x)u
τ
z

)
,
(
n+

1

3

)
τ < t 6

(
n+

2

3

)
τ, (14)

uτt = 3(β2(t, x)u
τuτ
(
t − τ

3

)
+

Nτ
3 (t, x)

Sδ2(N
τ
2 (t, x))

f(t, x, z)),
(
n +

2

3

)
τ < t 6 (n + 1)τ, (15)

uτ (0, x, z) = u0(x, z), x ∈ En, z ∈ E1. (16)

Here n = 0, 1, . . . , N − 1, τN = T, N > 0, N ∈ Z, uτ = uτ (t) = uτ (t, x, z),

Nτ
1 = Nτ

1 (t, x) = P τf(t, x, d2(t))−Qτf(t, x, d1(t)),

Nτ
2 = Nτ

2 (t, x) = uτzz

(
t− τ

3
, x, d1(t)

)
f |z=d2(t) − f |z=d1(t)u

τ
zz

(
t− τ

3
, x, d2(t)

)
,

Nτ
3 = Nτ

3 (t, x) = Qτuτzz

(
t− τ

3
, x, d1(t)

)
− P τuτzz

(
t− τ

3
, x, d2(t)

)
,

P τ= F1 − (β1(t, x)+ d′1(t))u
τ
z

(
t− τ

3
, x, d1(t)

)
, Qτ= F2 − (β1(t, x)+ d′2(t))u

τ
z

(
t− τ

3
, x, d2(t)

)
.

We introduce the notation

Uτ,t0(t) =

10∑
k=0

Uτ,t0k (t), (17)

Uτ,t0k (t) = sup
t0<ξ6t

sup
x∈En,z∈E1

∣∣∣∣ ∂k∂zk uτ (ξ, x, z)
∣∣∣∣ ,

Uk(0) = sup
x∈En,z∈E1

∣∣∣∣ ∂k∂zk u0(x, z)
∣∣∣∣ , (18)

Uτ,t0k (t0) = sup
x∈En,z∈E1

∣∣∣∣ ∂k∂zk uτ (t0, x, z)
∣∣∣∣ , t ∈ (t0,(n+

p

3

)
τ
]
,

t0 ∈
[
0,
(
n+

p

3

)
τ
)
, t > t0, p = 1, 2, 3.

(19)

The functions Uτ,t0k (t), Uτ,t0k (t0), Uk(0) are nonnegative and non-decreasing on each half-open
interval (nτ, (n+ 1)τ ].

Let us prove the priori estimates guaranteeing the compactness of a set of solutions
{uτ (t, x, z)} of the problem (13)–(16).

Let the half-interval (nτ, (n+ 1)τ ] be n-th time step, where n = 0, 1, . . . , N − 1.

We consider the zero integer step (n = 0).
At the first fractional step (p = 1), we obtain the following estimate for the solution uτ of

problem (13), (16), due to (11) and the maximum principle [6]

|uτ (ξ, x, z)| 6 sup
x∈En,z∈E1

|u0(x, z)| , 0 < ξ 6 τ

3
. (20)
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We obtain the following estimates using differentiating the equation (13), (16) with respect
to z from one to ten times, respectively, due to (11) and the maximum principle [6]∣∣∣∣ ∂k∂zk uτ (ξ, x, z)

∣∣∣∣ 6 sup
x∈En,z∈E1

∣∣∣∣ ∂k∂zk u0(x, z)
∣∣∣∣ , k = 1, 10, 0 < ξ 6 τ

3
. (21)

We obtain the following estimate from (20), (21) through (17), (18)

Uτ,0(t) 6 U(0), 0 < t 6 τ

3
. (22)

At the second fractional step (p = 2), we obtain the following estimate for the solution of
equation (14) with initial data uτ

(
τ
3 , x, z

)
due to (11), (9) and the maximum principle [6]

Uτ,
τ
3 (t) 6 Uτ,

τ
3

(τ
3

)
,

τ

3
< t 6 2τ

3
. (23)

Collectively, on the first and second fractional steps, due to (22), (23) we get

Uτ,0(t) 6 U(0), 0 < t 6 2τ

3
. (24)

At the third fractional step (p = 3), integrating the equation (15) with t ∈
(
2τ
3 , ξ],

2τ
3 < ξ 6 τ,

we receive the equality

uτ (ξ) = uτ
(2τ
3

)
+ 3

∫ ξ

2τ
3

(β2(η, x)u
τ (η)uτ

(
η − τ

3
, x, z

)
+

Nτ
3 (η, x)

Sδ2(N
τ
2 (η, x))

f(η, x, z))dη.

The last relation implies the inequality

|uτ (ξ)| 6
∣∣∣uτ(2τ

3

)∣∣∣+ 3

∫ ξ

2τ
3

(|β2(η, x)|uτ (η)|
∣∣∣uτ(η − τ

3

)∣∣∣+ |Nτ
3 (η, x)|

|Sδ2(Nτ
2 (η, x))|

|f(η, x, z)|)dη,

where
2τ

3
< ξ 6 t 6 τ.

Since this inequality holds for all x, z we replace the functions of the integral terms by their
exact upper bounds with respect to x ∈ En, z ∈ E1, and then replace the function |uτ | , on the
left-hand side of the inequality by sup

x∈Enz∈E1

|uτ | considering (17)–(19) we obtain

U
τ, 2τ3
0 (t) 6 U

τ, 2τ3
0

(2τ
3

)
+ C

∫ t

2τ
3

(
U
τ, 2τ3
0 (η)U

τ, 2τ3
0

(
η − τ

3

)
+ U

τ, 2τ3
2

(
η − τ

3

)
+

+U
τ, 2τ3
2

(
η − τ

3

)
U
τ, 2τ3
1

(
η − τ

3

))
dη.

(25)

Further, in the same way, differentiating equations (15) with respect to z from one to 10
times, similarly to the second fractional step, we get

U
τ, 2τ3
k (t) 6 U

τ, 2τ3
k

(2τ
3

)
+ C

∫ t

2τ
3

k∑
q=0

(
U
τ, 2τ3
k−q (η)U

τ, 2τ3
q

(
η − τ

3

)
+ U

τ, 2τ3
2

(
η − τ

3

)
+

+U
τ, 2τ3
2

(
η − τ

3

)
U
τ, 2τ3
1

(
η − τ

3

))
dη, k = 1, 10.

(26)
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Adding (25) and (26), by virtue of (17) we receive

Uτ,
2τ
3 (t) 6 Uτ,

2τ
3

(2τ
3

)
+ C

∫ t

2τ
3

(
Uτ,

2τ
3 (η)Uτ,

2τ
3

(
η − τ

3

)
+ Uτ,

2τ
3

(
η − τ

3

)
+

+Uτ,
2τ
3

(
η − τ

3

)
Uτ,

2τ
3

(
η − τ

3

))
dη

or

Uτ,
2τ
3 (t) 6 Uτ,

2τ
3

(2τ
3

)
+ C

∫ t

2τ
3

(
Uτ,

2τ
3 (η)Uτ,

2τ
3

(2τ
3

)
+ Uτ,

2τ
3

(2τ
3

)
+

+Uτ,
2τ
3

(2τ
3

)
Uτ,

2τ
3

(2τ
3

))
dη,

where C > 1-constant, independent of τ .
To the last inequality we apply the Gronwall lemma [7], then

Uτ,
2τ
3 (t) 6

(
Uτ,

2τ
3

(2τ
3

)
+ 1

)
e2Cτ(U

τ, 2τ
3 ( 2τ

3 )+1) − 1,
2τ

3
< t 6 τ.

Consequently, from (24) and last inequality at the zero whole step the following estimate
holds

Uτ,0(t) 6 (U(0) + 1)e2Cτ(U(0)+1) − 1, 0 < t 6 τ.

Repeating similar arguments at the first whole step, we obtain

Uτ,τ (t) 6 (Uτ,τ (τ) + 1)e2(U
τ,τ (τ)+1)Cτ − 1, τ < t 6 2τ.

Assuming that τ is sufficiently small and the inequality e2(U(0)+1)Cτ 6 2 holds, at the zero
and first whole steps we get

Uτ,0(t) 6 (U(0) + 1)e6(U(0)+1)Cτ − 1, 0 < t 6 2τ.

Analogous reasoning, at the n−th whole step (n < N) we obtain

Uτ,nτ (t) 6 (Uτ,nτ (nτ) + 1)e2Cτ(U
τ,nτ (nτ)+1) − 1, nτ < t 6 (n+ 1)τ.

Consequently, at n whole steps, we getting

Uτ,0(t) 6 (U(0) + 1)e2(2n+1)(U(0)+1)Cτ − 1, 0 < t 6 (n+ 1)τ.

Hence, following estimate is true

Uτ,0(t) 6 (U(0) + 1)e2(U(0)+1)Ct∗ − 1, 0 < t 6 t∗,

where t∗ satisfies the inequality
e2(U(0)+1)Ct∗ 6 2. (27)

Here U(0) =

10∑
k=0

sup
x∈En,z∈E1

∣∣∣∣ ∂k∂zk u0(x, z)
∣∣∣∣ , C is constant depends of C, δ1, δ2 from (11), (12).

And, therefore, taking into account the notation (17), (18) uniformly with respect to τ∣∣∣∣ ∂k∂zk uτ (t, x, z)
∣∣∣∣ 6 C, k = 0, 10, (t, x, z) ∈ G[0,t∗]. (28)
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After differentiating problem (13)–(16) with respect to xi, xj , xl and xm, we obtain equations
that can be regarded as linear with coefficients uniformly bounded in τ . Arguing by analogy and
considering (28), we obtain estimates uniformly with respect to τ∣∣∣∣Dγ

x

∂k

∂zk
uτ (t, x, z)

∣∣∣∣ 6 C, k = 0, 10− 2|γ|, |γ| 6 4, (t, x, z) ∈ G[0,t∗]. (29)

We obtain from (29) and (13)–(16) uniformly with respect to τ

|uτt (t, x, z)| 6 C, (t, x, z) ∈ G[0,t∗].

We differentiate equations (13)–(16) once with respect to z. By (29), the right-hand side of
the equations obtained is uniformly bounded in τ , and consequently the left-hand side is also
uniformly bounded in τ

|uτtz(t, x, z)| 6 C, (t, x, z) ∈ G[0,t∗].

By analogy, uniformly with respect to τ∣∣∣∣ ∂k∂zkDλ
xu

τ
t (t, x, z)

∣∣∣∣ 6 C, k = 0, 4, |λ| 6 2, (t, x, z) ∈ G[0,t∗].

Thus, the following estimate holds uniformly with respect to τ for (t, x, z) ∈ G[0,t∗]∣∣∣∣ ∂∂t ∂k∂zkDλ
xu

τ (t, x, z)

∣∣∣∣+ ∣∣∣∣ ∂∂xi ∂
k

∂zk
Dλ
xu

τ (t, x, z)

∣∣∣∣+ ∣∣∣∣ ∂∂z ∂k

∂zk
Dλ
xu

τ (t, x, z)

∣∣∣∣ 6 C,

k = 0, 4, |λ| 6 2.

(30)

The estimate (29) implies the uniform boundedness in τ of the family
{
Dγ
x

∂k

∂zk
uτ
}

in G[0,t∗],

and from (29), (30) their equicontinuity in t, x and z is equicontinuous in G[0,t∗]. Therefore, for

any fixed γ, k, |γ| 6 2, k = 0, 4, by the Arzela theorem [8] the set
{
Dγ
x

∂k

∂zk
uτ
}

is compact in

C(GM[0,t∗]), M > 0 is an integer, GM[0,t∗] = {(t, x, z)|t ∈ [0, T ], |x| 6M, |z| 6M}.
In a diagonal way, we choose a subsequence {uτ} (we do not change the notation) converging

together with the corresponding derivatives with respect to x and z to some function u in G[0,t∗],
and uniformly in each GM[0,t∗]. The function u is continuous, has derivatives of the corresponding
order in x and z that are continuous in G[0,t∗], and satisfies the initial data (2) and inequality∣∣∣∣Dβ

x

∂k

∂zk
u(t, x, z)

∣∣∣∣ 6 C, k = 0, 4, |β| 6 2, (t, x, z) ∈ G[0,t∗]. (31)

Since Dγ
x

∂k

∂zk
uτ ⇒

τ→0
Dγ
x

∂k

∂zk
u on GM[0,t∗] ∀M > 0, |γ| 6 2, k = 0, 4 and the inequality (31) is

satisfied, then we can prove that the proof is similar to the proof of Theorem 2.4.1 (see Sec. 2.4.
One theorem of the weak approximation method [4]) that the function u is a solution of the
problem (10), (8) in GM[0,t∗] for any fixed M , and since M is arbitrary, then also in G[0,t∗].

The function u(t, x, z) belongs to the class

C1,2,4
t,x,z (G[0,t∗]) =

{
f1(t, x, z)|

∂g

∂tg
f1 ∈ C(G[0,t∗])), D

β
x

∂k

∂zk
f1 ∈ C(G[0,t∗]),

|β| 6 2, k = 0, 4, g = 0, 1
}
.

(32)
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The estimate (31) is true. In order to prove the existence of a solution of problem (7), (8),
it is necessary to remove the cutoff functions in equation (10). For this, we prove that for
(t, x) ∈ Π[0,t∗],

N1(t, x) >
δ1
2
, N2(t, x) >

δ2
2
.

We differentiate the expressions for N1(t, x), N2(t, x) (N1(t, x), N2(t, x) in (6))) with respect
to t,

M1(t, x) = (N1(t, x))
′
t = P ′

tf(t, x, d2(t)) + P (f ′t(t, x, d2(t)) + f ′z(t, x, d2(t))d
′
2(t))−

−Q′
tf(t, x, d1(t))−Q(f ′t(t, x, d1(t)) + f ′z(t, x, d1(t))d

′
1(t)),

M2(t, x) = (N2(t, x))
′
t = (uzzt(t, x, d1(t)) + uzzz(t, x, d1(t))d

′
1(t))f(t, x, d2(t)) + (33)

+uzz(t, x, d1(t))(f
′
t(t, x, d2(t)) + f ′z(t, x, d2(t))d

′
2(t))− (f ′t(t, x, d1(t)) +

+f ′z(t, x, d1(t))d
′
1(t))uzz(t, x, d2(t))− f(t, x, d1(t))(uzz(t, x, d2(t)))

′
t,

where

P ′
t = ϕtt − Lxt(ϕ(t, x))− β1t(t, x)uz(t, x, d1(t))− β1(t, x)(uzt(t, x, d1(t))+

+uzz(t, x, d1(t))d
′
1(t))− β2t(t, x)ϕ

2(t, x)− 2β2(t, x)ϕ(t, x)ϕt(t, x)− (uzt(t, x, d1(t))+

+uzz(t, x, d1(t))d
′
1(t))d

′
1(t)− uz(t, x, d1(t))d

′′
1(t),

Q′
t = ψtt − Lxt(ψ(t, x))− β1t(t, x)uz(t, x, d2(t))− β1(t, x)(uzt(t, x, d2(t))+

+uzz(t, x, d2(t))d
′
2(t))− β2t(t, x)ψ

2(t, x)− 2β2(t, x)ψ(t, x)ψt(t, x)− (uzt(t, x, d2(t))+

+uzz(t, x, d2(t))d
′
2(t))d

′
2(t)− uz(t, x, d2(t))d

′′
2(t),

Lxt(ϕ(t, x)) =

n∑
i,j=1

(
(αij)

′ ∂2ϕ

∂xi∂xj
+ αij

∂ϕ

∂xi∂xj∂t

)
+

n∑
i=1

(
(αi)

′ ∂ϕ

∂xi
+ αi

∂2ϕ

∂xi∂t

)
,

Lxt(ψ(t, x)) =

n∑
i,j=1

(
(αij)

′ ∂2ψ

∂xi∂xj
+ αij

∂ψ

∂xi∂xj∂t

)
+

n∑
i=1

(
(αi)

′ ∂ψ

∂xi
+ αi

∂2ψ

∂xi∂t

)
.

By virtue of (11), (31)

|M1(t, x)| 6 K1, |M2(t, x)| 6 K2, (34)

here K1, K2 are constants depending on δ1, δ2, C.
We integrate expressions (33) with respect to t in the range from 0 to t, we obtain

N1(t, x) = N1(0, x) +

∫ t

0

M1(η, x)dη, N2(t, x) = N2(0, x) +

∫ t

0

M2(η, x)dη.

By virtue of (12), (34) N1(t, x) > δ1 −K1t, N2(t, x) > δ2 −K2t

N1(t, x) >
δ1
2
, N2(t, x) >

δ2
2
, t ∈ [0, t∗]. (35)

By the definition of the cutoff function (9) and (35), we obtain Sδ1(N1(t, x)) = N1(t, x),

Sδ2(N2(t, x)) = N2(t, x) with t ∈ [0, t∗], when t∗ = min
(
t∗,

δ1
2K1

,
δ2
2K2

)
.
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Thus, in equation (10), the cutoffs are removed. The function u(t, x, z) satisfies equation (7).
The coefficients a(t, x) and b(t, x) can be written in the form (5).
Thus, we have proved the existence of a solution u(t, x, z) of the direct problem (7), (8) in

the class C1,2,4
t,x,z (G[0,t∗]). It is proved

Theorem 1. Let conditions (9), (11), (12) are satisfied. Then there exists a solution
u(t, x, z) of the problem (7), (8) in the class C1,2,4

t,x,z (G[0,t∗]) satisfying (31). The constant

t∗ = min
(
t∗,

δ1
2K1

,
δ2
2K2

)
, where t∗ satisfies the inequality (27), the constants K1, K2 depend

on C, δ1, δ2, from the relations (11), (12).

4. The existence and uniqueness of a classical solution
of the inverse problem

Let us prove that the triple of functions u(t, x, z), a(t, x), b(t, x) are the solution of the inverse
problem (1)–(3), where a(t, x) and b(t, x) are defined in (5). Since u(t, x, z) is the solution of
the direct problem (7), (8), substituting u(t, x, z), a(t, x), b(t, x) in (1), we obtain the correct
identity.

According to (11), (31) from (5), (7), we obtain that the triple of functions u(t, x, z), a(t, x),
b(t, x) belongs to the class

Z(t∗) =
{
u(t, x, z), a(t, x), b(t, x)|u ∈ C1,2,4

t,x,z (G[0,t∗]),

a(t, x), b(t, x) ∈ C0,2
t,x (Π[0,t∗])

}
,

and satisfies the inequalities

∑
|β|62

4∑
k=0

∣∣∣Dβ
x

∂k

∂zk
u(t, x, z)

∣∣∣ 6 C, (t, x, z) ∈ G[0,t∗], (36)

∑
|β|62

∣∣∣Dβ
xa(t, x)

∣∣∣+ ∑
|β|62

∣∣∣Dβ
xb(t, x)

∣∣∣ 6 C, (t, x) ∈ Π[0,t∗]. (37)

The class C1,2,4
t,x,z (G[0,t∗]) is defined in (32), and

C0,2
t,x (Π[0,t∗]) = {a1(t, x)|Dβ

xa1(t, x) ∈ C(Π[0,t∗]), |β| 6 2}.

Using conditions (4) and equation (1), we can prove that the overdetermination conditions
(3) are satisfied.

The existence in the class Z(t∗) of the solution u(t, x, z), a(t, x), b(t, x) of the problem (1)–(3)
satisfying relations (1)–(3) is proved.

The uniqueness of the solution to problem (1)–(3) is proved by a standard method: the
difference between the two solution to problem (1)–(3) that obey (36), (37) is shown to vanish.

Thus, it is proved

Theorem 2. Let us conditions (4), (11), (12) are satisfied. Then there exists a unique solution
u(t,x,z), a(t,x), b(t,x) of problem (1)–(3) in the class Z(t∗) satisfying relations (36), (37). The

constant t∗= min
(
t∗,

δ1
2K1

,
δ2
2K2

)
, where t∗ satisfies the inequality (27), the constants K1, K2 of

the temple from C, δ1, δ2, from relations (11), (12).

– 505 –



Svetlana V.Polyntseva, Kira I. Spirina The Problem of Determining of the Source Function . . .

References

[1] Yu.Ya.Belov, I.V.Frolenkov, On the problem of identification two coefficients of a parabolic
semilinear equation, Vestnik KrasGU, 1(2004), 140–149 (in Russian).

[2] Yu.Ya.Belov, I.V.Frolenkov, Coefficient Identification Problems for Semilinear Parabolic
Equations, Doklady Mathematics, 72(2005) no. 2, 737–739.

[3] Yu.Ya.Belov, I.V.Frolenkov, On the problem of identifying two coefficients of a parabolic
semilinear equation with overdetermination conditions defined on a smooth curve, Compu-
tational technologies, 11(2006), part 1, 46–54 (in Russian).

[4] Yu.Ya.Belov, S.A.Cantor, The method of weak approximation, Krasnoyarsk, KrasGU, 1999.

[5] N.N.Yanenko, Method of fractional steps for solving multidimensional problems of mathe-
matical physics, Novosibirsk, 1967.

[6] A.M.Il’in, A.S.Kalashnikov, O.A.Oleynik, Linear second-order equations of parabolic type,
UMN, 17(1962), 3–146.

[7] B.M.Rozhdestvenskiy, N.N.Yanenko, Systems of quasilinear equations, Moscow, Nauka,
1978.

[8] L.V.Kantorovich, G.P.Akilov, Functional Analysis. 2nd Edition, Moscow, Nauka, 1977.

Задача определения функции источника и старшего
коэффициента в полулинейном многомерном
параболическом уравнении

Светлана В. Полынцева
Кира И. Спирина

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. Рассматривается задача определения функции источника и коэффициента при вто-
рой производной по пространственной переменной в многомерном полулинейном параболическом
уравнении с условиями переопределения, заданными на двух различных гиперповерхностях. До-
казана теорема существования и единственности классического решения обратной задачи в классе
гладких ограниченных функций. Найдено условие зависимости верхней границы временного от-
резка, в котором существует и единственно решение обратной задачи, от входных данных.

Ключевые слова: обратная задача, условия переопределения, полулинейное многомерное пара-
болическое уравнение, задача Коши, метод слабой аппроксимации, входные данные, определение
коэффициентов.
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Abstract. The problem of two-dimensional stationary flow of two immiscible incompressible binary
mixtures in a cylindrical capillary in the absence of mass forces is investigated. The mixtures are
contacted through a common the interface on which the total energy condition is taken into account.
The temperature and concentration in the mixtures are distributed according to a quadratic law, which
is in good agreement with the velocity field of the type Hiemenz. The resulting conjugate boundary value
problem is nonlinear and inverse with respect to the pressure gradients along the axis of the cylindrical
capillary. The tau-method (a modification of the Galerkin method) was applied to this problem, which
showed the possibility of the existence of two solutions. It is shown that the obtained solutions with
a decrease in the Marangoni number converge to the solutions of the problem of the creeping flow of
binary mixtures. When solving the model problem for small Marangoni numbers, it is found that the
effect of the increments of the internal energy of the interfacial surface significantly affects the dynamics
of flows of mixtures in layers.
Keywords: binary mixture, interface, internal energy, inverse problem, pressure gradient, thermal
Marangoni number.
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Introduction

The specifics of the phenomena occurring at the interface of liquids are related to the existence
of the energy and entropy of the surface phase, which are excessive in relation to the bulk
phases in the transition layer [1]. However, the energy exchange between the bulk and surface
phases has not been sufficiently studied. For ordinary liquids at room temperature, the effect
of changes in the internal energy of the interfacial surface on the formation of heat fluxes,
temperature fields, and velocities in its vicinity is insignificant in relation to viscous friction
and heat transfer . However, at sufficiently high temperatures, when the viscosity and thermal
conductivity of ordinary liquids are significantly reduced, as well as for liquids with reduced
viscosity (for example, for some cryogenic liquids), the effect of the internal energy increments
of the interfacial surface is significant [3].
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In this paper, we consider a mathematical model describing the two-dimensional stationary
thermodiffusion motion of two immiscible incompressible binary mixtures in a cylindrical cap-
illary in the absence of mass forces. The mixtures are contacted through a common interface
on which the total energy condition is taken into account. In this geometry, the mechanism of
influence of changes in the surface internal energy on the dynamics of binary mixtures is inves-
tigated. Without taking into account the effects of thermal diffusion, such a model was studied
in the works [4, 5].

1. Statement of the problem
We consider a two-dimensional stationary axisymmetric flow of two immiscible incom-

pressible binary mixtures in a cylindrical tube of radius R2, the temperature of which is
maintained constant. Binary mixture occupy the field: Ω1 = {0 6 r 6 R1, |z| < ∞} and
Ω2 = {R1 6 r 6 R2, |z| < ∞}, where r, z are the radial and axial cylindrical coordinates. Here
r = R1 = const is the total interface of binary mixtures, r = R2 = const is the solid wall. The
values related to the regions Ω1 and Ω2 are denoted by indexes 1 and 2, respectively. The area
of Ω1 is called the core, and the area Ω2 is an interlayer or film. It is assumed that its charac-
teristic transverse size is small by compared to the radius of the core, R2 − R1 ≪ R1. Such a
geometry corresponds, for example, to the case of displacement of the liquid that originally filled
the capillary by another liquid.

Fig. 1. The scheme of the flow region

Binary mixture is characterized by constant thermal conductivities kj , specific heat capacities
cpj , dynamic viscosities µj , densities ρj ; let χj = kj/ρjcpj is the thermal conductivity, νj = µj/ρj
is the kinematic viscosity (here and further, j = 1, 2). The influence of gravity is not taken into
account, which may be justified, for example, if the tube it is quite narrow to the capillaries.

The system of equations of motion, continuity, internal energy balance and concentration
transfer has the following form [6]:

ujujr + wjujz +
1

ρj
pjr = νj

(
∆uj −

uj
r2

)
,

ujwjr + wjwjz +
1

ρj
pjz = νj∆wj ,

ujr +
uj
r

+ wjz = 0,

ujθjr + wjθjz = χj∆θj ,

ujcjr + wjcjz = dj∆cj + αjdj∆θj ,

(1)

where uj , wj are projections of the velocity vector on the r, z axis of the cylindrical coordinate
system; pj is the pressure in the layers; θj , cj are deviations of temperature and concentra-
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tion from their equilibrium values; dj , αj are the diffusion and thermal diffusion coefficients,
respectively; ∆ = ∂2/∂r2 + r−1∂/∂r + ∂2/∂z2 is the Laplace operator.

The linear dependence of the interfacial tension coefficient on temperature and concentration
is assumed:

σ(θ, c) = σ0 − æ1(θ − θ0)− æ2(c− c0). (2)

Here æ1 > 0 is the temperature coefficient, æ2 is the concentration coefficient of the surface
tension (normally æ2 < 0, because the surface tension increases with increasing concentration);
θ0, c0 are the temperature and concentration on the interfacial surface in the as balance.

The solution to the problem is sought in a special form:

uj = uj(r), wj = zvj(r), pj = pj(r, z),

θj = aj(r)z
2 + bj(r), cj = hj(r)z

2 + gj(r).
(3)

A solution of the form (3) is called a solution of the type Hiemenz [7], in which the velocity field
is linear with respect to the transverse coordinate. Thus, the temperature θj takes an extreme
value at the point z = 0: the maximum at aj(r) < 0 and the minimum at aj(r) > 0. We
get a similar interpretation for the concentration cj , only instead of aj(r) the function hj(r) is
considered.

After substituting the special form (3) into the equations of motion (1) we will have the
following system with unknown functions uj(r), vj(r), pj(r), aj(r), bj(r), hj(r), gj(r):

ujujr +
1

ρj
pjr = νj

(
ujrr +

1

r
ujr −

uj
r2

)
, (4)

z(ujvjr + v2j ) +
1

ρj
pjz = νjz

(
vjrr +

1

r
vjr

)
, (5)

ujr +
uj
r

+ vj = 0, (6)

ujajr + 2vjaj = χj

(
ajrr +

1

r
ajr

)
, (7)

ujbjr = χj

(
bjrr +

1

r
bjr + 2aj

)
, (8)

ujhjr + 2vjhj = dj

(
hjrr +

1

r
hjr

)
+ αjdj

(
ajrr +

1

r
ajr

)
, (9)

ujgjr = dj

(
gjrr +

1

r
gjr + 2hj

)
+ αj dj

(
bjrr +

1

r
bjr + 2aj

)
. (10)

From the equations (4), (5), we express the pressure gradients (pjr, pjz):

pjr = ρjνj

(
ujrr +

1

r
ujr −

uj
r2

)
− ρj uj ujr, (11)

pjz = z
[
ρjνj

(
vjrr +

1

r
vjr

)
− ρj(uj vjr + v2j )

]
, (12)

Conditions for the compatibility of the equations (11), (12) are satisfied identically:
pjrz = pjzr = 0. It follows that the pressure in the layers will be restored by the formula:

pj = −ρjfj
z2

2
+ sj(r), (13)

where the derivative of the variable r from the functions sj(r) is exactly the right-hand side of
the equation (11). Integrating this equation, we obtain for the functions sj(r) the following view:

sj(r) = ρjνj

(
ujr +

1

r
uj

)
− 1

2
ρj u

2
j + sj0, sj0 ≡ const. (14)
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In turn, the functions vj(r) are defined from the equation:

ujvjr + v2j = νj

(
vjrr +

1

r
vjr

)
+ fj , (15)

where fj ≡ const. The flow in the layers is induced by the longitudinal pressure gradients
fj . These are unknown constants that are subject to by definition. Therefore, the problem is
reversed.

On a solid wall r = R2, the boundary conditions are satisfied:

u2(R2) = 0, v2(R2) = 0, a2(R2) = a20, b2(R2) = b20,

h2r(R2) + α2a2r(R2) = 0, g2r(R2) + α2b2r(R2) = 0,
(16)

with the given constants a20, b20. Note that when a20 < 0 the wall temperature has a maximum
value at the point z = 0, and for a20 > 0 — minimal.

On the interface r = R1, given the dependence (2), we will have the following conditions:

cu1(R1) = u2(R1), v1(R1) = v2(R1), (17)

a1(R1) = a2(R1), b1(R1) = b2(R1),

h1(R1) = h2(R1), g1(R1) = g2(R1),
(18)

µ2v2r(R1)− µ1v1r(R1) = −2æ1a1(R1)− 2æ2h1(R1), (19)

d1[h1r(R1) + α1a1r(R1)] = d2[h2r(R1) + α2a2r(R1)], (20)

k2a2r(R1)− k1a1r(R1) = æ1a1(R1)v1(R1),

k2b2r(R1)− k1b1r(R1) = æ1b1(R1)v1(R1).
(21)

The relation (21) is called the energy condition on the interface of two binary mixtures [8–10].
It means that the jump in the heat flow in the direction of the normal to the surface section
r = R1 is compensated by a change in the internal energy of this surface. In turn, this change
is associated with both a change in temperature (and with it the specific internal energy) and a
change in the area of the interface.

For a complete statement of the problem to the relations (17)–(21), it is necessary to add the
boundedness of the functions on the axis of the cylindrical capillary at r = 0:

|u1(0)| <∞, |v1(0)| <∞, |s1(0)| <∞, |a1(0)| <∞,

|b1(0)| <∞, |h1(0)| <∞, |g1(0)| <∞.
(22)

2. Transformation to a problem in dimensionless variables
For what follows, it is essential that the equations (6), (7), (9), (15) are independent of

the others and form a closed subsystem for defining the functions vj(r), aj(r), hj(r) and the
constants fj (j = 1, 2). After solving it, the functions bj(r), gj(r) are found from the equations
(8), (10), and sj(r) is uniquely restored by the formula (14). If we integrate the continuity
equation (6) and exclude functions uj(r) in the equations (7), (9), (15) with given the conditions
of boundedness (22) and sticking on a solid wall (16), the problem is reduced to the conjugate
boundary value problem of finding only the functions vj(r), aj(r), hj(r) and the constants fj .
We introduce dimensionless variables and functions by equalities:

ξ =
r

R1
, R =

R2

R1
> 1 , Vj =

R2
1vj

Ma ν1
,

Aj =
aj
a20

, Hj =
hj
c0
, Fj =

R4
1fj

Ma ν21
,

(23)
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where a20, c0 are the characteristic temperature and concentration.
As the defining parameters of the problem under consideration, we choose the following:

Ma =
æ1a20R

3
1

µ2ν1
, Mc =

æ2c0R
3
1

µ2ν1
, Prj =

νj
χj

, Scj =
νj
dj
, Srj =

αja20
c0

,

µ =
µ1

µ2
, ν =

ν1
ν2
, k =

k1
k2
, d =

d1
d2
, M =

Mc
Ma

=
æ2c0
æ1a20

.

(24)

Here Ma is the thermal Marangoni number, Mc is the concentration Marangoni number, Prj are
the Prandtl numbers, Scj are the Schmidt numbers, Srj are the Soret numbers.

After de-dimensionalization, we obtain a nonlinear inverse boundary value problem in the
domain with respect to the spatial variable ξ, which, for j = 1 varies between 0 and 1, and when
j = 2 — in the range from 1 to R.

For 0 < ξ < 1 we will have:

K1(V1, F1) ≡ V1ξξ +
1

ξ
V1ξ +

Ma
ξ
V1ξ

∫ ξ

0

xV1(x) dx− MaV 2
1 + F1 = 0, (25)

S1(V1, A1) ≡
1

Pr1

(
A1ξξ +

1

ξ
A1ξ

)
+

Ma
ξ
A1ξ

∫ ξ

0

xV1(x) dx− 2MaA1V1 = 0; (26)

T1(V1, A1,H1) ≡
1

Sc1

(
H1ξξ +

1

ξ
H1ξ

)
+

Sr1
Sc1

(
A1ξξ +

1

ξ
A1ξ

)
+

+
Ma
ξ
H1ξ

∫ ξ

0

xV1(x) dx− 2MaH1V1 = 0.

(27)

For 1 < ξ < R, we have:

K2(V2, F2) ≡
1

ν

(
V2ξξ +

1

ξ
V2ξ

)
− Ma

ξ
V2ξ

∫ R

ξ

xV2(x) dx− MaV 2
2 + F2 = 0, (28)

S2(V2, A2) ≡
1

Pr2ν

(
A2ξξ +

1

ξ
A2ξ

)
− Ma

ξ
A2ξ

∫ R

ξ

xV2(x) dx− 2MaA2V2 = 0; (29)

T2(V2, A2,H2) ≡
1

Sc2ν

(
H2ξξ +

1

ξ
H2ξ

)
+

Sr2
Sc2ν

(
A2ξξ +

1

ξ
A2ξ

)
−

−Ma
ξ
H2ξ

∫ R

ξ

xV2(x) dx− 2MaH2V2 = 0.

(30)

Then, on a solid wall ξ = R, the conditions are met:

V2(R) = 0, A2(R) = 1, H2ξ(R) + Sr2A2ξ(R) = 0. (31)

On the interface ξ = 1:

V1(1) = V1(1),

∫ 1

0

xV1(x) dx = 0,

∫ R

1

xV2(x) dx = 0, (32)

A1(1) = A2(1), H1(1) = H2(1), (33)

V2ξ(1)− µV1ξ(1) = −2A1(1)− 2MH1(1), (34)

d(H1ξ(1) + Sr1A1ξ(1)) = H2ξ(1) + Sr2A2ξ(1), (35)
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A2ξ(1)− kA1ξ(1) = EA1(1)V1(1), (36)

where E = æ2
1a20R

2
1/µ2k2 is a parameter that determines the effect of the internal energy of the

interface on the dynamics of the movement of liquids inside the layers.
On the axis of symmetry, the conditions of boundedness are set:

|V1(0)| <∞, |A1(0)| <∞, |H1(0)| <∞. (37)

Remark. The integral redefinition conditions in (32), meaning the flow closure conditions, are
necessary to find the unknown longitudinal pressure gradients Fj in the layers of binary mixtures,
j = 1, 2.

3. Solving of the conjugate problem for small Marangoni
numbers

We will assume that the thermal Marangoni number Ma ≪ 1 (a creeping motion), and
Ma ∼ Mc, that is, the thermal and concentration effects on the interface ξ = 1 of the same
order. Formally decomposing the functions Vj , Aj , Hj in a series of Ma, we obtain for the first
approximation the problem (25)–(27), (28)–(30) with Ma = 0. In the equations of momentum,
energy, and concentration transport, the convective terms are discarded. As for the nonlinear
boundary condition (36), it is remains unchanged. To do this, we must assume that E = O(1).

Then the conjugate inverse boundary value problem for small Marangoni numbers becomes
linear:

V1ξξ +
1

ξ
V1ξ = −F1, (38)

A1ξξ +
1

ξ
A1ξ = 0, (39)

H1ξξ +
1

ξ
H1ξ = 0, 0 < ξ < 1; (40)

V2ξξ +
1

ξ
V2ξ = −F2ν, (41)

A2ξξ +
1

ξ
A2ξ = 0, (42)

H2ξξ +
1

ξ
H2ξ = 0, 1 < ξ < R; (43)

with the boundary conditions (31)–(37).
Common solutions of systems (38)–(43) are easily found (the boundedness conditions (37)

are taken into account):

V1(ξ) = C1 −
F1

4
ξ2 , A1(ξ) = C2 , H1(ξ) = C3; (44)

V2(ξ) = C4 + C5 ln ξ −
F2ν

4
ξ2 , A2(ξ) = C6 + C7 ln ξ , H2(ξ) = C8 + C9 ln ξ, (45)

with the constants C1, . . . , C9, which are determined from the boundary conditions (31)–(36).
Exactly,

C1 =
F1

8
, C2 = C6 =

8

8− EF1 lnR
, C3 = C8 ,

C4 =
2F2ν − F1

8
, C5 =

2F2ν(R
2 − 1) + F1

8 lnR
, C7 =

EF1

EF1 lnR− 8
, C9 = −Sr2C7.

(46)

– 512 –



Victor K. Andreev, Natalya L. Sobachkina Two-layer Stationary Flow in a Cylindrical Capillary . . .

As for the constant C3, from the boundary condition (34) it is defined as follows:

C3 =
F2ν − F1µ− 4C2 − 2C5

4M
. (47)

But such a representation for C3 makes it difficult to further search for the pressure gradients
F1, F2 along the layers when solving the inverse boundary value problem. On the other hand,
this constant can be found if you set the average concentration over the cross section z = 0, so
1∫
0

ξH1(ξ) dξ = 0. From where we get that C3 = 0 and, therefore, C8 = 0.

The pressure gradients F1, F2 are related by the relation F2 = F1N(R), where the function
N(R) is defined by the formula:

N(R) =
R2 − 2 lnR− 1

2ν(R2 − 1)[(R2 + 1) lnR−R2 + 1]
. (48)

In addition, the functions Uj(ξ)are recovered from the continuity equation (6):

U1(ξ) =
F1

16
ξ(ξ − 1)(ξ + 1) ,

U2(ξ) =
F1

16ξ
[(R2 − ξ2)(8C4 − 4C5 − F2ν(R

2 + ξ2)) + 8C5(R
2 lnR− ξ2 ln ξ)].

(49)

If the expression for the constant C3 from (47) vanishes, then after some calculations a
quadratic equation arises with respect to the unknown pressure gradient F1:

EL(R) lnRF 2
1 − 8L(R)F1 − 128 lnR = 0, (50)

where L(R) is defined by the formula:

L(R) = 4ν lnR(ρ−N(R)) + 2νN(R)(R2 − 1) + 1. (51)

Of interest are the cases related to the number of solutions of the equation (50).
1. If E = 0, we get the equation: −8L(R)F1 − 128 lnR = 0, which has a unique solution

F1 = −16 lnR/L(R). The pressure gradient F2 is easily determined from the ratio (48).
2. If R→ 1, then we have the equation: −8L(R)F1 = 0, which has the only solution F1 = 0.

Here it is taken into account that the function L(R) takes positive values on the interval (1,+∞).
Then it follows from (48) that F2 = 0. The equality of the pressure gradients to zero means that
there is no source of motion of the mixtures in both layers. Thus the mixtures are at rest.

Next, we find the discriminant of the quadratic equation (50):

D = 64L(R)(L(R) + 8E ln2R), (52)

depending on the sign of which the equation has a different number of roots.
3. If D > 0, we get: E > −L(R)/8 ln2R. In this case, the square equation has two roots:

F 1,2
1 =

4L(R)± 4
√
L2(R) + 8EL(R) ln2R

EL(R) lnR
. (53)

4. The discriminant vanishes at E = −L(R)/8 ln2R, (L(R) ̸= 0). Then the equation will
have a unique solution: F1 = −32 lnR/L(R). Note, what is the expression L(R)/8 ln2R > 0
when R ∈ (1,+∞). Therefore, the parameter E takes negative values. This is possible with
a20 < 0, since E depends on this parameter.

5. The negative sign of the discriminant corresponds to the condition: E < −L(R)/8 ln2R,
which is equivalent to the absence of real roots of the square equation.

Thus, the number of solutions to the equation (50) depends more on the parameter E. In other
words, the energy of interfacial heat transfer has a significant effect on the processes occurring
in the contacting liquids.
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4. Model problem

We present the quantitative results of solving the problem for the model system formic acid
(mixture 1) — transformer oil (mixture 2). According to the tabular data, the physical constants
are as follows:

µ1= 1.78 · 10−3 kg
m · s

, µ2= 198.1 · 10−4 kg
m · s

, ν1= 1.46 · 10−6 m2

s
, ν2= 22.5 · 10−6 m2

s
,

χ1 = 1.057 · 10−7 m2

s
, χ2 = 7.55 · 10−8 m2

s
, k1 = 0.267

Wt
m · K

, k2 = 0.1106
Wt

m · K
,

σ0 = 37.58 · 10−3 N
m
, æ1 = 1.2826 · 10−4 N

m · K
.

The following parameter values were also used: R = 1.5, R1 = 10−9 m, E = 0.7 (a20 > 0). As
a result of the calculations, two solutions were obtained for the longitudinal pressure gradients
in the layers: F 1

1 = −1.78305, F 1
2 = −71.22054 and F 2

1 = 29.96938, F 2
2 = 1197.06399. It can

be seen that for the second solution, the gradient values in both mixtures are too high, which is
unphysical.

Fig. 2–4 demonstrates the function Vj(ξ) and the velocity profile Uj(ξ) depending on the
various defining parameters of the model.

Fig. 2. The behavior of the function Vj(ξ) and the velocity profile Uj(ξ): a) for the first solution,
b) for the second solution

Fig. 2 shows the functions Vj(ξ) , Uj(ξ), corresponding to the two solutions {F 1
1 , F

1
2 } and

{F 2
1 , F

2
2 }.

Fig. 3 shows that as the parameter E increases, the values of the functions Vj(ξ), Uj(ξ) in
absolute value decreases significantly. You can choose such values of E, at which the model prob-
lem will have a single solution. So, for E = 0 (a20 = 0) we get: F1 = −1.89641, F2 = −76.27046.
By E ≈ −2.6 (a20 = −3.46 · 1023) we have: F1 = −3.79282, F2 = −152.54093.

The increase of the parameter R is strongly influenced by the velocity profile Uj(ξ) and the
function Vj(ξ). Fig. 4 shows that the absolute values of the functions increase. This is due to
the fact that for a fixed R1, the radius of the outer cylinder increases, since R = R2/R1. It is
also important to trace how the change in the radius of the inner cylinder R1 affects the flow
pattern in the layers. It turned out that with the growth of R1, the values of the functions Vj(ξ),
Uj(ξ) in absolute value decreases. This is due to the fact that with an increase in the radius of
the inner cylinder at fixed R and E, the influence of a constant temperature set on the surface
of the outer cylindrical tube weakens.
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Fig. 3. The dependence of the functions Vj(ξ), Uj(ξ) on the parameter E: 1 — E = 0.05,
2 — E = 0.2, 3 — E = 0.7

Fig. 4. The dependence of the functions Vj(ξ), Uj(ξ) on the parameter R: 1 — R = 1.5,
2 — R = 1.7, 3 — R = 2.0

Fig. 5 shows the “temperature” and “concentration” functions Aj(ξ), Hj(ξ), corresponding to
the first solution {F 1

1 , F
1
2 }. In the first layer, these functions are constant. In the second layer

Aj(ξ) increases and Hj(ξ) decreases, which corresponds to the phenomenon of abnormal thermal
diffusion.

Fig. 5. The behavior of functions Aj(ξ), Hj(ξ) in the case of the first solution
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Thus, the effect of changes in the internal energy of the interfacial surface on the two-layer
flow of two immiscible binary mixtures in a cylindrical capillary is studied. It is found that with
an increase in the parameter E, which is responsible for the influence of changes in the surface
internal energy on the dynamics of liquids in layers, the absolute values of the functions Vj(ξ),
Uj(ξ) decreases.

5. Derivation of a finite-dimensional system of nonlinear
algebraic equations

To solve the nonlinear problem (25)–(37), the tau method is used, which is a modification
of the Galerkin method [11]. For the future, it is essential to replace the variables: ξ′ = ξ with
j = 1 and ξ′ = (ξ − R)/(1 − R) when j = 2 and re-assign ξ′ ↔ ξ. An approximate solution is
sought in the form of sums:

V nj (ξ) =
n∑
l=0

V ljR
(0,1)
k (ξ), Anj (ξ) =

n∑
l=0

AljR
(0,1)
k (ξ), Hn

j (ξ) =
n∑
l=0

H l
jR

(0,1)
k (ξ), (54)

где R(0,1)
k (ξ) are the shifted Jacobi polynomials. In general, they are defined in terms of the

Jacobi polynomials P (α,β)
k (y) as follows (α > −1, β > −1) [12]:

R
(α,β)
k (y) = P

(α,β)
k (2y − 1), y ∈ [0, 1]. (55)

Coefficients V lj , Alj , H l
j and constants Fj are found from the Galerkin approximation system,

namely: ∫ 1

0

Kj(V
n
j , Fj)R

(0,1)
m (ξ) ξ dξ = 0, (56)∫ 1

0

Sj(V
n
j , A

n
j )R

(0,1)
m (ξ) ξ dξ = 0, (57)∫ 1

0

Tj(V
n
j , A

n
j ,H

n
j )R

(0,1)
m (ξ) ξ dξ = 0, m = 0, . . . , n− 2, j = 1, 2. (58)

It follows from the integral redefinition conditions of (32) that V 0
1 = V 0

2 = 0.
The boundary conditions are transformed as follows:

n∑
l=0

(−1)lV l2 = 0,

n∑
l=0

(−1)lAl2 = 1, (59)

n∑
l=1

(−1)l−1l(l + 1)(l + 2)[H l
2 + Sr2Al2] = 0. (60)

n∑
l=0

V l1 =

n∑
l=0

V l2 ,

n∑
l=0

Al1 =

n∑
l=0

Al2,

n∑
l=0

H l
1 =

n∑
l=0

H l
2, (61)

n∑
l=1

l(l + 2)(V l2 − µV l1 ) = −2

n∑
l=0

(Al1 + MH l
1). (62)

d

n∑
l=1

l(l + 2)[H l
1 + Sr1Al1] =

n∑
l=1

l(l + 2)[H l
2 + Sr2Al2], (63)

n∑
l=1

l(l + 2)(Al2 − kAl1) = −E
n∑
l=0

Al1

n∑
l=0

V l1 . (64)
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Verbose output finite-dimensional system galerkins approximations for the coefficients V lj ,
Alj , H l

j , l = 0, . . . , n, j = 1, 2, and also the calculation of definite integrals from different product
of shifted Jacobi polynomials are present in the work [13].

As a result, the system of integro-differential equations are converted to a closed system
of nonlinear algebraic equations unknown coefficients V lj , Alj , H l

j and gradients of pressure Fj ,
where l = 0, . . . , n, j = 1, 2. Its solution was used Newton’s method with a given accuracy
ε = 10−5. As an initial approximation, the results obtained in solving the model problem were
taken.

Applied to a nonlinear inverse boundary value problem (25)–(37) the tau-method showed the
possibility of existence of two solutions for the longitudinal pressure gradients and, accordingly,
for the rest of the desired functions of the problem. Calculations were performed for n = 10, 12
in Galerkin approximations. As the number of n increases, a rapid increase in the accuracy of
the solution is detected.

Fig. 6 shows the dependence of the functions Vj(ξ) , Uj(ξ) on different values of the thermal
Marangoni number, obtained for the first solution: F1 = −1.78355, F 1

2 = −71.73149. We
conclude that the solutions found with a decrease in the Marangoni number converge to solutions
of the problem of the creeping flow of binary mixtures.

Fig. 6. The dependence of the functions Vj(ξ), Uj(ξ) of the thermal Marangoni number:
1 — Ma = 15, 2 — Ma = 3, 3 — Ma = 0.5, 4 — Ma = 0.28, 5 — a creeping current

The work was supported by a grant from the Russian Foundation for Basic Research no.
20-01-00234.
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Двухслойное стационарное течение в цилиндрическом
капилляре с учетом изменения внутренней энергии
поверхности раздела

Виктор К. Андреев
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация
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Российская Федерация
Наталья Л. Собачкина
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Российская Федерация

Аннотация. Изучена задача о двумерном стационарном течении двух несмешивающихся несжи-
маемых бинарных смесей в цилиндрическом капилляре в отсутствие массовых сил. Смеси контак-
тируют через общую поверхность раздела, на которой учитывается полное энергетическое условие.
Температура и концентрация в смесях распределены по квадратичному закону, что хорошо согла-
суется с полем скоростей типа Хименца. Возникающая сопряженная краевая задача является нели-
нейной и обратной относительно градиентов давлений вдоль оси цилиндрического капилляра. К
этой задаче применен тау-метод (модификация метода Галеркина), который показал возможность
существования двух решений. Показано, что полученные решения с уменьшением числа Маран-
гони сходятся к решениям задачи о ползущем течении бинарных смесей. При решении модельной
задачи при малых числах Марангони установлено, что влияние приращений внутренней энергии
межфазной поверхности существенно сказывается на динамике течения смесей в слоях.

Ключевые слова: бинарная смесь, поверхность раздела, внутренняя энергия, обратная задача,
градиент давления, тепловое число Марангони.
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Abstract. For the numerical solution of the Navier-Stokes equations, written in an integral form,
an implicit of finite-volume algorithm is proposed, which is a generalization of previously proposed
differences schemes. Using the integral form of equations allowed to ensure its conservatism, and the
technology of splitting — the economy of the algorithm. The numerical test of the algorithm on the
exact solution, in problems about the viscosity flow in the cavern with a moving lid and the current of
the heated walls of the channel, confirmed the sufficient accuracy of the algorithm and its effectiveness.
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Introduction
The Navier–Stokes equations of a viscous incompressible fluid are the basic model for solv-

ing various classes of problems in hydromechanics [1, 2]. They are nonlinear and their solutions
contain areas of high gradients, boundary layers, separation zones, etc., which imposes addi-
tional difficulties in their study. Therefore, the problem of constructing economical numerical
algorithms for solving the Navier–Stokes equations is still relevant today. Some approaches for
constructing finite-difference and finite-volumes schemes are given, for example, in [3–11]. When
solving multidimensional problems, including those in curvilinear and multiply connected do-
mains, the method of finite volumes [2, 8, 9], based on the approximation of equations in integral
form, may turn out to be more convenient. It has the property of conservatism, the approxima-
tion of the equations in it, is constructed for each cell, the shape of which is easier to adapt to
the boundaries of the region.

The use of explicit schemes in solving the Navier–Stokes equations leads to large expenditures
of computer resources, especially in the multidimensional case, due to strict restrictions on the
ratio of the temporal and spatial steps of the grid. Implicit unfactorized algorithms are also
uneconomical due to the need to invert large matrices (see, for example, [5, 11]). An alternative to
this approach is the splitting and factorization methods [3], which make it possible to reduce the
solution of a multidimensional problem to the solution of its one-dimensional analogs or simpler
problems. In [11], a difference scheme was proposed for solving the Navier–Stokes equations for
a viscous incompressible fluid in physical variables "velocity, pressure", based on the method

∗kovenya@ict.nsc.ru
c⃝ Siberian Federal University. All rights reserved
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of splitting into physical processes and spatial directions. This made it possible to simplify the
implementation of the algorithm.

Below we generalize it to the finite volume method. The properties of the algorithm in
terms of the accuracy of calculations and the rate of convergence are investigated when finding a
stationary solution by the established method. The algorithm was tested on the solution of the
Poisson flow problem, which has an exact solution, on the problems of fluid flow in a square cavity
with a moving cover and flow in a rectangle with heated walls. The results obtained illustrate
the capabilities of the proposed method and allow us to conclude about its effectiveness.

1. Initial equations. Algorithm for solving
the Navier–Stokes equations

When studying the flows of a viscous incompressible fluid, taking into account the effects
of heat conduction, one usually uses models described by the Navier–Stokes equations of an
incompressible fluid, supplemented by the heat conduction equation. Let us consider them in
gas-dynamic variables "velocity–pressure" in the form of a system of integral conservation laws
in gas-dynamic variables [1]:

M
∂

∂t

∫
V

UdV +

∮
S

(W n⃗)ds =

∫
V

F dV, (1)

∂

∂t

∫
V

TdV +

∮
S

(WT n⃗)ds = 0, (2)

where V the volume of the computational domain, S its boundary, n⃗ the external normal to the
boundary area, U , T the vector of the sought functions and temperature, W , WT are matrices
composed of columns of flows at the boundaries of the volume, µ , k the coefficients of viscosity and
thermal conductivity, g the acceleration coefficient, and F the force of gravity. The algorithm will
be presented using the example of two-dimensional equations in Cartesian coordinates written
in dimensionless form in the absence of external forces. Then:

U =

 pv1
v2

 , W =

 v1 v2
v21 + p− σ1

1 v1v2 − σ1
2

v1v2 − σ2
1 v22 + p− σ2

2

 , F =

00
d

 , M =

0 0 0
0 1 0
0 0 1

 , (3)

σij = µ
∂vi
∂xj

, σ3
j = k

∂T

∂xj
, W T =

[
v1T − σ3

1 v2T − σ3
2

]
, d = agT, µ = const.

Let’s set the grid step τ = T/N , where N is the number of time steps. U , T the functions
will be set at the nodes i, j of the cell, and the flows W at the boundaries of the cells at the
nodes i± 1/2, j and i, j ± 1/2 (Fig. 1).

We introduce the averaging of the sought functions over the elementary volume

Vi,j = ω, U i,j =
1

ω

∫
ω

U∂ω, Ti,j =
1

ω

∫
ω

T∂ω, F i,j =
1

ω

∫
ω

F ∂ω,

and we approximate the integral operators in cells by grid operators by the formulas

∂

∂t

∫
V

Udω ≈ ω
Un+1 −Un

τ
,

∮
S

(WSn)dS ≈ Ω =

2∑
m=1

∆m(WmS),

∮
S

(WT n⃗)ds ≈
2∑

m=1

∆m(WTmS),
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Fig. 1.

where

SW =

 v1S1 + v2S2

(v21 + p− σ1
1)S1 + (v1v2 − σ2

1)s2

(v1v2 − σ2
1)S1 + (v21 + p− σ2

2)S2

 ,
∆m(WS)m = [Sm+1/2(Wm+1 +Wm)− Sm−1/2(Wm +Wm−1)]/2

is the flows through opposite faces of a cell, m = 1 corresponding to index i, m = 2 index j.
We construct an algorithm for solving the system of equations (1), (2), at first for equations (1),
assuming that the temperature value is known. Finite-dimensional scheme with weights

M
Un+1 +Un

τ
+

1

ω

2∑
m=1

∆m(αW n+1
m + βW n

m)Sn = F (4)

approximates the original equations (1), (3) with order O(τ2 + h2) for α > 0.5 and at α ̸= 0,
it is nonlinear. Here h = ω1/2. Operators σlm on the boundaries contain directional derivatives
with respect to xm, that cannot coincide with the direction of the cell faces, so we introduce
parameterization xi = xi(qj), qj = qj(xi) where 0 6 qj 6 1. Then:

∂

∂xj
=

2∑
l=1

zlj
∂

∂ql
, zlj =

∂ql
∂xj

, σij = µ

2∑
l=1

zlj
∂vi
∂ql

(5)

and in new variables σij contain derivatives with respect to normals q1 and tangents q2 to the
cell boundaries ω. We approximate them at the nodes i± 1/2 or j± 1/2 by symmetric operators

σij = µ
2∑

m=1
zmj ∆mvi, ∆m±1/2v = ±(vm±1j − vm) and linearize the vector W n+1 with respect to

U and known values µ, zlm:

W n+1
m = W n

m + τ
∂W n

m

∂U

∂Un

∂t
+O(τ2) = W n

m + τBm
Un+1 −Un

τ
+ . . . ,

where Bm =

 0 S1 S2

S1 V − tmk 0
S2 0 V − tmk

 , tmk = µ
2∑
k=1

zkmSk∆k, V = v1S1 + v2S2 the projection

of the velocity vector V times the normal to the face area. To construct economical algorithms,
we introduce an operator Bm in which only derivatives with respect to the normals are stored in
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the coefficients tmk, and represent it in the form of a splitting into physical processes:

Bm = B1m +B2m, B1m =

0 0 0
0 V − tm 0
0 0 V − tm

 , B2m =

 0 S1 S2

S1 0 0
S2 0 0

 ,
tm = µzmmSm∆m

the finite-volume scheme:

C
Un+1 −Un

τ
= − 1

ω
Ωn + F n, C = M +

τα

ω

2∑
m=1

∆m(Bn1m +Bn2m), (6)

Ωn =

2∑
m=1

∆m(W nSn)

linear, but approximates the original equations with order O(τ + h2). Note that the matrix M
is degenerated, which does not allow standard factorization methods. However, there is a special
splitting of the operator C in the physical process and spatial directions (see [11]), in which it
can be factorized in the form:

C = C +O(τ), C =

2∏
m=1

(I + d∆mB
n
1m) · (M + d

2∑
m=1

∆mB
n
2m), d =

τα

ω

Then the scheme of approximate factorization:

C
Un+1 −U

τ
= − 1

ω
Ωn + F n (7)

or it equivalent scheme in fractional steps:

ξn = − 1

ω
Ωn + F n, (I + d∆1B

n
11)ξ

n+1/3 = ξn, (I + d∆2B
n
12)ξ

n+2/3 = ξn+1/3, (8)

(M + d

2∑
m=1

∆mB
n
2m)ξn+1 = ξn+2/3, Un+1 = Un + τξn+1

Where ξ = (ξp, ξ1, ξ2)
T the residuals of the solution at fractional steps approximate Eqs. (1), (2)

with the same order as (6). The values ξn are computed explicitly. At the first (m = 1) and
second (m = 2) fractional steps of the equation scheme

[1 + d∆m(V − tm)]ξ
n+m/3
l = ξ

n+(m−1)/3
l (l = 1, 2)

are solved by scalar sweeps independently for each component of the velocity residual ξn+m/3l ,
and ξn+m/3p = ξnp . At the third fractional step of scheme (8), the system of equations is solved

d[∆1S1ξ
n+1
1 +∆2S2ξ

n+1
2 ] = ξ

n+2/3
p , ξn+1

1 = ξ
n+2/3
1 − d∆1S1ξ

n+1
p ,

ξn+1
2 = ξ

n+2/3
2 − d∆2S2ξ

n+1
p .

(9)

Eliminating the velocity components from the continuity equation, we obtain the equation for it

∆ξn+1
p = f, (10)
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where ∆ = ∆11 +∆22, ∆mm = ∆mSm∆mSm, f =

[
2∑

m=1
∆mSmξ

n
m

]
/d− ξnp /d

2. The solution to

the Poisson equation can be obtained by various iterative algorithms [12], for example, by the
iterative approximate factorization scheme

(I − τ0∆11)(I − τ0∆22)(ξ
ν+1 − ξν)/τ0 = ∆(ξn+1/3

p )ν − f

or an equivalent scheme in fractional steps

(I + τ0∆11)η1 = ∆(ξn+1/3
p )ν − f, (I − τ0∆22)η = η1, ξν+1 = ξν + τ0η.

Realized with fractional steps, also by scalar sweeps. The solution is carried out until the
iterations converge, i.e., until the condition ∆ξν−f = O(τ0h

2) is met in all cells. Then, from (9),
the new values of the velocity residuals ξn+1

l are clearly found. The new values of the functions
U are explicitly calculated from (8) and, if necessary, the calculation process is repeated.

2. Algorithm for solving the heat equation
We approximate the integral operators in (2) by the grid operators

∂

∂t

∫
V

Tdω ≈ ω
Tn+1 − Tn

τ
,

∮
S

(WT n⃗)ds ≈
2∑

m=1

∆m[(v1 − kσ3
1)S1 + (v2T − kσ3

2)S2]T

and, like scheme (7), we consider the finite-volume scheme of approximate factorization

2∏
m=1

[I + d∆m(V − tm)]
Tn+1 − Tn

τ
= − 1

ω

2∑
k=1

∆mW
n
T (11)

or the equivalent of a scheme in fractional steps

ξnT = − 1

ω

∑2
m=1 ∆mW

n
T , [I + d∆1(V − t1)]ξ

n+1/2
T = ξnT ,

[I + d∆2(V − t2)]ξ
n+1
T = ξ

n+1/2
T , Tn+1 = Tn + τξn+1

T .

(12)

Here tm = k(zm1 S1+z
m
2 S2)∆m, σ

3
m = k

2∑
k=1

zkm∆kT, W
n
T = [V T−(σ3

1S1+σ
3
2S2)]. It approximates

the thermal conductivity equation (2), (5) with order O(τ2+h2) when α = 0.5+O(τ) . The values
ξnT are calculated explicitly, then the equations are solved at fractional steps by scalar sweeps in
each direction. The new temperature values are calculated explicitly from the last equation in
scheme (12). This completes one step of the calculations and, if necessary, the process continues
to find a solution at subsequent points in time.

3. Examples of numerical calculations
The proposed algorithm was tested on a number of problems. Testing was carried out on

three problems, the numerical solution of which was obtained by different authors and different
numerical algorithms (see, for example, [5, 7–9]). This made it possible to compare and evaluate
the properties of the algorithm. When carrying out numerical calculations, equations (2), (3)
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were reduced to dimensionless form [1]. This led to the appearance in the equations of the di-
mensionless parameters of the Reynolds numbers Re, Rayleigh Ra and Prandtl Pr, respectively:
Re = 1/µ, Ra = ag, Pr = µ/k. Then the characteristic size of length L ≈ 1, speed |v| = 1, and
pressure p = 1 (it is set up to a constant).

In the first problem, the stationary flow of a viscous incompressible fluid in a channel was
investigated in the framework of the Navier Stokes model (1) where F = 0. Its solution is reduced
to the Poiseuille flow, the exact solution of which is: v2 = 0, v1 = 1− x22, p = 1− 2µx1.

In the computational domain, a square grid with a number of cells J = I × I was used. The
velocity and pressure v2 = 0, v1 = 1 − x22, p = 1 were set at the channel inlet, and v1 = v2 = 0
for the adhesion conditions on the channel walls. At the initial moment of time, constant values
of velocity and pressure were set inside the region. The stationary solution of the problem was
found by the establishment method. The establishment criterion was set in the form:

max |pn+1 − pn| 6 K(τω), K ≈ 0.1− 1.0

for all interior points. Since the sought functions are specified at the centers of the cells, and the
flows are determined at the boundaries of the cells, the implementation of the algorithm requires
the introduction of near-boundary dummy cells and the specification of functions in them. On
the upper and lower walls of the channel at dummy points, the velocity components are set equal
in magnitude, but opposite in sign, and at the input, their values are set equal to those at the
input. To evaluate the accuracy of the algorithm and to estimate the rate of convergence of the
solution to the stationary one, we performed calculations on grids with different numbers of cells.
Tab. 1 shows estimates of the errors of solutions

Table 1

τ h1 = h2 ∆p ∆v1 ∆v2
0.1 0.1 0.008817 0.009947 0.006017
0.05 0.05 0.002204 0.002487 0.001505
0.025 0.025 0.000551 0.000622 0.000376
0.0125 0.0125 0.000138 0.000155 0.000094

As follows from the calculation results, an increase in the number of cells (decrease in grid
steps) by 2 times in each direction leads to a decrease in the error by 4 times, which confirms the
second order of accuracy of the algorithm. The number of iterations before stopping depends
on the initial guess and the number of nodes J . Their typical number is given in Tab. 2 on a
J = 80× 80 grid at various values of the viscosity coefficients µ.

Table 2

µ 0.01 0.025 0.001
iterations 1111 2731 3652

In the second problem, the fluid flow in a square cavity with a moving cover in the absence
of gravity was studied. No-slip conditions v1 = v2 = 0 were set on the stationary walls of the
channel. At the initial moment of time v = 0. At t > 0, the lid begins to move at a constant
speed (Fig. 2).

The stationary solution of the problem was found by the establishment method. The calcu-
lations were carried out on a sequence of grids at various values of the Reynolds number Re.

Fig. 3 shows the distribution of the longitudinal and transverse velocity components on
various grids at Re = 3 · 103.
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Fig. 2

Fig. 3

The convergence of solutions is observed with an increase in the number of grid steps. Its
further refinement practically did not lead to differences in values on the 81×81 grid. At numbers
Re > 102, a vortex appears in the cavity, the center of which is shifted to the right, and two
small vortices at the corners of the cavity. With an increase in Re, the angular vortices increase,
their intensity increases, which follows from theoretical estimates and calculations using other
algorithms [11, 13–15]. A typical flow pattern is shown in Fig. 4.

Comparison of the results obtained with the calculations in [5, 7–9] shows the visual coinci-
dence of the flow fields.

In the third problem, some results of calculations of fluid flows in a closed flat cavity with
heating of one of the sides are presented. The system of Navier–Stokes equations (1) was sup-
plemented by the equation for temperature (2), and a term of the form d = RaT was added to
the equation of motion. At t = 0, the liquid was assumed to be stationary, and the adhesion
conditions were set at the boundaries of the region. On the left and right walls of the region,
T = 1 and T = 0 respectively, and on the upper and lower walls, according to a linear law
T = 1 − x1. Due to the temperature difference in the region, a rotational motion of the liquid
occurs, its intensity is determined by the numbers Re and Ra. The numerical solution of the
problem was found according to schemes (7), (11) on various grids. The calculations for various
values of the parameters of the problem and comparison with the calculations [13–15] showed the
identity of the solutions obtained. For example, in Fig. 5 streamlines for Ra = 1 Re = 3 · 102(a)
and 103(b) are shown.

A large central region of the circulation flow ("central vortex") and secondary "corner vor-
tices" in the lateral part of the cavity are distinguished. Note the increase in the vortex velocity
with the increase in the Re numbers. A change in the Pr numbers for fixed Re and Ra also leads
to a significant rearrangement of the flow pattern, and a change in the Ra numbers in a wide
range of parameters has little effect on convection, as follows from calculations by other authors
(see [11, 13–15]).
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Fig. 4

Fig. 5

Conclusion

The paper proposes a generalization of the finite difference splitting scheme for the numerical
solution of the Navier–Stokes equations of a viscous incompressible fluid to the finite volume
method. It has been tested for solving a number of problems (Poiseuille flows, in a cavity with
a moving cover, and in a square region with heated sides). The performed comparisons in terms
of the accuracy of the algorithm and the rate of convergence when finding a stationary solution
by the establishmed method showed the efficiency of the algorithm and its sufficient accuracy.
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Алгоритм расщепления в методе конечных объемов
для численного решения уравнений Навье-Стокса вязкой
несжимаемой жидкости

Виктор М. Ковеня
Даниэль Тарраф

Новосибирский государственный университет
Новосибирск, Российская Федерация

Аннотация. Для численного решения уравнений Навье–Стокса, записанных в интегральной фор-
ме, предложен неявный конечно-объемный алгоритм, являющийся обобщением предложенных ра-
нее разносных схем. Использование интегральной формы уравнений позволило обеспечить его
консервативность, а технологии расщепления — экономичность алгоритма. Проведена численная
апробация алгоритма на точном решении, в задачах о течении жидкости в каверне с движущейся
крышкой и течении с подогревом стенок канала, подтвердившая достаточную точность алгоритма
и его эффективность. Работа представлена в выпуск памяти профессора Ю. Я. Белова.

Ключевые слова: уравнения Навье-Стокса, вязкие течения, конечно-объемный метод, алгоритмы
расщепления.
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Abstract. The article is devoted to the study of problems of finding the non-negative coefficient q(t) in
the elliptic equation

utt + a2∆u− q(t)u = f(x, t)

(x = (x1, . . . , xn) ∈ Ω ⊂ Rn, t ∈ (0, T ), 0 < T < +∞, ∆ — operator Laplace on x1, . . . , xn). These
problems contain the usual boundary conditions and additional condition ( spatial integral overdeter-
mination condition or boundary integral overdetermination condition). The theorems of existence and
uniqueness are proved.

Keywords: elliptic equation, unknown coefficient, spatial integral condition, boundary integral condi-
tion, existence, uniqueness.
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The problems studied in this work belong to the class of nonlinear inverse coefficient problems
for elliptic differential equations.

Various aspects of the theory of linear and nonlinear inverse coefficient problems for differ-
ential equations are well covered in the world literature — see, for example, monographs [1–8],
articles [9–19]. Directly for elliptic equations inverse coefficient problems were studied in [15–19]
(a more detailed bibliography can be found in [17]).

The nonlinear inverse coefficient problems for elliptic equations studied in this work, the
results obtained in it will be essentially differ either in the formulations (in particular, in the
given redefinition conditions), or in the results from the statements and results from the works
of predecessors.

The problems studied in this work have a model form. More general cases and also possible
generalization of the obtained results will be discussed at the end of the article.
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1. Statement of the problems

Let Ω be a bounded domain of variables (x1, . . . , xn) of space Rn, Γ is the boundary of Ω.
We assume that Γ is a compact infinitely differentiable manifold. Next, Q is a cylinder Ω× (0, T )

of finite height T , S = Γ× (0, T ) is the lateral surface of Q. Let f(x, t), u0(x), u1(x), N(x) and
µ(t) be given functions defined for x ∈ Ω, t ∈ [0, T ]; let a be given positive number.

Inverse Problem I: Find functions u(x, t) and q(t) connected in the cylinder Q by the equation

utt + a2∆u− q(t)u = f(x, t) (1)

provided that u(x, t) satisfies the conditions

u(x, 0) = u0(x), u(x, T ) = u1(x), x ∈ Ω; (2)

u(x, t)|S = 0, (3)∫
Ω

N(x)u(x, t) dx = µ(t), t ∈ (0, T ). (4)

Inverse Problem II: Find functions u(x, t) and q(t) connected in the cylinder Q by the equa-
tion (1) provided that u(x, t) satisfies (2), (4) and also the condition

∂u(x, t)

∂ν

∣∣∣∣
S

= 0. (5)

Inverse Problem III: Find functions u(x, t) and q(t) connected in the cylinder Q by the equa-
tion (1) provided that u(x, t) satisfies (2), (5), and also the condition∫

Γ

N(x)u(x, t) dsx = µ(t). (6)

In Inverse Problems I and II conditions (2) and (3), (2) and (5) are the conditions of a correct
boundary value problem for second-order differential elliptic equation in a cylinder Q, whereas
condition (4) is space-integral overdetermination condition. In Inverse Problem III conditions (2)
and (5) are also the conditions of a correct boundary value problem for second-order differential
elliptic equations, whereas condition (6) is an boundary-integral overdetermination condition.

All constructions and arguments in this paper will be carried out using the Lebesgue spaces
Lp and Sobolev spaces W l

p. The necessary information about the functions from these spaces
can be found in the books [20–22].

The goal of this article is to prove the existence and uniqueness of regular solutions
to the problems under study, that is, of solutions having all the weak derivatives in the sense
of Sobolev involved in the equation.

2. Solvability of the inverse Problems I и II

Perform some auxiliary constructions for Inverse Problem I. Given the function w(x, t), we
define the function Φ(t;w): Φ(t;w) = a2

∫
Ω

N(x)∆w(x, t) dx.

Put v0(x, t) =
t

T
u1(x) +

T − t

T
u0(x), f1(x, t) = f(x, t)− a2∆v0(x, t),

f0(t) =

∫
Ω

N(x)f1(x, t) dx, φ(t) =
1

µ(t)
, ψ(t) = φ(t)[µ′′(t)− f0(t)],
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f2(x, t) = f1(x, t) + [ψ(t) + φ(t)Φ(t; v0)]v0(x, t).

Consider the boundary value problem: Find a function v(x, t) that is a solution to equation

vtt + a2∆v − [φ(t)Φ(t; v + v0) + ψ(t)]v = f2(x, t) + φ(t)v0(x, t)Φ(t; v) (1′)

and satisfies condition
v(x, 0) = v(x, T ) = 0, x ∈ Ω, (2′)

and also the condition (3). Using a solution v(x, t) of this boundary value problem we can
establish the solvability of the inverse problem I.

Integro-differential equation (1′) is called loaded equation [23, 24].

Put φ0 = max
[0,T ]

|φ(t)|, ψ0 = min
[0,T ]

ψ(t), N1 = 2
n∑
i=1

∫
Ω

[
u20xi

+ u21xi

]
dx, N2 =

1

2
φ2
0N1T∥N∥2L2(Ω),

N3 =
n∑
i=1

∫
Q

f22xi
dx dt, N4 =

2N3

a2(1−N2)
, N5 = a2∥N∥L2(Ω) (TN4)

1/2
+ |Φ(0, u0)|+ |Φ(0, u1)|.

Theorem 2.1. Suppose the fulfillment of conditions

N(x) ∈ L2(Ω), µ(t) ∈ C2([0, T ]); f(x, t) ∈ L2(0, T ;
◦
W

1
2(Ω)) ∩ L∞(0, T ;L2(Ω)),

u0(x) ∈W 3
2 (Ω) ∩

◦
W

1
2(Ω), u1(x) ∈W 3

2 (Ω) ∩
◦
W

1
2(Ω), ∆u0(x) = ∆u1(x) = 0 for x ∈ Γ;

φ0 > 0, ψ0 > 0, N2 < 1, N5 6 ψ0

φ0
;

µ(0) =

∫
Ω

N(x)u0(x) dx, µ(T ) =

∫
Ω

N(x)u1(x) dx.

Then the inverse problem I has a solution {u(x, t), q(t)} such that u(x, t) ∈W 2
2 (Q), ∆u(x, t) ∈

W 1
2 (Q), q(t) ∈ L∞([0, T ]), q(t) > 0 for t ∈ [0, T ].

Proof. We establish the solvability of the boundary value problem (1′), (2′), (3) in the space
W 2

2 (Q). We use the regularization method and method of cut-off functions.
Let γ be a number from the interval

(
0, φ0

ψ0

]
. Define the cut-off function Gγ(ξ):

Gγ(ξ) =


ξ, if |ξ| 6 γ,

γ, if ξ > γ,

−γ, if ξ 6 −γ.

Next, let ε be a positive number. Consider the boundary value problem: find a function v(x, t)
that is a solution to equation

vtt + a2∆v − [ψ(t) + φ(t)Gγ(Φ(t; v + v0))]v − ε∆2v = f2(x, t) + φ(t)v0(x, t)Φ(t; v) (1′ε)

in the cylinder Q and satisfies conditions (2′) and (3′) and also the condition

∆v(x, t)|S = 0. (7)

Show that for a fixed number ε this problem has a solution belonging to W 4,2
2 (Q). Let’s use

the fixed point method.
Let w(x, t) be a function from the space W 4,2

2 (Q). Consider the boundary value problem:
find a function v(x, t) that is a solution to equation

vtt + a2∆v − [ψ(t) + φ(t)Gγ(Φ(t;w + v0))]v − ε∆2v = f2(x, t) + φ(t)v0(x, t)Φ(t; v) (1′ε,w)
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in the cylinder Q and satisfies conditions (2′), (3), (7).
This problem is the first boundary value problem for linear loaded quasi-elliptic equation.

Using method of continuation in the parameter (see [25]), it is not difficult to establish its
solvability in the space W 4,2

2 (Q).
Let λ be a number from the segment [0, 1]. Consider the boundary value problem: find a

function v(x, t) that is a solution to equation

vtt + a2∆v − [ψ(t) + φ(t)Gγ(Φ(t;w + v0))]v − ε∆2v = f2(x, t) + λφ(t)v0(x, t)Φ(t; v) (1′ε,w,λ)

in the cylinder Q and satisfies conditions (2′), (3) and (7). For λ = 0, this problem is solvability
in the space W 4,2

2 (Q) (this is not difficult to prove using the classical Galerkin method with the
choice of a special basis [21]). Next, all possible solutions v(x, t) of the boundary value problem
(1′ε,w,λ), (2

′), (3), (7) at a fixed ε satisfy estimate(
1− φ2

0N1T

2
∥N∥2L2(Ω)

)∫
Q

(∆vt)
2 dx dt+

a2

2

n∑
i=1

∫
Q

(∆vxi
)2 dx dt+

+ε

∫
Q

(
∆2v

)2
dx dt 6 C1

∫
Q

f22 dx dt, (8)

with the constant C1 defined only by ε. In order to prove this estimate we multiply the equation
(1′ε,w,λ) by the function −∆2v and integrate on the cylinder Q. Using ψ(t) + φ(t)Gγ(Φ(t;w +

v0)) > 0 and applying Hölder’s and Young’s inequality, and also inequality∫
Ω

[∆v(x, t)]2 dx 6 T

∫
Q

[∆vt(x, t)]
2 dx dt

we obtain the estimate (8). From estimate (8) and the second main inequality for elliptic operator
(see [21]) it follows that all possible solutions v(x, t) to boundary value problem (1′ε,w,λ), (2

′),
(3), (7) for a fixed ε satisfy the a priori estimate

∥v∥W 4,2
2 (Q) 6 C2∥f2∥L2(Q) (9)

with the constant C2 defined only by the domain Ω, the functions µ(t), N(x), u0(x) and u1(x)

and numbers a, T ,ε. According to the theorem on the method of continuation in a parameter
[25, ch. III, Sec. 14], solvability of the boundary value problem (1′ε,w,0), (2′), (3), (7) in W 4,2

2 (Q)

and estimate (9) imply that the problem (1′ε,w), (2′), (3), (7) has a solution v(x, t) lying in the
space W 4,2

2 (Q).
Held arguments signify that the boundary value problem (1′ε,w), (2′), (3), (7) generates the

operator A, taking the space W 4,2
2 (Q) to itself: A(w) = v. We show that for the operator A, all

the conditions of Schauder’s fixed point theorem are satisfied.
Observe first of all that from the estimate (9) it follows that the operator A takes a closed

ball of radius R0 = C2∥f2∥L2(Q) of space W 4,2
2 (Q) to itself.

We now show that the operator A will be continuous on a closed ball of radius R0 of the
space W 4,2

2 (Q).
Let {wm(x, t)}∞m=1 be a sequence of functions from this ball converging in the space W 4,2

2 (Q)

to the function w(x, t). Let vm(x, t), v(x, t) be images of functions wm(x, t) and w(x, t) under
action of the operator A. There are equalities

vmtt − vtt + a2∆(vm − v)− ε∆2(vm − v)− [φ(t)Gγ(Φ(t;wm + v0)) + ψ(t)](vm − v) =

– 531 –



Alexander I. Kozhanov, Tatyana N. Shipina Inverse Promlems of Finding the Lowest Coefficient . . .

= φ(t)[Gγ(Φ(t;wm + v0))−Gγ(Φ(t;w + v0))]v + φ(t)v0(x, t)Φ(t; vm − v), (x, t) ∈ Q,

vm(x, 0)− v(x, 0) = vm(x, T )− v(x, T ) = 0, x ∈ Ω,

vm(x, t)− v(x, t)|S = ∆(vm(x, t)− v(x, t))|S = 0.

These equalities mean that the functions vm(x, t) − v(x, t) are solutions to the first boundary
value problem for the linear quasi-elliptic "loaded" equation (1′ε,w). Note that the function Gγ(ξ)
satisfies the Lipschitz condition and v(x, t) ∈ W 4,2

2 (Q). Repeating the proof of the estimate (9)
and applying the Holder’s inequality, we get inequality

∥vm − v∥W 4,2
2 (Q) 6 C3∥wm − w∥L2(Q) (10)

with constant C3, defined by the functions µ(t), N(x), u0(x) and u1(x), as well as the numbers
a, T , and ε. From this inequality and from the convergence of the sequence {wm(x, t)}∞m=1 in
space W 4,2

2 (Q) to the function w(x, t) it follows that the sequence {vm(x, t)}∞m=1 converges in
the same space to the function v(x, t). This means that the operator A is continuous on a closed
ball of radius R0 of the space W 4,2

2 (Q).
We show that the operator A is compact on a closed ball of radius R0 of the space W 4,2

2 (Q).
Let {wm(x, t)}∞m=1 be a family of functions from this ball. Let {vm(x, t)}∞m=1 be a family

of images of functions wm(x, t) under the action of the operator A. Boundedness of families
{wm(x, t)}∞m=1 in the space of W 4,2

2 (Q) and the classical embedding theorems [20–22] imply that
there is a subsequence {wmk

(x, t)}∞k=1, strongly convergent in the space L2(Q). Repeating for the
difference vmk

(x, t)−vmk+l
(x, t) proof of the estimate (10), it is easy to obtain, that the sequence

{vmk
(x, t)}∞k=1 is the fundamental in the space W 4,2

2 (Q). And this means that the operator A is
compact on the ball of radius R0 of the space W 4,2

2 (Q).
So, the operator A takes a ball of radius R0 of the space W 4,2

2 (Q) to itself. The operator A
is continuous and compact on this ball. According to Schauder’s theorem, in the indicated ball
there is at least one function v(x, t), for which holds A(v) = v. This function v(x, t) ∈ W 4,2

2 (Q)

is solution of the boundary value problem (1′ε), (2′), (3), (7). Show that the solutions v(x, t)
satisfy a priori estimates uniform in ε.

Consider the equality

−
∫
Q

{vtt + a2∆v − [ψ(t) + φ(t)Gγ(Φ(t; v + v0))]v − ε∆2v}∆2v dx dt =

= −
∫
Q

f2∆
2v dx dt−

∫
Q

φ(t)v0(x, t)Φ(t; v)∆
2v dx dt.

Integrating by parts and applying the Cauchy–Bunyakovsky and Young inequalities, we con-
clude that this equality implies the estimate

(1−N2)

∫
Q

(∆vt)
2 dx dt+

a2

2

n∑
i=1

∫
Q

(∆vxi)
2 dx dt 6 N

1/2
3

(
n∑
i=1

∫
Q

(∆vxi)
2 dx dt

)1/2

.

It is easy to show that there are estimates

n∑
i=1

∫
Q

(∆vxi
)2 dx dt 6 4N3

a4
,

∫
Q

(∆vt)
2 dx dt 6 2N3

a2(1−N2)
= N4.
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Summing up the inequalities and also using the second main inequality for elliptic operators,
we obtain that solutions solutionsv(x, t) to the boundary value problem (1′ε), (2′), (3), (7) satisfy
the estimates

|Φ(t; v + v0)| 6 N5, (11)

∥v∥W 2
2 (Q) + ∥∆v∥W 1

2 (Q) +
√
ε∥∆2v∥L2(Q) 6 C4, (12)

with the constant C4 в (12) defined by the functions µ(t), N(x), u0(x) и u1(x), and the numbers
a и T .

The estimate (12) and the reflexivity of a Hilbert space imply that there exist sequences
{εm}∞m=1 of positive numbers and {vm(x, t)}∞m=1 of solutions to the boundary value prob-
lem (1′εm), (2′), (3), (7) and also a function v(x, t) such that, as m→ ∞, the convergences

εm → 0, vm(x, t) → v(x, t) strongly in W 2
2 (Q),

εm∆2vm(x, t) → 0 weakly in L2(Q)

hold.
Obviously, the limit function v(x, t) will be a solution to the boundary value problem (1′0),

(2′), (3), and due to estimate (12) for this solution will be the inclusions v(x, t) ∈ W 2
2 (Q),

∆v(x, t) ∈W 1
2 (Q).

Let us fix the number γ: γ =
ψ0

φ0
. Let us define the functions u(x, t) and q(t):

u(x, t) = v(x, t) + v0(x, t), q(t) = ψ(t) + φ(t)Φ(t;u).

Estimate (11) and the inequality from the condition of the theorem for the number N5 mean that
the equality Gγ(Φ(t;u)) = Φ(t;u) holds, and that q(t) > 0 ∀t ∈ [0, T ]. Obviously, the functions
u(x, t) and q(t) will be related in the cylinder Q by equation (1). Let’s show that for the function
u(x, t) the overdetermination condition (4) will be satisfied.

We multiply equation (1) by the function N(x) and integrate over the domain Ω. Taking
into account the form of the functions φ(t), ψ(t) , Φ(t;u) and consistency conditions for of the
functions u0(x), we obtain that the function α(t) satisfies the problem

α′′(t)− q(t)α(t) = 0, α(0) = α(T ) = 0. (13)

Since q(t) > 0, then α(t) ≡ 0. This means that the function u(x, t) satisfies the overdetermination
condition (4). The theorem is proved. 2

The study of the solvability of the inverse problem II differs only in insignificant details from
the above study of the solvability of the inverse problem I.

Let

N6 =
√
2φ0

(∫
Ω

[
u20(x) + u21(x)

]
dx

)1/2

∥N∥L2(Ω),

N7 =
aT 1/2

(1−N6)1/2

(
n∑
i=1

∫
Ω

N2
xi
dx

)1/2

∥f2∥L2(Q) + |Φ(0, u0)|+ |Φ(0, u1)|.

Theorem 2.2. Suppose the fulfillment of conditions

N(x) ∈W 1
2 (Ω), µ(t) ∈ C2([0, T ]); f(x, t) ∈ L2(0, T ;W

1
2 (Ω)),
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u0(x) ∈W 3
2 (Ω), u1(x) ∈W 3

2 (Ω); φ0 > 0, ψ0 > 0, N6 < 1, N7 6 ψ0

φ0
,

µ(0) =

∫
Ω

N(x)u0(x) dx, µ(T ) =

∫
Ω

N(x)u1(x) dx.

Then inverse problem II has a solution {u(x, t), q(t)} such that u(x, t)∈W 2
2 (Q), q(t)∈L∞([0, T ]),

q(t) > 0 for t ∈ [0, T ].

3. Solvability of the inverse Problems III

We introduce the function Φ1(t;w): Φ1(t;w) = a2
∫
Γ

N(x)∆w(x, t) dsx, where w(x, t) is some

given function.
Introduce the notations F0(t) =

∫
Γ

N(x)f(x, t) dsx, ψ1(t) = φ(t)[µ′′(t)− F0(t)],

f̃2(x, t) = f1(x, t) + [ψ1(t) + φ(t)Φ1(t; v0)]v0(x, t).

Consider the boundary value problem: Find a function v(x, t) that is a solution to equation

vtt + a2∆v − [φ(t)Φ1(t; v + v0) + ψ(t)]v = f̃2(x, t) + φ(t)v0(x, t)Φ1(t; v) (14)

in the cylinder Q and satisfies conditions (2′) and (5). A solution v(x, t) to this problem will
provide an opportunity construct the required solution to the inverse problem III.

The function w(x) ∈W 1
2 (Ω) satisfies the inequality

∫
Γ

w2(x) dsx 6 c0

∫
Ω

[
w2(x) +

n∑
i=1

w2
xi
(x)

]
dx (15)

with a constant c0 determined only by the domain Ω (see [20, 21]).
Let us specify again that the function v0(x, t) satisfies the inequality

n∑
i=1

∫
Ω

v20xi
(x, t) dx 6 2

n∑
i=1

∫
Ω

[
u20xi

(x) + u21xi
(x)
]
dx. (16)

As before, we define the required constants:

ψ1 = min
[0,T ]

ψ1(t), N8 =

(
n∑
i=1

∫
Q

f̃22xi
dx dt

)1/2

, N9 =
c0φ

2
0N1T

2

4a2
∥N∥2L2(Γ)

,

N10 =
c0φ

2
0N1

4a2
, N11 =

2N8

a2 − 2N9
, N12 =

N8N11

1−N10
,

N13 =
√
2φ0

∫
Ω

[
(∆u0)

2 + (∆u1)
2
]
dx
(
N9N

2
11 +N10N12

)1/2
+

(∫
Q

(
∆f̃2

)2
dx dt

)1/2

,

N14 = a2∥N∥2L2(Γ)
(c0T )

1/2

[
N12 +

N2
13

a2

]1/2
+ |Φ1(0;u0)|+ |Φ2(0;u1)|.
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Theorem 3.1. Suppose the fulfillment of conditions N(x) ∈ L2(Γ), µ(t) ∈ C2([0, T ]);

f(x, t) ∈ L2(0, T ;W
2
2 (Ω)), u0(x) ∈W 3

2 (Ω), u1(x) ∈W 3
2 (Ω);

∂f(x, t)

∂ν
=
∂∆u0(x)

∂ν
=
∂∆u1(x)

∂ν
= 0 for x ∈ Γ;

φ0 > 0, ψ1 > 0, N10 < 1, a2 − 2N9 > 0, N14 6 ψ1

φ0
.

µ(0) =

∫
Γ

N(x)u0(x) dx, µ(T ) =

∫
Γ

N(x)u1(x) dx.

Then inverse problem III has a solution {u(x, t), q(t)} such that u(x, t) ∈ W 2
2 (Q), ∆u(x, t) ∈

W 1
2 (Q), q(t) ∈ L∞([0, T ]), q(t) > 0 for t ∈ [0, T ].

Proof. Let γ be a number from the interval
(
0, φ0

ψ1

]
, ε > 0.

Consider the boundary value problem: Find a function v(x, t) that is a solution to equation

vtt + a2∆v − [ψ1(t) + φ(t)Gγ(Φ1(t; v + v0))]v − ε∆2v = f̃2(x, t) + φ(t)v0(x, t)Φ1(t; v) (14′ε)

in the cylinder Q and satisfies conditions (2′), (5), and

∂(∆v)

∂ν

∣∣∣∣
S

=
∂(∆2v)

∂ν

∣∣∣∣
S

= 0. (17)

Using the fixed point method and the method of continuation in a parameter, it is easy to
show that for a fixed ε and for satisfying the conditions of the theorem, this problem has a
solution v(x, t) such that v(x, t) ∈ W 2

2 (Q), ∆2v(x, t) ∈ L2(Q). Let us show that the function
v(x, t) satisfies a priori estimates uniform in ε.

Multiply equation (14′ε) by the function ∆2v(x, t) and integrate over the cylinder Q. We
obtain the equality∫

Q

(∆vt)
2 dx dt+ a2

n∑
i=1

∫
Q

(∆vxi
)2 dx dt+ ε

∫
Q

(
∆2v

)2
dx dt+

+

∫
Q

[ψ1(t) + φ(t)Gγ(Φ1(t; v + v0))] (∆v)
2 dx dt =

n∑
i=1

∫
Q

f̃2xi∆vxi dx dt−

−
n∑
i=1

∫
Q

φ(t)Φ1(t; v)v0xi
∆vxi

dx dt. (18)

Let us introduce the notation: I1 =
∫
Q

(∆vt)
2 dx dt, I2 =

n∑
i=1

∫
Q

(∆vxi
)2 dx dt.

Taking into account the notation introduced above and using the Young’s and Cauchy -
Bunyakovsky’s inequalities it is easy from the equality (18) go to inequality

I1 +
a2

2
I2 6 N8I

1/2
2 +

φ2
0N1

2a2

∫ T

0

Φ2
1(t; v) dt. (19)

There is an estimate ∫ T

0

Φ2
1(t; v) dt 6 N9I2 +N10I1. (20)
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Summing up, we obtain a consequence of inequalities (19) и (20):

I1 +
a2

2
I2 6 N8I

1/2
2 +N9I2 +N10I1. (21)

Elementary calculations allow us to derive from (21) the estimate

I2 6 N2
11, (22)

and further, the estimate
I1 6 N12. (23)

Equality (18) and estimates (22), (23) imply the boundedness of the first term on the left
side of(14′ε):

ε

∫
Q

v2tt dx dt 6 C5. (24)

Here the constant C5 is determined by the functions f(x, t), u0(x), u1(x), N(x), µ(t), numbers
a and T (the exact value of the number C5 is not important).

Multiply equation (14′ε) by the function ∆2v(x, t) and integrate over the cylinder Q. We
obtain the equality

n∑
i=1

∫
Q

(∆vxit)
2 dx dt+ a2

∫
Q

(
∆2v

)2
dx dt+

+

n∑
i=1

∫
Q

[ϕ1(t) + φ(t)Gγ(Φ1(t; v + v0))](∆vxi
)2 dx dt+ ε

∫
Q

(
∆3v

)2
dx dt =

=

∫
Q

∆f̃2∆
2v dx dt+

∫
Q

φ(t)Φ1(t; v)∆v0∆
2v dx dt. (25)

An inequality similar to the inequality (18) holds:∫
Ω

[∆v0(x, t)]
2 dx 6 2

∫
Ω

[
(∆u0)

2 + (∆u1)
2
]
dx.

Using this inequality, Hölder’s inequality and estimates (20), (22), (23), we obtain from (25) the
inequality:

a2
∫
Q

(
∆2v

)2
dx dt 6

(∫
Q

(∆2v)2 dx dt

)1/2
[(∫

Q

(
∆f̃2

)2
dx dt

)1/2

+

+
√
2φ0

(∫
Ω

[
(∆u0)

2 + (∆u1)
2
]
dx

)1/2 (
N9N

2
11 +N10N12

)1/2]
.

This inequality and again from equality (25) imply the estimates∫
Q

(
∆2v

)2
dx dt 6 N2

13

a4
, (26)

ε

∫
Q

(
∆3v

)2
dx dt+

n∑
i=1

∫
Q

(∆vxit)
2 dx dt 6 N2

13

a2
. (27)

Estimates (22)–(24), (27), estimates for solutions of elliptic equations (see [21]) and also the
reflexivity of a Hilbert space imply that there exist sequences {εm}∞m=1 of positive numbers and
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{vm(x, t)}∞m=1 to the boundary value problems (14′εm), (2′), (5), (17) and also a function v(x, t)
such that, as m→ ∞, the convergences

εm → 0, vm(x, t) → v(x, t) weakly in W 2
2 (Q),

∆vm(x, t) → ∆v(x, t) weakly in W 1
2 (Q),

∆vm(x, t) → ∆v(x, t) strongly in L2(Γ),

εm∆3vm(x, t) → 0 weakly in L2(Q)

hold. The limit function v(x, t) satisfies the equation

vtt + a2∆v − [ψ1(t) + φ(t)Gγ(Φ1(t; v + v0))]v = f̃2(x, t) + φ(t)v0(x, t)Φ1(t; v),

and the conditions (2′), (5). The function v(x, t) belongs to W 2
2 (Q) and ∆v(x, t) ∈ W 1

2 (Q),
∆2v(x, t) ∈ L2(Q), ∆vxit(x, t) ∈ L2(Q), i = 1, . . . , n. The following inequalities

|Φ1(t; v+ v0)| 6 |Φ1(t; v)|+ |Φ1(t; v0)| 6 a2∥N∥L2(Γ)

(∫
Γ

(∆v)2 ds

)1/2

+ |Φ(0;u0)|+ |Φ(0;u1)| 6

6 a2c
1/2
0 ∥N∥L2(Γ)

[∫
Ω

(∆v)2 dx+

n∑
i=1

∫
Ω

(∆vxi
)2 dx

]1/2
+ |Φ(0;u0)|+ |Φ(0;u1)| 6

6 a2(c0T )
1/2∥N∥L2(Γ)

[∫
Q

(∆vt)
2 dx dt+

n∑
i=1

∫
Q

(∆vxit)
2 dx

]1/2
+ |Φ(0;u0)|+

+|Φ(0;u1)| 6 a2(c0T )
1/2∥N∥L2(Γ)

[
N2

13

a2
+N12

]1/2
+ |Φ(0;u0)|+ |Φ(0;u1)| = N14 (28)

hold.
Let γ =

ψ1

φ0
. Due to the condition N14 6 ψ1

φ0
it follows from (28) that Gγ(Φ1(t; v + v0)) =

= Φ1(t; v + v0). Let us define the functions u(x, t) и q(t):

u(x, t) = v(x, t) + v0(x, t), q(t) = ψ1(t) + φ(t)Φ1(t;u).

It is these functions that give the required solution to the inverse problem III (which is shown
as in the proof of Theorem 2.1). The theorem is proved. 2

4. Uniqueness of solutions

The following theorems give conditions under which the inverse problems I – III can only have
one solution.

Let WR0 =

{
v(x, t) : v(x, t) ∈W 2

2 (Q), vraimax
[0,T ]

(∫
Ω

v2(x, t) dx

)
6 R0

}
.

Theorem 4.1. Let {u1(x, t), q1(t)}, {u2(x, t), q2(t)} be two solutions of the inverse problem I
such that ui(x, t) ∈ WR0

, qi(t) ∈ L∞([0, T ]), qi(t) > 0 for t ∈ [0, T ], i = 1, 2. Suppose the
fulfillment of the conditions

N(x) ∈ L2(Ω), µ(t) ∈ C2([0, T ]), f(x, t) ∈ L∞(0, T ;L2(Ω)); φ0 > 0, φ0R
1/2
0 ∥N∥L2(Ω) < 1.

Then the functions u1(x, t) and u2(x, t) coincide almost everywhere in Q, the functions q1(t)
and q2(t) coincide for almost all t from the segment [0, T ].
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Proof. The function w(x, t) = u1(x, t)− u2(x, t) satisfies the following problem

wtt + a2∆w − q1(t)w = φ(t)Φ(t;w)u2, (x, t) ∈ Q;

w(x, 0) = w(x, T ) = 0, x ∈ Ω;

w(x, t)|S = 0.

We multiply the equation by the function ∆w(x, t) and integrate over the cylinder Q. Taking
into account the nonnegativity of the function q1(t) and the boundary conditions, applying
Hölder’s inequality, we obtain the inequality

∫
Q

(∆w)2 dx dt 6 0. This inequality implies that the

functions u1(x, t) and u2(x, t) coincide almost everywhere in Q. But then the functions q1(t) и
q2(t) coincide for almost of all t from the segment [0, T ]. The theorem is proved. 2

Theorem 4.2. Let {u1(x, t), q1(t)}, {u2(x, t), q2(t)} be two solutions of the inverse problem II
such that ui(x, t) ∈ WR0 , qi(t) ∈ L∞([0, T ]), qi(t) > 0 for t ∈ [0, T ], i = 1, 2. Suppose the
assumptions of Theorem 2.2 are fulfilled. Then the functions u1(x, t) and u2(x, t) coincide
almost everywhere in Q, the functions q1(t) and q2(t) coincide for almost all t from the segment
[0, T ].

The proof of this theorem is quite similar to the proof of Theorem 4.1.
Let

W̃R0 =

{
v(x, t) : v(x, t) ∈W 2

2 (Q),∆v(x, t) ∈W 1
2 (Q), vraimax

[0,T ]

(
n∑
i=1

∫
Ω

v2xi
(x, t) dx

)
6 R0

}
.

Theorem 4.3. Let {u1(x, t), q1(t)}, {u2(x, t), q2(t)} be two solutions of the inverse problem III
such that ui(x, t) ∈ W̃R0

, qi(t) ∈ L∞([0, T ]), qi(t) > 0 for t ∈ [0, T ], i = 1, 2. Suppose the
fulfillment of the conditions

N(x) ∈ L2(Γ), µ(t) ∈ C2([0, T ]), f(x, t) ∈ L2(Q) ∩ L∞(0, T ;L2(Γ));

φ0 > 0, φ0(c0R0)
1/2∥N∥L2(Γ) < min

(
2

3
,

4

a2T 2

)
.

Then the functions u1(x, t) and u2(x, t) coincide almost everywhere in Q, the functions q1(t)
and q2(t) coincide for almost all t from the segment [0, T ].

Proof. The function w(x, t) = u1(x, t)− u2(x, t) satisfies the following problem

wtt + a2∆w − q1(t)w = φ(t)Φ1(t;w)u2, (x, t) ∈ Q; (29)

w(x, 0) = w(x, T ) = 0, x ∈ Ω; (30)

∂w(x, t)

∂ν

∣∣∣∣
S

= 0. (31)

Equalities (29) and (31) imply, in particular, the property

∂∆w(x, t)

∂ν

∣∣∣∣
S

= 0. (32)
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Further, using the procedure for approximating the function w(x, t) by smooth functions while
maintaining the property (32), it is easy to show that the equality holds (formally obtained by
multiplying equation (29) by the function ∆2w and integrating over Q)∫

Q

(∆wt)
2 dx dt+ a2

n∑
i=1

∫
Q

(∆wxi
)2 dx dt+

∫
Q

q(t)(∆w)2 dx dt =

=

∫
Q

φ(t)Φ1(t;w)

(
n∑
i=1

u2xi∆wxi

)
dx dt. (33)

We obtain an estimate for the right-hand side of the inequality (33). Using the Cauchy-
Bunyakovsky’s and Hölder’s inequalities, the condition (32) and estimate∫

Q

(∆w)2 dx dt 6 T 2

2

∫
Q

(∆wt)
2 dx dt,

we obtain the inequality ∫
Q

(∆wt)
2 dx dt+ a2

n∑
i=1

∫
Q

(∆wxi
)2 dx dt 6

6 1

4
a2T 2φ0(c0R0)

1/2∥N∥L2(Γ)

∫
Q

(∆wt)
2 dx dt+

3

2
a2φ0(c0R0)

1/2∥N∥L2(Γ)

n∑
i=1

∫
Q

(∆wxi
)2 dx dt.

This inequality and the conditions of the theorem imply the identities ∆wt(x, t) ≡ 0, ∆wxi
≡ 0

for (x, t) ∈ Q, i = 1, . . . , n, and further follows the identity w(x, t) ≡ 0 for (x, t) ∈ Q. The last
identity means that he functions u1(x, t) and u2(x, t) coincide almost everywhere in Q. But then
the functions q1(t) и q2(t) coincide for almost of all t from the segment [0, T ]. The theorem is
proved. 2

5. Comments and appendices

1. Let us show that the set of input data of inverse problems I – III, for which all conditions
of the existence and uniqueness theorems are satisfied, is not empty.

Let u0(x) and u1(x) be given nonnegative functions in Ω such that, in addition to the condi-
tions of Theorem 2.1, they satisfy the conditions

∂u0(x)

∂ν
=
∂u1(x)

∂ν
= 0 for x ∈ Γ,

∫
Ω

u0(x) dx =

∫
Ω

u1(x) dx = 1.

Similar functions exist. For example, u0(x) = α0[ρ(x)]
m0 , u1(x) = α1[ρ(x)]

m1 , where ρ(x) is the
distance from the point x ∈ Ω to the boundary Γ, m0 > 3, m1 > 3. The multipliers α0 and α1

are selected so that the required integral equalities hold. Or u0(x) and u1(x) can be finite in Ω.
Let N(x) ≡ 1, µ(t) ≡ 1, f(x, t) = f̃0(x), f̃0(x) < 0, x ∈ Ω. Then

ψ(t) = −
∫
Ω

f̃0(x) dx = ψ0 > 0, Φ(0, u0) = Φ(0, u1) = 0.

Obviously, the condition N2 < 1 of Theorem 1 will hold for small numbers T , the number N5

can also be made arbitrarily small by decreasing the number T . Hence, for the given functions
f(x, t), u0(x), u1(x), µ(t) and N(x) for small T all conditions of the Theorem 1 will be satisfied.
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Condition N6 < 1 of Theorem 2.2 will be be executed if the functions u0(x) and u1(x) or the
measure of the region Ω are small, the condition for the number N7 will be run automatically.

The non-emptiness of the set of input data for which all conditions of Theorem 2.2 are satisfied
is also easy to show. Take as u0(x), u1(x), N(x) and µ(t) are identically constant functions, f(x, t)
is negative function in Q. Condition N6 < 1 of Theorem 2.2 will be be executed if the functions
u0(x) and u1(x) or the measure of the domain Ω are small, the condition for the number N7

будет will be run automatically.
Conditions of Theorem 3 are satisfied for small numbers T , if the functions u0(x), u1(x),

N(x) and µ(t) are identically constant functions, f(x, t) > 0, (t, x) ∈ Q and overdetermination
conditions hold.

Obviously, the conditions of the uniqueness theorems (Theorems 4.1–4.3) will obviously be
satisfied for small numbers R0.

2. Inverse problems I – III can also be studied for equations that are more general than (1).
Thus, the Laplace operator can be replaced an arbitrary second-order elliptic operator with
variable coefficients, into the equation (1) low-order terms with first-order derivatives can be
added. The essence of the results obtained is a more general form of the equation (1) will not
change, but the number of calculations will increase.

3. If the conditions of existence theorems are satisfied, then for solutions u(x, t) of inverse
problems I, II, or III it is easy to establish estimates for quantities defining the sets WR0

or W̃R0
.

The constants in these estimates will be determined by the input data. Using further conditions
of the respective theorems of uniqueness, it will be easy to obtain theorems that give both the
existence and the uniqueness of solutions to inverse problems I, II, or III.

4. Conditions (3) or (5) in inverse problems I, II, or III can be inhomogeneous. Assuming that
there are continuations of the given boundary data into the cylinder Q and using the technique
of proving Theorems 2.1–2.2, Theorem 3.1, it will be possible to obtain the solvability of the
inverse problems with nonzero boundary data.

The work is supported by the Russian Foundation basic research (grant 18-01-00620).
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Обратные задачи восстановления младшего
коэффициента в эллиптическом уравнении

Александр И. Кожанов
Институт математики им. С.Л. Соболева

Новосибирск, Российская Федерация
Новосибирский Государственный Университет

Новосибирск, Российская Федерация

Татьяна Н.Шипина
Сибирский федеральный университет

Красноярск, Российская Федерация

Abstract. Изучается разрешимость обратных задач восстановления неотрицательного коэффици-
ента q(t) в эллиптическом уравнении

utt + a2∆u− q(t)u = f(x, t)

(x = (x1, . . . , xn) ∈ Ω ⊂ Rn, t ∈ (0, T ), 0 < T < +∞, ∆ — оператор Лапласа, действующий
по переменным x1, . . . , xn). Вместе с естественными для эллиптических уравнений граничными
условиями в изучаемых задачах задают также одно из дополнительных условий — либо условие
пространственного интегрального переопределения, либо же условие граничного интегрального
переопределения. Доказываются теоремы существования и единственности решений.

Ключевые слова: эллиптические уравнения, неизвестный коэффициент, пространтсвенное ин-
тегральное переопределение, граничное интегральное переопределение, существование, единствен-
ность.
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