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Abstract. The paper is devoted to modelling thermal and stress-strain state of a carbon block when it is
partially immersed in an electrolyte. The temperature field in the block was determined from the solution
of a non-stationary three-dimensional heat conduction equation. The calculation of temperature stresses
was carried out on the basis of the solution of the Poisson equation for the thermoelastic displacement
potential. The temperature fields in the carbon block were obtained at various points in time. The
stress-strain field was also obtained. Then the location and magnitude of the maximal temperature
stresses were determined. It allows one to assess the fracture of the carbon block.

Keywords: heat conduction equation, Poisson equation, temperature stresses, thermoelastic displace-
ment potential, numerical simulation.
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Introduction

The technological process of aluminium production requires regular replacement of carbon
blocks (anodes). In the industrial electrolytic cells, when the cold anode is initially immersed in
a hot electrolytic solution at a temperature of about 960°C, a heat wave propagates from the
contact boundary into the volume of the anode. An increase in the local temperature causes
thermal expansion of the anode material. The difference in the magnitude of the expansion
of different zones of the anode leads to the occurrence of thermal stresses. In a zone of the
highest temperature gradients significant thermal stresses arise which can exceed the ultimate
strength of the material. It leads to the formation of cracks and further fracture of the anode.
The phenomena that accompanies the process of immersing a cold carbon anode into the melt
is called thermal shock [1,2]. The state of the carbon block during thermal shock depends on
the thermophysical (thermal conductivity, heat capacity) and mechanical (thermal expansion
coefficient, shear modulus, Poisson’s ratio, tensile strength) properties of graphite as well as on
conditions of heat exchange with electrolyte. Numerical simulation allows one to analyse the
state of the carbon block taking into account these factors.

*ven@icm.krasn.ru  https://orcid.org/0000-0003-0689-2962
(© Siberian Federal University. All rights reserved
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The aim of the work is to calculate the temperature field and the stress-strain field of the car-
bon block of the electrolytic cell. To describe the formation of thermal stresses, the mathematical
modelling procedure includes two consecutive stages:

1. Determination of the temperature field in the volume of the carbon block is based on the
solution of 3D heat conduction problem.

2. Calculation of thermal stresses is based on the solution of the Poisson equation for the
obtained temperature field at various points in time.

1. Determination of the temperature field of the carbon
block

The anode block is a parallelepiped made of carbon graphite (Fig. 1). In the electrolysis cell,
the anode block is mounted using a steel bracket. The geometrical dimensions of the anode along
the x, y, and z axes are 1450 x 700 x 600 mm?3.
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Fig. 1. The anode block of the industrial electrolytic cell
The heat transfer process in a carbon block is described by non-stationary three-dimensional
heat conduction equation
oT o*T  0°T  0°T
o =Moozttt a7 ) (1)
ot ox y 0z
where ¢, p are specific volumetric heat capacity and density of the material; T" is temperature;

A is the coefficient of thermal conductivity; ¢ is time; x, y, z are spatial coordinates. The solution

of equation (1) was obtained with the use of the method of finite differences with the splitting
of the problem in spatial coordinates [3, 4].
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Calculations were performed for the anode block shown in Fig. 1. The size of the part
of the block immersed in the electrolyte is 120 mm. For graphite, the following thermophysical
properties were set: A = 4.4 W/(m-K), ¢ = 942 J/(kg-K), p= 1560 kg/m? [5, 6]. The heat exchange
coefficient of the surface of the anode block with air 54 = 10 W/(m?-K) and with the electrolyte
solution Bz = 18 W/(m?-K). A homogeneous spatial grid with the number of nodes 146 x 71 x 61
was used for calculations, and the time step was 5 s.

The results of calculation of the temperature field of the anode for the moment of time
At = 15 min are shown in Fig. 2. The temperature field of the lower part of the anode in the
middle cross-section of the xz plane is shown in the left figure. Taking into account the symmetry
of the problem, one quarter of the temperature field of the lower surface of the anode (plane zy)
is shown in the right figure. The temperature values on the isolines are given in degrees Celsius.
The most intense heating is observed in the zone where the unit is in contact with the electrolyte.
In this area, the highest temperature is in the lower corner and and it is 467°C.

0.35
0.3
03f
0251
0.25f
02
0.2t
=
g =
i 015 0.15
0.1 50 ] 0.1
250
0.05 | 100 : 0,05}
150
200
o L2505 ) ) ) ) .
0 01 02 03 04 05 06 07 02 03 04 05 06 07

Fig. 2. Distribution of temperature in the middle xz and bottom xy planes of the anode block

The temperature distributions obtained from the solution of equation (1) at various times
are the initial data for solving the problem of the stress-strain state of the carbon block.

2. Calculation of the temperature stresses in the carbon
block

The temperature stresses are calculated by solving the Poisson equation for the thermoelastic
displacement potential [7]
e 0?0 0?0  aO(1+
st 32 T 52 = Sl ; (2)
ox y 0z 1—p

where ® is the thermoelastic potential of displacements; i, a are Poisson’s ratio and coefficient of
thermal expansion; © = (T — Tp) is the temperature increment with respect to the temperature
of the natural state of the body Ty. Equation (2) is supplemented with the conditions of the
absence of externally applied normal and tangential stresses on the carbon block surface: o, = 0,
Tez =0, 7y, = 0.
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The values of the thermoelastic potential ® were used to determine the stresses at the corre-
sponding points of the difference grid

0?® )
2
Tey = 2G 92y (myz), (4)

where 04, 0y, 0%, Tay, Tyz, Tz» are normal and tangential elastic stresses; G is the shear modulus
of the material at a given point and at a given moment in time, (xyz) is the symbol of cyclic
permutation of z, y, z. The number of nodes of the grid in thermal stresses equations (2)—(4)
corresponds to the thermal problem.

The distribution of thermal normal stresses of the anode for a time instant of 15 minutes is
shown in Fig. 3. The distribution of thermal normal stresses for the middle xz plane is shown in
the left figure. The magnitude of the temperature stresses in this plane reaches 3.4 MPa. The
highest stresses are observed in zones of the highest temperature gradients. The maximum values
of temperature gradients and stresses occur at the corners of the anode, they can be displayed
in the vertical diagonal section passing along the bisector of the angle of the anode base. The
right figure shows the distribution of thermal stresses in this diagonal plane. Comparison of the
distributions in the middle xzz and the diagonal vertical planes shows that in the second case the
values of maximum stress are more than 1.5 times higher.

0.3 T T T T T T T 0.3
0.25+ 1 0.25¢
02 0.2
£
o 0.15F 5015
0.1F
k
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4
X, m d, m

Fig. 3. Distribution of normal temperature stresses in the middle xz and diagonal vertical planes
of the anode block

The variation of the maximum normal stresses in the anode block with time is shown in Fig. 4.
The calculated maximum values of thermal stresses at various moments of time are marked with
circles. The dotted line is obtained with the use of interpolation. The greatest increase in thermal
stresses occurs at the initial stage of the process, and then the slope of the curve is significantly
decreased. Considering results of calculation of the stress-strain state, it is possible to assess the
possibility of fracture of the anode by comparing stresses with the ultimate strength of carbon.
The most important from the point of view of cracking of the anode are tensile stresses that arise
from the inhomogeneous thermal expansion of the material during heating. The ultimate tensile
strength of the anode material is in the range of 5-15 MPa [2, 8, 9]. The scatter in the data of
the limiting values of thermal stresses for graphite depends on the manufacturing technology and
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composition. It follows from the results of calculations that when graphite with a low ultimate
strength (less than 8 MPa) is used there is a probability of fracture of the anode block.

10

o, MPa

0 10 20 30 40 50 60 70 80 90
¢, min

Fig. 4. The time dependence of the maximum normal temperature stresses in the anode block

Conclusion

Numerical modelling of thermal processes occurring when a carbon block is immersed in a
hot electrolyte allows one to determine the magnitude and location of the maximal temperature
gradients and stresses at various moments of time. Calculations have shown that the maximum
values of temperature stresses in the corners of the anode block exceed the lower limit of the
tensile strength of graphite. This points up the possible fracture of the anode block.

References

[1] M.W.Meier, W.K.Fischer, R.C.Perruchoud, L.J.Gauckler, Thermal shock of anodes—a solved
problem?, Light Metals, 1994, 685-694.

[2] Yu.G.Mikhalev, P.V Polyakov, A.S.Yasinskiy, S.G.Shahrai, A.I.Bezrukikh, A.V.Zavadyak,
Anode processes malfunctions causes. An overview, Journal of Siberian Federal University.
Engineering and Technologies, 10(2017), no. 5, 593-606 (in Russian).

DOLI: 10.17516/1999-494X-2017-10-5-593-606

[3] A.A.Samarskii, The theory of difference schemes, Nauka, Moscow, 1989 (in Russian).

[4] E.N.Vasil’ev, Calculation of the Thermal Resistance of a Heat Distributer in the Cooling
System of a Heat-Loaded Element, Technical Physics, 63(2018), no. 4, 471-475.
DOI: 10.1134/S1063784218040266

[5] J.P.Schneider, B.Coste, Thermomechanical modelling of thermal shock in anodes, Light
Metals, 1993, 621-628.

- 271 —



Evgeniy N. Vasil’ev Numerical Simulation of Temperature and Thermal. ..

[6] S.N.Akhmedov, V.V.Tikhomirov, B.S.Gromov, R.V.Pak, A.I.Ogurtsov, Specific features of
the lining deformation of the cathode devices of aluminum electrolysers, Tsvetnye metally,
(2004), no. 1, 48-51 (in Russian).

[7] N.I.Bezukhov, V.L.Bazhanov, I.I.Gol’denblatt, N.A.Nikolaenko, A.M.Sinyukov, The Calcu-
lations for Strength, Stability, and Oscillations in High Temperature Conditions, Mashinos-
troenie, Moscow, 1965 (in Russian).

[8] S.E.Vyatkin, A.N.Deev, V.G.Nagornyi, V.S.Ostrovskii, A.M.Sigarev, G.A.Sokker, Nuclear
Graphite, Atomizdat, Moscow, 1967, (in Russian).

[9] D.H.Andersen, Z.L.Zhang, Fracture and physical properties of carbon anodes for the alu-
minum reduction cell, Engineering Fracture Mechanics, 78(2011), 2998-3016.

BoeraucimresbHOE MOgeIMpoOBaHNUE TI0JIell TeMIepaTyp
1 TEPMUYECKNX HAITPSI?KEeHUI B YTOJIbBHOM OJIOKe
NPpU BHEITHUX TEIJIOBBIX BO3AeCTBUIAX

EBrenmnit H. Bacuiben
MNucruryT Bhraucanrensaoro mogenuposanns CO PAH
Kpacnosipck, Poccuiickas @eneparius

Awnnorauusi. Pabora  mOCBsillieHa ~ MOIEJMPOBAHWIO  TEILIOBOIO  pEXHMMa W HAIPSKEHHO-
nepOpMUPOBAHHOIO COCTOSIHHSI YTOJBHOTO OJIOKA IMPHU €r0 YaCTUIHOM TOTPYKEHHH B 3JIEKTPOJIUT.
TemmeparypHoe mojie B 6JIOKE ONPEIEsiIOCh U3 PEIIEHUs] HECTAIMOHAPHOIO TPEXMEPHOI'O yPaBHEHUS
TEIJIONPOBOJHOCTU. PacdyeT TeMmepaTypHBIX HAIPSXKEHUI TPOBOIMUIICS HA OCHOBE PEIEeHUs] YpaBHEHUS
IIyaccona, 3ammcaHHOrO [JjisI TEPMOYIPYTOTO MOTEHIMAJa MepeMerniennii. B pesymbprare MomeampoBa-
HUSI TEIJIOBOTO PEXKMMa IOJIyYEeHBI TeMIIepaTypPHBIE II0JIsi B YIOJBHOM OJIOKE JIjIs PA3HBIX MOMEHTOB
BpeMenu. Pacyer HampszKeHHO-Ie(OPMUPOBAHHOTO COCTOSTHUSI OMPEIEIU/ BEJIMUYNHY W PaCIIOJIOKEHIE
HarOOJIBIINX TEMIEPATYPHBIX HAIPAXKEHUN U [MO3BOJIUJI OIEHUTH BO3MOXKHOCTDH PA3PYIIEHUs] yIOJbHOTO
6JI0KA.

KuaroueBsbie ciioBa: ypaBHEHUE TEIJIONPOBOIHOCTH, ypaBHeHue [lyaccoHa, TepMUYIecKUe HAPSIKEHUST,
TepMOYIIPYTHil IIOTEHINAJ IIePEeMEIIeHN, BEIYUCIUTETbHOE MOJe/IMPOBaHNUeE.
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Abstract. The initial boundary problem arising in the modeling of viscous fluid creeping rotational
motion in a flat layer was solved. A stationary solution was found. The quadrature solution in images was
obtained using the Laplace transform method. The time convergence of the the non-stationary problem
solution to the established stationary solution was proved under certain conditions on the temperature
distribution on the walls.

Keywords: thermal convection, Laplace transform, stationary solution.
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1. Problem statement

Let us assume that the fields of pressure and temperature velocities are rotationally symmet-
rical. Then, their values depend only on r = /22 + 92, z, and time ¢ in a cylindrical coordinate
system. Moreover, we suppose that the only external force acting on the fluid is the centrifugal
force. Then [1], the momentum, continuity, and energy equations can be written as

v? 1 U 9
up + v, +wu, — 20V — — = —— p,-—|—u<Au——2> — w*preo,
r p r
vt—|—uv7«—|—wvz—&—2wu—|—E ZZ/(AU—%),
r r
1
wy + uw, + ww, = — p, + vAw, (L.1)
P

U + % +w, =0,
O + u0, + wO, = YAO,
where A = 02/0r? +r=10/0r + 0?/02* is the axisymmetric part of Laplace operator.

Equations (1.1) are written in the rotating coordinate system with constant angular velocity
w relatively to the original inertial system. Its rotation axis and the z axis of the cylindrical

*andr@icm.krasn.ru
Tllatonova@sfu-kras.ru
(© Siberian Federal University. All rights reserved
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coordinate system 7, ¢, z are coincide. The radial and axial components of the velocity are
denoted as u and w, respectively, and v is the deviation of the rotational velocity component
from the solid rotation velocity wr. The quantity p characterizes the pressure deviation from
equilibrium pressure: pw?r?/2; and © is the temperature deviation from the mean value. The
positive constants p, v, x, 5 are the physical liquid characteristics: density, kinematic viscosity,
thermal diffusivity, and volumetric expansion coeflicient.

The solution of a system (1.1) is sought in the form [2]

u=rf(zt), v=rg(zt), w=uw(z1t),

2
p= %K(t)r2 + Ap%rz (ln:; - ;) + h(z,t), (1.2)

©=Aln— +T(z,1),
a

where A and a is the constant dimensions of temperature and length correspondingly. The
substitution of (1.2) in (1.1) results in the system

1
fi+wf, *2Wg+f2 792 = 7; K(t) +vfz *WQ/BTa
gt + wg. +2Wf+2fg = V022, 2f+wz =0, (13)
1
Ty +wl,+ Af =xT,., w +ww, = —; h, + vw,,.

The solution of (1.2) may be interpreted as the following. A viscous heat-conductive liquid
fills the layer between flat walls z = +a rotating with angular velocity w = const around the z
axis. The no-slip condition u(r, +a,t) = 0, v(r, +a,t) = 0, w(r, +a,t) = 0 is satisfied on them.
At the initial instant the velocity and temperature distributions are specified consistent with
(1.2) formulas. On the rotation axis r = 0 sinks or sources of heat are distributed with constant
linear density 2w Ak (k > 0 is the constant liquid thermal diffusivity coefficient). The solid walls
(planes) bounding the liquid are ideally heat conductive. All the assumptions above lead to the
formulation of an initial boundary value problem for the system (1.3)

f:_%woz(Z% 9=90(2), w=wo(z), T=T(2), [|z[<a, t=0; (14)

f=9g=0, w=0, T=Ts(), z==a, t>0 (1.5)

with the specified functions wo(2), go(2), To(z), T1,2(t). The conditions of thermal insulation
of one (or both) walls can be used instead of the last in (1.5), for instance T'(—a,t) = T1(t),
T.(a,t) = 0. Note, that for smooth solutions the agreement conditions should be satisfied

wo(ia) =0, sz(ia) =0, gO(ia) =0,

(1.6)
TO (:I:a) = Tl,g (O) (TQ(—CL) = T1 (0)7 T()Z(CL) = 0)
Let us introduce the dimensionless variables by
a?_ — _
t=—%, z=az [f=wR’f, g=wRj w=awR>wW, T =RAT,
. _ 2 y (1.7)
K = pw’RK, h=pw?a?Rh R=—, P=—, c=}fA,
v X
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where R, P, ¢ are the Reynolds, Prandtl, and Boussinesq numbers correspondingly. Since
0?0t = va=20%/0t, 8?/0z = a~10%/0z, we obtain the following system by substituting (1.7)
into (1.3) and omitting the upper bars

ft+R3U)fz —29+R3f2—R92 :fzz _K(t) _ETa
gt + RSUng + 2R2f =02z, 2f+w.=0, (18)

1
T, + R?*wT, + R*°f = —

PTZZ’ wy + RPww, = —h, + w.,., |zl <1, t>0.

The conditions (1.4), (1.5), (1.6) remain unchangeable, it is just needed to take into account
that |2| < 1. In addition, wo(2) = wR?W,(2), go(z) = wRgy(Z), To(z) = RAT((2), Ti2(t) =
= RAT »(%) in the initial data.

2. Linear initial boundary value problem

Let be R << 1; such movements are called creeping. In practice they arise due to the high
kinematic viscosity, cross-sectional layer size fineness or small angular velocity w. Assuming that

f=fo+Rfi+-, g=go+Rpr+---, w=wo+ Rwy+---,

2.1
T=Ty+RTy+ -, K=Ky+RK, + -, (2.1)

and substituting it into (1.8) we obtain the initial boundary value problem in the zero approxi-
mation (the subscript "0" is omitted)

ft_2g:fzz_K<t)_5T7

gt = Gzz, 2f +w, = 0; (22)
1
Tt: Fsz wt:wzz_hz7 |Z| < 17 t>07
Fz0) = —wos(2), g(.0) = (). T(:.0) = Ty(2)
z = — =W z z = z z = z
) 2 0z ) 9\z, 9o ) ; 0 ; (23)

w(z,0) = wo(z), |2| < 1;

f(£1,¢6) =0, g(£1,t) =0, T(£1,t)=Ti2(t), w(£l,t)=0, t>0. (2.4)
Note, that

/_11 f(z,t)dz =0, (2.5)

what follows from the third equation in (2.2) and non-slip condition (2.4): w(+1,t) = 0. The
integral equality (2.5) is correct also for the general problem (1.3), (1.4), (1.5). This additional
condition is used to compute the part of radial pressure "gradient", which is the function K(t),
see (1.2). Thus, the problem under consideration is an inverse problem.

Let us find the stationary solution of system (2.2)—(2.5). It is denoted as f*(z), ¢°(z), w®(2),
T°(z), K*, h*(z) and corresponds to the data 77, = const. Simple calculations lead to the next
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formulas

1
9°(2) =0, T°(z) =5 (I3 ~T7) 2 + TY + T3),

f(z) = 15 — Tl)(z _Z)

12(
9
K* = =2 (T} +T3), (2.6)

w'(z) = o7 (17 = 13) (2 = 1)°,

= (Tf = T3)z (2> = 1), h{ = const.

h?(z) = hy + 5

The real fields of velocities u®(r, z), v*(r, z), w*(z), pressure p*(r, z), and temperature O°(r, z)
are given by (1.2).

The solution of inverse problem (2.2)-(2.5) can be obtained using the partition method in
the form of Fourier series. First, the functions g(z,t), T(z,t) are to be found as solutions of the
first classical initial boundary value problems for the heat conduction equations [3]. After that
f(z,t) and K (t) should be determined taking into account the overloading condition (2.5). The
function w(z,t) can be recovered by quadrature from the third equation of the system (2.2), and
h(z,t) can be found by the latter from (2.2). This solution procedure is rather cumbersome.
Here we use the Laplace transform method to find a solution [4].

Let

oo
u(z,8) = / u(z,t)e s dt
0
be the Laplace transform for the function u. Since

0

a\t(z’ 5) - Sa(z’ 5) - Uo(Z), Uzz = @%
the problem for ]?(z, s), g(z,s), f(z7 s), [A((s) takes the form

]?ZZ - 3]?: eT — 2§+I/(\' — fo(2)

_ _ (2.7)
/g\zz - S./g\: _90('2)7 T,, — PsT = _PTO(Z)’ ‘Z| <1,

where ﬁ,g(s) is the Laplace transform of the specified functions Tj 2(t). Moreover, the next
conditions are satisfied

F(£1,5) =0, §(&1,5) =0, T(%1,5) =T (s),

/ fos (2.8)

Thus, we obtain the boundary value problem (2.7), (2.8) in Laplace images for ODE systems.

Remark 1. The functions T} 2(¢) can have a finite number of the discontinuities of the first
kind [4].

After simple calculations, we obtain a quadrature representation of the solution to the prob-

- 276 —



Victor K. Andreev, Liliya I. Latonova Solution of the Linear Problem of Thermal Convection. ..

lem (2.7), (2.8)

=

G(z,s) = 1
o) = ssh(2y/5)

o(y) sh [vs(1—y)] dysh [vs(z+1)] —
go(y) sh [Vs(z —y)] dy,

\N‘\

)

VPs(1 - zﬂ + Th(s)sh [\/?s(z + 1)} +

)
ﬂ*sw

sh 2v/ P

\f / To(y)sh [VPs(1 —y)| dy sh [vVPs <z+1)}}— (2.9)
\f/ To(y sh (—y)} dy,

o s) = ch(\fz) .t
fas) == (ch\f > NETeNOR
1
x [ Plas)sh[VA(1 = )] dysh [VA(: + / (v, 5)sh [V/5(z — v)] dy,
where
F(z,5) =T (z,5) — 2§(2,5) — fo(2). (2.10)

Now, from equality (2.8) and representation f(z,s) (2.9) we obtain

— C. S 1
R(s) = 5 f[“fffg\f;) / Fly,)sh [Va(1 - y)] dy+

/ / (y,5)sh [Vs(z — y)] dde}

with F'(z, s) defining by (2.9), (2.10).
The functions @(z, s), h(z s) are determined from (2.2) taking into account differentiation
properties of the Laplace transform by the following formulas

(2.11)

W(z,8) = —2 /_1 f(y,s) dy,

iAL(z, 8) = ho(s) + W,(z,8) — swW(z,s) +wo(z) = (2.12)
= ho(s) — 2f(z, s) + 2s /Zl f(y, s) dy + wo(2)

with an arbitrary function hg(s) and the function f (z s) determined by (2.9).

Under the assumptions that the Laplace transform T1 2(s), 0112 / Ot exists and that there
is the limit lim; o 71 2(t) = Tt 5 = const the following holds because of the property of limit
relations for the Laplace transform (see [4])

llg(l) sTh 2(s) = tlgiolo Ty 2(t) =17 5. (2.13)

Let us demonstrate that lim, o sf?(s) = K°*, where K?® is given by (2.6), i. e. that
lim; 0o K(t) = K*®. It is obviously that sg(z,s) ~ 0, s — 0. Now we proceed to consider
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the first approximation of the function sj;(z7 s) using the Taylor series expansion of hyperbolic
functions:

~

sT(z,8) =~

1 VPs(1—z SV Ps(z =
i TiVPs(1 — 2) + TsVPs(z + 1) o1

1 S S S S AS
:§[T1 +T5 + (T3 = 1T7) 2] = T%(2).

Taking into account (2.6) and (2.13) we can obtain provided s — 0
3

sK(s) ~ M[—/l eT*Vs(1 —y) dy+/11 /Zl ETS\/g(z—y)dydz} -

—1

3€ 1 S S S
= 4[—/1((T5—Ti)y+T1 +T5)(1 —y) dy+

_ (2.15)

1 z
+/ / (T3 — Ty + T§ + T5)(= — y) dyd=
—1J-1

_ 32
T 4|3

4

5 S S S 2 S S
(T3 = 17) — 2(Ty +T2)__§(T2 =1T7) + 3

(17 + Tf)] =

3¢ 2
- (Larem) -
Here, the Taylor series expansions of the following functions were taken into account with the

retention of the main terms

2scth/s g5 (L4 0D ) 2V (LHo(s) ~as
1— ch (2/5) 11— (2.16)

= ~ —1.

Vssh (24/5) \/§(2¢g+%+...)

~

Now consider the limit lims_,o sf(s, z). Since

K <ch<¢§z> 1)KS<1+<¢5z>2/2+o<s2>—1—wa?/z—o(s?))%Ks(% 1>’

s \ 2chy/s s 14 (v/s)2/2 + o(s?) 2 2

the following can be derived

2 1

sFz ) ~ K (Z—l) = [T =Ty T T VA ) (e + )+

2 2) 4s ),
€ : S S S S
roe [ @ Ty T Ve - - (217)
€ S S Z3 S S z S
22[(73 )5 — (I —Ti)G] =/

By direct substitution it is easy to show that

z 4 2

- S € S S y y
sw(z,s)%fZ/lf dy:fg(T2 T1)(42)
—
24

z

—1
(T; —T3) (2% — 222 + 1) = w?, (2.18)

~

sh(z,s) = hg —2f° = h°,
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where h{ = limg_,g sho(s).
We have proven the

Theorem. Under conditions (2.13), fo(2), go(z), To(z) € C[—1,1] the solution of a nonstation-
ary inverse initial boundary value problem (2.2)—(2.5) converges to the stationary solution (2.6)
with t — oo.

Note, that initial values of function K (¢) can be found directly from the problem (2.2)—(2.5).

The solution formulas (2.9) obtained in the images can be transformed into Fourier series.
To show it for the function g(z,t) we will use the first formula for g(z, s) from (2.9). Note, that
d(z, s) cannot be translated directly into the original space since the second term does not tend
to zero at s — 0o. It can be seen that

o) = | Gl d. (2.19)
where
_ 1 shy/s(y+1)shy/s(l—2), -1<y<z
G99 = Johevs) {sh Vi + Dshy/s(1—y), z<y<1 (2.20

is the Green’s function for the operator d?/dz? — s with zero first-type boundary conditions at
z = +1. It is clear that G(z,y,s) — 0 at s — oo for any z,y € [—1;1].
Now we can use the result from [5], p. 273, formula No. 188, namely that the image of the
function G(z,y, s) corresponds to the original
o0
Z sinnmz sin mrye*"Q“Qt =T(z,y,t), (2.21)
n=1
therefore g(z, s) corresponds to the Fourier series
1 o 41
g(z,t) = / [(z,y,t)90(y) dy = Z/ go(y) sinnmy dy sin nrze L (2.22)
-1 i/

It is easy to verify that the series (2.21) are the solution to the initial boundary value problem
for g(z,t). Tt is classical provided there is the agreement condition go(—1) = go(1) = 0 and
90(y) € L2(—1,1)

1

1 1
. 1
Jon = / go(y) sinnmy dy = i lgo(y) cos nwy - / 96(y) cos nmy dy] =
—1 1 —1

- (2.23)
L[ 0(y) cos ny d 16(71)
= — T = — .
p— 90 Y yay n
. 11 )
whence it follows that |gon| < ot B (n). Then
nzl lgon| < nzl 5 n2 Z 55 (n) < oo, (2.24)

as [ go(y) cos nrydy — 0, n — oo. The convergence to zero velocity for the function g(z,t) is
-1

determined from the inequality

lg(=,t) < e tZlgomw e tZ\gou =Ce™, (2.25)
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oo
since the series Y |gon| converges as noted above.

n=1
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1. Preliminaries

A central limit theorem for Banach space valued dependent random variables have been
studied by many authors (see [6,11,15-17] and references therein). It is known that validity
of the central limit theorem depends on the geometric structure of Banach space. One of the
most difficult space in this sense is D [0, 1] (the space of all real-valued functions that are right
continuous and have left limits, which is endowed with the Skorohod topology) space. In this
paper we will prove the central limit theorem for mixing random variables with values in D [0, 1].

Let {X,(t),t€[0,1], n > 1} be a sequence of random variables with values in D [0, 1].
We say that {X,(¢),t€[0,1], n > 1} satisfies a central limit theorem if the distribution of

1
7 (X1(t) + ...+ X, (t)) converges weakly to a Gaussian distribution in D [0, 1].
n

The central limit theorem in D [0, 1] is very important from applications point of view. It
immediately implies asymptotic normality of empirical and weighted empirical processes. The
central limit theorem for the sequence of independent identically distributed (i.i.d) random vari-
ables with values in D [0,1] were studied by many authors (see [?,1,2,8,12]) and references
therein).

*osharipov@yahoo.com
Tanvar2383@mail.ru
(© Siberian Federal University. All rights reserved
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The first central limit theorem was proved by Hahn [8]. Later the central limit theorem in
D [0, 1] was proved by D. Jukneviciené (1985), V. Paulauskas and Ch. Stive (1990), P.H. Bezandry
and X. Fernique (1992), M. Bloznelis and V. Paulauskas (1993), X. Fernique (1994). The result
of M.G. Hahn [8] can be formulated as follows.

Theorem 1.1 ([8]). Let {X,(t),t € [0,1], n > 1} be a sequence of i.i.d. random variables with
values in D [0, 1] such that

EXi(t)=0, EX(t)<oo forall tc][0,1]. (1)

Assume that there exist nondecreasing continuous functions G and F on [0,1] and numbers
a> 0.5, 8>1 such that for all 0< s <t<u<1 the following two conditions hold:

E(X1(u) = X1(1))” < (G(w) = G(1)",

E(X1(u) = X1(1)* (X1 () = X1(s))” < (F(u) = F(s))". (2)
Then {X,(t),t €[0,1], n > 1} satisfies the central limit theorem in D[0,1] and the limiting

Gaussian process is sample continuous.

As it was already noticed in [2], the condition (2) is connected with the fourth moments of
the process X;(t). This conditions does not allow us to apply Theorem 1.1 to a wide class of
weighted empirical processes. In [2] and [3] authors obtained the following results (where a A b
denotes min(a, b)):

Theorem 1.2 ([2]). Let {X,(t), t € [0,1], n > 1} be a sequence of i.i.d. random variables with
values in D [0, 1] satisfying the condition (1) and assume that there exist nondecreasing continuous
functions G and F on [0,1] and numbers «, 8 >0 such that for all 0 <s<t<u<1l the
following two conditions hold:

E(Xi(w) = Xi(1)* < (G(w) - G(0) P log 5 (14+(Gw - 6(1) "), ()
B (1X1(t) = X1(5)| A D (X (w) = X (1)” <

< (F(u) = F(s))log ™7 (14 (F(u) = F(s)) ).

Then {X,(t),t €[0,1], n > 1} satisfies the central limit theorem in D[0,1] and the limiting
Gaussian process is sample continuous.

(4)

Theorem 1.3 ([2]). The statement of Theorem 1.2 remains true if conditions (3) and (4) are
replaced by

E(Xi() - Xi(t))” < (G(w) - G)1og 2% (14 (G -G@) ™), ()

B (X1(t) = X1(s))? (X1 (u) = X2(6))* < (F(u) = F(s))log > (14 (F(u) = F(s)) ') . (6)

Theorem 1.4 ([3]). Assume p, ¢ > 2. Let f,g be nonnegative functions on [0,+00) which are
nondecreasing near 0 and let F, G be increasing continuous functions on [0,1]. Let X (t) be a
random process with mean 0, finite second moment, and sample path in D satisfying

E(|X(s) = X@) A X (1) = X ()])" < f (F(u) = F(s)),
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E|X(s) = X(®)|" < g(G(t) — G(s)),

for 0<s<t<u<l, u—s small and

/ fl/p(u) Py < oo, / gl/q(u) YD gy < 0.

0 0

Then {X,(t), t €10,1], n > 1} satisfies the central limit theorem in D[0,1] and the limiting
Gaussian process is sample continuous.

2. Main results

The main goal of this article is to prove the central limit theorem for mixing sequences of
random variables with values in space D [0, 1].

Below, we give the definitions of mixing coefficients for a sequence of random variables with
values in a separable Banach space B. In Definition 2 it is assumed that B is an infinite-
dimensional space.

Definition 1. For a sequence {X,(t), t € [0,1], n > 1} the coefficients of p, a-mizing are de-
fined by the following equalities.

o | LEE— EO@ - E)
p(m) = sup { B} (¢ - BE)?Ei(n — En)?

D €€ Ly(FY), n€ Lo(FS,), k € N} ;

a(n) =sup {|P(AB) — P(A)P(B)|: A€ Ff', Be F{%,, ke N}.

where F? is the o-algebra generated by random processes Xq(t),..., Xy(t) and Lo(FP) is the
space of all square integrable random variables measurable with respect to F?.

Definition 2. For the sequence {X,(t), t € [0,1], n > 1} the coefficients of pm (n)-mizing and
ap, (n)-mizing are defined by the following equalities

{ |E(& — E&)(n — En)|
E% (€~ E¢)?E3 (n — En)*

pm (n) = sup sup

a €€ La(FFRM), 1 € La(FSu(RM), ke N

v (n) = supsup {| P(AB) — P(A)P(B)|: A€ Ff(R™), B € I3, (R™), ke N},
Rm
where F2(R™) is the o-algebra generated by random processes [[, Xa(t),...,[1,, Xp(t) and

L, is a projection operator B in m-dimensional subspace R™ i.e. [],, : B— R™. A sequence
is called p-mizing (or pm—, a—, am— mizing ) if

plk) =0 as k— oo, (7)
pm(k) =0 as k—o0 and m=1,2,..., (8)
ak) -0 as k— oo, 9)
am(k) =0 as k—o00 and m=1,2,... (10)

respectively.
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As the example given in Zhurbenko [13] shows, in general (8) does not imply (7), though (7)
always implies (8), the same is true with (9) and (10). In (8) and (10) it is actually required that
all finite-dimensional projections of the sequence {X,(t),t € [0,1], n > 1} satisfy the mixing
condition and these conditions are weaker than the conditions (7) and (9).

1

Set Sp(t) = —

et Sult) = -

Now we formulate our theorems.

(X1(t) + -4+ Xn(t)) and in what follows = denotes weak convergence.

Theorem 2.1. Let {X,(t), t €[0,1], n > 1} be a strictly stationary sequence of pm-mixing
random variables with values in D [0,1] such that

EXi(t)=0, E|Xi(t)]?<oco foral te[0,1].

Assume that there exists a nondecreasing continuous function F on [0,1] such that for all
0<s<t<1and € >0 the following hold:

B (Xi(t) - X1(s))* < (F(t) = F(s))log™ ) (14 (F(1) = F(s)) "), (11)

lim E(X;+---+X,)? =00 foral tel0,1],

n—oo

n

me(2k) <oo, m=1,2,....
k=1

Then {X,(t), t €[0,1], n > 1} satisfies the central limit theorem i.e.
Sp,(t) = N(t) as n— oo
and the limiting mean-zero, sample continuous Gaussian process has the covariance function:
F (t1,t) = nl;rréo ES,(t1)Sn(t2), t1,t2 €[0,1].

Theorem 2.2. Let {X,(t), t €[0,1], n > 1} be a strictly stationary sequence of pm,-mizing
random variables with values in D [0,1] such that

EX,(t) =0, E|X1(t)’** <00, forall te0,1] andsome &> 0.

Assume that there exists a nondecreasing continuous function F' on [0, 1] such that for all
0 < s<t<1 and the following hold:

B|Xi(s) ~ Xa()** < (F(s) — F()log™ ) (14 (P(s) - F() ™), (12
LI
Zpﬁs(Zk) <oo, m=1,2,....
k=1
Then {X,(t), t €[0,1], n > 1} satisfies the central limit theorem i.e.
Sp(t) = N(t) as n— o0

and the limiting mean-zero, sample continuous Gaussian process has the covariance function:

F(tl,tg) = 1Lm ESn(tl)Sn(tg), t1,ts € [0, 1]
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Theorem 2.3. Let {X,,(t), t € [0,1], n > 1} be a strictly stationary sequence of Quy,-mizing
random variables with values in D [0,1] such that

EXi(t)=0, E|Xit)’*° <o, forall te0,1] andsome &> 0.

Assume that there exists a nondecreasing continuous function F on [0,1] such that for all
0<s<t<1l and €>0 the following hold:

(B0 - X)) < (F (@) = F(s)log @) (14 (PO = F(s) 7). (13)

n s
Zozfn” (k) <oo, m=1,2,....
k=1

Then {X,(t), t €10,1], n > 1} satisfies the central limit theorem i.e.
Sp(t) = N(t) as n— o0
and the limiting mean-zero, sample continuous Gaussian process has the covariance function:
F (t1,t2) = nlgg() ES,(t1)Sn(t2), ti,t2 €10,1].

Theorems 2.1-2.2 improve the results of [11].

3. Preliminary results

The proofs of the theorems are based on the following lemmas.

Lemma 1 ([2]). Let X1(t), Xa(t),..., Xn(t),... be random wvariables with values in D [0,1].
Assume that there exist a nondecreasing continuous function F on [0,1] and positive numbers
Y1, ¢1, €1 such that for all A >0 and 0 <s<t<u<l.

P (| X0 () = X ()| A X (1) = X ()] 2 X) < 1A g2y 414, (F(u) = F(s)),
where gy(u) = ullogu| ™, p>0. Ifforall ti,....tx€[0,1], k=12,...
(Xn(tr), ..., Xn(te)) = (X(t1), ..., X(tr)) as n— oo
and
P(X(1) = lim X (1)) = 1.

Then X, = X as n — oo.

Lemma 2 ([9]). Let {X;, i > 1} be a strictly stationary sequence of real valued random variables
with p-mizing and
EX, =0, EX} < oo,

lim B (X + -+ X,)* = oo,
n—oo

Z p(2F) < 0.

k=1

n
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Then

1
%(X1+~~+Xn)éN(O,02) as m — 0o,

where N (0,02) Gaussion random variable with zero-mean and variance

1
o?=lim —E(Xy+-+ Xn)* > 0.

n—o00 N

Lemma 3 ([14]). Let {X;, i > 1} be a sequence of real-valued random variables with p-mixing
and for some q > 2
EX1:0, E|X1|q<OO,

n

Zp%(2k) < 0.

k=1
Then there exists a constant K such that the following inequality holds:

EIX;+-+X,|? gK(ng max (E|Xi\2)§ +n11£1a<X E|Xi|q>'
<ign

1<ign

Lemma 4 ([13]). Let {X;, i > 1} be a stationary sequence of random variables with a-mizing
and
EX; =0, E|X;*™ <o,

a1
Zaﬂé (k) < o0,

k=1

for some § > 0. Then

0? = EX] +2) E(X1X;) <oco when o> >0,
j=2

1
— (X1 4+ +Xn)=N(0,1) as n— oo.
on
Lemma 5 ([4]). Let {X;, i > 1} be a strictly stationary sequence of random variables with
a-mizing and
EX; =0, E|X;]*™ < o,

246—t

oo
Znéfla 2+5 (k) < oo,
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4. Proof of Theorems

Proof of Theorem 2.1. We will use the method developed in the papers [2,8] and [12]. Tt follows
from Lemma 1 that it suffices to prove

P (IS (£) = S () A 1Sn (u) = Sn ()] = A) < clA”™ P gzic (F (u) = F (s)),

where A € (0,1], 0 < s<t<u<1.
It is easy to see that the following inequality holds for A € (0, 1].

P (IS0 (t) = Su (5)] A 1S (1) = S (8)] = A) < P (IS0 (£) = S (3)] 1w () — S (8)] > X2).

:< )<

< % (n—i i (X (t) — Xi (s))> + % <n_é i (X (u) — X, (t))> =Ji+ 2.

k=1

We have
J = |Sn (t) - S, (5)| ‘Sn (u) —Sn (t)| =

n7E > (X (1) — Xx <s>>|> (

n

n73 > (X (u) — X (1)

k=1

In what follows we denote by C the constants (possibly depending on different parameters) which
can be different even in the same chain of inequalities.
We have

P(J=N) gP(J1>;)\2)+P<JQ>;>\2).

We evaluate each of the summands individually. Using the Markov inequality and Lemma 3, we
obtain

n

P(Ji>X\) = P( <n—% kz (X (1) — X, (s))>2 > /\2> <
<AT’E (n‘é n (X (8) — X, (s)))2 <ATPCE (X1 (1) — X1 (5)°,
P(J2 2 X\) < AT2CE (X (u) — X1 (1)°. (15)
From (14) and (15) we get
P(J=X) <A 2CE (X1 (t) — X1 (5))? + AT2CE (X (u) — X (1)°.
From the conditions of Theorem 2.1
P (|Sn () = Sn ()] [Sn (w) = Sn ()] 2 A?) <
SAT2CE (X (1) — X1 () + A2CE (X, (u) — X1 (1))* <
< A2C(F(t) — F(s)) log~(+9) (1 + (F(t) - F(s))’l) +
FAT2C (F(u) — F(t)) log~3+9) (1 4 (F(u) — F(t))_l) <

< 2N2C (F(u) — F(s)log™ % (14 (F(u) ~ F())™") < 20N g3 (F(u) ~ F(s)).
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Above we used the inequality
log™" (1+ (F(u) = F(s)) ") < 2[log (F(u) — F(s))| " (16)

for
F(u) — F(s) < 0.25.

Now, to complete the proof of the theorem, it remains to prove the convergence of the finite-
dimensional distributions S,, (t). The convergence of finite-dimensional distributions follows from
Lemma 2 and the Cramer-Wold device [5]. Thus, Theorems 2.1 is proved. o

Proof of Theorem 2.2.
We will prove Theorem 2.2 by the same method as Theorem 2.1. It follows from Lemma 1
that it suffices to prove

P (1S (t) = Sn ()| A [Sn (u) = Sn (2)]

where A € (0,1], 0 < s<t<u< L
It is easy to see that the following inequality holds for A € (0, 1].

WV

)\) < Cl)\_(2+6)93+26 (F (u) - F (S)) )

P(1S0 (1) =Sn ()] A 18 ()=S0 ()] = A) < P((180 ()=S0 () 7 1S (w) =S (D] T > A2¥).
We have . -
I=5,(t) = Su(s)] 2 [Sn(u) = Sn ()] * =
—| =0 - X)) | = ) - X)) <
k=1 k=1
1 1 n 2+¢€ 1 1 n 2+¢
<5 Tg(Xk(t)_Xk(S)) t3 %;(Xk( )= Xk()| =L+

We have

1 1
P(I=XN*) P (11 > 2A2+5> +P <I2 > 2A2+€> .

Using the Markov inequality and Lemma 3, we obtain

n 2+¢
1
P(L=X*) =P| |—>= R(s)| =A<
n 2+¢
<A -t p | — X <
NG > () = Xule)
(2+¢e)/2
< ON~@He) = (24e)/2)) (242)/2 (E | X1 () — X1(5)|2) +

FON @)= B X () — X (s)]2T° <

(2+€)/2
) F AT OB X (1) — Xi ()T <

<A @0 (BIX(0) - Xa(s)
20N CFIE|X, (1) — X (s)7F°.

P (I > X)) <2009 B X, (u) — X1 (1))
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From the conditions of Theorem 2.2 and using (16) we have

2+

P (18 () = S0 ()5 18, () — 5, (0] 5 > 227 <

< CA~CHE) (F(t) — F(s)) log= 342 (1 + (F(t) — F(s))_l) +
+ON ) (F(u) = F() log™ ) (14 (F(w) — F(1) ') <

< 20N CF) (F(u) — F(s)) log =2 (1 + (F(u) - F(S))fl) <200 T gg o (F(u) — F(s)).

To complete the proof of the theorem, it remains to prove the convergence of the finite-
dimensional distributions Sy, (t). The convergence of finite-dimensional distributions follows from
Lemma 2 and the Cramer-Wold device [5]. Thus, Theorems 2.2 is proved. |

Proof of Theorem 2.3.

To prove Theorem 2.3, we estimate I as in the proof of Theorem 2.2 by I; and I5. Using the
Markov inequality and Lemma 5, we have (where € + &1 = ¢, €1 > 0)

24¢€

P(L=X*) =P >\t ] <

% S (Xk(t) — Xa(s)
k=1

2+e
<

n

Z (Xk(t) — Xi(s))

k=1

_(214e) 1

24¢
24e+eq

<OA) (BIX (1) - Xa(s) ) <

< ON—(2+9) (E X1 (t) — Xl(s)|2+6>

24¢

245

P (I > 2%+) = CA~@H) (B1X (u) - X1 (8)*)

24e 24
P(I>\%) <Cxto) ((E X (t) — Xl(s)|2+5) Ty (E X1 (u) — Xl(t)|2+6) 2“) .
From the conditions of Theorem 2.3 and using (16) we have

2+ 24e

P (190 (0 = 2 (9% 180 () = 5, (0] > 32%7) <

< O\~ (2t (F(t) — F(s)) 10g7(3+26) (1 +(F(t) - F(s))_l) 4
+ON ) (F(u) - F(1)log™ ) (14 (F(u) - F(1) ™) <

<2003 (F(u) — F(s))log~3+%) (1 + (F(u) — F(s))*l) <200 " CH) gy o (F(u) — F(s)).

Again as in the proof of previous theorems, to complete the proof of the theorem, it re-
mains to prove the convergence of the finite-dimensional distributions S,, (¢). The convergence of
finite-dimensional distributions follows from Lemma 4 and the Cramer—Wold device [5]. Thus,
Theorems 2.3 is proved. O
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LlenTpanbHaga npeaejibHasdg TeopeMa AJs cJIad0 3aBUCUMBIX
cJlydaiiHbIX BeJimumH co 3Hadenussmu B D [0, 1]

Ouaumxkon I11. [TTapurio

Harmonasbubrit yaHUBEpCUTET Y30€KHCTAHA

TarmkenT, Y36ekucran

Maremarndeckuit nacruryt uMm. B. V. Pomanosckoro AHY3
TarmkenT, Y36ekucran

AuBap ®@. Hop>kuruton
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TarmkenT, Y3bekucran

Amunortarusi. OCHOBHOI IE/IbI0O HACTOSIIENH CTATbU SIBJISIETCS JIOKA3aTEIbCTBO IEHTPAJIBLHON Ipeaesb-
HOI TEOPEMBI JIJIsl TOCIIEOBATEIBHOCTEH CIyIaiiHbIX BEJUYUH CO 3HadYeHusiMu B npocrpanctse D [0, 1].
Mgl npejinosiaraeM, 4TO IOCIEI0BATEILHOCTD YAOBJIETBOPSET yCJIOBUSAM IlepeMelinBanus. B crarbe j0-
Ka3aHbl IleHTPaJIbHbIe IIpelleIbHble TeOPEMBI JJIsI II0CJIeN0BATEIBHOCTEN C CUJIBHBIM II€pEMENINBAHUEM U

Pm-IIEPpEMENINBAHNUEM.

KiroueBble cijioBa: 1ieHTpaJibHas IIpee/ibHas TeOPeEMa, ITOC/IeI0BATEIbHOCTD C IEpEMEITNBAHUEM, TIPO-

crparcrso D [0, 1].
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1. Introduction and preliminaries

Following of ( [3-5]) we define a general random censorship model in the following way:
Let Z be a real random variable (r.v.) with distribution function (d.f.) H(z) = P(Z < z),
xz € R. Let us assume that A ... A®) are pairwise disjoint random events for a fixed in-
teger k > 1. Let us define the subdistribution functions H(z;i) = P(Z < z,A"),i € & =
{1,...,k}. Suppose that when observing Z we are interested in the joint behaviour of the
pairs (Z,A®), i € ¥. Let {(Z; A(1 .,A§k)), j = 1} be a sequence of independent replicas
of (Z,AM ... A®) defined on some probability space {2, A, P}. We assume throughout that
functions H(x), H(x;1),..., H(z; k) are continuous. Let us denote the ordinary empirical d.f. of
Z1, ..., Zyn by H,(x) and introduce the empirical sub d.f. H,(z;i),i €

1 & _
fz §1(Z; < x), (x31) e Rx S,
n

where R = [—o00; o0, 5](-Z = I(A§Z ) is the indicator of event Ag-i) and

*a~abdushukurov@rambler.ru
sayfulloyevagulnoz@gmail.com
© Siberian Federal University. All rights reserved
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H,(z;1) + -+ Hy(z; k) = lZI'(ZJ- <) = Hy(z), z € R,

is the ordinary empirical d.f.. Properties of many biometric estimates depend on the limit

behaviour of proposed empirical statistics. The following results are straightforward consequences

of the Dvoretzky—Kiefer—Wolfowitz exponential inequality with constant D=2 [8,12] :
Foralln=1,2,... and e >0

1/2
P | sup |Hy(z)— H(z)| > (L+e) logn < 2~ (Fe), (1)
|z|<oo 2 n
and ) |
P( sup |H,(z;i) — H(w;4)| > 2(( ;6) OrgLn)l/2> < 4n~ (), (2)
|| <00

Vector-valued empirical process {an(t) = ( © (to), (1)( t1),... ,a%k)(tk)) st = (to,...,tk) €

Ekﬂ} plays a decisive role, where a(o)( ) = /n(H,(z)—H(z)), aly (z) = v/n(Hy,(z;i)—H(x;1)),

1 € . The following Burke-Csorg6—Horvéth theorem [3,4] is an extended analogue of Komls—

Major-Tusnddy’s result [9-11].

Theorem A([3,4]). If the underlying probability space {2, A, P} is rich enough then one can
define k+1 sequences of Gaussian processes BY (x), B,(LD(:C), ...,BM (x) such that for an(t) and
Ba(t) = (B (w0), B (21),..., B (w), t = (to, ..., ty) we have

P{ sup [|an(t) = Ba ()| > n~# (M (logn) + z>} < Kexp(-)2), (3)
teR T

for all real z, where M = (2k+1)A1, K = (2k+1)A2 and A = A3/(2k + 1) with Ay, A2 and A3 are
absolute constants. Moreover, B, is (k+1)-dimensional vector-valued Gaussian process that has
the same covariance structure as the vector a,(t), namely, EB{Y (z) =0, (z,i) € RxS = SU{0}.
We have for any i,j € S, i # j, x,y € R that
EBy (x)BY(y) = min {H(z), H(y)} — H(x) - H(y).

BB (2)Bi (y) = min {H(a;i), H(y; i)} — H(w:d) - H(y; ),
EB ()i (y) = —H(x:1) - H(y:.),
BB (2) B (y) = min {H (x;1), H(y: )} — H(z) - H(ysi).

T

If we set z = ((11—6)

log n) in (3) then

—k+1

P{ sup Han(t) - Bn(t)H(kH) > On~3 logn} < Kn—(ua)’
teR

1
where C' = (2k + 1)<A1 + ( 2—8)) Then
3
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Let us note that in proving Theorem A (Theorem 3.1 in [4]) the sequence of two-parametrical
Gaussian processes Q%) (z,n), Q® (z,n),...,Q¥) (2, n) was constructed such that for a,,(t) and

Q(t;n) = (Q(O) (z;n),...,QW) (z; n)), t e R* the following approximation was used

(k+1) L
=0 (n‘? log? n> ,

where Q(t,n) is the (k + 1) dimensional vector-valued Gaussian process and Q(t;n)gn%an(t).

an(t) — n_%(@(t, n)

Hence

EQW(x;n) =0, (z,i) € R x

2ol

and we have for any 7,7 € 3, i # j, x,y € R that

EQ) (w;n)Q (y; m) = min(n, m){ min{H (), H(y)} — H(z)H(y)},
EQ) (w;n)Q™ (y; m) = min(n, m){ min{H (x;1), H (y;4)} — H(x)H(y:9)}, (5)
EQW (z;n)Q (y;m) = mln(n m){ min{H (x;4), H(y;4)} — H(z;9)H(y; )},

EQW (;n)QY) (y;m) = —min(n, m)H (z;4) - H(y; j)-
Let us observe that {Q(i)J € 3} are Kiefer processes and they satisfy the distributional equality
QO (s ) ZW O (H (a;);n) — H(a; i)W (1), (6)
where {W®(y;n),0 < y < 1L,n > 1,i € S} are two-parametric Wiener processes with
EW® (y;n) =0 and
EW (y: n) WD (u;m) = min(n, m) min(y, u), i€ 3.
It is important to note that though Kiefer processes {Q(i), 1 € %} are dependent processes,

corresponding Wiener processes are independent. Indeed, it follows from the proof of Theorem
A that

QW (a;n) 2K (H(z;1);n),
Q@ (230) 2K (H (w;2) — H(+00; 1);n) — K(H (+00; 1);n),

Q(i)(x;n)Df((H(x i)+ H(4o00;1) + -+ -+ H(4+o0;i — 1);n) —

— K(H(400;1) + -+ H(+o0;i — 1);n), i€S
where H(+o00;5i) = lTlJrrn H(z;i), H(+o00;1) + -+ -+ H(+o0; k) = 1.
The Kiefer processes {IN( (y;n),0<y< Ln > 1} are represented in terms of two-parametrical
Wiener processes {W(y; n),0<y<L,n 2 1} by distributional equality
{Kyin), 0<y<ln>1}2{W(yn)—yW(Lin),0<y<1ln>1}, (7)

Then, taking into account (6) and (7), the Wiener process {W (@ i € S} also admits the
following representations for all (x;7) € R x &

WO (H (23 1); n)2W (H (23 1); n),
W (H(z;2); n)gW(H(x; 2) + H(400;1);n) — WO (H(4+00;1);n),...,
WO (H (z;4); TL)QW(H(I,Z) + H(+o05i — 1);n) — W(H(+00;1) + -+ - + H(+00;3 — 1);n).

Now performing direct calculations of covariances of processes {W®), i € I}, it is easy to
show that these processes are independent.
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2. Kac processes under general censoring

Following [9] we introduce the modified empirical d.f. of Kac by the following way. Along
with sequence {Z;,j > 1} on a probability space {2, A, P} consider also a sequence {v,, n > 1}
of r.v.-s that has Poisson distribution with parameter Fv,, = n, n = 1,2,.... Let us assume
throughout that two sequences {Z;,j > 1} and {v,,n > 1} are independent. The Kac empirical

d.f. is
H (2 _{ ZI <z) if v, 21 as.,

0 if v,=0 a.s.,

while the empirical sub-d.f. is

1 & (i) . .
—E I(Z; <x,AY), i€S if vp21 a.s.,
H:L(l‘yl):{ nj:l ( ! ! ) /
0, 1€ if vy,=0 a.s.,

with H(z;1)+---+ H(z;k) = H}(x) for all x € R. Here we suppose that sequence {v,,, n > 1}

is independent of random vectors {(Zj,djl), e 6;k)),j > 1}, where (Sy) = I(A;i)). Let us note

that statistics H(z;4) (and also H}(x)) are unbiased estimators of H(x;7), ¢ € § (and also of
H{(z))

E(H? (x;4) ;E{ Z E
:E{ iE

25(1 I(Zy <x)/vn=m

k=1

1 1 . me=n

= (z,zmP(Vn—m)zﬁH(z;i)Z:Im-nT:;! =
m= o nm m B
H(x i)e " Z:OW = H(z;i), (z;9) eRxS
Consequently,
k k B
BlH; @) = Y B[H;(w:i)] = ) H(wi) = H(x), @cR.
i=1 i=1

Let us define the empirical Kac processes agf)*(x) = n(H}(z;i) — H(z;i)), i €S and

ol (w) = /n(Hj () — H(x)) .

Theorem 1. If the underlying probability space {2, A, P} is rich enough then one can
define k + 1 sequences of Gaussian processes W(O)( ),W(l)( ),...,Wék)(:r) such that for
» 0)x 1)* k) X (0) 1 k

an(t) = (a"(to),al" (1), ... al (t)) and Wi(t) = (Wi (to), Wi (1), ..., Wi (1)),
t = (to,t1,...,tx) we have

Pq sup
teRk+1

(k+1)
a, (t) = Wy (t)

> C*n 3 logn} < K*'n™", (8)

where v = 2 is an arbitrary integer, C* = C*(r) depends only on r, and K* is an absolute
constant. Moreover, W (t) is (k+1)-dimensional vector-valued Gaussian process with expectation
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EW®(z) =0, (z,i) € R x 3. We have for any i,j €S, i # j, z,y € R that

EWS.J) (x)W;LO)(y) = min {H(CC), H(:U)}a
EW @)W y) = min {H(a:1), H(35)}. .
W (x)W}lO)(y) = min {H (1), H(y) }.

The basic relation between a,(t) and a}(t) is the following easily checked identity

V. . Upn —N
) = . ag® H M T=A 10
() = |/ el @) + B P, ied (10)
Hence, the approximating sequence have the form
W*

(n)7 ies,

Vvn

where B,Szn) (x) is a Poisson indexed Brownian bridge type process of Theorem A and
{W®)(z), 2 >0} is a Wiener process. It is easy to verify that {W,SZ) (7),(z;i) € R x §}£
{W* (H(.’L‘, z))7 (x,1) € R x §} The proof of Theorem 1 is similar to the proof of Theorem 1 of
Stute [6] and, it is omitted.

Since l'fl H(z) = H}(+00) = Y then using Stirlings formula, we obtain

[e] n

&

W (z) = B (x) + H(x;1)

Vn

k)
P, =n) = P(H;(+00) = 1) = " = 2 _(140(1)), n— o,
n! V2rn
and oo k —
. n¥e "
P(H;(+00) > 1) = Pvy > n) = Y ——=o(1), n— oc.
k=n-+1 :

Thus H}(x) with positive probability is greater than 1. In order to avoid these undesirable
property the following modifications of the Kac statistics is proposed
Hy(x)=1- (1-Hi(x)I(Hi(z) <1), z€R,

- _ (11)
Hy(x;i) =1— (1= Hi(z;9) I (Hp(z;9) <1), (2;1) e Rx S,

The following inequalities are useful in studying the Kac processes.

Theorem 2. Let {v,,n > 1} be a sequence of Poisson r.v.-s with Ev, =mn. Then for any e > 0

such that
n €

= 5 = 1 ) 12
logn = 8(1+ £)2 e = exp(l) ()
we have )
1/e ? —ew
P(|vn —n| > 3 inlogn <2n7 %Y, (13)
] 3
P( sup | H (x;1) — H(z;4)| > 2(8 Og") ) <anv e S, (14)
|z] <00 2n
1
~ ] 3
P< sup |Hy, (w;4) — H(z;4)| > 2<€ ;’5”) ) <dn~Hv e g, (15)
|z]<oo

-1
where w = [16 <1 + g)} .
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Proof. Let v1,72,... be a sequence of Poisson r.v.-s with Ev, = 1 for all k = 1,2,.... Then
Spn=vp—n=> (y—1)= > & and
k=1 k=1

> (et)k
Eexp(t&r) = e "exp(tyr) = exp (— (t+ 1)) Z ( k') =exp{e' — (t+1)}.
k=0

Using Taylor expansion for e?, we obtain

Eexp(t&y) = exp{l +t4 g +(t) — (t+ 1)} = exp{;2 +¢(t)}7

3

t
where (t) = 5 exp(ft), 0 < 6 < 1. Taking into account that 3 < 2 for 0 < t < 1, we obtain
, t3 t2 t2 e
the estimate for ¢ (t): ¥ () < ¢ < ee Thus, E exp(t&) = exp B 1+ 3) 0<t< 1.

The following result (from [13]) is necessary for further considerations.

Lemma 1 ([13]). Let {&,,n>1} be a sequence of independent r.v.-s with B, =0, n=1,2,....
Suppose that U, A1, ..., A, are positive real numbers such that

1
Eexp(t&) < exp (2)\@%) for k=1,2,....n |t <U. (16)

Let A=A +--- 4+ \,. Then
2

. 2exp<—2ZA) if o< z<AU,

Uz

P(’§1+_.-+€k’>z) Qexp<f—) if z>AU
) .

1 1/2
Let us assume that A\ = 1 + %, U=1, z= 3 (;nlog n) in Lemma 1 then we obtain

1/2
1
(13). Here 0 < z = 3 <§nlog n) < (1+ £)n = AU. Consider probability in (14). Using total

probability formula, we have

P( sup |Hy(x5i) — H(w; )| > 2(510”)5) _

|z|<oo 2n

1 <~ 1 3
:P( sup |H,(x;i) — H(x;4) + — Z 6,(6)1(Zk éx)’ > 2(6 Ogn)Z/Vn >n> “P(vp, >n)+
jal <o " 2n
elogn

1 < ;
+ P< sup ’H(a:;i) —Hi) -~ Y 801(z < x)‘ > 2(
|z <o0 n k=v,+1

e )2/un<n> P(vn <) <

max(n,vy,)

1 i
— Y Az <)
" k=min(n,v,)+1

1 1
gP( sup ‘Hn(m;i)—H(ﬂc;i)‘>(wl)z)—FP( sup >

|z <oo 2n || <oo

- (228 <ot
2n

where we applied (2) and (13) that proves (14). Let us define T = inf {z: H,(zi) = 1},i€S.
If 2 > 7" and v, > n then H,(z;i) = 1 and H (2;1) — H (x;i) > H; (z;i) — H(z;4) > 0. Then
assuming v,, > n, we obtain

Up — 1N

(510gn

1
o ) 2) < 2n7E foopTAvE L ypTAvE e G,
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sup |H, (1) — H(m;i)‘ = {max [ sup |Hy(x;i) — H(x;i)|, sup |P~In(x,z) —H(x,z)q} <

lz[<oo o< T T

< <{max | sup ‘H (x;4) — H(x;1)|, sup ‘H (x;1) — H(x,z)‘ =
z<TV 2>T)

= sup |Hy(w;i) — H(z;4)|, i€S. (17)
|| <oo
With v, < n, it is obvious that H, (z;i) = H} (2;i) for all (z;i) e R x S
Now taking into account the last two relations, total probability formula and (14), we obtain

(15). Theorem 2 is proved. a
Let G, (t) = (Zi%o)(to),&'g)(tl),.. (k)(tk)), where a0 (z )—\/ﬁ(f[n(x) —H(x)) L@ (x) =

=n (f[n(m,z) - H(x,z)) , (7;i) € R x 3. We will prove an approximation theorem of the
vector-valued modified empirical Kac process a,(t) by the appropriate Gaussian vector-valued
process W) (t),t € R*"" from Theorem 2.

Theorem 3. Let {T,,n > 1} be a numerical sequence satisfying for each n the condition
T, < Ty =inf{x: H(x) =1} < oo such that

. logn 1/2
in { P(A®) — H(T,,,i)} >1- H(T,) > 2~ . 18
win {PAO) - BT, 00} > 1- 1T, > 2 (T (18)
If for any e > 0 condition (12) holds then on the probability space of Theorem 2 one can define k+
1 sequences of mean zero Gaussian processes w (z), T(Ll)(x), ce ,S’“’( ) with the covariance

structure (9) such that for a,(t) and Wi(t) = (WT(LO) (to), Wy(bl)(tl), N A% (tk)) we have

p{ sup  |[an(t) = Wre)|*T > Cn2 logn} < Kn*, (19)

€ (—o00;T,] v+
where K is an absolute constant, C = C(¢) and f = min (r,cw) for any ¢ > 0.

Proof. Tt is easy to see that probability in (19) can be estimated by the sum

P{ sup @@ (x) — W,(LO)(:L")‘ > Cn? log n} +

z<Ty

(20)

+ZP sup [a (@) = W (@)| > Cn logn ) = qun + an.
Ty

Taking into account that for any z < T,, Hj(x) < H}:(T,), and if HX(T,) < 1 then
a (x) :E%O)*(x). Using formula of total probability, we have

qin < P < sup ‘Zi,(lo)(ac) —w (x)‘ > C*n e logn/HfL(Tn) < 1) +P(H(T,) >1) <
z<Ty

- P( o (@) - W ()| > C*nélogn> +P(HL(T) > 1) <
z<Ty
(21)

< Kn™" + P (H;(T,) — H(T,) > 1 — H(T,)

1

1 2

<K'n"+P ( sup |Hy(x) — H(z) (T Ogn) )
la]< o0 2wn
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where Theorem 1 and the analogue of (14) for H — H, L = K*+ 4 are used. Analogously,

a®(z) - W}j)(x)‘ > Cnt logn) +§k: P(H;; (Tn;i) > P (A@))) <
=1

a\*(z) — W(i)(z)‘ > C*n3 logn) +

k
+ZP < sup ‘aﬁf)*(x) - W(i)(m)‘ > C*n2 logn> +

|z|<oo

+ kP

n — 1 (4rl
|v n|>(rogn

3
) ) < kLn™" 4 2kn™",
n 2

2wn
where inequalities (13), (15) and Theorem 1 are used. Now (19) follows from (21) and (22).
Theorem 3 is proved. g
3. Estimation of exponential-hazard function

In many practical situations when we are interested in the joint behaviour of the pairs
{(2,A9) i € 3} the so-called cumulative hazard functions {S®(z) = exp (—A®(2)), i € S}

plays a crucial role. Here A()(z) is the i-th hazard function ( =7
—00 (—o0;z]
A® — el S AV S
@) /_OO 1—H@’ '

where A0 (@) + - + AW (&) = A(w) = %

4t H(z). -

Let us consider two important special cases of the considered generalized censorship model:

is the corresponding hazard function of

1. Let {X1,Xo,...} be a sequence of independent r.v.-s with common continuous d.f. F.
They are censored on the right by a sequence {Y7,Ya,...} of independent r.v.-s. They
are independent of the X-sequence with common continuous d.f. G. One can only observe
the sequence of pairs {(Z,d;),k =1,n}, where Z; = min (X;,Y;) and §; = 551) is the
indicator of event A; = A;l) ={Z;=X;}. Inthiscase k=2, 1 — H(z) = (1 — F(z))(1 —
G(z)), H(z;1) = [ (1-G(u))dF(u). Thus SM)(z) = S(x) = 1 — F(x). The useful special
case is 1 — G(z) = (1 — F(x))?, B8 > 0 which corresponds to independence of r.v.-s Z; and
05,7 = L.

2. Let us assume that k& > 1 and consider independent sequences {Yl i), 2(1')’.”} (i =
1,...,k) of independent r.v.-s with common continuous d.f. F. Let Z; =
min (Yj(l), . ,Yj(k)). Let us observe the sequences {(Zj, 5](7)) ,i=1, k} -, where 5](7)

is the indicator of the event Ag-i) =

= {Zj = Yj(i)}. This is the competing risks model with S (z) =1 — F®(z), i € 3.
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Let us define the natural Kac-type estimator

0 T dH (u:i
AD (@) :/ AHwD) g
—o 1 — Hn(u)
of AW (z), i € 3. Let wﬁf)(a:) =./n (KSZ)(QS) —A® (x)) , 1 € S, is an Kac-type hazard process,
wn(t) = (w;”(tl),.. (k)(tk)>, t = (t,... 1), and Yp(t) = (y,i”(tl),...,y,i’“)(tk)) is the

corresponding vector process with

; T W wdH (i) Wi (@) W wdH )
W@ = i Ay 1w ). aomwe e €8

—00 — 00

and {Wr(LO) (z), W,(Ll)(x), I A% (x)} are Wiener processes with the covariance structure (9).
Then fori € 3, EY,\” =0 and

where z,y < Ty =inf{x: H(z) =1} < o0

Theorem 4. Let {T,,n > 1} be a numerical sequence satisfying for each n the condition T,, < Tx

such that 2 2
2 2
n > max {32511)2, "On , 6”} , (23)
logn w w
where b, = (1 — H(T,))™!, € >0, r >2. Then
P sup  [wa(t) = Yu@®)|® > r(n) | < k®inF, (24)
te(—oo;Ty |k

on a probability space of Theorem 2, where r(n) = <I>0bin_% logn,
Phig = ®g(e,r), ®1— are absolute constants.

Proof. Tt is sufficient to prove that for each i € &

P <sup (w§;‘> (z) — Y, (x)) > r(n)) < Oyn P (25)

x<Ty

We have representation for each 7 € & for difference
i i o (@) - W W) dH(w1) 50 () - W (@)
we) =@ = [ T Lt
) /x (aﬁﬁ (u) — Wff)(u)) dH(w) /y (a“s?)(u))z dH (u; 7)
’ a—Hme—mwo

+

o x ~(0)( )JV(Z')( .
o /_00(1—H())(1—H (u)) ZR()

Using (15) and (19), we have for sum R(i) () + Rég (z) + Réﬁ(z)
su R
<w<7£)n Z mn

m=1
<3Kn P +2Ln " < 3K +2L)n %, ieS.

> 3Cn~ 210gn+5n 2b3 logn | <
(26)
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Rewrite Rgz in the form

R(i) () = n—% /x (5%0) (u))2 d(];](u; i) i H(u;i)) N
N .

z  ~(0) (4) A o
-3 M 1) . —(1) .
o [m (1— H(u))2 =Ry, (x) + Ry, (x).

-

Then taking into account (15), we obtain for i € &

P ( sup |Bo) (z)] > 2en~ 382 log n) < 2Ln~v¢ < 2Ln~". (28)
z<Ty

There exists an absolute constant A such that

P (sup Eg(x) > 3An_%bi log n) < P(HNT,) >1)+

z<Th
1 ap’ (u)day’™ (u) _1,9 _
+P Sunz/ —————— =1 >3An"2b  logn | < Ln~" + p,,
<$ e (1= H() nos o

so that for any = < T, H(z) < H}:(T,) and if H}(T,) < 1 then H}(z;i) < H}(T,) and

hence Zigf)(x) = a" (x) for i € Q. It is sufficient to estimate probability p,. According to

proof of Theorem 1 in [6], supposing al(,n)( ) = vn(H} (x) — H(x)), al(fr?( ) = Vo (H) (2;1) —
H(z;1)), ¢ € § and using representation (10), we have p,, = p1,+ pPan+ Psn+ Dan, Where
x 0
/ aly) (u)day’) (u)

_P( ol ) (U= H(w))?

p2nzp< [ =l
n N 2<T,
x
n n - du
p3n:P< fon Jvn=nl | [T Hda, ()
noon ach o (1— H(u)’

o= p( ety { [ BlAIY

Taking into account Lemma in [5], we have
T d b
(| [ 000
2<Tn | o (1= H(u))’

where A = A(e) and B is an absolute constant. Moreover, using (13), we have

n — ]. _ 2nw
P ("/n” > 2> < 2n TR (31)

> 3An"2 b2 log n)

\%

/I ayw( YdH (u; 1)
—oo (1= H(u))?

> Ab2 log n) < Bn7E, (30)

It follows from (30) and (31) that

logn

3 — 1
S AR log 18T My, 30 p(lm =l 1Y
logv, 2 2 n 2

/r at? (w)da$? (u)
e (1— H(u))’

/ " aly) (u)dall) (w)
—oo (1—H(u ))

Pin=P < sup
@<

< o~ Tosn + P (sup > Ab2 log Vn> + on " Togn <

z<Th
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/m agfi)(u)dagﬁ?(u)
e (1= H(w)?

oo
<e "+ Z P | sup
m=1 z<Ty

> Ab2 10gm> P(v, =m) + on " ToEn <
L = m nw. ~
<emom B 1 BY me Dot <ot 2 B 4 B (32)

m!
m=1

Analogously, using (31) and (1), we obtain

12 Up —N
pon =P ”7_ = |sup
n n x<Ty

— 1 nw
+P ('V"n' > ) <2 TEm 42T 4 P ( sup
n

/m aly) (u)dH (u; i)
o (1 H(u))?

3
> < (3) n_%bilogn, g <y, < 3”) +

2\2 2
)<

<2 TEn 427 e + DnoE (33)

Nl

a,(j(i (m)‘ > (% log Vn)

2 |z|<oo

Integrating by parts and using (2), we obtain

|z|<oo

Pan < 207 En 4 2pwE 4 P ( sup |al) (x)’ > (2¢log Vn)é> < (34)
< 2n7% +2n""  +e " +2Dn"E.

Finally, using (13), we have

n 1 3
Dan < P (|V T " > 3 (glogn) 2) < 2n7vE, (35)
n2

Now combining (26)-(29) and (32)-(35), we obtain (25). Theorem 4 is proved.

Corollary 1. It follows from (24) that for suitable r > 2 and € > 0 one can obtain an approxi-
mation on (—oo; T)®) with b= =1~ H(T) >0 :

sup  |lwn(t) — Yn(t)||(k) “0 (n_% log n) , n=2. (36)
te(—o00sT](k)
Now we consider joint estimation of exponential-hazard functions

{SWz) = exp (~AD(z)), i € I}. Let us consider hazard function estimate

An(z) = / T A

—o 1 — Hn (U)
and corresponding hazard process w®) (x) = /n (A, (z) — A(z)). In the next Theorem 5 we
W,
approximate w'.) (x) by sequence of Gaussian processes v, (x) = = H((x:c))

Theorem 5. Let {T,,,n > 1} be a numerical sequence that satisfies the condition T,, < Ty for
each n such that (23) holds. Then on a probability space of Theorem 2 we have

P <sup ‘wﬁlo) (x) —Y,©) (x)‘ > ro(n)> <Uyn P, (37)

z<Tn

where ro(n) = q)obfln_% logn and ®g = Py(e,r), U1 are absolute constants.
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Proof. 1t is easy to verify that

5%0)17— éo)x
(@ @) - w, <>)+n

wi (@) = YO (2) = 1— H(x) —oo (1 — H(u))* (1 - ﬁn(“))

n

D=

+n

/w a2 (w)dal? (u)
—oo (1 — H(u)) (1 - ﬁn(u)> '

Now further proof of (37) is similar to the proof of Theorem 4 and hence details are omitted.
Theorem 5 is proved. O

One can obtain from Theorems 4 and 5 the following theorem on deviations of processes w%o)

and wg), 1€ 3.

Theorem 6. Let {T,,n > 1} be a numerical sequence that satisfies for each n the condition
T, < Ty such that (23) holds. Then

P ( sup ‘wﬁlo)(x)‘ > ro(n) + 2b, (e logn)5> <Un P 4nE, (38)
z<T),
and fori € ¥
P ( sup ‘wﬁf)(a))‘ > 1o(n) 4 6b2 (g log n)é> <Un P +3n7". (39)
z<T)y,

Proof. 1t is easy to verify that for any n > 1
WO (2)2W (H(z)) and WO (@)2W (H(z;9), (2;1) eR xS,

where {W(y),0 < y < 1} is a standard Wiener process on [0, 1]. Then probability in (38) is not
greater than

P ( sup ‘wg‘”(x) v\ (x)‘ > ro(n)) +P (sup

z<T), z<Ty

Yn(o)(x)‘ > 2b,, (¢ log n)%) <
1 (40)
<Un P+ P (|W(1)| > 2 (slognﬂ) <Uin P 4ne,

where inequality (37) and well-known exponential inequality for Wiener process (see [14],
Eq. (29.2)) are used. Analogously, (39) follows from (25) and the second estimate in (40).
Theorem 6 is proved. a

To estimate the exponential hazard functions {S®(z) = exp (—A®(z)),i € I} we use the
following exponential of Altshuler-Breslow, product-limit of Kaplan-Meier and relative risk power
estimates of Abdushukurov ([1-3]):

S’&) () = exp (—Agf)(x)) ,
S5 (@) = Te, (1AM (@) (41)
S (@) = [1 = Hy ()™ @,

where R (z) = AV (2)(An(2))7L, i € Q.
It follows from the proof of Theorem 1.4.1 in [3] that for all (z;i) € (—o0,Z,)) x S,
Z(py = max(Z1,...,Zy)
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0< 800 - s < g [ o (1),
—oo (1 — H,(u) (12)
0< 500 - s < g [ eliero (1),
n (1 _ n(u)) n

— 00

Hence it is sufficient to consider only estimator S&) Let us introduce vector-processes
Qult) = ( D), ..., ;“(tk)) and Q%(t) = ( WOy, .., Ef)*(tk)), where Q%(z) =
=/n (sﬁjf (z) - s@)(x)) and Q7% (z) = SO ()Y, (z), i € &.

In the next theorem vector-valued process @, (t) is approximated by Gaussian vector-valued

process Qz (1), t € R¥.

Theorem 7. Let {T,,, n > 1} be a numerical sequence that satisfies for each n the condition
T, < Ty such that inequality (23) holds. Then we have on a probability space of Theorem 2

P( sup  [|Qu(t) — Qi)™ > r*<n>> < kR*n?, (43)
te(

_00§Tn](k)
1 1 1\2 .
where r*(n) = {ro(n) + onE (r(n) + 6b2 (elogn) 2) } and R* is an absolute constant.
Proof. Using Taylor expansion for each i € &, we obtain
, , . 1 , , 2
(@) = SO @) (@) + 5n~E exp (60 @) (w @)

where 85 (z) € [mm (Aﬁf) (z), A®) (g:)) , max (Aﬁ? (z), A®) (a;))] Now using (24), (38) and (39),
we obtain the required result. Theorem 7 is proved. O

4. Estimation of characteristic function under random right
censoring

Let X1, Xo,... be independent identically distributed r.v.-s with common continuous d.f.
F. They are interpreted as an infinite sample of the random lifetime X. Another sequence of
independent and identically distributed r.v.-s Y7, Ys,... with common continuous d.f. G censors
on the right is introduced. This sequence is independent of { X;}. Then the observations available
at the n-th stage consist of the pairs {(Z;,5;),1 < j < n} = C", where Z; = min(X;,Y;) and
d; is the indicator of the event A; = {Z; = X;} = {X; <Y;}. Let

Clt) = / et p ()

— 00
be the characteristic function of d.f. F. The problem consists in estimating of d.f. F from

censored sample C(™). In some situations it is more desirable to estimate C(t) rather then
F. We consider estimator for C'(¢) in this model as Fourier-Stieltjes transform of estimator

F,(z)=1—Si,(x)=1—exp (—Agll)(x)) :

Cn(t) = / e dF,(x), teR.

—0o0
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It follows from (39) that when n — oo

sup |Fa(z) — F(a)] 20 (bi & é) , (14)

z<T),
where b1 =1 — H(T,). It also follows from (44) that when n — oo
1= Fy(T,) =0 (1= F(Ty)), Fu(=T,)=0(F(=T)). (45)

It is obvious that A, (7)“30 when n — oo for any 7 < oo, where A, (1) = sup |C,(t) — C(t)|.
ltI<r
Let us consider quantity A,,(7,) for some special numerical sequence 7,, that tends to 400 when
n — 0o.
In the following theorem we prove result of uniform convergence for the empirical character-
istic function.

Theorem 8. Let {r,,n > 1} be a numerical sequence that tends to +oco slowly when n — oo.
Then, A, (1,)%30 when n — oco.

Proof. Let us choose a sequence {7,,n > 1} such that when n — oo

%
An = Max {1 — F(Ty), F(=T,), b27 T}, <1°g") } -0, (46)
n

where {T},, n > 1} is a sequence that satisfies condition (23). Introducing the truncated inte-
grals

b (1) = / AR, (2), ba(t) = / 2| < The*=dF (z)
|z|<Ty |

and introducing d,, (t) = b, (t) — by (t), we have that

Ap(1n) < sup |dn(t)| + sup [b,(t) — Cpn(t)| + sup
[t|<Tn [t|<Tn [t|<Tn

ba(t) — C’(t)‘ . (47)

Integrating by parts, we obtain

sup [dn(t)] < sup / ¢ d (Fy(x) — F(x))| <
‘tlg"—n ‘tlg"_n |t‘<Tn
< sup [|eim{ |Fy(z) — F(x)ET% ] + sup it/ e d (F,(z) — F(z))|dz < (48)
[t1<Tn T | Jlel<Tn
<21 +27,T,) sup |Fn(x) — F(2)|.
|| <Ty
On the other hand,
sup |bn(t) — Cn(¥)| < sup / |eit”‘ dF,(z) < 1— Fo,(T,) + Fo(—T3) (49)
‘tlg"'n ‘tlng ‘$|>Tn
and
sup |by(t) — C(t)‘ < sup / e[ dF (z) < 1= F(T,) + F(=T). (50)
[tI<Tn [tI<Tn J 2| > Ty
Now adding (44)—(50), we have that A, (7,) O(y,), n — oco. Theorem 8 is proved. O
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O06 ammrpokcmManuu MIMpUYecKnx mmporeccos Kama B oo1eit
MOJEJN CJIYy4YaiiHOrO IEeH3ypPUPOBaHMSsI

Abnypaxum A. AbaynryKyposB
QPuyman MocKOBCKOro rocy1apCTBEHHOIO YHHUBEPCHTeTa B TallkeHTe
Tamkent, Y30ekucran

I'ynbnaz C. CaitdynioeBa
HagBowuiickuit rocyjapcTBEHHBIN eJarornIecKuii ”HCTUTY'T
Hagowu, ¥Y3bekucran

Awnnorarusi. B crarbe paccMaTpuBaercst o0IIasi MOJIENb CJIYYafHOTO IEH3YPUPOBAHUS U JTOKA3BIBAIOT-
Cs Pe3yJIbTATHI AMMPOKCUMAIIMH JJIsT SMIMPUIECKUX MporeccoB Kara. DTa MOe b BKIIIOYAET B cebs
TaKue BayKHble CIlel[iaJIbHbIe Ciy4ad, KaK CilaydaliHoe IeH3ypHpOBaHue CIipaBa U MO/IeJIb KOHKYPHUPYIO-
MUX pUCKOB. Hallm pe3ysbTaThl BKJIIOYAIOT B CeOsl TEOPUIO CHJIBHON allIpOKCUMAIIUN, ¥ HAMH MTOCTPO-
€HBl ONTUMAJIBHBIE CKOPOCTHU AIMTPOKCUMAITNN. TaKKe HMCC/IEIOBAHbI KyMYJISTUBHBIE IIPOIECCHI PUCKA.
OTH pe3ybTaThl UCIOJIb30BAHBI JIJIsl OIEHUBAHUS XaPAKTEPUCTUIECKON (DYHKIIUU B MOJIEJIN CJIyIaiiHOTO
IIEH3YPUPOBaHUS CIIpaBa.

KuroueBrblie cJi0Ba: IeH3ypUPOBAHHDIE IAHHBIE, KOHKYPUPYIOIINE PUCKH, SMIIMPUIECKIE OIEHKH, OIIE€H-

ka Karma, cuibHas anmpokcuMarins, rayCCOBCKUE IIPOIECCHI, XapaKTePUCTUIeCKasd PYyHKIH.
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Introduction

In the present article, we deduce explicit variational formulas for a solution vector and
for the elements of its monodromy group to a third-order ordinary differential equation on a com-
pact Riemann surface of genus g > 2 with respect to a variation in the spaces of quadratic
and cubic holomorphic differentials. These theorems are a continuation of results by D. Hejhal,
V. V. Chueshev, and M. I. Tulina.

In [1-3], D. Hejhal began to study the dependence of a solution vector and the generators
of the monodromy group of the equation on small variations in the space of holomorphic differ-
entials.

Variational formulas found applications in the theory of Teichmiiller spaces in connection
with the uniformization of compact Riemann surfaces (see [3—4]).

The coefficients of a third-order differential equation on a compact Riemann surface must be
the quadratic and cubic differentials at the corresponding derivatives (see [5]).

In the previous papers [4,6, 7|, a compact method was proposed for deducing the variational
formulas for the vector solution and the elements of its monodromy group with the use of matrix-
vector notation.

In the present article, we obtain formulas for the first variation with respect to a basis
in spaces of holomorphic cubic differentials for a solution vector and the monodromy group
on a compact Riemann surface for a third-order linear ordinary differential equation with any
holomorphic coefficients. Moreover, we find explicit variational formulas for a variation in spaces

*chueshev@ngs.ru  https://orcid.org/0000-0002-7185-7736
© Siberian Federal University. All rights reserved
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of holomorphic quadratic differentials for a solution vector as well as the formula for the first
variation of the solution vector for a variation with respect to a basis of quadratic holomorphic
differentials on a compact Riemannian surface of genus g > 2.

1. Preliminaries

Let F' be a compact Riemann surface of genus g > 2, D be an open disk on the plane C.
Denote by I' a Fuchsian group of the first kind uniformizing F in the disk D, i.e., F'is conformally
equivalent to D/T.

Consider an linear ordinary differential equation

d™v d" 2%y d" 3w

g et g t el Es

where ¢;(t) is a meromorphic function on D, j = 2,...,n. Equation (1) has Fuchsian type on F'
if it has only regular Fuchsian points and is preserved after the change of variables

+- -+ ¢ t)v=0,teD, (1)

n—1

w=uv(s)L'(t) =, (t,v) = (s,w), s=L(t), L eT. (2)

A solution vector is a column-vector consisting of a basis in the space of holomorphic solutions
to an equation with holomorphic coefficients. Holomorphic differentials of order ¢ have the form
®(z)dz? and are invariant under a change of coordinates on the surface, i.e.,

O(Lz)L'(2)7 = ®(2), z€ D, LeT.
Denote by Q4(F) the vector space of holomorphic ¢-differentials on D/T', where ¢ € N (see [5]).

Lemma 1 ([2,3]). Suppose that a column vector U(t) consists of n linearly independent solutions
to equation (1) on F = D/T. Then the equality

U(Lt) = x(D)U ()", LeT, &u(t) = VL/(t), 3)

uniquely determines the monodromy homomorphism x : I' = GL(n,C) defined by the mapping
L— x(L), LeT.

The monodromy group of equation (1) is the image x(I') of the group I'. This is a matrix
group describing the multivaluedness of a solution vector.
Note that for n = 2 the variation is possible only with respect to one coefficient of the equation

ul?(2) + (Qo(2) — pr(2))u(z) = 0.
For n = 3, for the equation
u®(2) + (Qu(2) = Ag(2))uM (2) + (Ro(2) — pr(2))ulz) = 0 (4)

we have already three substantially different variations: (1) with respect to r, i.e., with respect
to u, in the space of cubic differentials; (2) with respect to g, i.e., with respect to A, in the space
of quadratic differentials; (3) with respect to r and ¢, i.e., with respect to A and p.

Let U(z) = (u(z),v(2),w(2))T be the solution vector to the Cauchy problem at a point
z0 €D,

u(2o) 1 u'(20) 0 u(20) 0
v(zg) | =1 0 ], v'(zg) | =11, v"(z) | =101, (5)
w(zp) 0 w’(z0) 0 w” (2p) 1
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for the unperturbed equation, i.e., for A =0 and g = 0.

Put
v v w
W)= « v W |, W(x)=E,
1 " w//
0 v w vow vow
W@ =| 0 o o |=f0H Y Y === b
f ,U// 1
Y v U w U w
Wa@)=| w0 W =17 Y Y =l =n)=r] b
1 f w//
v ov 0 U v U v
W3(.’L‘) =] u 0= f(_1)6 ’ r | = [f = rw] =Trw / /
12 1 f‘ U U
Then
Wi(2) 0 0
Viz) = 0 Wa(2) 0 ,
0 0 Ws(z)

is a solution to the Lagrange adjoint unperturbed third-order equation on D/I. It is known
from [3] that it satisfies the equality

V(Lz) = £0(2)°V(2)x(L)™!, LeT, &n(z)=+/L'(2), z€ D.
2. Expansion of the solution vector in a series under
variation in the space of quadratic differentials
Consider the perturbed vector equation
U (2) + (Qo(2) — Aq(2)) UM (2) + Ro(2)U(z) = 0, (6)

where A € C, || < ¢, ¢ is a sufficiently small number, and ¢(z)dz? is a nonzero holomorphic
differential on D/T.

Denote by
u(z; \;0) 0 0 u(z; A;0)
U(z;X;0) = 0 v(z; A; 0) 0 = | wv(z;A;0)
0 0 w(z; A;0) w(z; A;0)

the solution vector to the Cauchy problem (5) at a point zy for the perturbed equation (6).
By Poincaré’s small parameter method and the Cauchy—Kovalevskaya theorem, expand the so-
lution vector in the Taylor series

U(z;0;0) = U(2) + AUio(2) + N2Uso(2) + ...+ N"Uppo(2) + . . .,

convergent for |\| < €,z € D (see [2; 3]).
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Inserting this series in (6), we obtain the infinite system of differential equations in vector-
matrix form

UG (2) + Qo(2)UM(2) + RoU(2) =0,
U0 () + Qo(2)U)g (2) + Rolno(2) =q()U)(2),
Usy) (2) + Qo(2)Usy (2) + RoUso(2) = q(2)U3) (2),

Uﬁ()+@d) UG (2) + RoUno(2) = a(2)UY, o(2),

Theorem 1. The solution vector
U(S)(z) + (Qo(z) — )\q(z))U(l)(z) + Ro(2)U(2) =0

with condition (5) on a compact Riemann surface F' of genus g > 2 satisfies the explicit varia-
tional formula

U(z;2:0) = [E +F Mo(2) + N2A1(2) 4.+ N A1 (2) + .. .]U(z),

where z € D, || < e,

Az) = g(2)UD (2)V (2), D(x) = q(x)U (x)V (), Ao(2) = / A(z)dz,

Z0

An2) = / Z [A(@) D" (@) + Ag(2) Aw) D" (2) + Au () A(2) D" ~*(2)

20
bt An_a(2)A(x)D(z) + An_l(m)A@)} dz,
and E is the identity matriz of order 3.

Proof. Find the solution to the second equation of the system by Lagrange’s method of variation
of constants:

caaz>:u/zaxﬂﬂ”cmVLwde@»

z0

If n =1 then Ulo(Z) = Ao(Z)U(Z)

For n > 1, denote by Uyo(z) = An—1(2)U(2), where
20

Aa(2) = [ a@U, @)V (@)
For n = 2, we have Uso(z) = A1(2)U(z). On the other hand,

Uso(z) = A1(2)U(2) Z/Z a(@) ULy (x )V(fv)dwU(Z)=/Z(J(x)[Ao(w)U(ff)};V(fﬂ)de(Zl

20 Z0
It follows that

m@zfﬁm&mmmwmmz

20
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z

:/ZA(x)q(x)U(x)V(x)dH/ Ao(2)q(z) UMD (2)V (z)dx =

. / " A(@)D(w)dz + / " Ao (2) A(x)da.
Thus, . .
Ugo(z):< / A(z)D(z)dz + / Ao(x)A(x)dx)U(z).

20
For n = 3, we have the equality Usp(z) = A2(2)U(z). On the other hand,

!

Uso(z) = A2(2)U(z) = /Z q(:v)Uz((l))(x)V(a:)de(z) = /Z q(z) [Al(a:)U(sc)} V(z)dzU(z),

x

where

1) = [ a@[a10)0@)] Viers = [ o) [i@06) + A@UO @]V -

+ / " (@) [Al (x)UU)(x)V(m)dx] - / ’ {A(x)m(x) + Ao(2)A(z)D () + Al(x)A(x)}dx.
Therefore,
As(z) = / ’ [A(a:)DQ(x) + Ag(2)A(x)D(x) + Al(x)A(x)] dz

and

ao(z) = ([ [A@D*@) + +400)A@D() + Ar(0) )] e ) U(2).

By the induction assumption, for n = m we have the equality
An(z) = / [A(x)Dm(x) + Ag(2)A(z)D™ V() + Ay () A(z) D™ 2 (x) + ...+ A1 (2) A(z) | da.
z0
Prove this assertion for the case n = m + 1. We have

Uni1.0(2) = A (2)U(2) = / ’ q(2) U (2)V (2)daU(z),

20

where
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z

= /z q(z)A(z) D™ Y (2)U (2)V (z)dx —|—/ q(z)Ag(2)A(z) D™ 2(2)U (2)V (z)dx+

20 20

+ / () A1 (2) Al) D (@)U (2)V () dat

20

z

+...+/Z q(x)Am_g(z)A(x)U(:ﬂ)V(fc)d:E+/ Ap—1(2)Az)dz =

20 Z0

_ / ’ [A@@)D™ (@) + Ao () Aw) D™ (2)+

FAL@)A@) D™ (@) 4+ A2 (@) A@)D() + A () A)] e

Consequently, by induction, we have proved the formula for the matrix A,, for any n.
Let us now introduce the explicit variational formula with respect to A for the solution vector:

U(z;0;0) = U(2) + AU (2) + AN2Us(2) + ... + XN'Upo(2) +
=EBU(2) + Mo(2)U(2) + A1 (2)U(2) + ...+ N"A,_1(2)U(2) + ...
=B+ Mo(2) + N2A1(2) + .+ A" A1 (2) + .. .]U(z).

Thus, the theorem is proved.

Remark 1. This theorem gives an explicit vatiational formula for the solution vector, i.e., all
the variational terms of any order or the whole Taylor series in A under variation with respect
to one holomorphic differential in Q2(F).

Proposition 1. Let qi(2)dz?,...,q35—3(2)dz? be a basis of quadratic holomorphic differentials
on F = D/T of genus g > 2. Then the perturbed equation

39—3
U®(2) Z 2ig;(2) U (2) + Ro(2)U(2) = 0

with condition (5) satisfies the formula for the first variation of the solution vector

39—3
U(2; A1, -5 A3g-3;0) = [E + Z )\jAo;ej(Z)} U(2) +o(A1, ..., Azg—3),
j=1
where |\j| = 0,7 =1,...,3g =3,z € D, Age, (2 qu 1)V (z)dx

Proof. Since the coefficient at the first derivative depends holomorphically on A = (A1,. .., A34—3),
the solution vector to this equation is representable as

3g—3
U(Z;)\l,.. )\3,] 37 Z /\ UlOeJ ()\),
|Aj] = 0,4 =1,...,3g — 3. Here e; is the vector whose jth coordinate is equal to 1 and all

the remaining coordinates are zero. Now, put d = 3g — 3.
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Inserting this expression in the equation, we obtain the vector equality

39—3

Uz E:AUme +0(0) + (Qo=) = M (2) = - = Aaaa(2)) %

3g—3 3g—3
< UM (z Z AUS o, (2 (A)) + Ro(z < Z AiUiose, ( ()\)) =0.
Note that here the followmg conditions are fulfilled:
UlO;ej( 0) = U1o i€ (20) = Ul(g)e] (20) =0, j=1,....d
Hence we obtain a system of vector linear differential equations of the form
U (2) + Qo(2)UM(2) + Ro(2)U(2) =0,
Ultre, (2) + Qo(2)Uol, (2) + Ro(2)Uhone, (2) = ()0 (2), = 1.....d.
For each j, j = 1,...,d, solve the equation by Lagrange’s method of variation of constants:
G, = | [ @U@ (@] 012).
20
Put A4;(z) = ¢;(2)UN(2)V(2) and
Apse; ( / Aj(z)dz, j=1,...,d

This gives the equality Uio,e,;(2) = Aose; (2)U(2), j = 1,...,d. Therefore, we have the formula
of the first variation of the solution vector:

U(Z; ALy, )‘Sg—S; O) = U(Z) + >\1A0;€1 (Z)U(Z) +ot )\dAO;ed (Z)U(Z) + 0()‘17 AR >\39—3) =

= [E + )\1A0;el (Z) + -+ )\dAO;ed (Z)] U(Z) + 0()\17 ey )\39,3),

A1 — 0,...,A39—3 — 0 under variation with respect to a basis of quadratic holomorphic differ-
entials on a compact Riemann surface of genus g > 1.

3. Elements of the monodromy group under a variation
with respect to a basis of cubic differentials

Consider the perturbed differential vector equation

m
V(2) + QoUW (2) + (Ro(2) = Y uyry)U(2) = 0. (9)
j=1
on the surface F = D/T', where ry,...,7, is a basis of cubic holomorphic differentials

in the space Q3(F), m = 59 — 5, u = (u1,...,um). As above, denote by U(z;0;u) =
= (u(z; 05 ), v(z;0; ), w(z;0; )T three linearly independent solutions to the Cauchy prob-
lem at a point zg defined by the conditions

U(20;0,1) = (1,0,0)"; UM (20;0, 1) = (0,1,0); UP (20;0, ) = (0,0,1)7, (10)
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for every p. By the Poincaré’s small parameter method and the Cauchy—Kovalevskaya theorem,
we have the solution to (9) in vector form

U(Zv 07 Hiy--, ,Ufm) = U(Z) + Z.u“kUOI;gk(Z) + 0(:“‘1) DR ,U'm)a
k=1

where pq, -, i, — 0.
Inserting the last expression in (9), we obtain the vector equalities

U (2) + UGk (2) + -+ U, (2) + o(p)+
+Qo(2) UV (2) + U, (2) + -+ + Ut (2) + o(p))+
Zum )+ Uiz, (2) + -+ + mUorz, (2) + o(1) = 0.

Note that the followmg conditions are satisfied:
Uiz (20) = U)o, (20) = Usts, (20) =0, k=1,...,m.
From this we obtain the system of vector linear differential equations
D(2) + Qo(2)UM (2) + Ro(2)U (2) = 0;
Ul

01; ek( )+Q ( ) 01; gk( )+R0( )U01;€k(z):7"k(z)U(Z)a k=1,....m

For each k,k = 1,...,m,, solve the second equation by Lagrange’s method of variation of con-
stants

Uoriz, (2) = / (U BV (At (2).

Zo
Introduce the notations

Bi(z) = r,(2)U(2)V (%), Bog, (2) = By(t)dt, k=1,...,m.
Hence, we obtain the equalities

UOl;gk,(Z) = Bo;gkU(Z), k= 1, e,

Thus,
U(z:0; 1, - i) = U(2) + > e Boz, (2)U(2) + 0(pa, . -, fim)
= |:E + Z/’(‘kBO;gk (Z):| U(Z) + O(:U’17 e a/j/m)a
k=1
where p1, -+, ttyn — 0.

For deducing the variational formulas for the elements of the monodromy group, we must
express Upi.e, (Lz) through U(z) and the coefficients of the equation. We infer

Lz

Bk(x)dx] U(Lz):[ ZLZO Bi(x)dz + LZBk(x)dx}U(Lz):

0 Lzo

Uoig, (L2) = [

0
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= Boz, (Lz20)X(L)U (2)€L(2)? + €L(2)*X (L) Uiz, (2)

Lz

; By(2)x(L)dz€r (2)°U(z) =<z = Lt >= /Z Bi(Lt)x(L)dLtEL (2)°U(z) =

-/ (IOU OV (LX) ()t (2)°U (=) =
= [ nZ @ P EOMDUOL VO OADL (0dign (20 () =

=x(L) / r UV ()dter (2)°U(2) =

= X(L)Boe, (2)61(2)*U (2) = (L)€L (2)*Unize, (2).

Using the above-proven equality for Upyg, (Lz), deduce the first-order variational formula
for the elements of the monodromy group:

€0(2)°X(L; 0; U (203 p) = U(L2; 05 ) = U(Lz) + > pxlonizy, (Lz) + o(p) =
k=1

m

= X(L)U(2)éL(2)* + ) il Boga, (L20)X(L)U (2)€1.(2)* + x(L) D mloney (2)6(2)* + o(p) =
k=1

k=1

= X(D) [U(2:0: )€ (2)? = 0L (2)%|+ D paBoz, (Lao) X(D)U (2)61()* + o) =
k=1
= X(L)U (205 )€1 (2)* — x(L)o(p)ér (2)*+

+ D i Boga,, (Lzo)X(L)[U (2 05 €L (2)° — o(1)éL(2)?] + o) =
k=1

= x(L) [U(Z; 0,p) — 0(#)} €0(2)” + Y e Bose, (L20)X(D)U (2; 0, )€ (2)°—
k=1

- Z 1k Boz, (Lz0)x(L)o(1)¢L(2)? + o(p) =
k=1

= X(L) + Y meBos, (L20)x(D)]U (20, p)€x(2)° = x(L)o()U ™" (230, U (23 0, p)ér (2)*—
k=1

— > ik Bog (Lz0)x(L)o()U (2.0, )U (20, )€ (2)* + o(p).
k=1

Hence we obtain a formula for the first variation of the elements of the monodromy group:

X(L; 05 1) = [E + Y urBog, (Lzo)} X(L) = o(p) = o(p), p— 0.
k=1

Thus, we have proved the following theorem:
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Theorem 2. The following variational formulas hold for the solution vector and the elements
of the monodromy group of equation (9) perturbed with respect to the basis of holomorphic cubic
differentials vj, 7 =1,...,m = 5g — 5, with normalization (10):

U(z:03 1, ., pim) = [E + 1 Bog, (2) + -+ + mBogz,,, (2)|U(2) + opa, .., fim)

and
m

X(L; 05 p) = [E + Y 1k Bog, (Lzo)} X(L) + ofp),
k=1

M1y s Bm HO? where
Bk(z) = Tk(Z)U( )V( BO ek / Bk dt k= ].

Remark 2. These variational formulas show how the generators of the monodromy group
X(A1),...,x(Ay),x(B1),...,x(By) and the solution vector to the third-order equation depend
of the parameters (p1, ..., tm,) under a variation with respect to a basis of cubic holomorphic
differentials on F.

Now, consider the equation perturbed simultaneously with respect to A = (A1,...,Aq) and
to = (Mla'”vum)a

3g—3 59—5
U0 + (@l = X a5 )0 )+ (Rat) - 3wt )t =0
j=1
and the Cauchy problem at a point zy defined by the condition
U(z0; A1) = (1,0,0)75 UM (20 A1) = (0,1,0)7
U (203 A5 1) = (0,0,1)7, (12)
for any p and A.

Corollary 1. The solution vector to equation (11) with the Cauchy problem (12) satisfies the for-
mulas of the first variation

39—3 59—5

Uz Asp) = [E+ > NjAoe, (2 Z 11 Bose, (2 ] U(z) +0(A1, -5 Aag—3) +0(p1,- -, fisg—5),
j=1
)\1,...,)\39_3%0, ILL1,...,,U,5g_5*>O, where

4
Agie, (2) = / qj(a:)U:gl)V(m)dﬂc, j=1,...,3g—3,

20

Bow, (2) = / re(2)U(2)V (@)dz, k=1,....59 5.
)

Remark 3. The equality U(Lz)(L'(z))"! = x(L)U(2), L € T, means that the solution vec-
tor U(z) for the Cauchy problem at zg is the form of vector third-order Prym 1-differentials
on F' = D/T' with respect to the matrix character x of the group I" with values in GL(3,C),
or, more exactly, U(z) is a holomorphic section of the vector bundle y ® K !, where K is
the canonical bundle on F = D/T [5].

The research was supported by the Russian Foundation for Basic Research (Grants 15-01-
07906, 18-01-00420) and a grant of the Government of the Russian Federation at Siberian Federal
University (Contract no. 14.Y26.31.0006).
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Bapwuarmmonabie dpopMysabl TPynnbl MOHOJIPOMUNT
JJis ypaBHEHUsI TPEThero MopsjKa Ha KOMIIAKTHOMI
PUMAHOBOI MOBEPXHOCTH

Anekcanap B. UyemnieB
BukTop B. YUyemen

Kemeposckuit rocyjapcTBeHHbIN yHUBEPCATET
Kewmeposo, Poccuiickass ®eneparus

Awnnoranusi. B nanHOI cTaThe BBIBOAATCS sIBHBIE BapHAIMOHHBIE (DOPMYJIBI JJIsi BEKTOP-PEIEHUs U
JIJIsl JIEMEHTOB €ro TPYIIbI MOHOAPOMUHU OOBIKHOBEHHOIO UM @EPEHIINAIBHOIO yPABHEHUsI TPETHETO
MOPsIJIKa Ha KOMIIAKTHOW PUMAHOBOI TOBEPXHOCTH POJIa g > 2 OTHOCUTEJIBHO BApUAIlUU B IIPOCTPAHCTBAX
KBaIPATHYHBIX U KyOMIECKUX TOJIOMOPMHBIX U HEPEHITHATIOB.

KiiroueBsblie cjioBa: puMaHOBBI [TOBEPXHOCTH, yPABHEHUE TPETHErO IOPSJIKA Ha PUMAHOBON ITOBEPXHO-
CTH, BapHaIlMOHHBIE (POPMYJIBI, TOJIOMOPGHBIE i dDepeHITuaTIbI.
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Introduction

In recent years, many researchers have paid great attention to generalizations, extensions, and
variations of Minkowski’s inverse inequalities (see [1-7]). On the other hand, the convex func-
tions have a very useful structure in terms of properties and play an important role in inequality
theory, this class of functions has many applications in different branches of mathematics (func-
tional analysis, numerical computation, probability theory, etc.). Many inequalities and results
are obtained by the Jensen inequality, and many articles relating to different versions of this
inequality have been found in the literature.

In this work, we will establish two results on the reverse Minkowski type integral inequali-
ties, the first one involving Holder inequality with two parameters, Also, we will investigate a
second result via the Jensen integral inequality (convex function). Special cases will be given as
generalizations to some known results.

1. Model inequalities

The following inequality is well known in the literature as Minkowski’s inequality, it states
that, forp > 1, if

b b
0< / fP(z)dr < oo and 0< / gP(z)dz < oo,
a a

*bouharket.benaissa@univ-tiaret.dz  https://orcid.org/0000-0002-1195-6169
(© Siberian Federal University. All rights reserved
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then

( / (@) +g<x>>de>; < ( / b fp(w)dfcy n ( / b gﬂ(x)dx> .

In this section, we give some recent results about the reverse Minkowski’s inequality.
Sulaiman [2] presented the following result related to the reverse Minkowski’s inequality: for
any f,g > 0,if p>1 and
fz

9

~—

N

1<m< M

—~
~

T

for all € [a,b], then

b b % b P
ﬁfi( / (f(x)g<x))pdx> < ( / f”(x)dff> +< / gP(x)dx>

Ll : 0
”mlfl< / (f(w)—g(x))pdfv> .

Banyat Sroysang in [3] proved a significant extension of the above inequality as follows: for any
f,9>0,if p>1and

=

N

f@

O<c<m<<—=<M

g(z) =

~

for all z € [a,b], then

b ; b » b P
]\]\/‘; ti </ (f(x) = cg(m))pdx> < (/ fp(x)dm> + (/ gp(x)dx> <
a ) " , @
m b P
e (/ (@) - cg(w))pd”C) |

C

Benaissa in [1] gave a new result to the inverse Minkowski inequality according to the following

formula: For any f,g >0, a > 0,ifp>1 and

O0<c<m<

for all = € [a,b], then

b ’ b » b v
% (/ (af(x) — cg(%))”dm) < (/ fp(x)da:> + (/ gp(x)da:>

i :
a(nf_)< / (af(r)cg(:r))pdfv> .

N

(3)

2.  Main results

Motivated by the above Theorems, we give a further improvement of the reverse Minkowski
Type inequality by introducing weight function and two parameters p,q > 0. Throughout this
section, the functions f, g are measurable and non-negative on interval (a, b), and w is weight
function (measurable and positive) on (a, b). In order to demonstrate our main results, we need

the following Lemma:
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Lemma 1. Let 0 < p < ¢ < oo and f, w be non-negative measurable functions on (a,b) and

b
suppose that 0 < [ f9(t)w(t)dt < oo, then

b b % b %
/ fp(t)w(t)dt<< / w(t)dt) ( / fq(t)w(t)dt) . )

The inequality (4) hold for —oo < ¢ < p < 0 and inverted for 0 < ¢ < p < oo.

Proof. Using Holder inequality for using the parameter 4 > 1, we have
p
b b a—-p b
[ rowna = [ (w5 0) (rowfo)d<

b 0w i
< (/ w(t)dt> (/ fq(t)w(t)dt>
Jensen’s integral inequality

Let f be an integrable function defined on (a,b) and let ¢ : (a,b) — R be a convex function. If

¢o f € L(a,b), then
b b
s (bi / f(t)dt> < ( / ¢(f(t))dt) , o)

the above inequality (5) is inverted if ¢ is a concave function.
Taking ¢(t) = t*, thus the formula (5) can be rewritten in the following forms.

/fA t)dt > (b—a)* (/f dt> , (6)
b b A
/ POt < (b—a) = ( / f(t)dt) . M)

Let —0o < a < b < +oo, for p > 0 we suppose that

o If 1 < A, then

e if 0 < A <1, then

b
0</ fPx)w(x)dr < oo and 0</gp(x)w(x)dx<oo,

and we denote by L’ (a,b) the space of all Lebesgue measurable functions f on (a,b) for which

1

b P
”fHL;ﬂ(a,b) = (/ fp(:c)w(x)dx>

Using the above lemmas, we give and prove the following theorems.

-321 —



Bouharket Benaissa A further generalization of the reverse Minkowski Type Inequality . ..

Theorem 1. Let f, g >0, 0 <p<q, a>0, w be a weight function and

af(z)

O0<c<m<—=<M forallxé€la,b,

g9(z)

then

« p—4q b
aé\]fwﬁ-_ (w(x)) »a </a (af(x) — Cg(x))pw(fc)dx>
q dx

I
< ( / b fq(x)w(w)dx> + ( / ' 1)) )

1

b q
<l ( | at@ - cg(m))%(x)dx) .
Proof. From the hypothesi (8) we get

1
0< -~

1
c m
then
M < af(x) < m
M—c = af(z)—cg(z)  m-—c’
let 0 < p < ¢, from the inequality (10) we have

T @@~ o) w) < P ela)

and
m

fi(@p() < [

Integrating the above inequalities on [a, b], we get

a(m —c)

b % b %
a(ﬂf_c)< / (af(x)—cg(x))pw(x)d:c> < ( / fp(x)w(x)dx> 7

b é m b
( | (x)w(a:)dx> < ( | ar@ = cqta) w(a:)dx>

and

from the inequalities (11) and (4), we get

S =

b
% (/ (af(z) — Cg(x))pw(a:)dx> <

< (/abw(t)dt> - (/b fq(t)w(t)dt> (11,

this is same us

b T b z b L
M][”_)< / w<t>dt> ( / (af(fc)—cy(fc))pw(x)dx) < ( / fq(x)w(m)dx> |
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From the hypothesi (8), we deduce that

af(z) —cg(z)

0O<m—c< 0@ <M —c

th
" afe) —cale) _ ) _ afle) = cole)
M—_c X9 S m—c >

let 0 < p < ¢, from the inequality (14), we obtain

i (0f@) — cgle))] wle) < P,

and

(af(x) - cg(x»] "),

integrating on [a, b], we get

b 3 b q
( / g%x)w(x)dx) <—— ( / (af(x)cg(x))qw(x)dx> ,

_l
sy

and

3=

using the inequality (16) and (4), we get

By the inequalities (12), (15) and (13), (17) we result the inequality (9).

Now we present a new result involving Jensen integral inequality.

Theorem 2. Let f, g >0, a >0, w be a weight function and

af(z)
g(z)

0<c<m< <M forall x € [a,b],

then, forl<p<gq
M+« 1o b .
m(b — a) a (/a (af(x) — Cg(x))pw(x)d$> <

< ( / b fq(af)w(w)dwf + ( / b g%w)w(w)dw); <

b q
< nrae ( / (af(z) —cg(a:))%(x)dx) ,

a(m —c)
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for0<g<p<1

P
q

b
M”)</ (af(z) — () bw <x>dw>

(/ fi(a ) +< ngq<x>w<z>dx> <

1

se A

m (6% 1-p b ¢
< IEC gy (/ (af(x)cg(w))qw(x)dw> .

a(m —¢)

Proof. Firstly let 1 < p < g, from the inequality (10), we have
aq
p

M a
|:04(M — C) (Oéf(x) - Cg(l')):| w(x) < fp ($)’LU(SC),
and q
flz)w(x) < [O&n:n_c)(af(x) — cg(x))} w(z),

Integrating the above inequalities on [a, b], we get

(a(ﬂf)) ' / (@ (@) — cgla)) Fula)dr < / ' @i,

: s :
( |1 (x)w(w)dsc> < ( | @t = cote) w(z)da:> ,

1
apply the Jensen inequality (7) for A = —, hence from the inequality (21), we get
p

(a(ﬂf_c))g/ab(af( ) cgla /f
(b a)* (/ fi( ) ,
this give us

e (/ab(af()—cg( ) (/ fo(a ) |

In another case, from the inequality (14) we result

and

'!:’\-Q

L (afla) ~ cqfa))| wlo)

Pl < |-

and

q
P

i (af@) - cgl))| (o) < g @huta),
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integrating on [a, b], we get

and

(Ml_ c>; /:(af(w> —cg(x))rw(z)dr < /abgp(x)w(x)dm,

use Jensen integral inequality (7) and (25), we obtain

1—p b q % b ¢
)T ( / (af(x)—cg(x))pw(x)dx> < ( / gQ(m)w(m)dx> .

By the inequalities (22), (24) and (23), (26) we result the inequality (19).

Secondly let 1 < p < ¢, from the inequality (10) we deduce that

M 1 q
=g (@@ — cala)| wie) < @)

and B
P < | (o f@) - cafa))| ula)

a(m —c)

Integrating the above inequalities on [a, b], we get

=3 ( / (of @) cg(x))qfw(x)dx); </ ' folauie)de,
and q
/ @) < (Gor=s) [ (@f (@) - cola)) ule)dz,

1
apply the Jensen inequality (6) for A = —, hence from the inequality (27), we get
p

aq

(b—a)' (/abf"(x)w(x)dmy < /abﬂ(x)w(x)dx <
< (a(m> g (@f (@) — cale))ule)ds,

m—c)

this give us

b % m 1-p b ¢
( |1 <x>w<x>dx> < -0 ( / (af(w)—cg(w))Pw(x)dx>

In another case, from the inequality (14), we deduce that

P
q

(@)~ egl)| o) < o)l
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and

and

RIS

/abgf?(x)w(x)dm < (ml_ C)

use the Jensen inequality (6) and (31), we obtain

b % 1 p b B
(/ gq(x)w(x)dx> < ml—c(b_ a) @ (/ (af(x) —cg(x))rw(x)dx> . (32)

By the inequalities (28), (30) and (29), (32) we result the inequality (20). O

Qs

3. Application
We now give some new results of the above Theorems.
3.1. Reverse Minkowski weight type inequality

Put p = ¢ in the Theorem 1 and p = 1 in the Theorem 2, we get the following corollary.

Corollary 1. Let f, g >0, ¢ >0, o> 0, w be a weight function and

0<c<m< O;JZ()> <M for all x € [a,b],

) :
M ( / (af(x)—cg(x))qw(x)dx> <

1

( / e ) ¥ ( / bg%a:)w(z)dx) "< ()

m+ a b . q
< s (/ (af(z) - cg(a) w(a:)dx) .

then

3.2. Reverse Minkowski type inequality

Using w = 1 in Theorem 1 and Theorem 2, we get the following corollaries.

Corollary 2. Let f, g>0, 0<p<gq, a>0 and

0<c<m< O;JE()) <M forall x € a,bl,

- 326 —



Bouharket Benaissa A further generalization of the reverse Minkowski Type Inequality . ..

then

S =

M+« p—g b ,
m(b_a) - (/a (af(x) —cg(x)) dx) <

< </ab fq(x)dx>; + </ab gq(x)da:> ‘1 < (34)

m+ o b . q
< ( |t = cata) dx) .

Corollary 3. Let f, g >0, a >0 and

<M forall x €la,b],

0<ec<m<

then, for1 <p<gq

M+« (ba)lqp<

2

b
a(M = ISR cg(x»pda:) <

< </b fq(x)d:p>; + </abgq(x)d:r> q < (35)

m 4+ « b q %
< ( | et = eata) dx>

for0<qg<p<1

RIS

N

1

b
i ( / <af<x)—cg<x>>5dx>

< </b fq(x)dx>(11 + (/abgq(x)dx> q < (36)

m « 1-p b ‘
< L )T ( / (af(x)cg(x))qd:v> .

a(m —¢)

The inequalities (34), (35) and (36) are new generalizations of the revers Minkowski inequality
with two parameters.

Conclusion

By using Holder’s inequality, Jensen’s integral inequality and by introducing two parameters
of integrability, new generalizations of the inverse of Minkowski’s integral inequality have been
established and demonstrated. Two results are given in the application section, the reverse
Minkowski weight type inequality and we deduce a particular case the reverse Minkowski type
inequality, this is a new generalization of the classic reverse Minkowski inequality known in the

literature.
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JanbHeiiniee 0600IeHe 0OpPaTHOTO HEPABEHCTBA THUIA
MuHKOBCKOro ¢ moMoIiibio HepaBeHCTB l'esbsiepa u MeHcena

Byapker Benancca

Jlaboparopusi ”HPOPMATUKA U MATEMATUKHI
DakynbTeT MATEPUAIOBEICHNS

Twuaperckuii yHUBepcUTET

Amxup, Amxup

AHHOTaI.lI/ISI. OcHoBHas IeJib 9TON cTaThU — YCTaHOBUTH HOBBIE O606meHHH O6paTHbIX UHTEerpaJIbHbIX
HEPaBEHCTB MunKOBCKOTO IyTeM BBEICHUSA BECOBBIX beHKLII/Iﬁ n IBYX IHapaMeTpPOB MHTErPUpPyeMOCTH.
By,LI;yT JOKa3aHbI JIBE€ HOBbIE TEOPEMBI C UCIIOJIb30BaAaHUEM MHTETPAJIBHOTO HEPpABEHCTBA I;IGHCeHa u AByXIIa-
paMeTpUuIeCKOro HepaBeHCcTBa Fenbaepm a TaK2Ke I10JIy4€eHbl HEKOTOpbIEe 06p&THbIe UHTEerpaJibHble HEpa-
BeHCTBa Tua MUHKOBCKOIO.

KuroyeBsbie ciioBa: BoiyKJjast pyHKIMA, HEpaBEHCTBO [esbiepa, HepaBeHCTBO MUHKOBCKOI0, HEpaBEH-
crBo Vencena.
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1. Introduction, preliminaries and problem statement

The theory of functions of several complex variables, or multidimensional complex analysis,
currently is rather rigorously developed (see [1-4]). At the same time, many questions of clas-
sical complex analysis still do not have unambiguous multidimensional analogues. The matrix
approach to the presentation of the theory of multidimensional complex analysis was widely used
(see [5-8]).

In 1935 E.Cartan proved that there are only six possible types of classical domains, including
irreducible, homogeneous, bounded, symmetric domains, four of them K, K5, K3 and K4 have

the form
Klz{Ze@[mxk]:l(m)—ZZ*>O},

Kzz{Ze(C[mxm]:I(m)—Z7>07 vz':z},
Ky — {ZGC[me} 1M 4 77 >0, vz’:fz},
K, = {z eC": |22 +1-22 >0, |2¢| < 1} :
Here 1™ is the identity matrix of order m, Z* is the complex conjugate of transposed matrix

7 (H > 0 means that hermitian matrix H is positive definite).
The dimensions of these domains are equal to mk, m(m + 1)/2, m(m — 1)/2, n, respectively.
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All these domains are biholomorphically non-equivalent, therefore, complex analysis is con-
structed differently for each of them.

It should be noted* that domain K, is reducible for n = 2 (see [6]). In contrast, the other
domains of all four types are irreducible, but the same domains can be found. Switching the
places of m and k does not change domains in K;. Further, the unit circle of the complex plane
is obtained when m =k =1in K;, m=1in Ky, m =2 in K3 and n =1 in K. When m = 3,
k =1 in domain K; then K; coincides with domain K3 including m = 3. When m =k =2 in
domain K; then K; coincides with domain K4 including n = 4. When m = 2 in domain K5 then
K coincides with domain K including n = 3. Thus, we obtain different irreducible domains if
we demand m > kin K7, m > 2 in Ko, m > 4 in K3 and n > 5 in K4. So, the number v (n)
of classes of irreducible bounded symmetric domains of an n-dimensional complex space is equal
to the total number of representations of n in one of the following forms

Ki:n=mk (m>k),

1
Kg:nzim(m—i—l) (m>2),
1
Kgsnzim(mfl) (m > 4),
Ky:n=m (n>=5),

K57K627’L: 16, n = 27.

All irreducible domains obtained in this way are topologically (but not analytically) equivalent
to the n-dimensional complex space.

Let us consider the space of m? complex variables denoted by C™’. Points Z of this space
can be represented conveniently as a square [m x m| matrices, i.e., in the form Z = (2;;)7"_;.
With this representation of points the space C™ is denoted by Clm x m|. The direct product
Clm x m] x - -+ x Clm x m] of n copies of [m x m] matrix spaces is denoted by C"[m x m].

n
Let Z = (Z1,%Z,...,Zy,) be a vector composed of square matrices Z; of order m consid-

ered over the field of complex numbers C. We can assume that Z is an element of the set
C"[m x m] = Crm*.
The matrix «scalar product» is defined as (Z, W € C*[m x m])
<Z, W> = Z1W1* + ZQWQ* —+ -+ ZnW;

It is known that matrix balls B,(,i)n, B,(i)n and B,(?n of the first, second, and third types have
the following forms, respectively (see [9-11]):

B, = {(Z1,.., Z2) = 2 € C" lm xm] - T~ (2,2) > 0}

BR ={ZeC"lmxm]:1-(Z2,2)>0 VZ,=2,, v=1,...,n}

and

B,(,f?n:{(ZGC”[mxm]:I+<Z,Z)>0 VZ, =2, u:1,...7n}.

#When n=2, a homogeneous bounded domain is equivalent to the domain K ={¢€C? : max (|(1] <1, |¢2| <D},
_ G1+¢2 i(¢1—C2)
2 2

after the change of variables: z; ,22 =
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The skeletons (Shilov boundaries) of the matrix balls Bf,’f,)n are denoted by XT(,]Z)n, k=1,2,3,
ie.,

X\ ={ZeC"mxm]:(2,2Z)=1},
X2 ={zZeC"mxm|:(2,2)=1,2', =2, v=1.2,...,n},
X® = {Zec" mxm]:[+(2,2)=0, Z,=—Z,, v= 12n}
Note that B&), B%l) and Bégl) are unit disks, and X:E)ll), Xl(,21)7 Xégl) are unit circles in the
complex plane C.
(k)

If n =1, m > 1 then domains B,,", k = 1,2,3 are the classical domains of the first,
second and the third type (according to the classification of E. Cartan (see [5])). The skeletons

Xfi)l, Xff?l, and Xr(ri)l are unitary, symmetric unitary and skew-symmetric unitary matrices,
respectively.

The first type of matrix ball was considered by A. G. Sergeev (see [11,26]), G. Khudayberganov
(see [12,13]) and S.Kosbergenov (see [14,15]). The volume of a matrix ball of the first type and
its skeleton is studied in [16]. Holomorphic automorphisms for a matrix ball of the first type are
described in [17]. The integral formulas for the matrix ball of the second type were studied by
G. Khudayberganov and Z. Matyakubov [18,19] and the third type of the matrix ball was studied
by G.Khudayberganov, U. Rakhmonov, and the integral formulas were found [20,21]. We recall
that a bounded domain D C C" is called classical if the complete group of its holomorphic
automorphisms is a classical Lie group and transitive on it. The biholomorphic equivalence of
bounded domains in C™ to their indicatrices for the Carathéodory and Kobayashi metrics was
studied [32]. From this, in particular, a description of that domains can be obtained when
indicatrices are classical domains. It was proved that first, second and third type matrix balls in
space C"[m x m] are equivalent biholomorphically to Siegel domains of the second type [27-29].
However, the question of whether matrix balls Bﬁ,pn , Bg)n and Bf,f)n are the classical domains
still remains open.

The problem of the holomorphic extendability of a function to a matrix ball, given on a piece
of its skeleton was discussed [26]. For this purpose complete orthonormal systems in the matrix
ball were used. The total volumes of a matrix ball of the third type and a generalized Lie ball
were calculated [22|. The full volumes of these domains are necessary for finding the kernels of
the integral formulas for these domains (the Bergman, Cauchy—Szegs kernels, Poisson kernels,
etc. [14,19,23,30]). In addition, they are used for the integral representation of a holomorphic
function on these domains, in the mean value theorem and in other important concepts. Volumes
of classical supermanifolds such as supersphere, complex projective superspace, and the Stifel
and Grassmann supermanifolds were calculated with respect to natural metrics of symplectic
structures. It was shown that formulas for volumes of these supermanifolds can be obtained by
analytic continuation of the parameters from the formulas for the volumes of the corresponding
ordinary varieties (see [24]).

In this paper we describe automorphisms of the matrix ball associated with classical domains
of the second type, and also study the properties of the second type matrix ball. An automor-
phism of the second type matrix ball and the characteristic shape of this ball were studied [10].
Writing automorphism in this form causes inconvenience in applying it to practical issues. There-
fore, we consider automorphisms of a matrix ball of the second type which are convenient for
calculations. In addition, the total volume of the skeleton of this ball is calculated.
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2. Automorphisms for a matrix ball of the second type

Let B,(,%)n be a matrix ball of the second type and Xﬁ)n is its skeleton. The following lemma
describes some properties of a matrix ball of the second type [18§].

Lemma 1. A matriz ball Bg)n has the following properties:
1) Bg?n is a bounded domain;
2) B,(A,f?n s a full circular domain;
3) B,(,i)n and its skeleton Xf,i)n are invariants under unitary transformations.

It is known that automorphism Bff?l which maps the point P € B,(,i)l to the point 0 has the
form [§]
W =R(Z—-P)(I-PZ) 'R,
where R is [m x m| matrix
R(I — PP)R' =1.
Our goal is to find automorphisms for a matrix ball of the second type. Let us consider the
desired automorphism in the form

n —1 n
Wy, = (A00+szAjo) <A0k+ZZjAjk>, k=1,...,n. (1)

Jj=1 Jj=1

We need to find the coefficients A;; so that map (1) is an automorphism of the matrix ball
of the second type.
Let us introduce the following notation of block square matrices of order n + 1

Ay Aor ... Aon 10m) 0 . 0
A A A ... A H= 0o —Im . 0 7
AnO Anl e Ann 0 O ‘e 7[(m)

where A;; are square matrices of order m.
The following statement holds.

Theorem 1. Mapping (1) is an automorphism of the matriz ball Bg)n if and only if coefficients
Aij, 4,5 =0,1,2,...,n satisfy the following relations:

AHA* = H, Ag4Aly = AjoA)y, s=0,...,n; j,k=0,...,n. (2)

Proof. This theorem is proved in several stages, according to the properties of a matrix ball of
the second type.
1°. Let us consider a linear transformation

wO:ZCjAjo, wk:ZCjAjk7 kzl,...ﬂ’b, (3)
j=0 §=0
where matrix A satisfies relations (2). Then we have
Ao Aor ... Aon I0m) 0 0
AFA — Ay A ... A, 0o —Im . 0 y
duo Aw e Aw )\ 0 0 gt
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Asy AL, ... AX im0 ... 0
L AR AL A | 0o —-Im .. 0
Ay, AL . AL 0 0o ... —Im
Aoy —Aopr ... —Aon Aby AL, .. AX I0m) 0 0
A —An ... —An, Ay Ay o A | 0o —I™ ... 0
Apo —Ap1 ... —Apn As, AL . AN 0 0 —JI(m)
AgoAfy — - — Ao Al AwAlyg — - — Aon AL, ... AggALy — - — Ag A%,
AIOASO — AlnAén AIOATO — AlnAIn ‘e AIOA:LO — AlnA;;n _
Ao Ay — - — Apn Al AnoAfo — - — Apn AL, . ApgAlLy — - — Ann AL
I 0o ... 0
0o —Im 0
= =
0 0 S A
AooAgo — ; Ags Ay = 1M,
= q Ajodi = ; AjsAier TF#F, (4)

n
AjoAsy — 2_:1 Aj Ay =—IM j>1.

20, Let matrix row ¢ = ((o, (1, - - -, Cn) covers all matrices consisting of m rows and (n + 1)m
columns such that (H¢* > 0. Then

Im) 0 0 G
_J(m) *
] I | B
0 0 ... —Itm ¢
€
(6 ~a o )| T =66 -GGG >0
G

= (ol > Q¢+ -+ G = 0.

Providing (H(* > 0, matrix (o is not degenerate since otherwise there would be a non-zero
m-dimensional vector x such that xz(y = 0.

We have a contradiction since

0=aCooz" > z(Ci¢ + -+ + GuGp)z™ = 0.

3%. Now we consider the following matrices
Z=Co s k=1,...,n.
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We obtain the following inequality from condition (H(* > 0

Im) 0 0 &
CHE = (¢ G oo Gr) 0o —Im ... 0 e

S -
G

= (6 -6 —G)| T | =G -GG =
¢

=G -G aGE) ™ = = GGG TG =
=G (I = 225 =+ = 2,2) G = Go(I — (2,2))¢5 > 0

=1 _(7.7)>0, ie., Ze B?

m,n*

49, Using (3) we consider the vector
w= (wo,w1,...,w,) =CA

and multiply the block matrix by the right of the above-mentioned formula

Agp  —Alp - —A
A= —Agn AL . AL
-As, AL, .. AT,

Note that the product of block matrices is carried out according to the usual rules for the product
of matrices. Since (4) is equivalent to the condition AA = I(™("+1) then we have

wA = ¢,
i.e., map (3) is invertible (under condition (2)) and the matrix defines the inverse map.
Hence,
wHw* = CAHA*(* = CHC* > 0. (5)
5°. Now we prove that map W}, is an automorphism. Obviously,
m 0 ... 0 wi
0o —Im ... 0 :
wHw*:(wo w1 ... wn) “1 =
0 0 —1m W
wo
WT * * *
= ( wy —wip —wn, ) = Wowy — WiW] — -+ — WpW,, =
w*

= wp (I - wo_lwlwf(w’é‘)fl — = wo_lwnw:(wa‘)fl)wg =

= wo <I<m> —wwr —~-~—WnWT’{> Wi = wo(I — (W, W))wi > 0= T — (W, W) >0,
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Then transformation (3) generates a linear-fractional transformation

n —1 n n —1 n
Wi =wy 'wi = <Z CjAJO) (Z CjAjk> = (COAUO + Z CjAj()) <COA0k + Z CjAjk) =
=0 =1 =1

Jj=0

n —1 n
= (Aoo + ZCO_ICJ‘AJO> ¢ (Aok + ZCo_leAjk) =
Jj=1 j=1
n —1 n
= <AOO+ZZJ'AJ‘0> <A0k+ZZjAjk>7 k=1,....n
j=1 j=1

6°. Let us show that matrices Wy, k = 1,...,n are symmetric matrices. Let W), = wy Lok
then W] = wj (w))~! and

—1 1

= wy  (wrwf — wow) ) (wh) ™1

wrw) — wowh, = Y GAk Y Abel ZCJ ]oZA kG =
= (CoAok + C1 A1k -i: -+ Cn;;?c)( ApoCo + A10<1 o+ AloGn) -
—(CoAoo + C1A10 + -+ + G Ano) (AprCh + A1kt + -+ + A7 Gh) =
= Co(AorAby — AooApy,)Co + Co(AorAlg — Ao AL )+ +
+Co(Aor AT — AooApy )G + Ci (A1 Aby — Ao A, ) ot
+Ci(A1e Al — Ao A )G+ + G(A ALy — Ao AL,)G, + -+
+Cn(Ank Ay — AnoAfy)Ch + Cu(Ank Ay — Ano Al )¢ +

+Cn (ATL’CA;’LO - ATLOAnk)C =0.

Wi — Wy = wy 'wi — wp(wh)

The last equality is valid by virtue of (2).
Theorem 1 is proved. O

Further, using relation AA = I(M+1) we obtain A4 = I(™("+1) Tt means that

Ao Ay .. —A A Aor ... Aon
i | A An A S I T
_Ax AL L AR Ao Ay .. A,
AfoAoo — - — Al gAno AfoAor — - — AlpAnm v AbgAon — - — Al Ann
A5 Ao+ -+ A A A A+ F AL AN . AR Ao+ AN A
—A5, Ao+ -+ AL A —AL A+ F AL A . —AS Aon -+ AL Ann

AggAgo — 2 Al Ajo = Im)
j=1
= ASkAOJ = 21 A:kAS]a ]# k7 (6)

Aj Aok — Y2 Al A = =10
j=1
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Now let the point P = (Py,..., B,) € BT(,%,)H. Let us consider the mapping

n

Wi =R(I™ —(Z,P))™" Y (Zs = Po)Ga, k=0,1,...,n (7)

s=1
that transfers the point P to 0, where R, G are arbitrary matrices.

Theorem 2. For a mapping of form (7) to be an automorphism of a matriz ball of the second
type it is necessary and sufficient that matrices R and G satisfy the following relations

R*(I'™ — (P, P))R =1 G*(I"™) — P*P)G = 1", (8)
where G is a block matriz.

Proof. Necessity. Let mapping of form (7) be an automorphism of the matrix ball By(,%)n that
maps the point P to 0. We have that

AOOZR, Aj():—P;R, j:l,...,n,
Ajk:ij7 j7k:1a"'an7

n (9)
Aog ==Y PGy, k=1,....n,
s=1
n —1 n
(1) =W = (AOO + Z ZjAj()) <A0k + Z ZjAjk'> =
Jj=1 j=1

n —1 n n
— <R_ZZJ-P;R) (—ZPSGsk +ZZjij> =
j=1 s=1 Jj=1
-1 n
=R! <I - (Z, P>> > <Zs - Ps>Gsk-

s=1

Taking into account (6) and (9), we obtain (8)

R*'R—) R'P;PfR=1" = R*(I"™ —(P,P))R=1"),

j=1

zn:G:sz* zn:PsGsk - zn: G;ijk = —I(m),
s=1 s=1 j=1

S GuP Y PGy =Y GhGaj # k,
s=1 s=1

s=1

G* (I(nm) _ P*P)G — I(mn)’

G G ... Gi, P;P, PiPy ... PP,
a_| G G . G pp_ | BP PP ... PP,
Gni Gna ... Gun PP, PP, ... PP,

Sufficiency. Sufficiency of the theorem follows from the existence of matrices R, G that
satisfy (8). Substituting (9) into (6), we obtain (7).
Theorem 2 is proved. O
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3. Volumes of a matrix ball of the second type and its
skeleton

The volume of a matrix ball of the second type is calculated with the use of the following
theorem [22].

Theorem 3. Let m > 2 and Z,[m x m| be a symmetric matriz. Let us consider the integral

W= [ sz 2Pz
1—(2,2)>0

where Z = [T II dzijdysj, xij + iyi; = zi;. Then
i=1j=1

m(m+1)
— 3 n

['(2X + 3)[(2A +5) ... [(2A + 2mn — 1)

J(A) = A+1)...(A+mn) T2\ +mn+2)L(2A +mn +3)...T(2A + 2mn)”

In particular, when A = 0 the volume of a matriz ball of the second type is

m(m+1)
—a—n

2141 ... (2mn — 3)!

@y T .
V(Brin) m! (mn + Dl(mn +2)!...(2mn — 1)

(10)

In particular, when n = 1 we obtain from (10) the well-known formula for the volume of
classical domain of the second type (see [8]).
Now Let us calculate the volume of the skeleton Xg)n of the matrix ball of the second type

B .

Theorem 4. The volume of the skeleton of a matriz ball of the second type is calculated as

follows

nm(m+1) D(lh,...,ln)
mm=-0 I @+i,+2)]"°

v (x2,) = 2)

where
D(ly,la, .. lm) =[] (s=1), 1<k <m

1<s<j<m
1
and 1y 41+ + Ly = %
Proof. Let U = (Uy,...,U,) € Xf,%,)n and each matrix Uy, k = 1,...,n is a symmetric matrix.

It is known ([8, 25]) that for any symmetric matrix Z, € C[m x m] there exists a unitary matrix
U, € U (m) (U (m) are set classes of the unitary matrices group) and real numbers A"’ > Ay >
ez )\%) > 0 such that

X0 ... 0
Zl,:U,,diag</\§”),...,/\§,’;))U’y:UVAVU’D,AD: T
0 0 ... A\
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By differentiating (12), we obtain
dz, = dU,A\, U], + U,dAU', + U,A,dU’,.
Introducing 6U, = U,;dU,,, we have
Urdz,U, = dU,A, +dA, + AU ,.

Next we have
Sp(dZ,-dzZ}) = Sp(U,dZ, - U, U} -dZ;, -U,) =
=Sp {(6Ul, -A, +dA, + AU ) (Al,éU: +dA, +6U, - Al,)} =
= Sp(dA, -dA,) + Sp {(5Ul, A, + AU (A,,(SUj + 46U, - A,,)} .

Let us set
60, - Ay + A,0U", = (dgly)  (dgy) = dglt))
then
Sp(dZ, - dZ;) Zd(A(”)> - Z ’dgj Wl
where

dg\y) = A\Vaul) + A<k,
dg(”) 21)\ 5u(y)
Now to define the volume element {U,,} of the set U (m) we set (5u§.l) = 0u ji +i0u” ji. Then

we have
m(m 1) 1
= H5 ii L] 0win - ou” s

i<k
Thus

Z'V=2mH

j<k

2 2 B v v
(A§ >> _(Agg) ‘/\g)...kﬁg’)d)\g)...dAg‘;)Uy( YA v =1,2,...,n).

(13)
For any Z = (Z1,...,2Z,) € ann we have det (I(m) —(Z, Z)) = 0. On the other hand, the
correspondence Z, and U (m) x A, is one-to-one correspondence for all matrices

= (MU', ..., U AU ) € X2 (14)

Then it follows from (12) and (14) that

(A§V))2 + (/\g/))z NI (/\S:))Z =1, v=12,...,n. (15)

Then, using Fubini’s theorem for calculation of the volume of the skeleton Xy(,i)n, we obtain

v(x2,) = / 7=

x3,

(Ag.”)z - (A,ﬁ”)z‘ AP L AOaD oD, x

=omn / 11

(U1} x{Ar} I<F
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o / 11
(U} x{A,} I<F
I B

W GOV @) et () T

(A§">)2 - (A,ﬁ”))zl AW A g, =

(A§”)2 - (A,?))Q‘Ag” L AADD D

A A g,

X e X / U, / 2m H ()\5-”))2 — ()\i:n)>2

{Un} (Agm)%r(Agn>)2+...+(xg’:>)2<1 I<k

It is known (Theorem 3.1.1 in [8]) that volume of the manifold {U, (m)} of unitary matrices

is calculated by the following formula
m(m-41)
N

VAU ) = o =11

Providing )\gu) > )\g') > > )\g{) > 0 for all v-th integral, we have

L=V U, / 2 I ’(A§”>)2 — (A,ﬁ”)Q’Ag”) LA a0 =
j<k

A+ () -+ (A0) <

— 2"V (1) / 11

()8 s ()

() = () -

=2V (U,) // H

<k

(Ag”))z - (A,ﬁ”)Q’AY’ LB ) =

0<AY <o cxP a1’

- )"V (W) // det

0<AY) <A a1
_V(WU)D (I, lm)
I Us+1+2)

1<s<gsm

21, |™
(Agﬁ) ’ AW ARG W =

s,j=1

where the following conditions are satisfied

D(ly,la, ... ly) = H (Is—=1), 1<l <m

1<s<jsm
1
and l1+12+...+lm:m_
Here lemma from [8] (page 135) was used. Hence, we obtain relation from the statement of
the theorem:

nm(mt1) D(l1,...,ln)
mo m-0 I (s+1+2)

1I<s<gsm

v (x2,) = (n)
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Theorem 4 is proved. O

Note that when n = 1 we obtain the formula for calculating the volume of skeleton of classical

domain of the second type (see [8]).

The authors would like to thank professor G. Khudayberganov for his helpful advice in writing

this paper.
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1. Introduction and preliminaries

The study of fixed point theory comes from wider area of non-linear function analysis. How-
ever, its study began almost a century ago in the field of algebraic topology. Fixed point theorems
find applications in proving the existence and uniqueness of the solutions of certain differential
and integral equations that arise in physical, engineering and other optimization problems. In
the study of fixed point theory, some of the generalizations of metric space are 2-metric space, D-
metric space, D*-metric space, G-metric space, S-metric space, Rectangular metric or metric-like
space, Partial metric space, Cone metric space. In 1989, I. A. Bakhtin [2] introduced the concept
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of b-metric space. Consequent upon the introduction of b-metric space, many generalizations
of metric spaces came into existence. In 2015, M. Abbas et al. [1] introduced the concept of
n-tuple metric space and studied its topological properties. M. Ughade et al. [15] introduced the
notion of A,-metric spaces as a generalized form of n-tuple metric space. Subsequently N. Mlaiki
et al. [11] obtained unique coupled common fixed point theorems in partially ordered A,-metric
spaces.

In this paper, we use the notion of a mixed weakly monotone pair of maps to state a coupled
common fixed point theorem on partially ordered A,-metric spaces. We prove some unique
coupled common fixed point theorems in partially ordered Ap-metric space and also provide
example to support our results.

First we recall some notions, lemmas and examples which will be useful to prove our results.

Definition 1.1 (M. Abbas et al. [1]). Let S be a non empty set and n(= 2) be a positive integer.
A function A : "™ — [0,00) is called an A-metric on S, if for any §;, a € S i=1,2,...,n, the
following conditions hold.

(Z) A(C1a<27 .. 'aC’ﬂ,—laCn) 2 0;
(ZZ) A(Cla(Za .. ~7Cn—1a<n) =0 Zf and only Zf(l = C2 = ... = Cn—l = Cna
(”7’) A(gh <27 ) C’ﬂ*h C’n) < [A(Cla C1> B Cl(n_l) ; a) + A(CQ, C27 e 7C2(7z—1)7a) +

+ o+ A(Cn—lv Cn—h DR Cn—l(n,l) 5 CL) + A(CTL? Cna R Cn(nfl) 5 a)}
The pair (3, A) is called an A-metric space.

Definition 1.2 (T.G.Bhaskar et al. [6]). Let X be a non empty set. A b-metric on X is a
function d : X% — [0,00) such that the following conditions hold for all x,y,z € X.

(1) d(z,y) =0 <= z =y,

(id) d(z,y) = d(y,z),

(#it) there exists s > 1, such that d(z,z) < s[d(z,y) + d(y, 2)].
The pair (X,d) is called a b-metric space.

Definition 1.3 (M. Ughade et al. [14]). Let S be a non empty set and n > 2. Suppose b > 1 is
a real number. A function Ap : " — [0,00) is called an Ay -metric on S, if for any (;,a € S,
1=1,2,...,n, the following conditions hold.

(1) Ap(C1,C2,- -, Cu1,Gn) =0,

(49) Ap(C15C2,---1Cn-1,Cn) =0 if and only if 1 =C = -+ = (n1 = (s

(#id) Ap(C1yC2y- -y Cn1,Cn) < b[AB(C15 Cly e v vy Cipyyyr @) + Ap(2, 22, T2, _,y,0) + .0
+ Ap(Cn-1,Cn-1, 1 Cn—10_1y @) + Ab(Cns s - - -5 Cngpry» @)]-

The pair (I, Ap) is called an Ap-metric space.

Note: In practice we write A for A, when there is no confusion.

Example 1.4 (M. Ughade et al. [14]). Let S =[1,00) and n > 2. Define Ay : ™ — [1,00) by
Ab(Cl)C27"')Cﬂ—1a<ﬂ) = Z Z |Cl _Cj‘gi f07’ all Cl S S7 1= 1,2,...,71. Then (SaAb) s an

i=11<j
Ayp-metric space with b=2.

Lemma 1.5 (M. Ughade et al. [14]). Let (S, A) be A, metric space, so that A : "™ — [0, 00) for
somen > 2. Then A((,C,...,¢,y) <bA(y,y,...,y,(), forall (,y € S.
N—— S———

(n—1)times (n—1)times
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Lemma 1.6 (M. Ughade et al. [14]). Let (3, A) be A, metric space, so that A : " — [0, 00)
for some n > 2. Then A(C,C,..,C,2) < (n—1)b AG,C, ., C,y) + 02 Ay,y,...,y,2), for all
—_—— —_——— —_—

(n—1)times (n—1)times (n—1)times

Cy,z €3

Lemma 1.7 (M. Ughade et al. [14]). Let (X,A) be A, metric space. Then (X2, DA) is Ap-metric
space on X x X with D4 defined by

Da((w1,91), (®2,92)5 -+ (s yn)) = Al@r, 22,0, 20) + A1, Y2, - -, yn) for all z;,y; € X,
1,7 =1,2,...,n.

Definition 1.8. Let (X,A) be Ap-metric space. A sequence {x,} in X is said to converge to a
point x € X, if A(Xp,Tn,...,Tn,x) = 0 as n — co. That is, to each € > 0 there exist N € N
—_————

(n—1)times
such that for allm > N, we have A(xp, Tp, ..., Tn,x) < € and we write lim x, = z.
—— —— n—00

(n—1)times
Note: z is called the limit of the sequence {x,}.

Lemma 1.9 (N.Mlaiki et al. [11]). Let (X,A) be Ap-metric space. If the sequence {x,} in X
converges to a point x, then the limit x is unique.

Definition 1.10. Let (X,A) be Ap-metric space. A sequence {x,} in X is called a Cauchy
sequence, if A(Tp, Ty s TnyTm) — 0 as n,m — co. That is, to each € > 0, there exists N € N
—_———

(n—1)times
such that for all n,m > N, we have A(Tp, Tpn, ..., Ty, Tm) < €.
———

(n—1)times

Lemma 1.11 (N. Mlaiki et al. [11]). Every convergent sequence in a Ay-metric space is a Cauchy
sequence.

Definition 1.12. A Ay-metric space (X,A) is said to be complete, if every Cauchy sequence in
X is convergent.

Definition 1.13 (M.E.Gordji et al. [7]). Let (X,<) be a partially ordered set and f,g :
X x X — X be mappings. We say that (f,g) has the mized weakly monotone property on X, if
for any x,y € X,

< flzy), y= fly,0) = floy) <g((f(z,y), f(y,2), fly,z) = 9((f(y,2), f(z,y))

and
r<g(r,y), y=9y,2) = g(z,y) < f((9(x,9),9(,2)), 9(y,x) = f(9(y, ), 9(z,y)).

Definition 1.14. Let X be a non-empty set and f,g: X x X — X be maps on X x X.

(i) A point (z,y) € X x X is called a coupled fized pint of f, if v = f(z,y) and y = f(y,z)

(11) A point (z,y) € X x X is said to be a common coupled fized pint of f and g, if
z=f(z,y) = g(z,y) and y = f(y,z) = g(y,z).

Note: (x,y) is said to be a Coupled coincidence point of f and g, if f(z,y) = g(x,y) and
fly, ) = g(y, ).

We observe that a common coupled fixed pint of f and g is necessarily a Coupled coincidence
point of f and g.
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2. Main results

Now we prove our first main result.

Theorem 2.1. Let (X,<,A) be a partially ordered, complete Ap-metric space and let f,g
X x X — X be the mappings such that

(i) the pair (f,g) has mized weakly monotone property on X and there exists xo,yo € X such
that zo < f(20,90), f(Yo,70) < Yo or w0 < g(0,Y0)s 9(¥0,0) < Yo,

(ii) there is an o such that ab?((n —1)b+1) < 1 and
A(f(z,y), f(,y), - f(@,9), 9(u,0)) + A(f (y, ), f(y, ), fy, 2), 9(v,u)) S M,

where

M= max{{up W), @ 9)s - (2,9), (Fl,9), ) %

(
(D((,0), (u,0), ..., (u,v), (g(u,v), g(v,u))))
(HD((W)( G ) P@ e )

(D@ y),(2,9), - (@, 9),(f(@,9).f (v, 2)) + D((w, ), (1, 0), ... (u,v),(g(u, v),9(v, 1)),
(D((u,0),(u, 0), - . (u,0),(f (2, 9).f (y,2)) + D((ﬂf,y),(%y),-~-(x,y),(g(u,v),g(wu))))}

X

for all x,y,u,v € X withx <wu andy > v
(i53) if f or g is continuous.

Then f and g have a coupled common fized point in X.

Proof. Let (z9,y0) be a given point in X x X, satisfying (i). Write 1 = f(xo, 0), y1 =
= f(yo, o), 2 = g(x1,y1), y2 = g(y1,x1). Define the sequences {x,} and {y,} inductively

Ton+1 = f(x2n7y2n)v Yon+1 = f(y2n7$2n)

Tony2 = 9(Tont1,Yon+1)s Yont2 = 9(Y2nt1s Tont1) (2.2)
foralln e N

Since xg < f(xo,y0) and yo = f(yo, o) and since (f,g) has mixed weakly monotone property,
we have

z1 = f(20,90) < 9(f(z0,90), [ (Y0, 70)) = g(x1,51) =22 = 21 < 7w
and x2 = g(21,41) < f(9(z1,91),9(y1,21)) = f(22,92) = 23 = 22 <
also y1 = f(yo,w0) = 9(f (Y0, 70), f(0,y0)) = g(y1,71) =y2 = Y1 > y2
and y2 = f(y1,21) = f(9(y1,71),9(w1,91)) = [(y2,02) = y3 = y2 >

[\v]

By induction,

1.6, To S T3 S T2 <. STy < Tpt1 S -
forallne N

Now we show that these sequences are Cauchy.
Define D,, : X x X — X by

D, = D((Invyn)a (znayn)v ceey (Ina yn)v (xn+17yn+1))
= A(Tn, Tny- oy Ty Tog1) + AWny Yns - -« s Yns Ynt1) for all ;9 € X 6,5 =1,2,...,n.
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Now

Doy :A($2n+1, Tan+41y -5 L2041, $2n+2) + A(yan, Yon+1, -+ -5 Y2n+1, y2n+2) =
:A(f(IQn, y2n)7 f(xQna an)a ) f(x2n7 y2n)a g(x2n+la y2n+1))+

+ A(f(an, x2n); f(y2na $2n)7 LR f(y2na 'TQTL)a g(y2n+1, I2n+1)) <

< amax{ |:(1 + D(($2n7 y2n>7 (.’1727“ y2n); ey (ana y2n)7 (f(xZna an)7 f(y2na x2n))>) X

% (D(($2n+17 y2n+1), ($2n+1, y2n+1), ) ($2n+17 y2n+1), (9($2n+17 y2n+1)a 9(y2n+1, $2n+1))))
(1 + D((Ian y2n)7 (xQn; y2n)7 ey (1'2n7 y2n)7 ($2n+1a y2n+1))) ’

D((2n,Y2n), (@20, Y2n)s - - - (T2n, Y20 )5 (T2n41, Y2n41)),

(
(D((x2na y2n)a (-T2n7 y2n)7 CE) ($2n7 y2n)a (f($2na y2n)7 f(y2n7 x2n)))+

+ (D((xQn—i-la y2n+1)7 (x2n+17 y2n+1)a LR (:L'Qn—i-la y2n+1)7 (g($2n+17 y2n+1)7 g(y2n+17 z2n+l)))))a
(

((-D((-T2n+17 y2n+1)a ((E2n+17 y2n+1)7 sy (-T2n+17 y2n+1)a f(‘r2n7 y2n)7 f(y2n> x2n))))+

+ (D@20, Y2n): (20,920, -+ (T20,Y20), (9(T2041 Y21, 9 (U201, 22001))))) | <
< amaX{D(($2n+17 Yont1), (T2nt1, Y2nt1), - - - (T2n41, Yon+1), (T2n42, y2n+2))>
D((2n,y2n), (@20, Y2n)s - - - (@20, Y20 )5 (T2n41, Y2n41))

(D((22n, Y2n)s (Z2n, Y2n)s - -5 (T2n, Y2n)s (T2ng1, Yant1))+

+ (D((#20415 Y2n+1)s (T2n415 Y2n41)s - - - (T2nt15 Y2nt1)s (Tant2s Y2ns2)))) s
(D((@n, Yan)s (T2n,Y2n)s - - -5 (P20, Y2n), (T2n+2, y2n+2)))}-

By using Lemma 1.6, we have

Dani1 < af(n — D)b[A(22n, Tan, - - -, Tons Tant1) + AWz, Y2ns - - - Y2ns Y2ns1)] + (2.4)
+ b7 [A(T2n+1, T2nt15 - - 5 Tant1, T2n+2) + AY2n415 Y2n+15 - -+ Y2nt1, y2n+2)]}' .

Similarly, we get

A(Y2nt1: Y2n+1s - - - Y2t 1, Yant2) + A(T2n41, T2nt1, - - -5 T2n41, Tant2) S
< af(n — D)b[A(Y2n, Y2ns - - - > Y2n, Y2n+1) + A(T20, Tan, - - -, T2n, Tant1)] + (2.5)
+ D [A(Y2n+1, Yzntts - - - Yonst Yantz) + A(@ans1, Tanga, -
From (2.4) and (2.5) we have,

-y L2041, $2n+2)]}'

2Dgp 41 = 2[A(Z2n41, T2nt1s - - - Tont1, T2nt2) + AW2nt1, Y2nt1, - - s Yont1: Yont2)] <

< 2a{(n — 1)b[A(2on, Ton, - - - s Tan, Tant1) + AY2n, Y2n, - - - s Y2n, Yont1)] +

+ 0 [A(T2n41, T2t 15 - - s Tont 1, T2nt2) + AY2nt15 Y2nt1s -« - Y2nt1, Y2nt2)] }-
Therefore

Dopt1 < of(n — 1)b[A(Ton, Ton, - - -, Tan, Tant1) + A(Y2n, Y2ns - - > Y2n, Yont1)]+

(2.6)
+ b? [A(£E2n+1, T2n41s -+, L2041, $2n+2) + A(y2n+17 Y2n+1y -+ -5 Y2n+1, y2n+2)]}-

It gives that

< —— Do, 2.
T—ab? %" 27)
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a(n—1)b
Put § = 1(—ab2) ’

From (2.7),

then 0 < 8 < 1.

Doy < BDoy,.

Similarly we can show that

D2n+2 < ﬁD2n+1 for n= 0, ]., 2, e

Hence
Dn+1 < BDn
Therefore
D1 < f"Dy. (2.8)
Define

Dn,m = D((xnayn)’ (xnayn)) ) (Z‘n, yn)7 (xm,ym)) =

(n—1)—times

- A(xnaxna e 7xn7xm) + A(yna Yny- - 7ynaym)'
—— — —_—
(n—1)—times (n—1)—times

Now we have to show that D, ,,, is a Cauchy sequence.
By Lemma 1.6, for all n,m € N, n < m, we have

Drt1,m+1 = A(Tnt1, Tnsts o Tt 1, Tmg1) + AWYnt1, Yntts -5 Yna 1, Yma1) <
< b(n - 1)[A(95n+1,$n+17 cee 7$n+171'n+2) + A(yn+17yn+la e ,yn+1,yn+2)]+
+ b2 [A(.Z‘n+2, L4255 Tnt2, mm-&-l) + A(yn+2, Yn425 -5 Yn+2, y7rl+1)] =

= b(n — 1) D1 +0%0(n — D[A(Tps2, Tpias -, Ty, Tnys)+
+ A(Yn+2,Ynt2s - - - Ynt2s Ynt3)|+
+ D0 [A(Tny3, Tngsy - o Tntss Tg1) + AYnts, Unass > Ynt3s Ymr1)] =
= b(n—1)Dpy1 +b*(n — 1)Dyyyo +0°(n — 1)Dyyg -+
+ pEm=m) =3 DIA(@Zm—1, Tm—1y- s Tm—1Tm) FAYm—1, Ym—1, - - -y Ym—1, Ym )]+
+ b2 (g~ DA @, Tons - -+ > Ty Zint1) + AWy Yms - -+ > Y Yms 1))

From (2.8), we have that

Dn+1,m+1 < b(n o 1)[ﬂn+1 + b2ﬂn+2 + b45n+3 RS b2(mfn)f25m]D0 <
< b(n = DL BB+ (B5) + -+ (028) T V]Dg =
= b(n— 1" Ly +972 4 4Dy <
1
< b(n—1)p" ! (1_7) Dy

— 0 asn — oo.

Thus
lim  A(Zp, Tp, .oy Ty @) = UM A(Yny Yny -« Yny Ym) = 0.

n,m— 0o n,m— 0o
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Therefore {x,} and {y,} are both Cauchy sequences in X.

By the completeness of X, there exists x,y € X such that x,, — x and y, — y as n — oco.
Therefore D, ,,, is a Cauchy sequence.

Now we show that (z,y) is a coupled fixed point of f and g.

Without loss of generality, we may suppose that f is continuous, we have

x = lim Zopt1 = lim f(@on,y2n) = f ( lim zo,, lim y2n> = f(x,y)
n— oo n—oo n— o0 n—r00
and
y= lim yopt1 = Um f(yon,z2,) = f ( lim ys,, lim zgn) = f(y,z).
n— o0 n— oo n— o0 n— oo

Thus (z,y) is a coupled fixed point of f.
From (2.1), taking * = u and y = v, we have,
Alx,z,,...,x,9(z,y) + Ay, ..., y,9(y, ) =
= A(f(z,y), f(@y),.., f(@,9),9(x,9) + A(f (v, 2), f(y, @), ... f(y,2), 9(y, 7)) <

max T T T T (D((z, )’( y) .- (z,9), (9(z,9),9(y,7))))
< amax{[ (14 D((@0). (029)-. ). o) DTS 0 ) 2 SO

(1+
(( ), (@,9), - (2,9), (2,9)), ( ((z,9), (,9), . (:v y) (z,y)) +

( ), (
D((z,y), (x,9), .-, (x,y), (9(z,9),9(y,2)))), (D((z, ), (x, 1), .., (x,y), (x,y)) +
D((@,9), (#,9), -, (#.), (9, ), 9(y. 2))) } <
< ab ((g(x,y),g(y,x))v(g(x v),9(y, )) s (9(2,9), 9(y, 2)), (2, 9))-

Since ab < 1, we have (g(z,y),9(y,z)) = (z,y).
Therefore g(x,y) = z and g(y,z) = y.
Therefore (z,y) is a coupled fixed point of g.
Thus (z,y) is a coupled common fixed point of f and g. O

Theorem 2.2. Let (X, <, A) be a partially ordered, complete Ap-metric space and f,g: X x X —
X be the mappings such that

(i) the pair (f,qg) has mized weakly monotone property on X and there exists xo,yo € X such

that zo < f(2o,¥0), f(¥0,0) < Yo or zo < 9(Zo, Y0), 9(Yo, To) < Yo,
(ii) there is an o such that ab®*((n — 1)b+1) <1 and

A(f(z,y), f(2,y), -5 F(2,9), 9(u,0) + A(f(y, 2), f(y,2), -, fy, 2), 9(v,u)) <aM

where

Moo= max{ [(1 T D((@,9). () (), (), S0, 2))))

)
(D((u,v), (u,v), ..., (u,v), (g(u,v) ]

1+ D((x,y), (2, 9),- -+ (2, 9), (
D((z,y), (x,1), .-, (x,1), (u,v)), (D(( y)v( Y- ( y) (f(z.y), f(y,2))) +
+D((u,v), (u,v),..., (u,v), (g(u, M), (D((u y0)s e (w,0), (f(,9), fy,2))) +
)))

D((@y), (@9 (), (gl }

for all z,y,u,v € X withx <u andy >v
(iii) X has the following properties
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(a) if {xn} is an increasing sequence with x, — x, then x, < x for alln € N,
(b) if {yn} is a decreasing sequence with yr, — y, then y < y, for alln € N.

Then f and g have coupled common fixed points in X.

Proof. Suppose X satisfies (a) and (b), by (2.3) we get z, < = and y, > y for all n € N.
Applying Lemmas 1.5 and 1.6, we have

D((z,y), (x,y), .-, (2,9), (f(2,9), [(y,2))) <
g b(nil)D(( ) ($7y)a 7( ) (x2n+23y2n+2)+

+ bQD((xQn-‘rQa y2"+2)a ($2n+27 y2n+2)7 ceny ('T2n+2a y2"+2)? (f(ﬂf, y)v f(y’ Jf))) =

(2.9)
= b(n - l)D((Jj, y)a (1‘, y)a B (.13, y)v ($2n+2, y2n+2))+
+ bQD((g(xan, Yon+1), 9(Y2nt1, T2nt1))s (9(T2nt1, Yont1), 9(Y2nt1, T2ny1)), - - -
L) (g($2n+17 y2n+1)7g(y2n+17 x2n+1))7 (f(l‘, y)7 f(y> 33)))
By (2.1), we get
A((9($2n+17 Yon+1))s (9(T2ns1,Y2n41)), - -+ (9(@2n41, Y2ns1)), (f (2, y))) +
+ A((9W2nt1572041)), (9(Y2ns1, Zant1))s - -5 (9(Yant1, Tant1)), (F(y,2))) <
< amax { {(1 + D((Z2n41, Y2n+1); (@2nt1, Y2ns1), - - - (T2ng1, Yont1), (T2nt2, Yontz))) X
(D((z,9), (=,9), .-, (2,9), (f (1), f(y,2)))) }
(1 + D((x2n+17 y2n+1)7 (x2n+1a y2n+1)a B (xQTL-Hv y2n+1)7 (33, Z/))) ’
D( T4 1, Y2n+1)s (T2n415 Y2nt1)s - - (T2na1, Yont1), (fﬂ,y))»
(D( Ton+1, y2n+1), ($2n+1, y2n+1), B ($2n+17 y2n+1), ($2n+2, y2n+2)) +

+D(($,y), (l‘,y), ) (.L“, y)v (f(xvy)7 f(yam))))’ (D((J?, y)v (x,y), ) (m,y), ($2n+2, y2n+2)) +

+D((I2n+1, y2n+1), ($2n+17 y2n+1)7 ceey (I2n+1, y2n+1), (f(m, y), f(y, I)))) }

Taking the limit as n — oo in (2.9), we obtain

D((z,y), (@,9), - (,9), (f(@.9), f(y. ) <V D((x,9), (2,9), ... (@,y), (f(z,9), f(y,2)))-

Since b?a < 1, we have D((z,y), (z,y), ... (z,y), (f(2,y), f(y,2))) = 0.
That is, f(z,y) = « and f(y,z) = y. Therefore (x,y) is a coupled fixed point of f.
Similarly we can show that g(z,y) = x and ¢g(y,z) = y. Hence f(z,y) = x = g(x,y) and

Thus (z,y) is a coupled common fixed point of f and g. O

Theorem 2.3. Suppose Theorem 2.1 or Theorem 2.2 satisfied, if further {x,} is an increasing
sequence with x, — x and x, < u for each n, then x < uw. Then f and g have a unique coupled
common fized points. Further more, any fized point of f is a fized point of g, and conversely.

Proof. Suppose the given condition holds. Let (z,y) and (u,v) € X x X, there exist (x*,y*) €
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X x X |, that is, comparable to (z,y) and (u,v).

D((x7y)’ (x7y)7"'7(x7y)7(u7v)) =
= Az,z,...,z,u) + A(y,y,...,y,u) =

A(F(@y) f@). . Fg)g(u,0) + A (G2), g 2). ., F(y2),g(v,)) <
amax{[ @), (2:9)s- - (@), (F@r9), £ (5,2))))

-5 (U, 0), (9(u, v), g(v, 1))
x’y))( ) ( ) (u’v)) ,D((z,y), (z,9), .-, (,9), (u,v)),

(D, ), (2, 9), - (2, 9), (f(2,9), [y, 2))) + D((w, 0), (w, 0), ..., (w,0), (9(u, v), g(v,u)))),
(D((u,v), (u,0), .., (u,0), (f (z,9), f(y, 2))) + ((%y)»(w,y),-~-7(x,y)7(9(u,v)7g(v,U))))}<

a (b+1)D((z,y), (2,y), ..., (2,9), (u,v)).
Since a(b+ 1) < 1, so that
D((, ), (2 ) . (), (4, 0)) = 0
:>( y) = (u,v):>x—uandy—v
Suppose (z,y) and (z*,y*) are Coupled common fixed points such that < z* and y > y*, then
r=x" and y = y*.
Now

D((x,y), (z,y),..., (x,y), (2", y")) = Alz,z, ..., x,2") + A(Y, ¥, -, ¥, ¥") =
A( (x,9), f(x,y), .., f(x,y), 9(x",9")) + A(f(y,2), f(y, ), .-, fy,2),9(y",27)) <
alb+1)D((z,y), (x,y), ..., (x,y), (", y")).

Since a(b+ 1) < 1, so that

D((xvy)7 (a:,y), ) (.13, y)v (x*’y*)) =0

= (z,y) = (z",y")

= z=2"andy =y*

we show that any fixed point of f is a fixed point of g, and conversely.

That is, to show that (z,y) is a fixed point of f <= (x,y) is a fixed point of g.
Suppose that (z,y) is a coupled fixed point of f

D((z,y), (z,y),---, (2, y), (9(x,9),9(y,))) =
= A(f(z,y), f(z,9),..., f(z,9),9(z,y) + A(f(y,2), f(y,2),..., f(y,2),9(y,2)) <
< ab D((g(x, ), 9(y, ©)), (9(2,y), 9(y, @), - - -, (9(2,9), 9(y, ®)), (z,9)).

Since ab < 1, we have

D((9(z,y),9(y, ), (9(x,y),9(y,2)), .-, (9(z,y), 9(y, %)), (x,)) = 0

= (9(z,9),9(y,2)) = (z,y)

= z=g(z,y) and y = g(y, z)

Therefore (x,y) is a coupled fixed point of g, and conversely. O

Taking M = D((z,y), (z,v),-..,(z,y), (u,v)) and g = f in Theorem 2.1, we get the following

Corollary 2.4. Let (X,<,A) be a partially ordered, complete Ay-metric space and let f : X x
X — X be the mapping such that

(i) f has mized weakly monotone property on X and there exists xg,yo € X such that zy <
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f(m(hyo)?f(y()ax()) < Yo,
(ii) there is an « such that o« < 1 and

A(f(2,y), f(@,y), s f(2,y), fu,0)+Af (Y @), f(y, ), [y, @), fo,u) <

(2.10)
< a D((z,y), (x,y),- -, (,9), (u,v)),
for all x,y,u,v € X withx <u andy > v,
(iii) if f is continuous.
Then f has a coupled fixed point in X.
We give an example to demonstrate the validity of the result 2.1.
Example 2.5. Let (R,<,A) be a partially ordered complete Ap-metric space with Ay-metric
defined as X = [—o00,+00] by Ay : X™ — [—o00, +o0] by

Ap(T1, @2, X1, @) = Y. D |2 —xj|2, forallxz; € X,i=1,2,...,n. Then (X, A) is an
i=li<y
Ap-metric space with b=2.
4o —2y+ 48n—2

Let f,g: R—R be two maps defined by f(z,y)= I
n
Then the pair (f,g) has mized weakly monotone property on R

A(f (@, y), f(@y), s f2y), 9w, 0) + Af(y, @), f(y, @), - Fy, 2), (v, u)) =

= (n—1)(|f(z,y) = g(u,v)|) + (n = 1)(|f(y, 2) — g(v,u)|) =
:(n—1)<4”3—21/+48n—2_6u—3v+72n—3 )+

6z— 3y+72n—3
andg(x,y):T.

48n 2n
dy —2x+48n—2 6v—3u+T72n—3
-1 — =
-1 (‘ 48n 2n ’)
(n—1) (n—1)
= —u)— (y— —v) = (z—u)|) < - —)) <
Do -0~ o)+ 2y -0~ @~ wl) < B @le—ul 431y —ol) <
-1
<O D]y py o) =
n—1)
= (8T D((%y)’ (xay)a R (xay)? (u,v)).
1
Forn =2 and b=2, since ab*((n —1)b+1) <1 = a< TR
1
Then the contractive condition (2.1) is satisfied with o = 6 <1 and also (1,1) is the unique

coupled common fized point of f and g.

3. Application

The following type system of integral equations:
b
u(t) = q(t) —|—/ A, s)(f1(s,u(s)) + fa(s,v(s)))ds,
“ (3.1)
b
v(t) = q(t) —|—/ A, s)(f1(s,v(s)) + fa(s,u(s)))ds,
where the space X = C([a,b],R) of continuous functions defined in [a,b]. Obviously, the space
with the metric is given by

A(u,v) = tren[;a,)lc)] lu(t) —v(t)|, u,v € C([a,b],R)
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is a complete metric space.
Let X = C([a,b],R) the natural partial order relation, that is,
u,v € C([a,b],R), u < v <= u(t) <wv(t), t € la,b].
Theorem 3.1. Consider the corollary 2.4 and assume that the following conditions are hold:
(i) fi,f2:[a,b] x R = R are continuous;
(i) q : [a,b] = R is continuous;
(iii) X :la,b] x R — [0,00) is continuous;
(iv) there exist ¢ > 0 and 0 < a < 1, such that for all u,v € R, v > u,
< fis,0) = fi(s,u) < ca(v —u)
0 < fals,v) = fa(s,u) < calv —u);

b
(v) assume that ¢ max_ [ A(t,s)ds < 1;
t

€la,b] 4

(vi) there exist xo,yo € X such that
b
20(0) > 4(6) + [ A7 (5. 0(5) + 905,30 (5)) s,

b
0l0) < alt) + [ A 9)(F(530() + 9(5.0(5)s.
Then the system of Volterra type integral equation (8.1) has a unique solution in X x X with
X =C([a,}],R).
Proof. Define the mapping F': X x X — X by

b
Flu,v)(t) = q(t) + / A(t8)(f1 (5, u(s)) + fals, v(s)))ds (3.2)

for all u,v € X and t € [a,b)].
Now we have to show that all the conditions of Corollary 2.4 are satisfied.
From (iv) of the Theorem 3.1, clearly F has mixed monotone property.
For z,y,u,v € X with x > u and y < v, we have

A(F(z,y), F(z,y), ..., F2,y), F(u,0)) + A(F(y,2), F(y, @), ..., Fy, ), F(v,u)) =
= (n-1 tgl[aﬁ}(lF(x,y)(t)—F(u,v)(t)|+|F(y,$)(t)— Fo,u)(t)]) =

/ At ) (fa(5,2(5)) + fals9(s)))ds — / A(t, 8)(fa(s,u(5)) + fals, v(s)))ds| +

= -1
S

b

b
/ At $)(fa(5,9()) + fals, 2(s)))ds — / At $)(f1(5,0(8)) + fals, u(s)))ds

a

+(n —1) max

<
te[a,b]

N

(n—1) mx(/ F(s,2()) — (s u(s))] At )| ds +

+/ |f2(s,5(s)) = fals,v(s))| [A(E, 5)| ds +
b b
+/ |f1(s,4(s)) —fl(s,v(s))IIA(t,s)lds+/ | f2(s,2(5)) — fa(s,u(s))] A(t,s)ds) <
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< (n-1) max ca(/ lo(s) — uls )\|>\ts|ds+/ ly(s) — v(s)| [\t 8)] ds +
+f " l0(5) — w(s) AL )] ds + / o(e) = o) At )] ds ) <

< 0= 1) g o6) = w0+ s [v(0) = o00)] +
+ ma (1) — (0] + o e (1) - )a/ A 5)lds <

< 2= 1) ((mag fol0) — (0] + ma [o(0) >a/ At 5)]ds <

< 2n-1) a (Az,z,...,z,u) + Ay, y,...,y,v)) =

2(n—1) a D((z,y), (,9),- - -, (z,9), (u,v)).

Therefore

A(F(x,y), F(z,y),...,F(z,y), F(u,v)) + A(F(y,z), F(y,x),...,F(y,x), F(v,u)) <
<2(n—1) aD((z,y), (z,9), ..., (z,y), (u,v)).

1
For n=2, o < = < 1. Which is the contractive condition in Corollary 2.4.

Thus, F has a coupled fixed point in X.
That is, the system of integral equations has a solution. O
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CBsizaHHBIE TeOpeMbl O HEIO/IBU>KHOII TOYKe depe3 CBOMCTBO

CMEIIaHHOII MOHOTOHHOCTHU B Ab—MeTpI/I‘IeCKI/IX IIPOCTpPpaHCTBaXxX
1 IIpUJIO2KeHNdA K MHTEIrpaJbHbIM ypPpaBHEHMNAM

K. PaBubaoy

Kadenpa maremaruku, G.M.R.I.T.

Pamxam, Hpukakymram, Uamgms

I''H.B. Kumniop

JlenapTaMeHT MHKEHEPHONU MaTEMATUKH U I'yMAHUTAPHBIX HAYK
WNuxenepusiit kosutemk Caru Pama Kpumnam Pampxky
Yunamupam, Bxumasapam, Auaxpa-Ilpagem, Vuans
Y. IlIpuauBaca Pao

Kadenpa maremaruku, Yausepcurer Anaxpa
Bumakxanarnam, Muaus

Y. ParxaBengpa Haiigy

Kadenpa maremaruku, ['ocyrapcTBeHHBINH KOJIIEIK
[Tamakomma, Hpukakymam, Uumgns

Amnnorarusi. B 3T0if cTaThe MBI yCTaHABINBAEM HEKOTOPBIE PE3YJIBTATHI O CYIIECTBOBAHUN U €IMHCTBEH-
HOCTH CBSI3AHHBIX TeopeM 00 OOIeli HeIOABUKHON TOUKE B YACTUYHO YHOPAIOYEHHBIX Ap-MeTpudecKux
IpoCTpaHCTBaxX. lIpuBeneHbl npuMepsl /isi OOOCHOBAHUS AKTYaJIbHOCTH PEe3YJIbTATOB, IIOJIYYEHHBIX B
pe3yJbTaTe aHaJnu3a CYIIECTBYIOIIEH TeopeMbl. KpoMe TOro, Mbl Tak»Ke HAXOIUM IMPUJIOXKEHHE K MUHTE-
rPAJIbHBIM yPABHEHUSIM Y€pe3 TEOPEMbl O HEIOABUYKHON TOYKE B Ap-METPUYECKUX [TPOCTPAHCTBAX.

KirroueBsble ciioBa: cBsi3aHHAasI HEIIOJABU2>KHAas TOYKa, CMelIIaHHad C.TIa.6OMOHO"I"OHHOCTI:>7 Ab-MeTpI/I‘JeCKOe
IIPOCTPAaHCTBO, MHTEI'PAJIbHOEC ypaBHEHUE.
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Abstract. In the present article, we characterize generalized derivations and left multipliers of prime
rings involving commutators with idempotent values. Precisely, we prove that if a prime ring of charac-
teristic different from 2 admits a generalized derivation G with an associative nonzero derivation g of R
such that [G(u),u]™ = [G(u),u] for all u € {[z,y] : ,y € L}, where L a noncentral Lie ideal of R and
n > 1 is a fixed integer, then one of the following holds:

(i) R satisfies s4 and there exists A € C, the extended centroid of R such that G(z) = ax + za + Az

for all z € R, where a € U, the Utumi quotient ring of R,

(ii) there exists v € C such that G(z) = vz for all z € R.
As an application, we describe the structure of left multipliers of prime rings satisfying the condition
([T™(u),u])™ = [T™(u),u] for all u € {[z,y] : x,y € L}, where m,n > 1 are fixed integers. In the end,
we give an example showing that the hypothesis of our main theorem is not redundant.
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1. Introduction

A celebrated result of Wedderburn states that: Fvery finite division ring is commutative
and also any Boolean ring is a commutative ring. In 1945, Jacobson [15] generalized this result
by proving the following: Any ring in which every element satisfies an equation of the form
™) =z is commutative, where n(z) > 1 is an integer related to x. In this vein Herstein [11]
proved the following theorem: If R is a ring with center Z(R), and if ™ — x € Z(R) for all
x € R, then R is commutative, where n > 1 is a fized integer, which is of course a generalization
of the classical theorem due to Jacobson. Later, Herstein [12] established the commutativity of
rings that satisfy the condition [z,y]™ = [z,y], where n(z,y) > 1 is an integer. These results
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have inspired the development of several techniques to explore the conditions that force a ring
to be commutative, for instance, generalizing Herstein’s conditions, using certain polynomial
constraints, using restrictions on automorphisms, introducing identities involving derivations
and generalized derivations etc. For more details and references one can see a well organized
survey paper by Pinter—Lucke [20].

An additive mapping T : R — R is said to be a left (resp. right) multiplier if T'(zy) = T(x)y
(resp. T(xy) = 2T (y)) holds for all z,y € R. If T is both a left as well as a right multiplier of R,
then it is said to be a multiplier of R (cf.; [23] and [25] for details). An additive mappingg: R — R
is called a derivation if g(zy) = g(x)y + zg(y) holds for all z,y € R. An additive mapping G is
called a generalized derivation if there is a derivation g of R satisfying G(zy) = G(x)y + zg(y)
for all z,y € R. Obviously, any derivation is a generalized derivation, but the converse is not
true in general. A significant example is a map of the form F(z) = ax + xb for all x € R, where
a and b are fixed element of R. Moreover, the concept of generalized derivation includes both
the concepts of derivation and left multiplier. Hence, the concept of generalized derivation is
a natural generalization of the concept of derivation and left multiplier. Further, generalized
derivations have been primarily studied on operator algebras. Therefore, any investigation from
the algebraic point of view might be interesting (see for example Hvala [13] and Lee [18], where
further references can be looked). In the present paper, we describe the structure of generalized
derivations and left multipliers of prime rings under some specific situations.

The study of commutators involving derivations goes back to 1957, when Posner [21] proved
that a prime ring R admits a nonzero derivation d satisfying [d(z),z] = 0 for all x € R, is
commutative. Since then, this result has been generalized in many directions. In 2000, Carini
and Filippis [6] studied the nilpotent values of commutators involving derivations of prime rings.
Precisely, they proved that: Let R be a prime ring of characteristic different from 2, L a non-
central Lie ideal of R, d a nonzero derivation of R and n > 1 is a fixed integer. If [d(z),z]" =0
for all x € L, then R is commutative. In 2006, Filippis [9] extended this result to the class of
generalized derivations as follows: Let R be a prime ring of characteristic different from 2, L
a noncentral Lie ideal of R and n > 1 is a fized integer. If R admits a generalized derivation F
associated with a deriwation d such that [F(z),z]™ = 0 for all x € L, then either R satisfies sy,
the standard identity in four noncommuting variables or there exists a € U and A € C' such that
F(z) = ax + xza + Az for all x € R. Therefore, it is natural to look at the idempotent elements
of the set E = {[p(x),z] : € L}, where ¢ is a mapping and L is a subset of a prime ring R.
Recently, Scudo and Ansari [22] considered this problem with generalized derivations of prime
rings. In fact, they proved the following theorem:

Theorem 1.1. Let R be a noncommutative prime ring with char(R) # 2, U the Utumi qotient
ring of R, C the extended centroid of R and L a noncentral Lie ideal of R. If G is a generalized
derivation of R with an associated derivation d of R such that [G(u),u]” = [G(u),u] for all
u € L, where n > 1 a fixed integer, then one of the following holds:

(i) R satisfies the s4 identity and there exists a € U and X € C such that G(z) = ax +xa+ \x
for all x € R.

(i) there exists v € C' such that G(x) = vz for all x € R.
In this line of investigation, Filippis et al. [10] obtained the following result on multilinear

polynomials: Let R be a prime ring with char(R) # 2, C the extended centroid of R, d a nonzero
derivation of R, f(x1,--- ,2n) a multilinear polynomial over C, I a nonzero right ideal of R and
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m > 1 a fized integer such that

[d(f(.%'17~-~ 7$n)),f($1a"' axn)]m = [d(f(xlv"' 7$n))7f($1a"' ’wn)]

forall zy,--- ,x, € I. Then either [f(z1, - ,Tn), Tnt1|Tnye2 is an identity for T or d(I)I = (0).

Very recently, Ashraf et al. [2] studied a related problem for automorphisms of prime rings.
Specifically, they proved the following theorem: Let R be a prime ring with char(R) # 2,3 and
L a noncentral Lie ideal of R. If o is an automorphism of R such that [o(x), z]™ = [o(x), ] for
all x € L, where m > 1 a fixed integer, then R is commutative.

The main objective of this paper is to study the above mentioned problem for the set [L, L] =
={[z,y | z,y € L}, where L is a noncentral Lie-ideal of a prime ring R. In fact, we describe the
structure of generalized derivations and left multipliers of prime rings with idempotent values on
commutators. Precisely, we prove the following results:

Theorem 1.2. Let n > 1 be a fized integer. Neat, let R be a prime ring with char(R) # 2, U
the Utumi quotient ring, C is the extended centroid and L is a noncentral Lie ideal of R. If R
admits a generalized derivation G associated with a derivation g such that [G(u),u]™ = [G(u), u]
for alluw € {[z,y] : x,y € L}, then one of the following holds:

(i) R satisfies sy and there exists A € C such that G(x) = ax + xa + Az for all x € R, where
acU.

(i) there exists v € C such that G(x) = vz for all x € R.

Further, as an application, we describe the structure of left multipliers of prime rings. In
particular, we establish the following:

Theorem 1.3. Let m,n > 1 be fized integers. Next, let R be a prime ring with char(R) # 2, U
the Utumi quotient ring, C is the extended centroid of R and L is a noncentral Lie ideal of R.
If T is a left multiplier of R such that ([T (u),u])™ = [T (u),u] for all u € {[z,y] : z,y € L},
then there exists v € C' such that T(x) = vz for all x € R.

2. Preliminaries

A ring R is said to be a prime if for any a,b € R; aRb = (0) implies a = 0 or b = 0. An
additive mapping g : R — R is called a derivation if g(zy) = g(x)y + xg(y) for all z,y € R. For
a fixed element a € R, a mapping x — [a,x] is a well-known example of a derivation, which is
called the inner derivation induced by a. By generalized derivation, we mean an additive mapping
F: R — Rsuch that F(zy) = F(x)y+2g(y), where g is a derivation of R associated with F. For
any z,y € R, the symbol [z,y] denotes the Lie product (or commutator) zy — yx. An additive
subgroup L of R is known as Lie ideal of R if [x,7] € L for all € L and r € R. The Utumi
quotient ring of R is denoted by U and C' the extended centroid of R. For more detail of these
objects and generalized polynomial identities, we refer the reader to [3]. By s4, we denote the
standard identity in four noncommuting variables, which is defined as follows:

s4(21, 22,23, 24) = Z (_1)Ux0(1)$a(2)x0(3)x0(4)7
o€Sy

where Sy is the symmetric group of degree 4 and (—1)7 is the sign of permutation o € Sy. It

is known that by the standard PI-theory, a prime ring R satisfying s4 can be characterized in
a number of ways, as follows: Let R be a prime ring with C' its extended centroid. Then the
following assertions are equivalent:
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dime(RC) < 4.

R satisfies s4.

e R is commutative or R embeds into Ms(F'), for a field F.

R is algebraic of bounded degree 2 over C.
e R satisfies [[22, ], [z,]] (see [5, Lemma 1]).

In order to prove this result, we need the following remarks:

Remark 1 ([18], Theorem 3). FEvery generalized derivation of R can be uniquely extended to a
generalized derivation of U and assumes the form that F(z) = ax + g(x) for some a € U and a
derivation g of U.

Remark 2 ([7], Theorem 2). If I is a two-sided ideal of R, then I, R and U satisfy the same
generalized polynomial identities with coefficients in U.

3. Main results

We begin our discussions with the following lemma.

Lemma 1. Let R = M (C) be the ring of k x k matrices over a field C with char(R) # 2 and
a,be R. If k=2 andn > 1 a fixed integer such that

([a[uw] + [u, v]b, [u, v]])n = [a[u, v] + [u, v]b, [u,v]]
for all u,v € [R, R], then b— a is central.

Proof. By the given hypothesis, R satisfies the generalized polynomial identity

(lallz1, z2], [w3, 4] + [[21, T2], [23, 24]]b, [[21, 2], [23, 24]]]) " —

—lal[x1, z2], [z, 2a]] + [[21, 2], [23, 4]]0, [[21, T2], [23, 24]]].

(1)

k
Let us assume that b —a = 3 ajjeqj, where a;; € C' and e;; denotes the standard matrix
ij=1
unit with (7, j)-th place 1 and 0 elsewhere. For i # j, we choose x1 =e;;, T2 =¢€;j, T3 =¢;; and
Ty = €44 With thiS, we have [171, 1‘2} = €ij, [1‘3, 174} = €ii—€jj and hence Hl‘l,ﬂ?g], [1173,£E4H = 726@‘.

In this view, it follows from (1) that
4”([&61']' + e,-jb, eij])n — 4[&8” + eijb, eij] =0.

Performing the computations and using the fact that char(R) # 2 and n > 1, we obtain
eij(b—a)e;; =0, where ¢ # j. It implies that aj; = 0 for all ¢ # j, hence b — a is a diago-
nal matrix. For any C-automorphism £ of R, £(b — a) enjoys the same property as b — a does;
ie.,

((€(a)[[z1, m2], [w3, 4] + [[21, T2], [23, 24]]E(D), [[1, T2], [w3, 24]]]) " —
—[&(a)[[x1, z2], [x3, Ta]] + [[21, 2], [23, 24]]E (D), [[21, 22], [23, 24]]].

for all x1,x9,23,24 € R, implies that (b — a) is a diagonal matrix. In particular, let {(z) =
= (1+e;;)xz(l — e;5), where 7 # j, then we see that the (j,4)-th entry of £(b — a) is zero, i.e.,

0= (&(b—a))ij = ayj — ais + ajj — aji = —ai; + ajj.

It implies a;; = a; with ¢ # j. It forces that b — a central element in R. O
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Lemma 2. Let R = My (C) be the ring of all k x k matrices over the field C with char(R) # 2
and g € R. If k > 2, and n > 1 a fized integer such that

(lglfwr, 2], [23, 2a]), [[21, w2], [w3, 24]]]))" = [qllwr, w2, [w3, 24]], [[21, 22], [23, 24]]]

for all x1,x9,23,24 € R, then q € Z(R).

k
Proof. Let ¢ € R,ie., g = Y. ¢rs€rs, where g,.s € C and e, denotes the usual matrix unit with
r,s=1
(r,s)-th entry 1 and 0 elsewhere. For i # j, we choose x1 = e;;, T2 = €;5, T3 = €;; and x4 = ej;.
With this, we have [[z1, 22], [z3, z4]] = —2e;;. In this view, our situation yields

4" ([geij, ei])"™ — 4lgeij, eij] = 0.

Since n > 1 and char(R) # 2, we get e;;qe;; = 0, where i # j. It implies that ¢;; = 0 for all i # j,
hence ¢ is a diagonal matrix. With the same reasoning of Lemma 1, we find that ¢ € Z(R). O

Proposition 1. Let R be a noncommutative prime ring with char(R) # 2, U the Utumi quotient
ring and C' the extended centroid of R. If for some a,b € U and a fixed integer n > 1,

[alu, v] + [u, v]b, [u, v]]™ = [au,v] + [u,v]b, [u,v]]
for all u,v € [R, R], then either R satisfies s4 and b—a € C or a,b € C.

Proof. By our assumption, R satisfies the generalized polynomial identity

[al[z1, z2], [x3, Ta]] + [[T1, 2], [23, 4]0, [[21, T2], [23, 24]]]" =

= [a[[z1, z2], [23, a]] + [[21, T2], [23, 24]]D, [[21, 2], [23, 24]]].
Let us assume that

Q(x1, 22, 3, 24) = [a[[z1, 2], [23, 24]] + [[21, T2], [23, 24]]D, [[21, 2], [73, 24]])]"

_[a[[xlvxﬂa [1’3,%4]] + Hxl’mQ]v [(Eg,.’[4“b, [[xlvl?]v [1'37‘%4]]]'

Since R and U satisfy the same generalized polynomial identities (see Remark 2), we have
Q(z1,x9,x3,24) = 0 for all z1, 29, 23,24 € U. In case C is infinite, then Q(z1, z2,x5,24) = 0 for
all 21,29, 23,24 € U ®c C, where C denotes the algebraic closure of C. Since U and U ®¢ C
are centrally closed (see [8, Theorem 2.5, Theorem 3.5|), we may replace R by U or U ®¢ C
according as C' is finite or infinite, respectively. Therefore, we may assume that R is centrally
closed over C, which is either finite or algebraically closed. If both a,b € C, then we have
nothing to prove. Therefore we assume that at least one of a and b is not in C. Then by
Remark 2, Q(x1,x2,x3,x4) is a nontrivial generalized polynomial identity for R. Now, with the
aid of Martindale’s theorem [19], R is a primitive ring having nonzero socle H with C' as the
associated division ring. In this sequel, a result due to Jacobson [14, p.75] yields that R is
isomorphic to a dense ring of linear transformations of some vector space V over C. For some
positive integer k, let dime (V) = k < oo, then by density of R on V, R = M (C). In view of our
assumption dimg (V) # 1. Moreover, in case dime (V) = 2, then R satisfies s4 and b — a€C by
Lemma 1.

We now assume that dime (V) > 3. For any v € V| we first show that the vectors v and bv
are linearly C-dependent. In this view, we suppose that for some 0 # v, the set {v, bv} is linearly
C-independent and show that a contradiction follows. Since dime (V) > 3, there exists some
w € V such that the set {v,bv, w} is linearly C-independent. By the density of R, there exist
x1,Ta2, T3, x4 € R such that

10 =0; Tov=—w; x3v=0; 40 = w;
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r1bv = v; v =0; x3bv =0; z4bv = w;
T1w =v; Tow = bv; 3w =v; zaw =0.

With all this, our hypothesis implies that

0 (([allz1, z2], [x3, wal] + [[21, 2], [23, 4]0, [[21, T2], [23, 24]]])" —

_([a[[xhx?]? [.%'373;‘4” + [[.%‘173;‘2], [$3,$4]]b, [[.%‘1,.%'2], [137334]]]))0 =
= (2" = 2.

Since char(R) # 2, it leads a contradiction. Thus for any v € V, the vectors v and bv are linearly
C-dependent. Therefore, there exists some 7, € C such that bv = 7,v for all v € V. By a standard
argument, one can easily check that 7, is not depending on the choice of v, i.e., bv = v for all
v € V. In this view, we have

[b,ulv = (bu)v — u(bv)
_ 0

for all v € V. This argument shows that for each u € V, [b,u| acts faithfully as a linear trans-
formation on the vector space V, and hence [b,u] = 0, i.e., b € Z(R). Now Eq. (2) implies
that

[(a+b)[[x1, x2], [x3, zal], [[21, 22], [T3, 24]]]" — [(@ + D) [[21, 22], [T3, 24]], [[21, T2], [23, 24]]] = 0.

for all x1,x2, 3,24 € R. In this case, we get a + b € C by Lemma 2. Hence, a € C.
In case dime (V) = oo, by Wong [24, Lemma 2|, R satisfies the generalized polynomial identity

([a[w, v] + [u, v]b, [u, v]])™ — [a[u, v] + [u,v]b, [u, v]] = 0.

In this case the conclusion follows from [22, Proposition|. It completes the proof. O

3.1. Proof of Theorem 1.2

It is well known that every generalized derivation G takes the form G(x) = ax + g(x) for all
x € R, where a € U (see Remark 1). By [4, Lemma 1|, there exists a nonzero ideal I of R such
that [, I] C L. Therefore our hypothesis gives

([a[[wla xQ}v [$3,$4]] + g([[$1,x2], [x3ax4]])a Hxlvmﬂ’ [x3a$4]]])n =
= [a[[x1, 2], [23, 24]] + g([[71, 72|, [73, 74])), [[71, T2], [73, 74]]]

for all 1, x2,x3, 24 € I. In light of Remark 2, we find that R satisfies the GPI

(lallz1, z2], [w3, 4] + g([[w1, 2], [23, 24])), [[21, 22], [25, 24]]]) " —
—lal[z1, z2], [x3, wa]] + g([[21, 2], [23, 24]]), [[T1, 2], [73, 24]]]-

3)

If g is the U-inner derivation, i.e., for some ¢ € U, g(x) = [¢,z] for all € R. In this view, we
have G(z) = (a + ¢)x — xc for all z € R. By Proposition 1, we are done.
We now assume that ¢ is not U-inner, in this case we call g an outer derivation. On expending
(3), we get
(lallz1, 22], [ws, 2a]] + [[g(21), w2, [23, 2a]] + [[21, 9(2)], [3, @al] + [[w1, 22], [9(23), za]]+
w1, w2], [, g(@a)]], [[w1, w2, [ws, 2a]]]) " — [al[z1, 22], (w3, 24]] + [[9(21), 22], [3, 24]]+
[

[
+Hz1, 9(x2)]s [23, a]] + [[21, 22, [9(23), T4]] + [[21, 22], [203, g(2)]], [[T1, 2], [23, 24]]] = 0.
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With aid of a result due to Kharchenko [16, Theorem 2|, R and hence Usatisfies the GPT

([a[[l'l?xQ]v [CE3,.’E4H + [[AvxZ]a [1'3,1'4]] + Hxl’ B]v [1'37‘%4]] + [[wlva]v [Ma (E4H+
+([w1, z2), [w3, N1, [[w1, 22, [w3, 24]]]) " — [al[z1, 22], [v3, 24]] + [[A4, 2], [25, 24]]+
+[[x1’ BL [m3’$4]] + [[m1’$2]5 [M7 1‘4]} + [[.Il,l‘g], [1‘3,N]], [[.231,1‘2], [x?n $4m =0.

In particular, we find

(lal[z1, x2], [23, 24]], [[21, 2], [23, 24]]]) " — [al[z1, 22), [23, 24]], [21, 22], [23, 24]]] = O

for all xy,x2,x3,x4 € R. In view of Lemma 2, it implies that a € C. Thus the above relation
reduces to

([[[A7$2]7 [:L'Sa $4H + [[:L'la B]v [153,14}] + [[‘Tlaxﬂ’ [Mv x4]] + HxlaxQ]a [LUg,NH, Hxlvxﬂa [x3’$4]]])n7
_[HA7$2]’ [1‘3, 134” + [[1‘1, B]v [$3v 1‘14”"' [[1‘1, ‘TQL [M’ ZE4]]—|- [[5171,1’2}7 [,Ig, N]]v [[171,$2], [$3,5€4H] =0.

Take A= B = M = 0. It implies that

n

([[Ilﬂ 172}, [Ig, NH7 [[‘Tla IQL [‘Tl% 354]]]) - [[[1'1, ‘rQL [583, N]]a [[zla x2]7 ['T37 I4H] (4)

Since it is a polynomial identity for R, in view of a result due to Lanski [17, Lemma 1], it
follows that for a suitable field F, we have R = M (F), moreover R and M (F') satisfy same
generalized polynomial identity. Since R is noncommutative, k > 2. Choose 1 = e;5, T2 = e,
r3 = ejj, x4 = ej;, N = —2e;;. With this, we have [z1,x2] = e; — ejj;, (3, x4] = ej; and
[z3, N] = 2e;;. In this view, from (4), we have

(=1)"8"(eis — ej;)" = 8(eis — €j5)- (5)

If n = 2, we find 8%(e;; — €j;)? = 8(e;; — €j;). It implies that 7e; = —9ej; with i # j, a
contradiction. Now we suppose that n > 2. Right multiply the (5) by e;;, we get

(—1)”8”6@' = 86ij, i.e., (—1)”871_16” = €45
with ¢ # j, a contradiction. It completes the proof.
Following are immediate consequences of Theorem 1.2.

Corollary 1 ([22], Main Theorem). Let R be a noncommutative prime ring with char(R) # 2,
U the Utumi qotient ring of R, C the extended centroid of R and L a noncentral Lie ideal of R.
If G is a generalized derivation of R with an associated derivation d of R such that [G(u),u]™ =
= [G(u),u] for all uw € L, where n > 1 a fized integer, then one of the following holds:

(i) R satisfies the s4 identity and there exists a € U and A € C such that G(x) = ax +za+ \x
for all x € R.

(ii) there exists v € C such that G(x) = vz for all x € R.

Corollary 2. Let n > 1 are fized integers. Next, let R be a prime ring with char(R) # 2, U the
Utumi quotient ring, C the extended centroid of R and L a noncentral Lie ideal of R. If T is a
left multiplier of R such that ([T'(u),u])" = [T(u),u] for all w € {[z,y] : z,y € L}, then there
exists A € C such that T(x) = Az for all x € R.
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Proof. Tt is well know that every left multiplier is generalized derivation with ¢ = 0. Hence, G
takes the form G(z) = ax for all z € R and some a € U. The given hypothesis gives that R
satisfies

lal[z1, z2], 73, wal], [[T1, 2], [23, 4]]]" = [a[[z1, 2], [w3, 24]], [[21, T2], [23, 24]]].

Set Q(z1, x2, x3,24) = [[T1,22], [T3, 24]], [[£1, 2], [T3, 4]], & multilinear polynomial in the vari-
ables x1, 22, x3, x4. Thus, R satisfies

[aQ(z1, 22,73, 74), Ux1, T2, T3, 74)]" = [aQ(z1, T2, 3, 74), QU71, T2, T3, T4)].

In light of [1, Lemma 3.10], it follows that a € C, which completes the proof. O

3.2. Proof of Theorem 1.3

Let m, n > 1 be fixed integers and T : R — R be left multiplier such that [T (u),u]” =
= [T™(u),u] for all u € {[x,y] : x,y € L}, where L is noncentral Lie ideal of R. Then, by using
induction on m, it is straightforward to check that T is a left multiplier of a ring R if and only of
T™ is a left multiplier of R. Hence, direct application of Corollary 3.5 yields the required result.
This completes the proof of Theorem 1.3.

We conclude this article with the following example which demonstrates that Theorem 1.2
does not holds for arbitrary rings.

Example 1. Let H denotes the ring of quaternions and

0 a b
R= 0 ¢ d |a,b,c,d e H 3,
0 0 0
0 0 b
and L = 0 0 d |a,b,d € H » be the noncentral Lie ideal of R. It can be seen that R
0 0 0
0 a b
is not a prime ring. Let us define a mappings g, G : R — R such that G| 0 ¢ d =
0 0 0
0 0 o 0 a b 0 a b
= 0 0 d and g| 0 ¢ d = 0 0 d |. It is easy to check that G is a
0 0 0 0 0 O 0 0 0
nonzero genmeralized derivation with an associative derivation g of R and satisfying the iden-
tity [G(u),u]” = [G(u),u] for all w € [L,L]. Since H is a noncommutative rings, it is not

difficult to accomplish that R does not satisfy the identity [[x2,y], [x,y]], which is equivalent to s4
(see [5, Lemma 1]), consequently R does not satisfy sq. Therefore, neither R satisfies s4 nor G
takes the form G(x) = Ax for all x € R and some A € C. Hence, the assumption of primeness in
Theorem 1.2 can not be omitted.

The research of the second author is supported by SERB-DST Project India under Grant
no. MTR/2019/000603.
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N nemnorenTHBbIE 3HAYEHNSI KOMMYTATOPOB C OOOOIIEHHBIMU
anddepeHInPOBaAHNSIMM

T'ypaungep C. Canjaxy

Kadenpa maremarnkn MemopraabHbBI HAITMOHAIBHBIN KOJIeM K [laTess
Pamxnoypa, [lenmkabd, Nuans

MTakup Aam

Kadenpa maremaruku

Arapxckuit MyCyJIbMaHCKUN YHUBEPCUTET

Austurapx, Yrrap-Ilpagem, Unausa

AnnHoTanuga. B macrosieit crarbe MBI XapakTepudyem 0000IeHHbIe TuddepeHInpOBaHus U JIeBble
MYJIBTUILIUKATOPBI TIEPBUYHBIX KOJIEIl, BKJIOYAIONINE KOMMYTATOPBI C UJIEMIIOTEHTHBIMUA 3HAYEHUSIMU.
A “MEeHHO, MBI JIOKA3bIBAEM, UTO €CJIM IIEPBUYHOE KOJIBIO XaPAKTEPUCTUKHU, OTJIUIHONW OT 2, JIOIyCKAeT
o6obiennoe nuddepennupoBanre (G ¢ ACCOMUATUBHLIM HEHYJIEBBIM nuddepeHnupoBatueM g Koybia R
takoe, 910 [G(u),u]" = [G(u),u] nust Beex u € {[z,y] : ¢,y € L}, rne L — neuentpanbuelit uaean Jlu R,
an > 1 — dpuKCcUpoOBaHHOE LEJI0€ TUCJIO, TO BBIIOJIHSIETCS OJHO U3 CJIELYIONIMX YTBEPXKICHUI:

(i) R ymomserBopsier s4 u cymecrByer A €C, pacummMpeHHbIH LeHTp Tsikectu R, Takoif, 4ro
G(z) = ax + za + Az qya Beex © € R, tae a € U, dakrop-kobno Yrymu Koabia R,

(ii) cymectByer A € C, Takoe, urto G(z) = yx st Beex T € R.

B KavecTBe IPUIIOZKEHNsI OIUIIEM CTPOEHHUE JIEBBIX MYJIBTUIINKATOPOB IIEPBUYHBIX KOJIEIl, YAOBJIETBOPSI-
romux yenosuio ([T (u),u])™ = [T (u), u] for allu € {[z,y] : «,y € L}, rne m,n > 1 — bukcupoBaHHbIE
neJible yncsa. B 3ak/oueHne mpuse/ieM IpuMep, OKa3bIBAIOINIHMiL, ITO yCJI0BUEe Hallel OCHOBHOI TeOpeMbl
He SIBJISIETCS] N30BITOMHBIM.

KuroueBrbie cjioBa: MepBUYHOE KOJIBIO, uaeas Jlu, obobmennsiit Beison, GPI.
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Abstract. Many biological and learning theory models have been investigated using probabilistic func-
tional equations. This article focuses on a specific kind of predator—prey relation in which a predator
has two prey options, each with a probability of x and 1 — z, respectively. Our aim is to investigate
the animal’s responses in such situations by proposing a general probabilistic functional equation. The
noteworthy fixed-point results are used to investigate the existence, uniqueness, and stability of solutions
to the proposed functional equation. An example is also given to illustrate the importance of our results
in this area of research.
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1. Introduction and preliminaries

Various mathematical learning experiments have recently shown that the behavior of a simple
learning experiment follows a stochastic model. Thus, it is not a novel idea (for detail, see [1,2]).
Following 1950, however, two critical features were apparent, most notably in the Bush, Estes,
and Mosteller research. First, one of the most critical characteristics of the proposed models is
the inclusive nature of the learning process. Second, such models may be evaluated in such a
manner that their statistical properties are revealed.

In 1976, Istriatescu [3] examined the participation of predatory animals that feed on two
different kinds of prey using the following functional equation

H(x)=aR(r+(1—r)z)+ (1 —2)Z((1 - s)z), (1)

forallz € # =1[0,1] and 0 <r < s < 1, where Z : _# — R is an unknown function.

The states z and (1—=x) to r+ (1 —r)x and (1 — s)x, respectively, were converted into Markov
transitions to explain such behavior by P(r+ (1 —r)z) = z and P((1 —s)z) = 1 —z. Sintunavarat
and Turab [4] discussed the properties of the above model (1) under the experimenter-subject
controlled events.

*taurusnoor@yahoo.com  https://orcid.org/0000-0002-5445-9728
© Siberian Federal University. All rights reserved
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In a two-choice scenario, in [2,5], the authors utilized such operators to monitor the movement
of a paradise fish under the reinforcement-extinction and the habit formation circumstances (for
detail, see Tab. 1).

Table 1. Operators for reinforcement-extinction and habit formation model

Operators for reinforcement-extinction model
Fish’s Responses || Outcomes (Left side) || Outcomes (Right side) || Events

Reinforcement m re H re+1—r H EFE
ERE

Operators for habit formation model

Fish’s Responses || Outcomes (Left side) || Outcomes (Right side) || Events

I [
I [
[ |
H Non-reinforcement m st+1—s H ST H 5 H
[ |
I [
[ I
I [

|
Reinforcement m T H re+1—r H EAF
Non-reinforcement m ST H st+1—s H EIF

Berinde and Khan [6] extended the preceding concept by introducing the subsequent func-
tional equation

X(x) = a2 (Vi(x)) + (1 — 2)Z(V2()), (2)

for all x € #, where #1,75: # — _# are given mappings and satisfied the following boundary
conditions

71(1) =1, and
{ (1)=1 3)

¥5(0) = 0.

Recently, Turab and Sintunavarat [7] utilized the above ideas and suggested the functional
equation stated below

R(x) = acH(wix+ (1 —w1)01) + (1 — 2)Z(wazx + (1 — w2)02) Yz e 7, (4)

where Z : _# — R is an unknown, 0 < w; < wz < 1 and 01,02 € _#. The aforementioned
functional equation was used to investigate a particular kind of psychological resistance in dogs
who were kept in a confined enclosure.

Several additional research on the behaviors of humans and animals in probability-learning
situations have yielded a variety of diverse conclusions (see [8-13]).

As a result of the previous research, we propose the following general probabilistic functional
equation

o= (522) (7)o (35) - 2257) st

w—j\ (7(x)—Jj w—j m(x)—Jj

1- AL 1l—— (1 - ——= | Z2(V 5

(-2 (B ) avswy+ (1- 522 (1- T @oa. ©)

for all z € [j,k], where 0 < w < 1, Z : [j, k] — R is an unknown and 7, %1, %3, ¥5, %4 : [4, k] —
[4, k] are given mappings.

The Banach fixed point theorem will be used to establish the existence and uniqueness results

of the above equation (5). Finally, we examine the stability of the suggested stochastic equation’s

solution.

The following stated result will be needed in later sections.
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Theorem 1.1 ( [14]). Let (_#,d) be a complete metric space and Z : ¢ — ¢ be a mapping
defined by
d(Zs, Z#t) < Ad(s, 1) (6)

for some A < 1 and for all s,t € #. Then Z has precisely one fized point. Furthermore, the
Picard iteration {s,} in ¢ which is defined by s, = #S,—1 for all n € N, where sy € 7,
converges to the unique fixed point of Z.

2. Main results

Let # = [j, k] with j < k, where j, k € R. We indicate the class Z : # — R consisting of
all continuous real-valued functions by .7 such that Z(j) = 0 and
_1#(s) — (1)
st |s =1
We can see that (7, ||-]|) is a normed space (for the detail, see [5,15]), where ||-|| is given by

[%(s) — %))
|s 1|

(7)

|22|| = sup
s#t

forall Z € 7.
Next, we rewrite (5) as

a0 = (1=2) (D) aoien + (3=2) (20 @0ate +

(A2 (P aosen + (5=2) (5 2) 206, ©
(k J)( k= RO

where # : _# — R is an unknown function such that Z(j) = 0. Also, %1, 7%, 73, % : ¥ — 7
are contraction mappings with contractive coefficients by, bs, b3 and by respectively. Also, the

following condition holds
H(1a(5)) = j = Z(V4(j))- (9)

Furthermore, 7 : _# — _# is a non-expansive mapping with 7(j) = j and |7(z)| < bs, for all
Before proving the main results, we mention the following conditions here.

(Ay1): For the mappings %1, % : # — #, we have
71 (u) = 72(v)] < b6 |u—v|, (10)
for all u,v € # with u # v, where b € [0,1).
(Az): For the mappings 73,7, : # — _#, we have
[Y5(u) = Ya(v)] < b7 lu—v|, (11)
for all w,v € # with u # v, where by € [0,1).
(As): For the mappings 71, %, #3, 7%, : # — _#, there exist points u*,v* € [j, k] such that

M) =Yo(u)  and - P(v") = Fa(v7). (12)
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A Fixed Point Approach to Study
Consider the probabilistic functional equation (8) with (9). Assume that the

and (As) hold with Ay < 1, where

Ali Turab
We begin with the succeeding outcome.

conditions (A1)

Theorem 2.1.

S =g s E 3 2 =2 22 2 —=
- ~ ~— ~— ~—
Qs + = g s — ¥ ¥ ¥ ¥ £ ¥ £ =
S S N Z A\ X =
S — = = — g ~— ~— == N ~— ~— y
[\8) N —~ —~
- & ™ 5008 o — = Q = « Q =X P
W ~ N = = = % % % Q
= 2§ s T S A I I
A = — ~—
T iy Z ~ _
—2) 8§ ~— % S 3 X @ % § £ 8 § 5 8§ o
T ¢S T Elw D Yy &« Y =Z = = = 3 2 2 5
— 5 S35 FT £ e R
= oo . . = > : = ’
S T =S8 ol e & S~ - SO Els TS S TeEs T
+ — == e = £ = % % % —~| | = & ! = Sl
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As #1 — ¥, are contraction mappings with the contractive coeflicients by — b4, respectively. Thus,
by using the definition of the norm (7), we have

|Ouro| < Ay || %1 — o],
where A; is defined in (13). This gives that

A(H R, H Ro) = || H K — K R < M ||%1 — F2|| = Md(Zr, %2).

As 0 < Ay < 1, we conclude that £ is a Banach contraction mapping with metric d induced
by || -] - O

Theorem 2.2. Consider the probabilistic functional equation (8) associated with (9). Assume
that the conditions (A1) and (Az) hold with A1 < 1, where Ay is defined in (18). Also, there
exist a nonempty subset & of S = {%# € T|%#(k) <k} such that (&,] - ||) is a Banach space,
where || - || is given in (7), and the mapping & from & defined for each # € T by (10) is a self
mapping. Then, the functional equation (8) with (9) has a unique solution in &. Furthermore,
the iteration %, in & can be defined by

e = (5=9) () wosen+ (75) (%

+(575) () mosen+ (575) (55

for all n € N, where %, € &, converges to the unique solution of (8).

(z)

J
-

) #a (e

(z)
J

+
)%M(m)), (15)

Proof. We get the conclusion of this theorem by combining Theorem 2.1 with the Banach fixed
point theorem. O

Remark 2.3. Our proposed probabilistic equation (5) is a generalization of the functional equa-
tions discussed in [3,5-7].

Here, we shall look at different conditions. If #1,%5,75,%, : # — _# are contraction
mappings with contractive coefficients b1 < bs < b3 < by, respectively, then by Theorems 2.1 and
2.2, the outcomes are as follows.

Corollary 2.4. Consider the probabilistic functional equation (8) associated with (9). Assume
that the conditions (A1) and (Az) hold with Ay < 1, where

Ay = ‘2b4 + ﬁ [(w —7)bs + (k — w)bs]|, (16)

and there is a nonempty subset & of . = {%# € T|%#(k) < k} such that (&,| - ||) is a Banach
space, where || - || is given in (7), and the mapping & from & defined for each # € T by

e - (3=2) (B2 ) aonen+ (521) (522 ) woaten +

—J
(522) (S22 oo (55) (5522 e, o

forall x € ¢ is a self mapping. Then S is a Banach contraction mapping with the metric d
induced by || - ||.
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Corollary 2.5. Consider the probabilistic functional equation (8) associated with (9). Assume
that the conditions (A1) and (As) hold with Ay < 1, where Ay is given in (16), and there is a
nonempty subset & of & = {# € T|%(k) < k} such that (&,]-]|) is a Banach space, where |- ||
is given in (7), and the mapping & from & defined for each Z € T by (17) is a self mapping.
Then, the functional equation (8) with (9) has a unique solution in &. Furthermore, the iteration
P in & is defined as

@) = ($=2) (B2) st + (1=2) (522 s Ot

() () o (52) (72 .

for all n € N, where %y € &, converges to the unique solution of (8).

Theorem 2.6. Consider the probabilistic functional equation (8) with (9). Assume that the
condition (Asg) holds with Ay < 1, where

e B () )
) () 2

Suppose that there is a nonempty subset & of & == {%# € T|%#(k) < k} such that (&,] -|) is a
Banach space, where || - || is given in (7), and the mapping % from & defined for each # € T

by
e = (1=2) (A=) aoien + (3=2) (522 @aten +

k—w\ (71(x)—j k—w k—1(x)
AVZ AZ 2
+<k_j)( A ) (s(w))+<k_j>( oy ) #0a@). (20)
for all x € ¢ is a self mapping. Then ¢ is a Banach contraction mapping with the metric d
induced by || - ||

Proof. The line of proof of this theorem is the same as Theorem 2.1. Here, we highlight those
parts which are different from the previous theorem.
Let #1,%> € &. For each u,v € _# with u # v, we obtain

Ouzo| <

< (1) (50« [ 2 i - w

o (52 (B x| e = O IO )~ (o)

\uiv| (i:?) (T(ku)__jj> X _K% )(I”/{:(ii EZU”%)%(U))' x [V3(u) = V5(v)]

(520 () « | = O = IR )~ o)
7

x [71(v) = Y1 (u”)

1 — )W) = (9 — To) i ("))
FAl) ~ A()]
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F(55) (822 « [t st — )

k—j) \k—j [Y2(ur) — #5(v)]

+(e5) (5 == x|

+ (i) (=0« =2 2 e - e

Here, we discuss the following cases.

u*) — ”f/z(v)|]

Case 1: If v = u* = v*, then by (21) we have

|Ousrto| < A2 [|%1 — %2 -

Case 2: If v # u*, v = v*, then by (21) we have

|Ouzo| < Az [|%1 — Z2l| -

Case 3: If v = u*, v # v*, then by (21) we have

|Ouzo| < Az [|%1 — 2| -

Case 4: If v # u* # v*, then by (21) we have

|@u¢v‘ < Ao ||%21 — Za|,

where Aj is defined in (19). This gives that
Ad(H R, H R2) = || H R — H K| < Mo || %1 — || = Nod(%r, K2).

As aresult of 0 < Ay < 1, we can conclude that ¢ is a Banach contraction mapping with metric
d induced by || - || - O

Theorem 2.7. Consider the probabilistic functional equation (8) associated with (9). Assume
that the condition (As) holds with Ay < 1, where Ao is defined in (19). Also, there is a nonempty
subset & of S = {Z# € T|%# (k) < k} such that (&,] - ) is a Banach space, where || - || is given
in (7), and the mapping H from & defined for each Z € T by (20) is a self mapping. Then,
the functional equation (8) with (9) has a unique solution in &. Furthermore, the iteration %y,
in & can be defined by

(%) (x) = <Z’:j> (Tf)__jj>%n1(%(x))+ <Z’:j) < — m)% 1(Fa(2) +

+(525) (55 ) mmson+ (525) (5252 o, @2

for allm € N, where %o € &, converges to the unique solution of (8).

Proof. By coupling the Banach fixed point theorem with Theorem 2.6, we obtain the conclusion
of this theorem. O

If 11,7, 73,7 : ¢ — _Z are contraction mappings with contractive coefficients b < by <
b3 < by, respectively, then by Theorems 2.6 and 2.7, the outcomes are as follows.
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Corollary 2.8. Consider the probabilistic functional equation (8) associated with (9). Assume
that the condition (As) holds with Ay == 3by < 1. Also, there is a monempty subset & of
S ={Z% € T|%(k) < k} such that (&,] - ||) is a Banach space, where || - || is given in (7), and
the mapping H from & defined for each # € T by

(HR) () = (:_j) (T(kz)_jj) AN (@) + <Z’_j> <kk_Tgf”)) R(Va(w)) +

k—w\ (7(x)—j k—w k—1(x)
2
+ <k_j) ( A )%(%(I))+ <k_j> ( o ) #a@). (23
for all x € # is a self mapping. Then J is a Banach contraction mapping with the metric d
induced by || - ||

Corollary 2.9. Consider the probabilistic functional equation (8) associated with (9). Assume
that the condition (As) holds with Ay = 3by < 1. Also, there is a monempty subset & of
S ={Z% € T|% (k) < k} such that (&,] -||) is a Banach space, where || - || is given in (7), and
the mapping & from & defined for each # € T by (23) is a self mapping. Then, the functional
equation (8) with (9) has a unique solution in &. Furthermore, the iteration %, in & is defined
as

= (0) (S5 s+ (12) (522 s

(525) (52 i (423) (20) i,

for all n € N, where %y € &, converges to the unique solution of (7).

Remark 2.10. The authors of [3, 4, 6] utilized the boundary conditions to prove their major
findings. However, compared to them, our results are independent of such conditions.

We now offer the following example to enhance our findings.
Example. Consider the probabilistic functional equation given below

1

2la)=wae (oot 1)+ wlt- 02 (§) + (- w5+ )+ (- w-2(35) (29

forallz € # =[0,1) and #Z € 7. If we set the mappings 7, %1, %, %5, %1 : ¥ — # by

T 1 T
"t T n

() =2, Y(z)= Z !

TR

5 %@

for all z € #. So, our equation (25) is decreased to the equation (8). It is easy to see that
Y, Vo, V3, ¥y satisfy our boundary conditions (9). Also,

1 1 1 1
[Pau— o] < lu—vl, [%u— Y50l <clu—vl, Pau— Yool < gslu—ol, [Pau—Yav| < slu—v

for all u,v € _#. This implies that ¥#; — ¥, are contraction mappings with coefficients b, = 16’
1 1

bs = — and by = -—— respectively. Also, there exist points u*,v* € [0, 1] such that

Y5 (u*) and ¥5(v*) = ¥4 (v*) (see Fig. 1).

by =

1
6’
N(w) =
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-
Y

(08727, 0,1455) __—— | (0.987,0.0823)
0
] _ ——— I I
1 -~ 4 L
(a) LAlx)= L= (orange) and (b) Zs() 19 + 55 (red) and
16, 11 Zi(x) = = (blue)
L(x) = 5 (green) T
Fig. 1. Graphs of £ (x), %(x), L5(x), and Zy(x)
4
Moreover, Ay = w < 1, for all w € [0,1], and there is a nonempty set & of . :=

{Z% € 7|2%(1) < 1} such that (&, || - ||) is a Banach space, and the mapping . from & defined
in (25) for all x € # is a self mapping, thus it fulfill all the requirements of Theorem 2.6, and
therefore, we get the results related to the existence of the given equation (25) solution.

If we define Zy = = as a starting approximation, then by Theorem 2.7, the iteration stated
below converges to a unique solution of (25):

1
@) = o3 [—737Twa® — 3082° + 1444wz + 1140z] ,
- wx . 2 2
Ho(w) = S [-810Twa? — 338827 + 230560ws + 1907847 + 352512w + 284672] +
w(l — ) 2 2
261150 [—737wa® — 30827 + 8664wz + 6840x] +
T o 063ua? — 3049207 4 2632146wr + 2100228 + 1539665w + 1224512] +
358533648
(I-w)(1-=2) 2 2
+aticos [ 73Twa? — 3082% +17328wx + 13680z, ]
In(x) = wedn (N1(2)) +w(l = 2) %01 (V2(2)) + (1 — w)aFn1 (V3(2)) +
+(1 = w)(1 = 2)Zn—1 (Ya(x))
for all n € N.
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3. Stability analysis of the proposed probabilistic functional
equation

Now, we shall discuss the stability of the suggested functional equation (7) (for the details of
stability, we refer [16], [17].

Theorem 3.1. Under the hypothesis of Theorem 2.1, the equation X X = X, where X : & — &
is defined as

(HR) () = (Z:]]) (T(]f)_;j)%(%(x)w <Z’:j> <kk__7§”)>%(%(x)) +
+(i=5) () w0+ (6=5) (5277 oo e
for all # € & and x € _#, has Hyers-Ulam-Rassias stability; that is, for a fived function

¢ : & — [0,00), we have that for every Z € & with d(H %, R) < ¢(Z), there exists a unique
KX € & such that KX =R and d( %, %) < sp(Z) for some ¢ > 0.

Proof. Let # € & such that Ad(A R, %) < o(#). From Theorem 2.1, there exists a unique
% € & such that # % = #. Then we have

AR, H) < AR, H R) + d(HRR) < p(X) + d(H R, HR) < p(R) + Md( R, ),
where A; is defined in (13), and so

AR, %) < so(R),

1
i This completes the proof. O
— N

where ¢ :=

From the above analysis, we obtain the following result related to the Hyers-Ulam stability.

Corollary 3.2. Under the hypothesis of Theorem 2.1, the equation # X% = X, where X : & — &
is defined as

wa = (1=2) (B0 #oien + (7=2) (25 ) #0aten +

E—w\ [(7(x)—j E—w\ (k—71(x)
(52) (B D) avsen+ (=0) (S 7D) a0, en
for all # € & and v € #, has Hyers-Ulam stability; that is, for a fired v > 0, we have that

for every # € & with d(H #,%) < v, there exvists a unique X € & such that X% = % and
d(R, %) < sv, for some s > 0.

Conclusion

The predator-prey paradigm, especially in a two-choice situation, is one of the most exciting
frameworks in mathematical biology. A predator has two possible prey choices in these models,
and the solution exists when the predator is fixed to one of them. We extended the research by
introducing a generic stochastic functional equation in this paper that may cover a wide range
of learning theory models in the existing literature. The existence, uniqueness, and stability of
the proposed stochastic equation’s solution were investigated using a fixed-point method. Our
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techniques do not rely on the boundary conditions discussed in [6,9], which implies that the
proposed results cover more problems than the results described in the literature. Our method
is unique, and it may be used to solve a wide variety of mathematical models in the fields of
mathematical psychology and learning theory.
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IToaxoa ¢ dukcupoBaHHOI TOYKOI JIJII M3yUeHUs KJIacca
BEPOSITHOCTHBIX (DYHKITMOHAJIBHBIX YPaBHEHUIA,
BO3HUKAIONINX B MCUXOJIOTUYECKOI Teopuu oOyUueHuUs

Amm Typab

JlenapraMeHT MAaTeMATHKA U CTATUCTUKH
DakyabTeT HAYKNA M TEXHOJIOTHI
Tammacar yHuBepcuTeT PaHrccuT renTp
[Tarym Tanu, Tanmramns

Awnnoranmsi. Muozue 6uosozuveckue modeau u modeau meoput 06yweHus 6wl UCCAC008aHbL C UC-
NOAB30BAHUEM BEPOATMHOCTHLT PYHKUUOHAALHOIT YpasHerul. B amol cmamove ocnosnoe erumarue
yoeaaemcs 0cobomy muny OMHOWEHUT TUUHUK-HCEPMEBA, 68 KOMOPOM Y TUWHUKA eCb 064 8aPUAH-
ma dobviuu, Kadtcowl ¢ eepoamuocmuvro x u 1 — x, coomeemcemeenno. Hawa ueav cocmoum 6 mom,
YMobbL UCCALI06aAMb PEAKUUIO JHCUBOMH020 8 MAKUT CUMYAUUAT, NPEOA0AHCUS 00ULee BEPOATNHOCTIVHOE
PyrruuonasbHoe Ypasrenue. 3acAYAHCUBAIOULUE BHUMAHUA PE3YALMAbL ¢ HUKCUPOBAHHOT MOWKOT UC-
NOABIYIOMCA OAA UCCALO0BAHUA CYUWECTNEOBAHUA, €OUHCMEEHHOCTIU U YCTOUHUBOCMY peweruti npeo-
N02HCENH020 PYHKUUOHAALHO20 Ypashenus. [Ipuseden makoice NPUMED, UAMOCTRPUPYIOUUT BAHCHOCTD
HAUWUT PE3YALMAMOE 8 Mot 06aacmU UccAedo8arul.

KimroueBble cioBa: gepoamuocmuvie GYHKUUOHAADHBLE YDABHEHUSA, YCMOTUNUBOCTD, HENOJGUNCHDLE
MOUKU.
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Abstract. We investigate the well-known hypothesis of D. R. Hughes that the full collineation group of
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notebook was written down by N. D. Podufalov). The spread set method allows us to prove that any non-
Desarguesian semifield plane of order p, where p = 1 (mod 4) is prime, does not admit an autotopism
subgroup isomorphic to the dihedral group of order 8. As a corollary, we obtain the extensive list of
simple non-Abelian groups which cannot be the autotopism subgroups.
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Introduction

A projective plane is called a semifield plane if its points and lines are coordinatized by a
semifield, that is a non-associative ring @ = (@, +, -) with identity where the equations ax = b
and ya = b are uniquely solved for any a,b € Q\ {0}. The study of finite semifields and semifield
planes started more than a century ago with the first examples constructed by L. E. Dickson [1].

By the mid-1950s, some classes of finite semifield planes had been found. All of them
had the common property that the collineation group (automorphism group) is solvable. So
D.R. Hughes conjectured in 1959 in his report that any finite projective plane coordinatized by
a non-associative semifield has the solvable collineation group. This hypothesis is presented in
the monography [2, Ch. VIII, Sec. 6]; it is proved also that the hypothesis is reduced to the
solvability of an autotopism group as a group fixing a triangle. In 1990 the problem was written
down by N.D. Podufalov in the Kourovka notebook ( [3], the question 11.76).

We represent the approach to study Hughes’ problem based on the classification of finite
simple groups and the theorem of J. G. Thompson on minimal simple groups. The spread set
method allows us to identify the conditions when the semifield plane with certain autotopism
subgroup exists. This method can be used also to construct examples, including computer
calculations. The elimination of some simple groups as autotopism subgroups follows to the
progress in solving the problem.

It is shown by the author in [4,5], that an autotopism of order two has the matrix represen-
tation convenient for calculations and reasoning. These marices are used further to represent the

*ol71@bk.ru  https://orcid.org/0000-0002-6005-2393
© Siberian Federal University. All rights reserved
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elementary abelian 2-subgroups and 2-elements in the autotopism group [6,7]. Also it was proved
that any non-Desarguesian semifield plane of odd order cannot admit an autotopism subgroup
isomorphic to the alternating group As [8].

Here we use the spread set method to prove that any semifield plane of order p, p is prime
and p — 1 is divisible by 4, cannot admit an autotopism subgroup isomorphic to the dihedral
group Dg of order 8, see Theorem 2.1. The proof is based on a concretization of a geometric
sense of autotopisms of order 2 and 4, it uses also the matrix representation of autotopisms of
order 4. Obviously, the presence of this group in almost all simple non-Abelian groups allows us
to exclude an extensive list from possible autotopism subgroups.

1. Definitions and preliminary results

We use main definitions, according [2,9], see also [6], for notifications.

Consider a linear space W, n-dimensional over the finite field GF(p®) (p be prime) and the
subset of linear transformations R C GL,(p°) U {0} such that:

1) R consists of p™* square (n X n)-matrices over GF(p®);

2) R contains the zero matrix 0 and the identity matrix E;

3) for any A, B € R, A # B, the difference A — B is a non-singular matrix.

The set R is called a spread set [2]; it is an image of an injective mapping 6 from W:
R={0(y) | y € W}. Determine the multiplication on W by the rule z xy = x - 0(y) (z,y € W).
Then (W, +, %) is a right quasifield of order p™* [9,10]. Moreover, if R is closed under addition
then (W, +, ) is a semifield. This semifield coordinatizes the projective plane 7 of order p™® such
that:

1) the affine points are the elements (x,y) of the space W & W;

2) the affine lines are the cosets to subgroups

V() ={(0,y) [y e W}, V(m)={(z,20(m)) |z € W} (meW);

3) the set of all cosets to the subgroup is the singular point;
4) the set of all singular points is the singular line;
5) the incidence is set-theoretical.

To construct and study finite semifields, we use a prime field Z, as a basic field. In this case
the mapping 6 is presented using linear functions only; it greatly simplifies the reasoning and
calculations (also computer).

The solvability of a collineation group Autw for a semifield plane is reduced [2] to the solv-
ability of an autotopism group A (collineations fixing a triangle). Without loss of generality, we
can assume that autotopisms are determined by linear transformations of the space W & W:

A 0
A
(z,9) = (z,y) (0 B) :
here the matrices A and B satisfy the condition (for instance, see [11])
A7'9(m)B € R Vf(m) € R. (1)

The collineations fixing a closed configuration have special properties. It is well-known [2],
that any involutory collineation is a central collineation or a Baer collineation.
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A collineation of a projective plane is called central, or perspectivity, if it fixes a line pointwise
(the azis) and a point linewise (the center). If the center is incident to the axis then a collineation
is called an elation, and a homology in another case. The order of any elation is a factor of the
order || of a projective plane, and the order of any homology is a factor of |x| — 1. All the
perspectivities in an autotopism group are homologies in the case when a semifield plane is
of odd order. They form the cyclic subgroups [12] which are normal in A, and contain three
involution homologies:

—E 0 E 0 —E 0
w0 k) (o ) e (0 )

Obviously these homologies are all in the center of A.

A collineation of a finite projective plane 7 is called a Baer collineation if it fixes pointwise a
subplane of order /|| (Baer subplane). We use the following results on the matrix representation
of a Baer involution 7 € A and of a spread set obtained earlier in [5].

Let 7 be a non-Desarguesian semifield plane of order pV (p > 2 be prime). If its autotopism
group A contains the Baer involution 7 then N = 2n is even and we can choose the base of
4n-dimensional linear space over Z, such that

)

—-E 0
) and the Baer subplane 7 fixed by 7 is the set of points

here L =
where (O >

T ={(0,...,0,z1,...,20,0,...,0,91,...,Un) | Zi,¥i € Zp}.
In this base the spread set R C GLa,(p) U {0} consists of matrices

.o = ("5 I, ®

where V € Q, U € K; Q,K are the spread sets in GL,(p) U {0}, m, f are additive injective
functions from K and @ into GL,(p) U {0}, m(E) = E. Note that throughout the article, the
blocks-submatrices have the same dimension by default.

It is shown by author in [6,7], that the order of a semifield plane provides a natural restriction
to the order of an elementary abelian 2-subgroup and to the order of 2-element in an autotopism
group. We will use some results and so we state it here in the more convenient form.

Theorem 1.1. Let w be a semifield plane of order p™, p be prime, p =1 (mod 4), 7 € A is a
Baer involution.

1. If a is an autotopism of order 4 and o® = T then the restriction of o onto the Baer
subplane 7 is a Baer involution.

2. If o # 7 is a Baer involution in Ca(T) then the restriction of o onto the Baer subplane
7 is a homology if o = h;7 (i =1,2,3) or a Baer involution.

Theorem 1.2. Let 7 be a semifield plane of order pY, p be prime, p = 1 (mod 4), « is an
autotopism of order 4, T = o is a Baer involution. Then N is divisible by 4, and the base of
the linear space can be chosen such that T is (2) and

iL 0 0 0
0 L 0 0

1o o i o] (4)
0 0 0 L
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where i € Zy, i> = —1. The spread set R of the plane 7 is formed by matrices

m1(Uz2) ma2(Va)  fi(V1) f2(Uh)

_ | ms(V2) ma(Uz)  f3(Ur) fa(V1)
WU = | ) wh) (e e(va) ©)
Vi Uy Vs U,

where any block-submatriz is (N/4 x N/4)-dimensional, V1 € Q1, Uy € K1, Va € Q2, Us € Ko,
the matriz sets Q1, K1, Qa, Ko are the spread sets of semifield planes of order p™/*, all the
functions are additive.

Note, that « is determined up to multiplying to involution homologies h; from the center of A
(see the proof in [7]). If we consider certain subgroup of A then we can ignore these homologies.
The second statement of the theorem 1.2 is missed in [7] because obviously but here we must

reconstruct it due to the importance for the main result.
Indeed, we consider the condition (1) for the autotopism « and the matrix 6(V,U) (3):

G (v ) (6 ) =G )

Then we conclude that
LVLeQ, LULeK, m(LUL)=Lm(U)L, f(LVL)=-Lf(V)L, YV e @, VU € K.

So the semifield planes of order p™¥/? with the spreads @ and K admit the Baer involution (2)
and the matrices V € Q, U € K are of the same form as (3):

vo (M) ) (M0 ),

If we suppose that

m(0) = m(va, ) = (T (TR,

m3(V2,U2) m4(V27U2)

then from m(—V5,Us) = Lm(Ve,Us)L we obtain that the functions my, m4 depend on the
block Us and other functions on V. For the function f(V) we use the condition f(—Vi,U;) =
= —Lf(V1,Uy)L and complete the proof.

2. Main result

Theorem 2.1. Any non-Desarguesian semifield plane © of order p™, where p > 2 is prime and
p =1 (mod 4), does not admit an autotopism subgroup isomorphic to the dihedral group of order
8 without homologies.

Proof. Let H ~ Dg be a subgroup of A, H = {a) X\ (0), |a| = 4, |o| = 2, cac = a~!. The

autotopism o = 7 is a Baer involution, so we can choose the base of 2N-dimensional linear space

such that 7 is the matrix (2), « is the matrix (4) and the spread set consists of matrices (5).
Further, o is a Baer involution commuting with 7, and then we have

A0 0 0

0 A, 0 0
=1, 02 B 0| A2=A2=B’=B}=E.
0 0 0 By
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According the Theorem 1.1, the restriction of ¢ onto the Baer subplane 7, is a Baer involution,
so Ay # +E, By # +E. From the condition cac = a1, we have

A1LA; = BiLB, = —L,  AsLAs = BoLBy = L,

0 Ay Ay 0 0 By By 0
! <A12 0 )7 ? ( 0 Ayn)’ ! By, 0 ) 2 0 Ba

The restrictions of @ and o onto the Baer subplane 7, are commuting Baer involutions and, once
more from the Theorem 1.1 and [6], we can choose the base of 7, such that Ay = Aoy = Boy =
B22 = L and

O O O OO O W\n
oo oo ~NO O

coocooN~NOo OO
coowno oo o
oOoNOoC oo o oo
No oo oo oo

0 O

o

Here, for compactness, S = Aj;, and A? = E follows A;2 = S™!. The equality B; = A; we
obtain from the condition (1) for o and §(V,U) = E € R:

A O B 0 Ai1B; 0
= R= AiB;=FE.
(0 A2>(O BQ> (o E)€ it
Now we simplify the matrix ¢ changing the base by the block-diagonal transition matrix
T =diag(E,S,E,E,E,S,E,E).

This modification preserves the matrices 7 and «, but allows us to write ¢ in the more convenient

form:
0O F 0 0 0 0 0 O
E 0 0 0 0 0 0 O
0 0L 0 0 0 0 O
o — 0 0 o L 0 0 0O
0 0 o 0o 0o E 0O
0 0 0o 0 F 0 0 O
0 0 0o 000 L O
0 0 0 0 0 0 0 L
Consider the condition (1) for the spread set (5) and the Baer involution o. For Vo, = Uy =0
we have:
0 FE 0 0 0 0  AOA) fU)\ /0 E 0 0
E 0 0 0 0 0 f2(U)) f£OA)|[E 0 0 o]
0 0 L 0] |vUh) (V) 0 0 0 0 L 0]
0 0 0 L \ %1 Uy 0 0 0 0 0 L
0 0 fs(U)L fa(V1)L
B 0 0 L)L fo(Un)L R
ey @) o o |
LU, Ly 0 0
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So, the matrices LU; and LV; belong to the spread sets Q; and K; for all V; € Q4, Uy € K;.
For instance, we have L € K; if Vi = E. The spread set K of a semifield plane is closed
under addition, so the non-zero degenerate matrix L + F belongs to K7, that is impossible. This
contradiction proves the theorem.

Note that the absence of homologies in H is the natural condition for us because we investigate
the existence problem for simple non-Abelian subgroups in the autotopism group A (for instance,
minimal simple non-Abelian groups from the Thompson’s list). Indeed, the homologies generate
the normal subgroup of A; moreover, the involution homlogies are in the center of A.

Let G be a subgroup of A and S be the Sylow 2-subgroup of G. If two involutions in S
does not commute then they generate the dihedral subgroup in S. Further, using the results
of D. Goldschmidth [13] on strongly closed subgroups (see also D.Gorenstein [14, th. 4.128]),
we conclude that Dg is contained almost in all finite simple non-Abelian groups and list the
exceptions.

Theorem 2.2. Let m be a non-Desarguesian semifield plane of order pY, where p > 2 is prime
andp =1 (mod 4). Then its autotopism group A does not contain a simple non-Abelian subgroup,
except probably the following: PSL(2,2™), n > 2, PSU(3,2™), n > 2, Sz(2"), n is odd, n > 1,
PSL(2,q), ¢ =£3 (mod 8), J; or 2G2(3"), n is odd, n > 1.

Referring to the Thompson’s list, we clarify also that the autotopism group A under the order
condition above does not contain PSL(2,3"), n > 2 is prime, PSL(2,n), n = £1 (mod 8) is
prime, and PSL(3,3).

Conclusion

In order to study Hughes’ problem on the solvability of the full collineation group of a finite
non-Desarguesian semifield plane, the author considers it possible to use the obtained results
to further investigations. The method applied will probably be useful to study other small
autotopism subgroups under the conditions on the plane order.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation (Agreement no. 075-02-2022-876).

References

[1] L.E.Dickson, Linear algebras in which division is always uniquely possible, Trans. Amer.
Math. Soc., 7(1906), no. 3, 370-390.

[2] D.R.Hughes, F.C.Piper, Projective planes, New-York, Springer—Verlag Publ., 1973.

[3] V.D.Mazurov, E.I.Khukhro (eds.), Unsolved Problems in Group Theory. The Kourovka
Notebook. No. 19, Novosibirsk, Sobolev Inst. Math. Publ., 2018.

[4] O.V Kravtsova, Semifield planes of even order that admit the Baer involution, The Bulletin
of Irkutsk State University. Series Mathematics, 6(2013), no. 2, 26-37 (in Russian).

[5] O.V.Kravtsova, Semifield planes of odd order that admit a subgroup of autotopisms isomor-
phic to Ay, Russian Mathematics, 60(2016), no. 9, 7-22. DOI: 10.3103/S1066369X16090024

- 383 —



Olga V. Kravtsova Dihedral Group of Order 8 in an Autotopism Group of a Semifield. ..

[6] O.V.Kravtsova, Elementary abelian 2-subgroups in an autotopism group of a semifield pro-
jective plane, The Bulletin of Irkutsk State University. Series Mathematics, 32(2020), 49-63.
DOLI: 10.26516/1997-7670.2020.32.49

[7] O.V.Kravtsova, 2-elements in an autotopism group of a semifield projective plane, The
Bulletin of Irkutsk State University. Series Mathematics, 39(2022), 96-110.
DOLI: 10.26516/1997-7670.2022.39.96

[8] O.V.Kravtsova, On alternating subgroup As in autotopism group of finite semifield plane,
Siberian Electronic Mathematical Reports, 17(2020), 47-50.
DOT 10.33048 /semi.2020.17.004

[9] N.D.Podufalov, On spread sets and collineations of projective planes, Contem. Math.,
131(1992), part 1, 697-705.

[10] H.Luneburg, Translation planes. New-York, Springer-Verlag Publ., 1980.

[11] O.V.Kravtsova, On automorphisms of semifields and semifield planes, Siberian FElectronic
Mathematical Reports, 13(2016), 1300-1313. DOL: 10.17377/semi.2016.13.102

[12] N.D.Podufalov, B.K.Durakov, O.V.Kravtsova, E.B.Durakov, On the semifield planes of or-
der 162, Siberian Mathematical Journal, 37(1996), 535-541. DOI: 10.1007/BF02104857

[13] D.M.Goldschmidth, 2-fusion in finite groups, Ann. Math., 99(1974), no 1, 70-117.

[14] D.Gorenstein, Finite simple groups. An introduction to their classification, Plenum Press,
New York, 1982.

I'pynna guszapa nopsaaka 8 B rpynmne aBTOTOIIM3MOB
MOJIyTI0JIEBOI IMTPOEKTUBHOM IIJIOCKOCTH HEYETHOTO MOPSAKa

Ouabra B. Kpasmnosa
Cubupckuit de1epaibHbIl YHIBEPCATET
Kpacnosipck, Poccuiickas @eneparnus

Awnnoranusi. 3yuaercs uzBectHasi runore3a /J[. Xpo3a 0 pa3permmMoCTd MOJHON TPYIIBI aBTOMOP-
bu3MOB KOHEYHOI HeIe3aproBOil IOJIYNOJIEBOH MPOEKTUBHOH mmockocTu (Takke Bompoc 11.76
H. 1. Tlonydanosa B Koyposckoit Terpasu). MeTox peryisipHoro MHOKECTBa, [IO3BOJISIET JTOKA3aTh, UTO
HeJe3aproBa IMOJIYIIOJIeBasl IJIOCKOCTD MOPSIKa P, TJie p — Ipocroe, p — 1 mesuTced Ha 4, HE JOIMYCKaeT
MOAIPYII aBTOTOIMU3MOB, N30MOPMHBIX AUIAPAIBLHON IrpyIire mopsaka 8. B kadecTBe ciiencTBus BbIIe-
JIsieTCsT OOIIUPHBIN CIIUCOK MTPOCTBHIX HEaDEeJIEBBIX I'PYIII, HE sIBJISIONINXCS MOAIPYIIIaMU aBTOTOIIM3MOB.

Kirouyesnlie ciioBa: TOJIyTIoJieBasd IJIOCKOCTh, PEryjJIsipHOe€ MHOXKECTBO, 69pOBCKaH HUHBOJIIOIUA, TOMOJIO-

Tu#d, aBTOTOIIU3M.
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Abstract. In this paper, we tackle the two-dimensional and irrotational flow of inviscid and incom-
pressible fluid over a trapezoidal obstacle. The free surface of the flow which is governed by the Bernoulli
condition is determined as a part of solution of the problem. This condition renders difficult an analyt-
ical solution of the problem. Hence, our work’s objective is utilize the Hilbert transformation and the
perturbation technique to provide an approximate solution to this problem for large Weber numbers and
various configurations of the obstacle. The obtained results demonstrate that the used method is easily
applicable, and provides approximate solutions to these kinds of problems.

Keywords: free surface flow, surface tension, incompressible flow, Hilbert method, perturbation tech-
nique.
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Our study begins with a consideration of the steady two-dimensional and irrotational fluid
flow over a trapezoidal obstacle. On the one hand, we assume the fluid is incompressible and
inviscid. On the other hand, we consider the surface tension effect but neglect the effect of
gravity. A major characteristic of the present problem is the nonlinear condition given through
the Bernoulli equation on the free surface of an unknown shape. The latter can be identified as
part of the solution to the problem. In addition, because this condition the proposed problem
become difficult to solve it analytically, so it is necessary to look for an approximate solution
to it.

Free-surface flow problems have been approached using different techniques and methods
over the past few decades. Of these techniques and methods we can mention the series trun-
cation technique and boundary integral method, which helps determine the free surface shape
for potential flows over given obstacles. For example Forbes and Schwartz [1], determine the
non-linear solutions of subcritical and supercritical flows over a semi-circular obstacle, Gasmi
and Mekias [2], Gasmi and Amara [3] and Vanden-Broeck [4], studied the problems of flow over
an obstruction in a channel, whilst Dias, Killer and Vanden-Broeck [5] , obtained solutions to
both subcritical and supercritical free-surface flows past a triangular obstacle, Wiryanto [6] take
the problem of the flow under a sluice gate, M.B. Abd-el-Malek and S.Z.Masoud [7] obtains

*maymanal.bounif@univ-msila.dz  http://orcid.org/0000-0003-2530-6981
Tabdelkader.gasmi@univ-msila.dz
(© Siberian Federal University. All rights reserved

- 385 —



May Manal Bounif, Abdelkader Gasmi Perturbation Approach for a Flow. ..

the linear solution of the flow over a ramp, by representing the bottom in integral form using
Fourier’s double-integral theorem. M. B. Abd-el-Malek and S.N.Hanna [8] solved numerically
the problem of the flow over a ramp with gravity effect by the Hilbert Method and the per-
turbation technique. M. B.Abd-el-Malek, S.N. Hanna and M. T. Kamel [9] investigated the flow
over triangular bottom. Bounif and Gasmi [10] , on the other hand, examined the problem that
involves a free-surface flows over a step at the bottom of a channel, they offered a solution to the
problem using the perturbation method.

The method that we employ in this paper to approximate a solution of the considered prob-
lem follows three steps. Initially, we map the flow field of the physical plane onto the upper
half plane using the Schwartz—Christoffel transformation. Accordingly, the Hilbert method helps
us identify a system of nonlinear equation when applied to the new upper half plane’s mixed-
boundary value problem. Finally, the perturbation technique is utilized to provide a solution to
the system for some large values of the Weber number and varied trapezoidal obstacle config-
urations. The employability of our method will then be clear given the acquired results, as it
provides approximate solutions to the selected kind of problems.

The outline of the paper can be given in four main sections. The first of which will introduce
the mathematical formulation of the present problem. Section 2 presents the approximation of
equations of the problem, while Section 3 delineates the application of the perturbation technique
to solve it. Finally, we show certain free streamline shapes and results in final section.

1. Formulation of problem

Let us consider the motion of a two-dimensional flow of a fluid over a trapezoidal obstacle. The
fluid is assumed to be incompressible, irrotational and inviscid. The effect of gravity is neglected
but we take into account the superficial tension effect. The flow we propose is uniform and has a
constant discharge U1hy = Ushsy , where U;, i = 1,2 designates the velocities and h;, ¢ = 1,2 are
the depths of the flow upstream and downstream respectively. Hence, the bottom consists of the
horizontal walls AgA_1 and A; A" and the asymmetric polygon A_1A_o...A_NyApn...A3A; of
2N angles «; and (2N —1) straight-line segments. Furthermore, we choose Cartesian coordinates
with the origin in the point (see Fig. 1).

yﬂ

1»
=Y
=

z
>

et
]

h1

2

R %

A,

Fig. 1. Sketch of the flow and of the coordinates
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The dimensionless variables are defined by choosing U; as the unit velocity and h; as the
unit length. We introduce the complex potential f(z) = ¢(z) + i1)(2z), where ¢ is the potential
function, 9 the stream function (p and v are conjugate solutions of Laplace’s equation) and f(z)
is an analytic function of z within the region of flow with complex conjugate velocity

L &)

7 S U iv=qe . (1)

Let
k=Inn=1Inqg— 10, (2)

where k is called the logarithmic hodograph variable. Then, from (1) and (2) we get
z= / e~ “df. (3)

Without loss of generality, we choose ¢ = 0 at a point A_; , ) = 1 on the streamline ApA’, and
1) = 0 on the streamline AgA_1A_5...A_NAN ... A A (see Fig. 2). We denote the dimension-
less trapezoid depth by r;, where

r; = l;sin(qy), (4)
where
o |A;A; 4], i=-1,...,—N+1,
ll_{ |A;Aiya], i=1,...,N—1. (5)

On the free-surface, where the pressure is uniform, the dimensionless form of the Bernoulli
equation is given by:

2 |00
2
= 1 Zleg=1 6
CH e lasiT (6)
where We is the adimensional parameter, known as the Weber number and defined by:
pUT 1
We = ———— 7
o= o (7)
T is the surface tension, and p is the density of the fluid.
(G
v=1
AO A/
v=0 ©
AO A,] ALQ A:N 44IN 14‘2 All A/

Fig. 2. The potential f plane

Using the Schwartz-Christoffel transformation, we map the potential plane f as seen in Fig. 2
onto the upper half of an auxiliary t-plane see Fig. 3.
The tranformation used is:

f)=-m(1-1). 0
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Im(t)
A, A, Al_g ATN A.N AIQ A.1 fll/ Ao Re(t)
t1 o t_n  tn ts  f 1

Fig. 3. The auxiliary ¢ plane

1.1. The Hilbert method

In order to express x as the single variable ¢ function, we need to use the Hilbert method for
the obtained mixed problem of the new plane. Hence, the solution for an analytic function x/(t)
in the upper half-plane (see [11]) is given by

+00 0
() = %p.v. / %id:”ds 3 B ()
=0

oo s

Where Bj are real constants and p.v. is the principal value of the integral.
The real and imaginary parts of « (t) are given by

Im[k ()] = =0(t),

Re [k (t)] = Ing(t). (10)

Where

0, t<0=ty,
g, ti<t<tizi, t=—N+1,...,—1,
0(t) =1 —au, tip1 <t<tiy i=1,...,N—1, (11)
0, tv <t<1,
0(t), t>1.

To switch the function & (¢) to x(t), we use an auxiliary function H (t)

VIi—t, t<l,
H() = { —ivE—1,  t>1.
Using (10) and (12), with x(t) = &(t)/H(t), we get
Ing(t) — i6(¢) el
XO=1 1 :;(t) = U(t) + iV (1), (13)
—ivt—1 "~

Examining the upstream condition, we have
B;=0,7=0,1,2,....
and hence

o Im[x(s
x(t) = %p.v./ Mds. (14)

o s—1
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Therefore, using (13) and (14), we obtain

+oo V
pv / (15)
+
16
“po / = (16)
Along the real axis of the upper half-plane I'm(t) = 0 (see Fig 3), the distribution of both real

and imaginary parts of x(¢) can be recapitulated; check Tab. 1. Therefore, go is defined in ¢ < 0
and ¢ is defined in ty <t < 1.

Using (15), (16) and Tab. 1, we obtain the following systems of the nonlinear integral equations:

Table 1. Distribution of the flow quantities along Im(t) =0

‘ OREERE0
Inqo (%)
t<0=t_ 0
: s
. Inq;(t —Q
ti<t<ti;i=—-N+1,...,—1
152 + T T—3
. In ¢; (t) a;
t; <t <t :1,7N—1
+ ! VIt | VIt
In g (t
ty <t<1 D doo (1) 0
1—1¢
o ORI TYI0)
t—1 t—1

CVt—1 oo Ing(s) 20; . ((mi—mi_)VEt—1
0t) = p.v./1 (s—t)is\/jds—'_, Z tan ( >_

N-1
Q00 o mIVE—1
— Z % fan—1 <(ml+1 mi) Vi ) , t>1, (17)
im1 s t—1+ mMi1My;
where
And
V1i—t o ng(s
In(g;(t)) = p.v./ ——2 ds+ ozz/ —_— —
’ T ) <s—t>F zj;ﬂ . s—t\/is
i ds
a | —, (19)
~ /ti“ (s—t)\/l—s}
where p.v. is the principal value of the integral and for j=—N, ..., —1, g;(t) being the flow speed

int; <t<tj_y,and for j=1,..., N, g;(t) being the flow speed in t;41 <t < ¢;.
Using (3) and (8), the coordinates of a point on the free-surface can be obtained as follows:

( ) 1 /+oc 619(5) J ) (20)
2(t) = 200 — — ——ds, t>1.
mJiy  (L=s)q(s)
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By separating the real and imaginary parts, we get:

L LT cosbls)
z(t) = Too W/t (l—s)q(s)d’ t>1, (21)
T ginf(s

2. The approximate equations

In this section, we approximate the nonlinear integral equations (6), (17), (21) and (22) ,
when Weber number is large.

1 |06
Using the first-order Taylor development with respect to We ’8 , we can give the solution
e |0y
to the Bernoulli equation as follows:
1 |06
t)y~1— — |—|. 23
q(t) We |95 (23)
Using the relation (8), we obtain:
00 00 ot 00
—=——=7(t—-1)—, t>1. 24
oo " otop T Ugp (24)
Consequently, for ¢ > 1 the flow speed is approximated by
T 00
t)~1-— t—1 25
q(t) et = D5 () (25)
which yields
m 00
Ing(t)m ——({t—1)=—(t 26
nq(t) &~ (t = 1) 5 (1), (26)
and ) 90
T
— 1+ —(t-1)—(1). 27
@ et =5 @) (27)
For small angles «;, the change in # will be minor, thus, allowing us to approximate sin @ by 6(¢)

and cos @ by one.
Using (26), we can approximate the angle of the free surface with the horizontal (17) by

R L S

~ _t t—14+m;m;_1

N—-1
200 _ i1 — M) Vi —1

-5 atan1<(m“ m:) ) t>1, (28)
Vs

pt t—1+mip1m;

substituting (27) into (21) and (22), and after simplification, the free surface equations take the
form:

Q

(1) xoo—jr/tm (115) [1—1-”7;6(5—1)22(5)} ds

Too — 1 /t+oo L ds + V;e [ lim 6(s) — G(t)}

T (1 — ) s—00

N —1/+Oo L - Lo (29)
v T T o " (1—5)8 We *7
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and
+oo S T
() ~ 1_%1 (19(_)3) [Hwe(s—ngi(s)] ds
~ oL 717/%0 (1085)5)61er sye L Im_0%() — 0(1)?]
L ) 62(t)
~ 1_?/15 s = (30)

To solve the system of the nonlinear integral equations (25), (28)—(30), we use the Perturbation
technique.

3. Perturbation technique

We expand X () in terms of the small parameters o;

N-1 oo
Xt)y= > > alXpa, (). (31)
j=—N+1k=0

’

Where X (t) stands for ¢(t), 0(t), 6 (t), x(t) and y(t).

3.1. Zero-order approximation

This case corresponds to the flow far upstream, which we consider as uniform. Then, the
zero-order approximation of the nonlinear integral equations (25), (28)—(30) is presented by:
e The velocity of the flow
T

et = 1)6,(t) ~ 1. (32)

qo(t) =1 -
e The velocity direction relative to the horizontal

Vi—1 oo (5 —1)6,(s)

Oo(t) =~ — e PV . otvso1

ds =~ 0. (33)

e The free streamline equations:

1 [t 1 1

(1—s)
L[t~ 1
e () B0
1 & 90 S 90 t
t)~1—— ds — ~ 1. 5
bo(t) T&'/t (1—13s) 5T 9We (35)
On the other hand, we have the formula:
1 too
~ —p.o. —d
v o [ s (36)
hence 1
xo(t) = - In(t —1). (37)
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3.2. First-order approximation

Now, we find the first-order approximation of the nonlinear integral equations (25), (28)—(30)
by using development (31) and the zero-order approximation of the system.
Using the development (31), we can write

X(t) — Xo(t
Xy 0 (8) o 2L = Xol®), (38)
Qy
Substituting (25) and (32) into (38) yields
™ ’
B (6) % T (= 1), 1) (39)

From (28), (33) and (38) we get:
e fori=—N+1,...,—1,

\/t* Foe 5_1 ey ! 2 i —mi—1)Vt—1
01.0,(t) = — / L ( )ds+ Z Ztan~? ((m mi-1) >, (40)
) (s —1t) Vs—1 i N+17T t—14+m;m;_1
e fori=1,...,N—1,
VI—T [ (s = 1)0) . (s Py i1 —m)VE—1
01 0, () = — Mds - Z Ztan~! ((m 1= 1) ) . (41)
' \/S—l i1 ™ t—l—l—mi_,_lmi
On the other hand, from (29), (30), (35), (37) and (38), we find:
1
Pra(0) % 0, (1), (12)
and N (5)
1 o ola, S
o () =~ —— ——Zds. 43
A (43)

From (40), (41), and for a very large value of the Weber number We, we may neglect the first
term with respect to the second one. Thus, we get the first-order approximation of the velocity
direction relative to the horizontal axis:

2 i—mi_1)Vt—1
01.0,(t) =~ = arctan (mi —mi1) , i=—N+1,...,—1, (44)
o s t—14+m;m;_1
2 i1 — M) Vi—1 .
Or0,(t) ~ —arctan((m“ m:) > i=1,...,N—1 (45)
’ ™ t—1+m¢+1mi

Substituting (44), (45) into (42) and (43) and carrying out the integration, one finds

i—mi—) VE—1Y .
T ai(t) ~ = arctan (m = 1) 71:7N+17"'57]-7 (46)
T mWe t—14+m;m;_1
2 it1 — M) Vi —1 )
T10,(t) = arctan (7411 = ma) , i=1,...,N -1, (47)
’ aWe t—14+mip1m;
and
4 (m; —m,— iMi— ‘
ylal(t)z(;nml)arctan( i 1), i=—-N+1,...,-1, (48)
’ TN/ My —1 t—1
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4(mip1 —my i s .
Yron(t) = HOL ) o ([P G N (19)
’ T2 /M1 t—1

Using results (35), (37), (46)—(49) and expanding (31) enables finding the approximate solutions
of the free-surface flow:

—1

W) ~ oo S 2 tan1<(mz—mi_1)m)

t—1+mym;—
i=—N+1 +mimi—y

+ Ni:l 204 1<(mi+1—mi)\/m>7

t—1+mjp1m;

and

= Alm—mi)a, m;im;—1
y(t) ~ 1+i:gv:+1 T tan (,/ P )
N_14(m» m;) o My 1My
e Ztanl( ”11) t>1. (51)
T fig V-1

1=

4. Application example for N =2 and a 3 =as =0

The previous approximate scheme is used to calculate the solutions and the free surface
profiles for fixed values of flow with large Weber number are found throughout a range of different
Weber number. The Fig. 4 presented the variation of the free surface shape with respect to the
Weber number, fixed the angles values a—; = a3 = 7/6, l_o = lo = 1, and the depth of the
obstacle value r_; = 0.65 .

we=1.002
wie=119
1Bl we=1000
161
1.4F
=
1.3F
1.2F
T.1F
1
-3

Fig. 4. Effect of Weber number on the free-surface profile at a fixed the trapezoid depth
r_1 = 0.65 and the angles a1 = 7/6, a1 = 7/6

As presented in Fig. 4, the curvature of the free surface is decreased if the Weber number
decreases, because this is an important characteristic property of the surface tension effects. The
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free-surface profiles for four different depths r_; are plotted in Fig. 5 at a fixed Weber number

We=200,1_9=10=1, a1 =a; = E. This clarifies that increasing the depth r_; results in

more deviation of the free surface from the horizontal one.

25— T T T T T T T
r=H=04
r=r=05
r=r=06
r,=r =07

5l 171 |
)
161F B
1+ - i
1 1 1 1 1 1 1 1
3 2 -1 0 1 2 =3 G

Fig. 5. Effect of the trapezoid depth r_; on the free-surface profile Weber number We = 200

and the angles a_; = a3 = /8

Fig. 6 shows the free-surface profiles for different angles o at a fixed a_; = 7/8,r_1 = 0.5,
and at a fixed Weber number We = 200. Fig. 6 shows the free-surface profiles for four different
angles a1 at a fixed o = 7/6,7_1 = 0.5 and at a fixed Weber number We = 200 .

1.5 T T T 1 1 1 1
DL1:1U'6
1.4F &, =1
& =210
131 / o, =12
/
!
!
121 ]
s
1.1F ; R
1F 4
IR=h3 R
DB 1 1 1 1 1 1 1
-4 -3 -2 -1 0 1 5 B

Fig. 6. Effect of the angles a; on the free-surface profile Weber

a_1 = 7/6 and the trapezoid depth r_; = 0.5
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o, =B
&, =nE

09 1 1 1 1 1 1 1 1 1 1

Fig. 7. Effect of the angles a_; on the free-surface profile Weber number We = 200 , the angle
a; = 7/8 and the trapezoid depth r_; = 0.5

The two Fig. 6 and 7 evidently show that the deviation of the free-surface results from the
change in angles.

Conclusion

In this paper, the problem of flow over a trapezoidal obstacle is formulated as a system of
nonlinear integral equations. The perturbation technique is used to give an approximate solution
to this system for a large Weber number; the free surface profiles under the effect of small surface
tension and bottom configurations are illustrated and plotted. The obtained results demonstrate
that the used method is easily applicable, and provides approximate solutions to these kinds of
problems.
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Metoa Bo3MyllleHnii Ipu 00TeKaHNUM TPallelneBUIHOTO
MIpensiTCTBULA

Mait Maunan Boyaud
Abnenbkaned I'azmu

JlabopaTopusi 9uCTOM M MPUKIIATHON MATEMATUKA
DakyabTeT MaTeEMaTUKNA U WH(MOPMATUKH
Yuusepcurer Mcuia

Mcuita, Amxup

Awnunoranusi. B 910# craThe MBI paccMaTpuBaeM JIByMEPHOe M 6€3BUXPEBOE TeUeHNE HEBSIZKOW 1 HECIKU-
MaeMO# KHUIKOCTH HAJl TPAEINEeBUIHBIM mpernsiTcTBrueM. CBOOOIHAS OBEPXHOCTb OOTEKATENs PEryJIn-
pyetcsi ycioBreM BepHyim, KOTopoe OpeIiesisieTcsl B paMKaxX PeIleHusl 33/1a9n. DTO yCJIOBHE 3aTPY/HIET
aHAJUTHYIECKOe perreHue pobsemsl. Ciie1oBaTesIbHO, 11eib Halleil paboThl — UCIOJIb30BaTh 1peobpaso-
Banme l'epbepra M TEXHUKY BO3MYINEHUIN, 9TOOBI 0OECTIEYNTH MPUOJINIKEHHOE PEIIeHNe TON mpobIeMbl
J71s1 6oJibInux arces Bebepa n pa3imaHbiX KOH(MUTYpalnii npensarcTsus. [lorydeHHble pe3yabraTsl OKa-
3BIBAIOT, YTO KMCIOJIB3YEMBII METOJI IPOCT B MIPUMEHEHNN U JaeT MPUOJIM3UTEIbHBIE PEIIEHUs] TOJ00HBIX
3a/1a4.

KiroueBblie ciioBa: CBO6O,HHI>II71 HOBerHOCTHbIﬁ IIOTOK, IIOBEPXHOCTHOE HaTsAKEHHUE, HeCXKNMaeMBbIH 110-
TOK, METO/L FI/I.}'II>6epTa7 BO3MYULIEHUE TE€XHUKA.
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Abstract. The purpose of this paper is to establish some common fixed point theorems for
f-nondecreasing self-mapping satisfying a certain rational type contraction condition in the frame of
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Introduction

Ever since in fixed point theory and approximation theory, the classical Banach contraction
principle [1] plays a vital role to acquire the unique solution of many known results. It is very
important and popular tool in various disciplines of mathematics to solve the existing problems in
nonlinear analysis. Later, a lot of variety of generalizations of this Banach contraction principle [1]
have been taken place in a metrical fixed point theory by improving the underlying contraction
condition, some of which are in [2-11]. Thereafter, vigorous research work has been noticed by
weakening its hypotheses in various spaces with topological properties such as rectangular metric
spaces, pseudo metric spaces, fuzzy metric spaces, quasi metric spaces, quasi semi-metric spaces,
probabilistic metric spaces, D-metric spaces, G-metric spaces, F-metric spaces, cone metric
spaces etc. Prominent works on the existence and uniqueness of a fixed point in partially ordered
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metric spaces with different contractive conditions have been acquired by several researchers,
the readers may refer to [12-21] and the references therein, which generate natural interest to
establish usable fixed point theorems.

The concept of coupled fixed point for a certain mapping in ordered metric space was first
introduced by Bhaskar and Lakshmikantham [22] and then applied their results to a periodic
boundary value problem to obtain the unique solution. While, the theory of coupled coincidence
point and common fixed point results was first initiated by Lakshmikantham and Ciri¢ [23]
which generalized and extended the results of [22] by considering the monotone property of a
mapping in ordered metric spaces. Some generalized results on fixed point, coupled fixed point
and common fixed point under various contractive conditions in different spaces can be found
from [24-37]. Recently, Seshagiri Rao et al. [38—42] and Kalyani et al. [43] have investigated some
coupled fixed point theorems for the self mappings satisfying generalized rational contractions in
partially ordered metric spaces.

The aim of this paper is to present some common fixed point results for a pair of self-mappings
satisfying a generalized rational contraction condition in the context of complete partially or-
dered metric space. These results generalized and extended the results of Harjani et al. [15] and
Chandok [30] in the literature. Some consequences of the main result in terms of integral con-
tractions are presented. A numerical example has been provided to support the result obtained.
Moreover, an application of the result has been given by taking the integral equation using the
monotone iterative technique.

1. Mathematical preliminaries

Definition 1 ([38]). The triple (X,d, <) is called a partially ordered metric space, if (X, =) is
a partially ordered set together with (X, d) is a metric space.

Definition 2 ([38]). If (X,d) is a complete metric space, then the triple (X,d, =) is called
complete partially ordered metric space.

Definition 3 ([38]). Let (X, =) be a partially ordered set. A mapping f: X — X is said to be
strictly increasing (or strictly decreasing), if f(x) < f(y) (or f(x) = f(y)), for all x,y € X with
T <y,

Definition 4 ([42]). Let f,T : A — A be two mappings, where A # ) subset of X. Then
(a) f and T are commutative, if fTx =T fx for all x € A.
(b) f and T are compatible, if for very sequence {x,} with lim fax, = ll}I_iI_I Tx, = p for
n n (oo}

—+0o0
some pu € A, then 2141_1 d(Tfxy, fTx,) =0.

(c) f and T are said to be weakly compatible if they commute only at their coincidence points
(i.e., if fo =Tx then fTx=Tfx).

(d) T is called monotone f-nondecreasing, if

fe 2 fy=Tx Ty forall z,y € X.

(e) A is a well ordered set, if every two elements of it are comparable.

(f) a point x € A is a common fized (or coincidence) point of f and T, if fo =Tz = x
(orfe=Tz).
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2. Main results

We begin this section with the following coincidence point theorem.

Theorem 1. Let (X, d, =) be a complete partially ordered metric space. Suppose that the map-
pings T, f : X — X are continuous, T is monotone f-nondecreasing, T(X) C f(X) and satisfying
the following contraction condition

d(fz,Tx) d(fy, Ty)
d(fz, fy)
for all x,y € X for which the distinct fx and fy are comparable and for some o, 8,7 € [0,1)

with 0 < a+ 28 + v < 1. If there exists certain xg € X such that fxg X Txy and the mappings
T and f are compatible, then T and f have a coincidence point in X.

d(Tz, Ty) < o + Bld(fz, Ty) +d(fy, Tx)] +~vd(fz, fy), (1)

Proof. Let zy € X such that fzg = Txg. Since, T(X) C f(X) then we can choose a point
21 € X such that fz; = Txo. But Ta; € f(X), then there exists another point x5 € X such
that fxe = Ta;. Similarly by continuing the same procedure, we construct a sequence {z,,} C X
such that fz,1, =Tz, for all n > 0.

Again from the hypothesis, we have frg < Txg = fx1. Since T is monotone f-nondecreasing
then we obtain that Txg < Tx;. As by the similar argument, we get Txy =< Tzo, since fr1 <X fxo.
Continuing the process, we acquire that

T:L’OjTl'ljijanl'nquj

Case 1. Suppose that d(Tz,,Txp+1) = 0 for some n € N, then we have Tz, 11 = Tap,.
Therefore, Txy+1 = Tz, = fr,1. Hence, x,41 is a coincidence point of T and f in X and we
have the result.

Case 2. Suppose d(Tx,, Tx,11) > 0 for all n > 0, then from (1), we have

d(fxn—&-la Txn+1) d(fxm Txn)
d(fanrlv fxn)

+ "Yd(fxn—&-l; fxn)a

which intern implies that

d(Txpi1,Ta,) < @

+ Bld(frny1, Ton) +d(fon, Toni)] +

d(Txpi1,Txn) < ad(Txn, TTni1) + Bld(Txn, Txyn) + d(Txp—1, TTn11)] + vd(TTp, TTp—1).

Finally, we arrive at

d(Tzpy1,Ta,) < <1foz+jﬁ) ATz, Txp—1).
Inductively, we get
+ n
d(Tpi1, Tn) < (1 ﬂavﬂ) d(Tzy, Tao).
Let k= % < 1, then from the triangular inequality of a metric d for m > n, we have
—a—

d(TﬂSm, Tmn) < d(Txrm Txm—l) + d(T-rm—la T$7n—2) +---+ d(T$n+1, Txn) <

n

< (km_l +km—2 ++kn) d(Txl,TJ?o) < 1]{_

kd(T$1, Tl‘o),
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as m,n — +00, d(Tx,, Tx,) — 0, which shows that the sequence {Tz,} is a Cauchy sequence
in X. Therefore from the completeness of X, there exists a point y € X such that Tx,, — u as
n — 4o00. Further the continuity of 7" implies that

lim T(Txz,)= T( lim Ta:n> =Tpu.

n—-+o0o n—-+oo

Since fx,y1 = Tz, and then fz,, 1 — p as n — +oo. Furthermore, from the compatibility of
the mappings T and f, we have

lim d(Tfxn, fTz,)=0.

n—-+oo

By the triangular inequality, we have

d(Tu, fp) =d(Tu, T frn) + d(T frn, fTr,) + d(fTT,, f1),

on taking n — 400 and from the fact that 7" and f are continuous, we obtain that d(T'u, fu) = 0.
Thus, T = fu. Hence, p is a coincidence point of T" and f in X. O

We have the following consequences from Theorem 1.

Corollary 1. Suppose (X,d, <) be a complete partially ordered metric space. Let the mappings
T,f: X = X are continuous, T is monotone f-nondecreasing, T(X) C f(X) and satisfies

fx,Tz) d(fy, Ty)
d(fz, fy)
for all x,y € X for which the distinct fx and fy are comparable and where o, 8 € [0,1) such

that 0 < a+ 28 < 1. If fxg 2 Txg for some xg € X and the mappings T and f are compatible,
then T and f have a coincidence point in X.

d(Te, Ty) < ol + Bld(fx. Ty) + d(fy.Tx)],

Proof. The required proof can be obtained by setting v = 0 in Theorem 1. O

Corollary 2. Let (X,d, =) be a complete partially ordered metric space. Assume that the map-
pings T, f : X — X are continuous, T is monotone f-nondecreasing, T(X) C f(X) and satisfies

d(Tz,Ty) < Bld(fz,Ty) + d(fy, Tz)] +~vd(fx, fy)

for all x,y € X for which fx, fy are comparable and B, € [0,1) such that 0 < 28+~ < 1. If
for some xg € X such that fxg = Txg and the mappings T and f are compatible, then T and f
have a coincidence point in X.

Proof. Set a =0 in Theorem 1. O

We extract the continuity criteria of T in Theorem 1 is still valid by assuming the following
hypotheses in X:
If {z,,} is a non-decreasing sequence in X such that z,, — z, then z,, <z for all n € N.

Theorem 2. Let (X, d, <) be a complete partially ordered metric space. Suppose the mappings
T, f: X — X are continuous, T is monotone f-nondecreasing, T(X) C f(X) and satisfies

d(fz,Tx) d(fy, Ty)
d(fz, fy)

for all z,y € X for which fx # fy are comparable and where o, B,y € [0,1) such that
0<a+28+~vy<1. If for some xg € X such that fxg <X Txo and {x,} is a nondecreasing

d(Tz,Ty) < «

+ Bld(fx, Ty) + d(fy, Tx)] +vd(fz, fy) (2)
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sequence in X such that x, — x, then x, <z for alln € N. If f(X) is a complete subset of X,
then T and f have a coincidence point in X . Further, if T and f are weakly compatible, then T
and f have a common fized point in X.

Moreover, the set of common fixed points of T' and f is well ordered if and only if T and f
have one and only one common fized point in X.

Proof. Suppose f(X) is a complete subset of X. From Theorem 1, the sequence {Tz,} is a
Cauchy sequence and hence, {fx,} is also a Cauchy sequence in (f(X),d) as fz,+1 = T, and
T(X) C f(X). Since f(X) is complete, then there exists fu € f(X) such that

lim Tz, = lim fx,= fu.
n—-+oo n——+oo

Notice that the sequences {Tx,} and {fz,} are nondecreasing. Then from the hypothesis, we
have Tz, =< fu and fz, = fu for all n € N. But T is monotone f-nondecreasing, then we get
Tx, = Tu for all n. Letting n — 400, we obtain that fu < Tu.

Assume that fu < Twu. Define a sequence {u,} by up = v and fup41 = Tu, for all n € N.
An argument similar to that in the proof of Theorem 1 yields that {fu,} is a nondecreasing

sequence and lim fu, = lim Twu, = fv for some v € X. Now, from the hypothesis, we have
n—-+oo n—-+oo

sup fu, = fv and sup Tu, =X fv, for all n € N. Notice that
Jon 2 fu = fur X fug <+ < fu, < 2 fo.
Case 1. If fz,, = fup, for some ng > 1 then we have
fan, = fu= fuy, = fur =Tu.

Thus, u is a coincidence point of T and f in X.

Case 2. If fx,, # fun, for all n, then from (2), we have

d(frns1, funsr) = d(Tay,, Tuy,) <
d(fan, Txy) d(fun, Tun)
SO (o, fun)

On taking limit as n — 400 in the above inequality, we obtain that

d(fu, fv) < (28 +7)d(fu. fo) < d(fu, fv), since 28 + 5 < 1.

Therefore, we have

+ Bld(fan, Tun) + d(fun, Tan)] + vd(f2n, fun).

fu=fv=fu; =Tu.

Hence, we conclude that u is a coincidence point of T" and f in X.
Assume that T and f are weakly compatible. Let w be the coincidence point of T and f,
then we have

Tw=Tfz= fIz= fw, since w=Tz = fz for some z € X.
From (2), we have
d(fz,Tz) d(fw, Tw)
d(fz, fw)
< (268 +7)d(Tz, Tw),

d(Tz,Tw) < « + Bd(fz, Tw) + d(fw,Tz)] +vd(fz, fw) <

as 28+~ < 1, we obtain that d(Tz, Tw) = 0. Thus, Tz = Tw = fw = w. Hence, w is a common
fixed point of T" and f in X.
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Suppose that the set of common fixed points of T" and f is well ordered. It is enough to
prove that the common fixed point of T" and f is unique. Assume in contrary that, u # v be two
common fixed points of 7" and f. Then from (2), we have
d(fu,Tu) d(fv,Tv)

d(fu, fv)
< (28 +7) d(u,v) < d(u,v), since 26 +v < 1,

d(u,v) € « + Bld(fu, Tv) + d(fv, Tu)] + vd(fu, fv) <

which is a contradiction. Hence, u = v. Conversely, suppose T" and f have only one common
fixed point then the set of common fixed points of 7" and f being a singleton is well ordered.
This completes the proof. O

We have the following results as a consequence of Theorem 2.

Corollary 3. Let (X,d, <) be a complete partially ordered metric space. Suppose the mappings
T,f: X — X are continuous, T is monotone f-nondecreasing, T(X) C f(X) and satisfies the
following contraction conditions for all x,y € X for which fx # fy are comparable

d(fz,Tz) d(fy,Ty)

O drery <oV WRTD sy 4 agy ),
for some a, B € [0,1) with0 < a+28 < 1,
(i) d(Tz,Ty) < Bld(fz, Ty) + d(fy, Tx)] + vd(fz, fy),

where 8,7y € [0,1) such that 0 < 28+ < 1.

If for some xy € X such that frg = Txg and {x,} is a nondecreasing sequence in X such
that ©, — x, then x, < x for alln € N. If f(X) is a complete subset of X, then T and f have
a coincidence point in X. Moreover, if T and f are weakly compatible, then T and f have a
common fized point in X.

Furthermore, the set of common fixed points of T and f is well ordered if and only if T and
f have one and only one common fixed point in X.

Proof. Setting v =0 and o = 0 in the Theorem 2, we obtain the required proof. O

Remarks
(1) If 8 =0 in Theorems 1 & 2, we obtain Theorems 2.1 & 2.3 of Chandok [30].
(2) If f =1 and 8 = 0 in Theorems 1 & 2, then we get Theorems 2.1 & 2.3 of Harjani et
al. [15].

Now, we have the following consequence of Theorem 1 involving the integral type contraction.
Let ® denote the set of all functions ¢ : [0, +00) — [0, +00) satisfying the following hypothe-
ses:

(i) each ¢ is Lebesgue integrable function on every compact subset of [0, 4+00) and

(ii) [(t)dt > 0, for any € > 0.
0

Corollary 4. Let (X,d, <) be a complete partially ordered metric space. Suppose that the map-
pings T, f : X — X are continuous, T is monotone f-nondecreasing, T(X) C f(X) satisfies

d(fz,Tz) d(fy,Ty)

d(Tz,Ty) T dUe gty d(fz,Ty)+d(fy,Tx) d(fz,fy)
o(t)dt < o / o(t)dt + / Q(t)dt + / p(tydt  (3)
0 0 0 0
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for all x,y € X for which the distinct fx and fy are comparable, p(t) € ® and there exist
a,B,v €[0,1) such that 0 < a+ 26 + v+ < 1. If for some xg € X such that fxg <X Txo and the
mappings T and f are compatible, then T and f have a coincidence point in X.

We obtain some consequences of Corollary 4 by taking v =0 and a = 0.

Corollary 5. If 8 =0 in Corollary 4, we obtain the Corollary 2.5 of Chandok [30].

Example 1. Define a metric d: X x X — [0,+00) by d(z,y) = |z — y|, where X = [0,1] with

usual order <. Let us define two self mappings T and f on X by Tx = g and fx = %, then
T

T and f have a coincidence point in X.

Proof. By definition of a metric d, it is clear that (X,d) is a complete metric space. Obvi-
ously, (X,d, <) is complete partially ordered metric space with usual order. Let 2o = 0 € X,
then f(xo) < T(xo). By definitions; T, f are continuous, T is monotone f-nondecreasing and
T(X) C f(X).

Now for any z,y € X with x < y, we have

By L,
d(T2,Ty) = |5 = 5] = Sl —yl <
a B llz2-y) -yl y@l’)fﬂl} [z —y|
<—zy(l—-y)+ 7 +
ot -+ g [P Gro )T o0y
_ il - 5“ Y|t w” =yl
H%—ﬁ 1+ 2 1+y 2 14+2)(1+y)
d(fz, Tx) d(fy, Ty)
<o + Bld(fz, Ty) + d(fy, Tx)] +vd(fz, fy),
T (£, Tg) + d(fy, T2)] + (. o)
holds the contraction condition in Theorem 1 for some «, 3, in [0, 1) such that 0 < a+28+v < 1.
Therefore T and f have a coincidence point 0 € X. O

Similarly the following is one more example of main Theorem 1.
Example 2. A distance function d : X x X — [0,+00) by d(z,y) = | — y|, where X = [0,1]
with usual order <. Define the two self mappings T and f on X by Tx = x> and fx = z*, then

T and f have two coincidence points 0, 1 in X with xg = 3

3. Application

In this section, we discuss a unique solution of the integral equation by the method of upper
and lower solutions. The monotone iterative technique is the one to find the minimal and a
maximal solution between the lower and upper solutions which validate the maximal principle.

Let A € R™ be a bounded and open set and H = Z(A)? be a Hilbert space with usual inner
product and norm then a linear operation & : D(&) C H — H is said to be a valid maximum
principle if there exists some A € R such that

Fu+ Aw >0 on A implies that « > 0 on A, « € D(Z),
where « > 0on A if w(x) >0 for ae.z € R.

(4)

Now consider the first order periodic boundary value problem of an integral equation given
in [18].
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M
z) = /0 Lz, u(z), [ Hu](z)])de for aexz e A= (0,M), «(0)=w(M)

u'(2) = flz,u(z), [ FHu](z)) for aez e (0,M), «(0)=w(M). (5)

where /£ is Caratheodary function, # is an integral operator
M
Hala) = [ Aew)alu)iy )
0

with kernal & € Z£2(A x A). It is clear that for any « € H = £?(A x A) then '« € H.
For a solution of (5), first we study the linear problem for A # 0

w + X+ 0FHu =0, «(0) =u(M). (7)
Its known that « is a solution of (7) if and only if
M M
w@) = | gle o) ~iH iy = wia)+ [ Aepuwan ®)
where Iy
wlw) = [ alemolwis,
and

(z,y) = —(5/ xz,y)dx.

Let us define the linear operator & : D(¥) C H — H, where D(&Z) = {w € H'(A) : «(0) =

= w(M)} as
(Zul(z) = «'(2) + [ Hu](z). (9)

Similarly, let /4 : D(A#') C H — H is a nonlinear operator, where
[(Nul(z) = £z, u(z), [Hu|(z)) + 6[Fu|(z). (10)

Hence, (5) is equivalent to Fuw = Nw, v € D(Z)ND(H) and D(Z) C L*(A) C D(N), where
K € (A x A). Suppose that X # 0 and follow the conditions of [44], we have

(2A)2[L — e
[0](M (1 — e=2A1))

1 ]2 < =d;. (11)

From Lemma 5.1 of [18] followed by above condition, the equation (7) has a unique solution
w € H for each 0 € H and G : (£ + A)~! : H — H is continuous, where

M
(@) = [Gol(z) = / (@, 9)o(y)dy.

Hence from Theorem 2.2 in [44] shows that the maximum principal (4) is valid for A > 0 whenever
K € L°(A x A) and

)\2
|6](eAM +AM —1)
From (11) and (12), we get D(&) C D(«). The functions a, 8§ € D(Z) are said to be lower and
upper solution of (5) if o/(2z) < f(z,u(2), [F«|(z)) < /(=) for a.e. z €R.

1% loe <

= dy. (12)
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Now suppose there exist the constants m, d, A with 0 < m < X such that (12) is satisfied and
the following inequality holds.

Fla,u(z), [Hu)(z) = £z, v(z), [ He](z) 2

> —mu(z) - v(z)) - 8(Ful(@)) - [Fol(@)), (13)

whenever z € A, a(z) < (@) < w(2z) < B(«). Then applying Theorem 3.1 of [18] it is possible
to approximate the external solutions of (5) by monotone iterates between the lower solution «
and the upper solution .

The authors do thankful to the editor and anonymous referees for their valuable suggestions
and comments which improved the contents of the paper.
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PGSy.TIbTa.TbI TOYKM COBIIaJICHNAd 1N NX IIPUJIO2KEHUA
B 9aCTUYIHO YIIOPAAOY€HHDbIX METPpHUYEeCKHNX IIPOCTPpaHCTBaX

H. Cenrarupu Pao

Hayuno-rexunyeckuii yuusepcurer Aambr
Anama, Dduonus

Kapycana Kanbsuu

DonJ1 HaAyKU, TEXHOJIOTUH U UccyeoBaHnil Burnan
IIpanemn, Naans

Tekie I'emeuy

Hay4uno-Texuudeckuit yuuBepcuteT A mambl

A nama, Dduonust

Awnnoranusi. llenpio manuoit paboThl SIBJISIETCST YCTAHOBIEHNE HEKOTOPBIX OOIMX TEOPEM O HEIIOIBUK-
HOI1 TOuKe Jyisi f-HeyObIBaroIero oroopakenus B cebsi, yJI0BJIETBOPSIONIEI0 HEKOTOPOMY YCJIOBHIO CXKATHUS
paIoOHAJIILHOTO THUIA B perepe MeTPUIECKUX MPOCTPAHCTB, HAJIEJEHHBIX YaCTUYHBIM MOPSAKOM. Takke
B [IPOCTPAHCTBE IIPEJICTABIEHBI HEKOTOPBIE CJIEJICTBHUS PE3YJIbTATOB B TEPMUHAX CXKATHI WHTErPAJILHOTO
Tuna. Kpome Toro, Meros MOHOTOHHOI MTeparnyy ObLI HCIIOIL30BAH Il HAXOXKJIEHUs €JIMHCTBEHHOT'O
pellleHnst UHTErpaJbHOTO yPABHEHUSI.

KuaroueBrble ciioBa: yrnopsioueHHOe METPUIECKOEe ITPOCTPAHCTBO, PAIMOHATIBLHOE CXKATHE, COTJIACOBAH-
Hble 0OTODPaXKEHNs, TOYKA COBIAIEHUs, O0Iasa HENOIBUKHAS TOUYKA.
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