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Abstract. The paper is devoted to modelling thermal and stress-strain state of a carbon block when it is
partially immersed in an electrolyte. The temperature field in the block was determined from the solution
of a non-stationary three-dimensional heat conduction equation. The calculation of temperature stresses
was carried out on the basis of the solution of the Poisson equation for the thermoelastic displacement
potential. The temperature fields in the carbon block were obtained at various points in time. The
stress-strain field was also obtained. Then the location and magnitude of the maximal temperature
stresses were determined. It allows one to assess the fracture of the carbon block.

Keywords: heat conduction equation, Poisson equation, temperature stresses, thermoelastic displace-
ment potential, numerical simulation.

Citation: E.N. Vasil’ev, Numerical Simulation of Temperature and Thermal Stress Fields in a Carbon
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DOI: 10.17516/1997-1397-2022-15-3-267-272.

Introduction

The technological process of aluminium production requires regular replacement of carbon
blocks (anodes). In the industrial electrolytic cells, when the cold anode is initially immersed in
a hot electrolytic solution at a temperature of about 960oC, a heat wave propagates from the
contact boundary into the volume of the anode. An increase in the local temperature causes
thermal expansion of the anode material. The difference in the magnitude of the expansion
of different zones of the anode leads to the occurrence of thermal stresses. In a zone of the
highest temperature gradients significant thermal stresses arise which can exceed the ultimate
strength of the material. It leads to the formation of cracks and further fracture of the anode.
The phenomena that accompanies the process of immersing a cold carbon anode into the melt
is called thermal shock [1, 2]. The state of the carbon block during thermal shock depends on
the thermophysical (thermal conductivity, heat capacity) and mechanical (thermal expansion
coefficient, shear modulus, Poisson’s ratio, tensile strength) properties of graphite as well as on
conditions of heat exchange with electrolyte. Numerical simulation allows one to analyse the
state of the carbon block taking into account these factors.

∗ven@icm.krasn.ru https://orcid.org/0000-0003-0689-2962
c⃝ Siberian Federal University. All rights reserved
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The aim of the work is to calculate the temperature field and the stress-strain field of the car-
bon block of the electrolytic cell. To describe the formation of thermal stresses, the mathematical
modelling procedure includes two consecutive stages:

1. Determination of the temperature field in the volume of the carbon block is based on the
solution of 3D heat conduction problem.

2. Calculation of thermal stresses is based on the solution of the Poisson equation for the
obtained temperature field at various points in time.

1. Determination of the temperature field of the carbon
block

The anode block is a parallelepiped made of carbon graphite (Fig. 1). In the electrolysis cell,
the anode block is mounted using a steel bracket. The geometrical dimensions of the anode along
the x, y, and z axes are 1450× 700× 600 mm3.

Fig. 1. The anode block of the industrial electrolytic cell

The heat transfer process in a carbon block is described by non-stationary three-dimensional
heat conduction equation

cρ
∂T

∂t
= λ

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
, (1)

where c, ρ are specific volumetric heat capacity and density of the material; T is temperature;
λ is the coefficient of thermal conductivity; t is time; x, y, z are spatial coordinates. The solution
of equation (1) was obtained with the use of the method of finite differences with the splitting
of the problem in spatial coordinates [3, 4].
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Calculations were performed for the anode block shown in Fig. 1. The size of the part
of the block immersed in the electrolyte is 120 mm. For graphite, the following thermophysical
properties were set: λ = 4.4 W/(m·K), c = 942 J/(kg·K), ρ= 1560 kg/m3 [5, 6].The heat exchange
coefficient of the surface of the anode block with air βA = 10 W/(m2·K) and with the electrolyte
solution βE = 18 W/(m2·K). A homogeneous spatial grid with the number of nodes 146×71×61

was used for calculations, and the time step was 5 s.
The results of calculation of the temperature field of the anode for the moment of time

∆t = 15 min are shown in Fig. 2. The temperature field of the lower part of the anode in the
middle cross-section of the xz plane is shown in the left figure. Taking into account the symmetry
of the problem, one quarter of the temperature field of the lower surface of the anode (plane xy)
is shown in the right figure. The temperature values on the isolines are given in degrees Celsius.
The most intense heating is observed in the zone where the unit is in contact with the electrolyte.
In this area, the highest temperature is in the lower corner and and it is 467oC.

Fig. 2. Distribution of temperature in the middle xz and bottom xy planes of the anode block

The temperature distributions obtained from the solution of equation (1) at various times
are the initial data for solving the problem of the stress-strain state of the carbon block.

2. Calculation of the temperature stresses in the carbon
block

The temperature stresses are calculated by solving the Poisson equation for the thermoelastic
displacement potential [7]

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
=
αΘ(1 + µ)

1− µ
, (2)

where Φ is the thermoelastic potential of displacements; µ, α are Poisson’s ratio and coefficient of
thermal expansion; Θ = (T − T0) is the temperature increment with respect to the temperature
of the natural state of the body T0. Equation (2) is supplemented with the conditions of the
absence of externally applied normal and tangential stresses on the carbon block surface: σz = 0,
τxz = 0, τyz = 0.
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The values of the thermoelastic potential Φ were used to determine the stresses at the corre-
sponding points of the difference grid

σx = 2G

(
∂2Φ

∂x2
+▽2Φ

)
, (3)

τxy = 2G
∂2Φ

∂x∂y
(xyz), (4)

where σx, σy, σz, τxy, τyz, τxz are normal and tangential elastic stresses; G is the shear modulus
of the material at a given point and at a given moment in time, (xyz) is the symbol of cyclic
permutation of x, y, z. The number of nodes of the grid in thermal stresses equations (2)–(4)
corresponds to the thermal problem.

The distribution of thermal normal stresses of the anode for a time instant of 15 minutes is
shown in Fig. 3. The distribution of thermal normal stresses for the middle xz plane is shown in
the left figure. The magnitude of the temperature stresses in this plane reaches 3.4 MPa. The
highest stresses are observed in zones of the highest temperature gradients. The maximum values
of temperature gradients and stresses occur at the corners of the anode, they can be displayed
in the vertical diagonal section passing along the bisector of the angle of the anode base. The
right figure shows the distribution of thermal stresses in this diagonal plane. Comparison of the
distributions in the middle xz and the diagonal vertical planes shows that in the second case the
values of maximum stress are more than 1.5 times higher.

Fig. 3. Distribution of normal temperature stresses in the middle xz and diagonal vertical planes
of the anode block

The variation of the maximum normal stresses in the anode block with time is shown in Fig. 4.
The calculated maximum values of thermal stresses at various moments of time are marked with
circles. The dotted line is obtained with the use of interpolation. The greatest increase in thermal
stresses occurs at the initial stage of the process, and then the slope of the curve is significantly
decreased. Considering results of calculation of the stress-strain state, it is possible to assess the
possibility of fracture of the anode by comparing stresses with the ultimate strength of carbon.
The most important from the point of view of cracking of the anode are tensile stresses that arise
from the inhomogeneous thermal expansion of the material during heating. The ultimate tensile
strength of the anode material is in the range of 5–15 MPa [2, 8, 9]. The scatter in the data of
the limiting values of thermal stresses for graphite depends on the manufacturing technology and
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composition. It follows from the results of calculations that when graphite with a low ultimate
strength (less than 8 MPa) is used there is a probability of fracture of the anode block.

Fig. 4. The time dependence of the maximum normal temperature stresses in the anode block

Conclusion

Numerical modelling of thermal processes occurring when a carbon block is immersed in a
hot electrolyte allows one to determine the magnitude and location of the maximal temperature
gradients and stresses at various moments of time. Calculations have shown that the maximum
values of temperature stresses in the corners of the anode block exceed the lower limit of the
tensile strength of graphite. This points up the possible fracture of the anode block.

References

[1] M.W.Меiеr, W.К.Fischer, R.С.Perruchoud, L.J.Gauckler, Thermal shock оf anodes–а solved
problem?, Light Metals, 1994, 685–694.

[2] Yu.G.Mikhalev, P.V Polyakov, A.S.Yasinskiy, S.G.Shahrai, A.I.Bezrukikh, A.V.Zavadyak,
Anode processes malfunctions causes. An overview, Journal of Siberian Federal University.
Engineering and Technologies, 10(2017), no. 5, 593–606 (in Russian).
DOI: 10.17516/1999-494X-2017-10-5-593-606

[3] A.A.Samarskii, The theory of difference schemes, Nauka, Moscow, 1989 (in Russian).

[4] E.N.Vasil’ev, Calculation of the Thermal Resistance of a Heat Distributer in the Cooling
System of a Heat-Loaded Element, Technical Physics, 63(2018), no. 4, 471–475.
DOI: 10.1134/S1063784218040266

[5] J.P.Schneider, B.Coste, Thermomechanical modelling of thermal shock in anodes, Light
Metals, 1993, 621–628.

– 271 –



Evgeniy N.Vasil’ev Numerical Simulation of Temperature and Thermal . . .

[6] S.N.Akhmedov, V.V.Tikhomirov, B.S.Gromov, R.V.Pak, A.I.Ogurtsov, Specific features of
the lining deformation of the cathode devices of aluminum electrolysers, Tsvetnye metally,
(2004), no. 1, 48–51 (in Russian).

[7] N.I.Bezukhov, V.L.Bazhanov, I.I.Gol’denblatt, N.A.Nikolaenko, A.M.Sinyukov, The Calcu-
lations for Strength, Stability, and Oscillations in High Temperature Conditions, Mashinos-
troenie, Moscow, 1965 (in Russian).

[8] S.E.Vyatkin, A.N.Deev, V.G.Nagornyi, V.S.Ostrovskii, A.M.Sigarev, G.A.Sokker, Nuclear
Graphite, Atomizdat, Moscow, 1967, (in Russian).

[9] D.H.Andersen, Z.L.Zhang, Fracture and physical properties of carbon anodes for the alu-
minum reduction cell, Engineering Fracture Mechanics, 78(2011), 2998–3016.

Вычислительное моделирование полей температур
и термических напряжений в угольном блоке
при внешних тепловых воздействиях

Евгений Н. Васильев
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация

Аннотация. Работа посвящена моделированию теплового режима и напряженно-
деформированного состояния угольного блока при его частичном погружении в электролит.
Температурное поле в блоке определялось из решения нестационарного трехмерного уравнения
теплопроводности. Расчет температурных напряжений проводился на основе решения уравнения
Пуассона, записанного для термоупругого потенциала перемещений. В результате моделирова-
ния теплового режима получены температурные поля в угольном блоке для разных моментов
времени. Расчет напряженно-деформированного состояния определил величину и расположение
наибольших температурных напряжений и позволил оценить возможность разрушения угольного
блока.

Ключевые слова: уравнение теплопроводности, уравнение Пуассона, термические напряжения,
термоупругий потенциал перемещений, вычислительное моделирование.
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Abstract. The initial boundary problem arising in the modeling of viscous fluid creeping rotational
motion in a flat layer was solved. A stationary solution was found. The quadrature solution in images was
obtained using the Laplace transform method. The time convergence of the the non-stationary problem
solution to the established stationary solution was proved under certain conditions on the temperature
distribution on the walls.

Keywords: thermal convection, Laplace transform, stationary solution.
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1. Problem statement

Let us assume that the fields of pressure and temperature velocities are rotationally symmet-
rical. Then, their values depend only on r =

√
x2 + y2, z, and time t in a cylindrical coordinate

system. Moreover, we suppose that the only external force acting on the fluid is the centrifugal
force. Then [1], the momentum, continuity, and energy equations can be written as

ut + uur + wuz − 2ωv − v2

r
= −1

ρ
pr + ν

(
∆u− u

r2

)
− ω2βrΘ,

vt + uvr + wvz + 2ωu+
uv

r
= ν

(
∆v − v

r2

)
,

wt + uwz + wwz =
1

ρ
pz + ν∆w, (1.1)

ur +
u

r
+ wz = 0,

Θt + uΘr + wΘz = χ∆Θ,

where ∆ = ∂2/∂r2 + r−1∂/∂r + ∂2/∂z2 is the axisymmetric part of Laplace operator.
Equations (1.1) are written in the rotating coordinate system with constant angular velocity

ω relatively to the original inertial system. Its rotation axis and the z axis of the cylindrical
∗andr@icm.krasn.ru
†llatonova@sfu-kras.ru

c⃝ Siberian Federal University. All rights reserved
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coordinate system r, φ, z are coincide. The radial and axial components of the velocity are
denoted as u and w, respectively, and v is the deviation of the rotational velocity component
from the solid rotation velocity ωr. The quantity p characterizes the pressure deviation from
equilibrium pressure: ρω2r2/2; and Θ is the temperature deviation from the mean value. The
positive constants ρ, ν, χ, β are the physical liquid characteristics: density, kinematic viscosity,
thermal diffusivity, and volumetric expansion coefficient.

The solution of a system (1.1) is sought in the form [2]

u = rf(z, t), v = rg(z, t), w = w(z, t),

p =
1

2
K(t)r2 +

Aρβω2

2
r2
(
ln
r

a
− 1

2

)
+ h(z, t), (1.2)

Θ = A ln
r

a
+ T (z, t),

where A and a is the constant dimensions of temperature and length correspondingly. The
substitution of (1.2) in (1.1) results in the system

ft + wfz − 2ωg + f2 − g2 = −1

ρ
K(t) + νfzz − ω2βT,

gt + wgz + 2ωf + 2fg = νgzz, 2f + wz = 0, (1.3)

Tt + wTz +Af = χTzz, wt + wwz = −1

ρ
hz + νwzz.

The solution of (1.2) may be interpreted as the following. A viscous heat-conductive liquid
fills the layer between flat walls z = ±a rotating with angular velocity ω = const around the z
axis. The no-slip condition u(r,±a, t) = 0, v(r,±a, t) = 0, w(r,±a, t) = 0 is satisfied on them.
At the initial instant the velocity and temperature distributions are specified consistent with
(1.2) formulas. On the rotation axis r = 0 sinks or sources of heat are distributed with constant
linear density 2πAk (k > 0 is the constant liquid thermal diffusivity coefficient). The solid walls
(planes) bounding the liquid are ideally heat conductive. All the assumptions above lead to the
formulation of an initial boundary value problem for the system (1.3)

f = −1

2
w0 z(z), g = g0(z), w = w0(z), T = T0(z), |z| 6 a, t = 0; (1.4)

f = g = 0, w = 0, T = T1,2(t), z = ±a, t > 0; (1.5)

with the specified functions w0(z), g0(z), T0(z), T1,2(t). The conditions of thermal insulation
of one (or both) walls can be used instead of the last in (1.5), for instance T (−a, t) = T1(t),
Tz(a, t) = 0. Note, that for smooth solutions the agreement conditions should be satisfied

w0(±a) = 0, w0 z(±a) = 0, g0(±a) = 0,

T0(±a) = T1,2(0) (T0(−a) = T1(0), T0 z(a) = 0).
(1.6)

Let us introduce the dimensionless variables by

t =
a2

ν
t, z = az̄, f = ωR2f, g = ωRg w = aωR2w, T = RAT,

K = ρω2RK, h = ρω2a2Rh R =
a2ω

ν
, P =

ν

χ
, ε = βA,

(1.7)
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where R, P , ε are the Reynolds, Prandtl, and Boussinesq numbers correspondingly. Since
∂2/∂t = νa−2∂2/∂t, ∂2/∂z = a−1∂2/∂z, we obtain the following system by substituting (1.7)
into (1.3) and omitting the upper bars

ft +R3wfz − 2g +R3f2 −Rg2 = fzz −K(t)− εT,

gt +R3wgz + 2R2f = gzz, 2f + wz = 0,

Tt +R2wTz +R2f =
1

P
Tzz, wt +R3wwz = −hz + wzz, |z| < 1, t > 0.

(1.8)

The conditions (1.4), (1.5), (1.6) remain unchangeable, it is just needed to take into account
that |z| 6 1. In addition, w0(z) = ωR2w0(z), g0(z) = ωRg0(z), T0(z) = RAT 0(z), T1,2(t) =

= RAT 1,2(t) in the initial data.

2. Linear initial boundary value problem

Let be R << 1; such movements are called creeping. In practice they arise due to the high
kinematic viscosity, cross-sectional layer size fineness or small angular velocity ω. Assuming that

f = f0 +Rf1 + · · · , g = g0 +Rg1 + · · · , w = w0 +Rw1 + · · · ,
T = T0 +RT1 + · · · , K = K0 +RK1 + · · · , (2.1)

and substituting it into (1.8) we obtain the initial boundary value problem in the zero approxi-
mation (the subscript "0" is omitted)

ft − 2g = fzz −K(t)− εT,

gt = gzz, 2f + wz = 0, (2.2)

Tt =
1

P
Tzz, wt = wzz − hz, |z| < 1, t > 0;

f(z, 0) = −1

2
w0 z(z), g(z, 0) = g0(z), T (z, 0) = T0(z),

w(z, 0) = w0(z), |z| 6 1;
(2.3)

f(±1, t) = 0, g(±1, t) = 0, T (±1, t) = T1,2(t), w(±1, t) = 0, t > 0. (2.4)

Note, that ∫ 1

−1

f(z, t) dz = 0, (2.5)

what follows from the third equation in (2.2) and non-slip condition (2.4): w(±1, t) = 0. The
integral equality (2.5) is correct also for the general problem (1.3), (1.4), (1.5). This additional
condition is used to compute the part of radial pressure "gradient", which is the function K(t),
see (1.2). Thus, the problem under consideration is an inverse problem.

Let us find the stationary solution of system (2.2)–(2.5). It is denoted as fs(z), gs(z), ws(z),
T s(z), Ks, hs(z) and corresponds to the data T s

1,2 = const. Simple calculations lead to the next
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formulas

gs(z) ≡ 0, T s(z) =
1

2
((T s

2 − T s
1 ) z + T s

1 + T s
2 ) ,

fs(z) =
ε

12
(T s

2 − T s
1 )
(
z3 − z

)
,

Ks = −ε
2
(T s

1 + T s
2 ) ,

ws(z) =
ε

24
(T s

1 − T s
2 )
(
z2 − 1

)2
,

hs(z) = hs0 +
ε

6
(T s

1 − T s
2 ) z

(
z2 − 1

)
, hs0 = const.

(2.6)

The real fields of velocities us(r, z), vs(r, z), ws(z), pressure ps(r, z), and temperature Θs(r, z)

are given by (1.2).
The solution of inverse problem (2.2)–(2.5) can be obtained using the partition method in

the form of Fourier series. First, the functions g(z, t), T (z, t) are to be found as solutions of the
first classical initial boundary value problems for the heat conduction equations [3]. After that
f(z, t) and K(t) should be determined taking into account the overloading condition (2.5). The
function w(z, t) can be recovered by quadrature from the third equation of the system (2.2), and
h(z, t) can be found by the latter from (2.2). This solution procedure is rather cumbersome.
Here we use the Laplace transform method to find a solution [4].

Let

û(z, s) =

∫ ∞

0

u(z, t)e−st dt

be the Laplace transform for the function u. Since

ût(z, s) = sû(z, s)− u0(z), ûzz =
∂

∂z2
û,

the problem for f̂(z, s), ĝ(z, s), T̂ (z, s), K̂(s) takes the form

f̂zz − sf̂ = εT̂ − 2ĝ + K̂ − f0(z)

ĝzz − sĝ = −g0(z), T̂zz − PsT̂ = −PT0(z), |z| < 1,
(2.7)

where T̂1,2(s) is the Laplace transform of the specified functions T1,2(t). Moreover, the next
conditions are satisfied

f̂(±1, s) = 0, ĝ(±1, s) = 0, T̂ (±1, s) = T̂1,2(s),∫ 1

−1

f̂(z, s) dz = 0.
(2.8)

Thus, we obtain the boundary value problem (2.7), (2.8) in Laplace images for ODE systems.

Remark 1. The functions T1,2(t) can have a finite number of the discontinuities of the first
kind [4].

After simple calculations, we obtain a quadrature representation of the solution to the prob-
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lem (2.7), (2.8)

ĝ(z, s) =
1√

s sh(2
√
s)

∫ 1

−1

g0(y) sh
[√
s(1− y)

]
dy sh

[√
s(z + 1)

]
−

− 1√
s

∫ z

−1

g0(y) sh
[√
s(z − y)

]
dy,

T̂ (z, s) =
1

sh(2
√
Ps)

{
T̂1(s) sh

[√
Ps(1− z)

]
+ T̂2(s) sh

[√
Ps(z + 1)

]
+

+

√
P

s

∫ 1

−1

T0(y) sh
[√

Ps(1− y)
]
dy sh

[√
Ps(z + 1)

]}
−

−
√
P

s

∫ z

−1

T0(y) sh
[√

Ps(z − y)
]
dy,

f̂(z, s) =
K̂(s)

s

(
ch (

√
sz)

ch
√
s

− 1

)
− 1√

s sh(2
√
s)

×

×
∫ 1

−1

F (y, s) sh
[√
s(1− y)

]
dy sh

[√
s(z + 1)

]
+

1√
s

∫ z

−1

F (y, s) sh
[√
s(z − y)

]
dy,

(2.9)

where
F (z, s) = εT̂ (z, s)− 2ĝ(z, s)− f0(z). (2.10)

Now, from equality (2.8) and representation f̂(z, s) (2.9) we obtain

K̂(s) =
3

2s cth
√
s

[
(1− ch (2

√
s))√

s sh (2
√
s)

∫ 1

−1

F (y, s) sh
[√
s(1− y)

]
dy+

+

∫ 1

−1

∫ z

−1

F (y, s) sh
[√
s(z − y)

]
dydz

] (2.11)

with F (z, s) defining by (2.9), (2.10).
The functions ŵ(z, s), ĥ(z, s) are determined from (2.2) taking into account differentiation

properties of the Laplace transform by the following formulas

ŵ(z, s) = −2

∫ z

−1

f̂(y, s) dy,

ĥ(z, s) = h0(s) + ŵz(z, s)− sŵ(z, s) + w0(z) =

= h0(s)− 2f̂(z, s) + 2s

∫ z

−1

f̂(y, s) dy + w0(z)

(2.12)

with an arbitrary function h0(s) and the function f̂(z, s) determined by (2.9).
Under the assumptions that the Laplace transform T̂1,2(s), ̂∂T1,2/∂t exists and that there

is the limit limt→∞ T1,2(t) = T s
1,2 = const the following holds because of the property of limit

relations for the Laplace transform (see [4])

lim
s→0

sT̂1,2(s) = lim
t→∞

T1,2(t) = T s
1,2. (2.13)

Let us demonstrate that lims→0 sK̂(s) = Ks, where Ks is given by (2.6), i. e. that
limt→∞K(t) = Ks. It is obviously that sĝ(z, s) ≈ 0, s → 0. Now we proceed to consider
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the first approximation of the function sT̂ (z, s) using the Taylor series expansion of hyperbolic
functions:

sT̂ (z, s) ≈ 1

2
√
Ps

[
T s
1

√
Ps(1− z) + T s

2

√
Ps(z + 1)

]
=

=
1

2
[T s

1 + T s
2 + (T s

2 − T s
1 ) z] = T̂ s(z).

(2.14)

Taking into account (2.6) and (2.13) we can obtain provided s→ 0

sK̂(s) ≈ 3

2
√
s

[
−
∫ 1

−1

εT s
√
s(1− y) dy +

∫ 1

−1

∫ z

−1

εT s
√
s(z − y) dydz

]
=

=
3ε

4

[
−
∫ 1

−1

((T s
2 − T s

1 )y + T s
1 + T s

2 )(1− y) dy+

+

∫ 1

−1

∫ z

−1

((T s
2 − T s

1 )y + T s
1 + T s

2 )(z − y) dydz

]
=

=
3ε

4

[
2

3
(T s

2 − T s
1 )− 2(T s

1 + T s
2 )−−2

3
(T s

2 − T s
1 ) +

4

3
(T s

1 + T s
2 )

]
=

=
3ε

4

(
−2

3
(T s

1 + T s
2 )

)
= Ks.

(2.15)

Here, the Taylor series expansions of the following functions were taken into account with the
retention of the main terms

3

2s cth
√
s
=

3

2s
(

1√
s
+ (

√
s)
3 + · · ·

) =
3

2
√
s (1 + o(s))

≈ 3

2
√
s
,

1− ch (2
√
s)√

s sh (2
√
s)

=
1− 1− 4s

2 − · · ·
√
s
(
2
√
s+ (2

√
s)3

6 + · · ·
) ≈ −1.

(2.16)

Now consider the limit lims→0 sf̂(s, z). Since

Ks

s

(
ch(

√
sz)

2 ch
√
s

− 1

)
=
Ks

s

(
1 + (

√
sz)2/2 + o(s2)− 1− (

√
s)2/2− o(s2)

1 + (
√
s)2/2 + o(s2)

)
≈ Ks

(
z2

2
− 1

2

)
,

the following can be derived

sf̂(z, s) ≈ Ks

(
z2

2
− 1

2

)
− ε

4s

∫ 1

−1

[(T s
2 − T s

1 ) y + T s
1 + T s

2 ]
√
s(1− y) dy

√
s(z + 1)+

+
ε

2
√
s

∫ z

−1

[
(T s

2 − T s
1 ) y + T s

1 + T s
2

]√
s(z − y) dy =

=
ε

2

[
(T s

2 − T s
1 )
z3

6
− (T s

2 − T s
1 )
z

6

]
= fs.

(2.17)

By direct substitution it is easy to show that

sŵ(z, s) ≈ −2

∫ z

−1

fsdy = −ε
6
(T s

2 − T s
1 )

(
y4

4
− y2

2

) ∣∣∣∣∣
z

−1

=

=
ε

24
(T s

1 − T s
2 )
(
z4 − 2z2 + 1

)
= ws,

sĥ(z, s) ≈ hs0 − 2fs = hs,

(2.18)
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where hs0 = lims→0 sh0(s).
We have proven the

Theorem. Under conditions (2.13), f0(z), g0(z), T0(z) ∈ C[−1, 1] the solution of a nonstation-
ary inverse initial boundary value problem (2.2)–(2.5) converges to the stationary solution (2.6)
with t→ ∞.

Note, that initial values of function K(t) can be found directly from the problem (2.2)–(2.5).
The solution formulas (2.9) obtained in the images can be transformed into Fourier series.

To show it for the function g(z, t) we will use the first formula for ĝ(z, s) from (2.9). Note, that
ĝ(z, s) cannot be translated directly into the original space since the second term does not tend
to zero at s→ ∞. It can be seen that

ĝ(z, s) =

∫ 1

−1

G(z, y)g0(y) dy, (2.19)

where

G(z, y, s) =
1√

s sh(2
√
s)

{
sh

√
s(y + 1) sh

√
s(1− z), −1 6 y 6 z;

sh
√
s(z + 1) sh

√
s(1− y), z 6 y 6 1

(2.20)

is the Green’s function for the operator d2/dz2 − s with zero first-type boundary conditions at
z ≡ ±1. It is clear that G(z, y, s) → 0 at s→ ∞ for any z, y ∈ [−1; 1].

Now we can use the result from [5], p. 273, formula No. 188, namely that the image of the
function G(z, y, s) corresponds to the original

∞∑
n=1

sinnπz sinnπye−n2π2t = Γ(z, y, t), (2.21)

therefore ĝ(z, s) corresponds to the Fourier series

g(z, t) =

∫ 1

−1

Γ(z, y, t)g0(y) dy =

∞∑
n=1

∫ 1

−1

g0(y) sinnπy dy sinnπze
−n2π2t. (2.22)

It is easy to verify that the series (2.21) are the solution to the initial boundary value problem
for g(z, t). It is classical provided there is the agreement condition g0(−1) = g0(1) = 0 and
g′0(y) ∈ L2(−1, 1)

g0n =

∫ 1

−1

g0(y) sinnπy dy = − 1

πn

[
g0(y) cos nπy

∣∣∣∣1
−1

−
∫ 1

−1

g′0(y) cos nπy dy

]
=

=
1

πn

∫ 1

−1

g′0(y) cos nπy dy =
1

n
β(n).

(2.23)

whence it follows that |g0n| 6
1

2

1

n2
+

1

2
β2(n). Then

|g(z, t)| 6
∞∑

n=1

|g0n| 6
∞∑

n=1

1

2

1

n2
+

∞∑
n=1

1

2
β2(n) <∞, (2.24)

as
1∫

−1

g′0(y) cos nπy dy → 0, n → ∞. The convergence to zero velocity for the function g(z, t) is

determined from the inequality

|g(z, t)| 6 e−π2t
∞∑

n=1

|g0n|e−π2(n−1)t 6 e−π2t
∞∑

n=1

|g0n| = Ce−π2t, (2.25)
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since the series
∞∑

n=1
|g0n| converges as noted above.
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Решение линейной задачи тепловой конвекции
во вращающемся слое жидкости

Виктор K. Андреев
Институт вычислительного моделирования СО РАН

Krasnoyarsk, Российская Федерация

Лилия И. Латонова
Siberian Federal University

Красноярск, Российская Федерация

Аннотация. Решена начально-краевая задача, возникающая при моделировании ползущего вра-
щательного движения вязкой жидкости в плоском слое. Найдено стационарное решение. С помо-
щью метода преобразования Лапласа решение в изображениях получено в квадратурах. Доказано,
что при некоторых условиях на распределение температуры на стенках решение нестационарной
задачи сходится с ростом времени к найденному стационарному решению.

Ключевые слова: тепловая конвекция, преобразование Лапласа, стационарное решение.
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Abstract. The main goal of this article is to prove the central limit theorem for sequences of random
variables with values in the space D [0, 1]. We assume that the sequence satisfies the mixing conditions.
In the paper the central limit theorems for sequences with strong mixing and ρm-mixing are proved.
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1. Preliminaries

A central limit theorem for Banach space valued dependent random variables have been
studied by many authors (see [6, 11, 15–17] and references therein). It is known that validity
of the central limit theorem depends on the geometric structure of Banach space. One of the
most difficult space in this sense is D [0, 1] (the space of all real-valued functions that are right
continuous and have left limits, which is endowed with the Skorohod topology) space. In this
paper we will prove the central limit theorem for mixing random variables with values in D [0, 1].

Let {Xn(t), t ∈ [0, 1] , n > 1} be a sequence of random variables with values in D [0, 1].
We say that {Xn(t), t ∈ [0, 1] , n > 1} satisfies a central limit theorem if the distribution of
1√
n
(X1(t) + . . .+Xn(t)) converges weakly to a Gaussian distribution in D [0, 1].

The central limit theorem in D [0, 1] is very important from applications point of view. It
immediately implies asymptotic normality of empirical and weighted empirical processes. The
central limit theorem for the sequence of independent identically distributed (i.i.d) random vari-
ables with values in D [0, 1] were studied by many authors (see [?, 1, 2, 8, 12]) and references
therein).
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†anvar2383@mail.ru

c⃝ Siberian Federal University. All rights reserved
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The first central limit theorem was proved by Hahn [8]. Later the central limit theorem in
D [0, 1] was proved by D. Juknevičienė (1985), V. Paulauskas and Ch. Stive (1990), P.H.Bezandry
and X. Fernique (1992), M.Bloznelis and V. Paulauskas (1993), X. Fernique (1994). The result
of M.G.Hahn [8] can be formulated as follows.

Theorem 1.1 ([8]). Let {Xn(t), t ∈ [0, 1] , n > 1} be a sequence of i.i.d. random variables with
values in D [0, 1] such that

EX1(t) = 0, EX2
1 (t) <∞ for all t ∈ [0, 1] . (1)

Assume that there exist nondecreasing continuous functions G and F on [0, 1] and numbers
α > 0.5, β > 1 such that for all 0 6 s 6 t 6 u 6 1 the following two conditions hold:

E (X1(u)−X1(t))
2 6 (G(u)−G(t))

α
,

E (X1(u)−X1(t))
2
(X1(t)−X1(s))

2 6 (F (u)− F (s))
β
. (2)

Then {Xn(t), t ∈ [0, 1] , n > 1} satisfies the central limit theorem in D [0, 1] and the limiting
Gaussian process is sample continuous.

As it was already noticed in [2], the condition (2) is connected with the fourth moments of
the process X1(t). This conditions does not allow us to apply Theorem 1.1 to a wide class of
weighted empirical processes. In [2] and [3] authors obtained the following results (where a ∧ b
denotes min(a, b)):

Theorem 1.2 ([2]). Let {Xn(t), t ∈ [0, 1] , n > 1} be a sequence of i.i.d. random variables with
values in D [0, 1] satisfying the condition (1) and assume that there exist nondecreasing continuous
functions G and F on [0, 1] and numbers α, β > 0 such that for all 0 6 s 6 t 6 u 6 1 the
following two conditions hold:

E (X1(u)−X1(t))
2 6 (G(u)−G(t))

1/2
log−4,5−α

(
1 + (G(u)−G(t))

−1
)
, (3)

E (|X1(t)−X1(s)| ∧ 1)
2
(X1(u)−X1(t))

2 6

6 (F (u)− F (s)) log−5−β
(
1 + (F (u)− F (s))

−1
)
.

(4)

Then {Xn(t), t ∈ [0, 1] , n > 1} satisfies the central limit theorem in D [0, 1] and the limiting
Gaussian process is sample continuous.

Theorem 1.3 ([2]). The statement of Theorem 1.2 remains true if conditions (3) and (4) are
replaced by

E (X1(u)−X1(t))
2 6 (G(u)−G(t))

1/2
log−2,5−α

(
1 + (G(u)−G(t))

−1
)
, (5)

E (X1(t)−X1(s))
2
(X1(u)−X1(t))

2 6 (F (u)− F (s)) log−5−β
(
1 + (F (u)− F (s))

−1
)
. (6)

Theorem 1.4 ([3]). Assume p, q > 2. Let f, g be nonnegative functions on [0,+∞) which are
nondecreasing near 0 and let F, G be increasing continuous functions on [0, 1]. Let X(t) be a
random process with mean 0, finite second moment, and sample path in D satisfying

E (|X(s)−X(t)| ∧ |X(t)−X(u)|)p 6 f (F (u)− F (s)) ,
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E |X(s)−X(t)|q 6 g (G(t)−G(s)) ,

for 0 6 s 6 t 6 u 6 1, u− s small and∫
0

f1/p(u) · u−1−1/pdu <∞,

∫
0

g1/q(u) · u−1−1/(2q)du <∞.

Then {Xn(t), t ∈ [0, 1] , n > 1} satisfies the central limit theorem in D [0, 1] and the limiting
Gaussian process is sample continuous.

2. Main results

The main goal of this article is to prove the central limit theorem for mixing sequences of
random variables with values in space D [0, 1].

Below, we give the definitions of mixing coefficients for a sequence of random variables with
values in a separable Banach space B. In Definition 2 it is assumed that B is an infinite-
dimensional space.

Definition 1. For a sequence {Xn(t), t ∈ [0, 1] , n > 1} the coefficients of ρ, α-mixing are de-
fined by the following equalities.

ρ (n) = sup

{
|E(ξ − Eξ)(η − Eη)|

E
1
2 (ξ − Eξ)2E

1
2 (η − Eη)2

: ξ ∈ L2(F
k
1 ), η ∈ L2(F

∞
n+k), k ∈ N

}
,

α (n) = sup
{
|P (AB)− P (A)P (B)| : A ∈ F k

1 , B ∈ F∞
k+n, k ∈ N

}
.

where F b
a is the σ-algebra generated by random processes Xa(t), . . . , Xb(t) and L2(F

b
a) is the

space of all square integrable random variables measurable with respect to F b
a .

Definition 2. For the sequence {Xn(t), t ∈ [0, 1] , n > 1} the coefficients of ρm (n)-mixing and
αm (n)-mixing are defined by the following equalities

ρm (n) = sup
Rm

sup

{
|E(ξ − Eξ)(η − Eη)|

E
1
2 (ξ − Eξ)2E

1
2 (η − Eη)2

: ξ ∈ L2(F
k
1 (R

m)), η ∈ L2(F
∞
n+k(R

m)), k ∈ N

}
,

αm (n) = sup
Rm

sup
{
| P (AB)− P (A)P (B)| : A ∈ F k

1 (R
m), B ∈ F∞

k+n(R
m), k ∈ N

}
,

where F b
a(R

m) is the σ-algebra generated by random processes
∏

mXa(t), . . . ,
∏

mXb(t) and∏
m is a projection operator B in m-dimensional subspace Rm i.e.

∏
m : B → Rm. A sequence

is called ρ-mixing (or ρm−, α−, αm− mixing ) if

ρ(k) → 0 as k → ∞, (7)

ρm(k) → 0 as k → ∞ and m = 1, 2, . . . , (8)

α(k) → 0 as k → ∞, (9)

αm(k) → 0 as k → ∞ and m = 1, 2, . . . (10)

respectively.
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As the example given in Zhurbenko [13] shows, in general (8) does not imply (7), though (7)
always implies (8), the same is true with (9) and (10). In (8) and (10) it is actually required that
all finite-dimensional projections of the sequence {Xn(t), t ∈ [0, 1] , n > 1} satisfy the mixing
condition and these conditions are weaker than the conditions (7) and (9).

Set Sn(t) =
1√
n
(X1(t) + · · ·+Xn(t)) and in what follows ⇒ denotes weak convergence.

Now we formulate our theorems.

Theorem 2.1. Let {Xn(t), t ∈ [0, 1] , n > 1} be a strictly stationary sequence of ρm-mixing
random variables with values in D [0, 1] such that

EX1(t) = 0, E |X1(t)|2 <∞ for all t ∈ [0, 1] .

Assume that there exists a nondecreasing continuous function F on [0, 1] such that for all
0 6 s 6 t 6 1 and ε > 0 the following hold:

E (X1(t)−X1(s))
2 6 (F (t)− F (s)) log−(3+ε)

(
1 + (F (t)− F (s))

−1
)
, (11)

lim
n→∞

E (X1 + · · ·+Xn)
2
= ∞ for all t ∈ [0, 1],

n∑
k=1

ρm
(
2k
)
<∞, m = 1, 2, . . . .

Then {Xn(t), t ∈ [0, 1] , n > 1} satisfies the central limit theorem i.e.

Sn(t) ⇒ N(t) as n→ ∞

and the limiting mean-zero, sample continuous Gaussian process has the covariance function:

F (t1, t2) = lim
n→∞

ESn(t1)Sn(t2), t1, t2 ∈ [0, 1] .

Theorem 2.2. Let {Xn(t), t ∈ [0, 1] , n > 1} be a strictly stationary sequence of ρm-mixing
random variables with values in D [0, 1] such that

EX1(t) = 0, E |X1(t)|2+ε
<∞, for all t ∈ [0, 1] and some ε > 0.

Assume that there exists a nondecreasing continuous function F on [0, 1] such that for all
0 6 s 6 t 6 1 and the following hold:

E |X1(s)−X1(t)|2+ε 6 (F (s)− F (t)) log−(3+2ε)
(
1 + (F (s)− F (t))

−1
)
, (12)

n∑
k=1

ρ
2

2+ε
m (2k) <∞, m = 1, 2, . . . .

Then {Xn(t), t ∈ [0, 1] , n > 1} satisfies the central limit theorem i.e.

Sn(t) ⇒ N(t) as n→ ∞

and the limiting mean-zero, sample continuous Gaussian process has the covariance function:

F (t1, t2) = lim
n→∞

ESn(t1)Sn(t2), t1, t2 ∈ [0, 1] .
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Theorem 2.3. Let {Xn(t), t ∈ [0, 1] , n > 1} be a strictly stationary sequence of αm-mixing
random variables with values in D [0, 1] such that

EX1(t) = 0, E |X1(t)|2+δ
<∞, for all t ∈ [0, 1] and some δ > 0.

Assume that there exists a nondecreasing continuous function F on [0, 1] such that for all
0 6 s 6 t 6 1 and ε > 0 the following hold:(

E |X1(t)−X1(s)|2+δ
) 2+ε

2+δ 6 (F (t)− F (s)) log−(3+2ε)
(
1 + (F (t)− F (s))

−1
)
, (13)

n∑
k=1

α
δ

2+δ
m (k) <∞, m = 1, 2, . . . .

Then {Xn(t), t ∈ [0, 1] , n > 1} satisfies the central limit theorem i.e.

Sn(t) ⇒ N(t) as n→ ∞

and the limiting mean-zero, sample continuous Gaussian process has the covariance function:

F (t1, t2) = lim
n→∞

ESn(t1)Sn(t2), t1, t2 ∈ [0, 1] .

Theorems 2.1–2.2 improve the results of [11].

3. Preliminary results

The proofs of the theorems are based on the following lemmas.

Lemma 1 ( [2]). Let X1(t), X2(t), . . . , Xn(t), . . . be random variables with values in D [0, 1].
Assume that there exist a nondecreasing continuous function F on [0, 1] and positive numbers
γ1, c1, ε1 such that for all λ > 0 and 0 6 s 6 t 6 u 6 1.

P (|Xn (t)−Xn (s)| ∧ |Xn (u)−Xn (t)| > λ) 6 c1λ
−2γ1g2γ1+1+ε1 (F (u)− F (s)) ,

where gp(u) = u |log u|−p
, p > 0. If for all t1, . . . , tk ∈ [0, 1], k = 1, 2, . . .

(Xn(t1), . . . , Xn(tk)) ⇒ (X(t1), . . . , X(tk)) as n→ ∞

and
P (X(1) = lim

t→1
X(t)) = 1.

Then Xn ⇒ X as n→ ∞.

Lemma 2 ([9]). Let {Xi, i > 1} be a strictly stationary sequence of real valued random variables
with ρ-mixing and

EX1 = 0, EX2
1 <∞,

lim
n→∞

E (X1 + · · ·+Xn)
2
= ∞,

n∑
k=1

ρ(2k) <∞.
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Then
1√
n
(X1 + · · ·+Xn) ⇒ N

(
0, σ2

)
as n→ ∞,

where N
(
0, σ2

)
Gaussion random variable with zero-mean and variance

σ2 = lim
n→∞

1

n
E (X1 + · · ·+Xn)

2
> 0.

Lemma 3 ([14]). Let {Xi, i > 1} be a sequence of real-valued random variables with ρ-mixing
and for some q > 2

EX1 = 0, E |X1|q <∞,

n∑
k=1

ρ
2
q (2k) <∞.

Then there exists a constant K such that the following inequality holds:

E |X1 + · · ·+Xn|q 6 K

(
n

q
2 max
16i6n

(
E |Xi|2

) q
2

+ n max
16i6n

E |Xi|q
)
.

Lemma 4 ([13]). Let {Xi, i > 1} be a stationary sequence of random variables with α-mixing
and

EX1 = 0, E |X1|2+δ
<∞,

∞∑
k=1

α
δ

2+δ
(k) <∞,

for some δ > 0. Then

σ2 = EX2
1 + 2

∞∑
j=2

E(X1Xj) <∞ when σ2 > 0,

1

σ
√
n
(X1 + · · ·+Xn) ⇒ N (0, 1) as n → ∞.

Lemma 5 ( [4]). Let {Xi, i > 1} be a strictly stationary sequence of random variables with
α-mixing and

EX1 = 0, E |X1|2+δ
<∞,

∞∑
k=1

n
t
2−1α

2+δ−t
2+δ (k) <∞,

for some 0 < δ 6 ∞ and 2 6 t < 2 + δ. Then

E

∣∣∣∣∣
n∑

k=1

(Xk − µ)

∣∣∣∣∣
t

6 Cn
t
2

(
E |X1|2+δ

) t
2+δ

.
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4. Proof of Theorems

Proof of Theorem 2.1. We will use the method developed in the papers [2,8] and [12]. It follows
from Lemma 1 that it suffices to prove

P (|Sn (t)− Sn (s)| ∧ |Sn (u)− Sn (t)| > λ) 6 c1λ
−(2+ε)g3+ε (F (u)− F (s)) ,

where λ ∈ (0, 1] , 0 6 s 6 t 6 u 6 1.

It is easy to see that the following inequality holds for λ ∈ (0, 1].

P (|Sn (t)− Sn (s)| ∧ |Sn (u)− Sn (t)| > λ) 6 P
(
|Sn (t)− Sn (s)| |Sn (u)− Sn (t)| > λ2

)
.

We have
J = |Sn (t)− Sn (s)| |Sn (u)− Sn (t)| =

=

(∣∣∣∣∣n− 1
2

n∑
k=1

(Xk (t)−Xk (s))

∣∣∣∣∣
)(∣∣∣∣∣n− 1

2

n∑
k=1

(Xk (u)−Xk (t))

∣∣∣∣∣
)

6

6 1

2

(
n−

1
2

n∑
k=1

(Xk (t)−Xk (s))

)2

+
1

2

(
n−

1
2

n∑
k=1

(Xk (u)−Xk (t))

)2

= J1 + J2.

In what follows we denote by C the constants (possibly depending on different parameters) which
can be different even in the same chain of inequalities.

We have
P
(
J > λ2

)
6 P

(
J1 > 1

2
λ2
)
+ P

(
J2 > 1

2
λ2
)
.

We evaluate each of the summands individually. Using the Markov inequality and Lemma 3, we
obtain

P
(
J1 > λ2

)
= P

((
n−

1
2

n∑
k=1

(Xk (t)−Xk (s))

)2

> λ2

)
6

6 λ−2E

(
n−

1
2

n∑
k=1

(Xk (t)−Xk (s))

)2

6 λ−2CE (X1 (t)−X1 (s))
2
,

(14)

P
(
J2 > λ2

)
6 λ−2CE (X1 (u)−X1 (t))

2
. (15)

From (14) and (15) we get

P
(
J > λ2

)
6 λ−2CE (X1 (t)−X1 (s))

2
+ λ−2CE (X1 (u)−X1 (t))

2
.

From the conditions of Theorem 2.1

P
(
|Sn (t)− Sn (s)| |Sn (u)− Sn (t)| > λ2

)
6

6 λ−2CE (X1 (t)−X1 (s))
2
+ λ−2CE (X1 (u)−X1 (t))

2 6

6 λ−2C (F (t)− F (s)) log−(3+ε)
(
1 + (F (t)− F (s))

−1
)
+

+λ−2C (F (u)− F (t)) log−(3+ε)
(
1 + (F (u)− F (t))

−1
)
6

6 2λ−2C (F (u)− F (s)) log−(3+ε)
(
1 + (F (u)− F (s))

−1
)
6 2Cλ−2g3+ε (F (u)− F (s)) .
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Above we used the inequality

log−1
(
1 + (F (u)− F (s))−1

)
6 2 |log (F (u)− F (s))|−1 (16)

for
F (u)− F (s) 6 0.25.

Now, to complete the proof of the theorem, it remains to prove the convergence of the finite-
dimensional distributions Sn (t). The convergence of finite-dimensional distributions follows from
Lemma 2 and the Cramer-Wold device [5]. Thus, Theorems 2.1 is proved. 2

Proof of Theorem 2.2.
We will prove Theorem 2.2 by the same method as Theorem 2.1. It follows from Lemma 1

that it suffices to prove

P (|Sn (t)− Sn (s)| ∧ |Sn (u)− Sn (t)| > λ) 6 c1λ
−(2+ε)g3+2ε (F (u)− F (s)) ,

where λ ∈ (0, 1] , 0 6 s 6 t 6 u 6 1.

It is easy to see that the following inequality holds for λ ∈ (0, 1].

P
(
|Sn (t)−Sn (s)| ∧ |Sn (u)−Sn (t)| > λ

)
6 P

(
|Sn (t)−Sn (s)|

2+ε
2 |Sn (u)−Sn (t)|

2+ε
2 > λ2+ε

)
.

We have
I = |Sn (t)− Sn (s)|

2+ε
2 |Sn (u)− Sn (t)|

2+ε
2 =

=

∣∣∣∣∣ 1√
n

n∑
k=1

(Xk(t)−Xk(s))

∣∣∣∣∣
2+ε
2
∣∣∣∣∣ 1√
n

n∑
k=1

(Xk(u)−Xk(t))

∣∣∣∣∣
2+ε
2

6

6 1

2

∣∣∣∣∣ 1√
n

n∑
k=1

(Xk(t)−Xk(s))

∣∣∣∣∣
2+ε

+
1

2

∣∣∣∣∣ 1√
n

n∑
k=1

(Xk(u)−Xk(t))

∣∣∣∣∣
2+ε

= I1 + I2.

We have
P
(
I > λ2+ε

)
6 P

(
I1 > 1

2
λ2+ε

)
+ P

(
I2 > 1

2
λ2+ε

)
.

Using the Markov inequality and Lemma 3, we obtain

P
(
I1 > λ2+ε

)
= P

(∣∣∣∣∣ 1√
n

n∑
k=1

(Xk(t)−Xk(s))

∣∣∣∣∣
2+ε

> λ2+ε

)
6

6 λ−(2+ε)E

∣∣∣∣∣ 1√
n

n∑
k=1

(Xk(t)−Xk(s))

∣∣∣∣∣
2+ε

6

6 Cλ−(2+ε)n−(2+ε)/2n(2+ε)/2
(
E |X1(t)−X1(s)|2

)(2+ε)/2

+

+Cλ−(2+ε)n−(2+ε)/2nE |X1(t)−X1(s)|2+ε 6

6 λ−(2+ε)C
(
E |X1(t)−X1(s)|2

)(2+ε)/2

+ λ−(2+ε)Cn−ε/2E |X1(t)−X1(s)|2+ε 6

6 2Cλ−(2+ε)E |X1(t)−X1(s)|2+ε
.

P
(
I2 > λ2+ε

)
6 2Cλ−(2+ε)E |X1(u)−X1(t)|2+ε

.
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From the conditions of Theorem 2.2 and using (16) we have

P
(
|Sn (t)− Sn (s)|

2+ε
2 |Sn (u)− Sn (t)|

2+ε
2 > λ2+ε

)
6

6 Cλ−(2+ε) (F (t)− F (s)) log−(3+2ε)
(
1 + (F (t)− F (s))

−1
)
+

+Cλ−(2+ε) (F (u)− F (t)) log−(3+2ε)
(
1 + (F (u)− F (t))

−1
)
6

6 2Cλ−(2+ε) (F (u)− F (s)) log−(3+2ε)
(
1 + (F (u)− F (s))

−1
)
6 2Cλ−(2+ε)g3+2ε (F (u)− F (s)) .

To complete the proof of the theorem, it remains to prove the convergence of the finite-
dimensional distributions Sn (t). The convergence of finite-dimensional distributions follows from
Lemma 2 and the Cramer-Wold device [5]. Thus, Theorems 2.2 is proved. 2

Proof of Theorem 2.3.
To prove Theorem 2.3, we estimate I as in the proof of Theorem 2.2 by I1 and I2. Using the

Markov inequality and Lemma 5, we have (where ε+ ε1 = δ, ε1 > 0)

P
(
I1 > λ2+ε

)
= P

∣∣∣∣∣ 1√
n

n∑
k=1

(Xk(t)−Xk(s))

∣∣∣∣∣
2+ε

> λ2+ε

 6

6 Cα (k)λ−(2+ε) 1

n
2+ε
2

E

∣∣∣∣∣
n∑

k=1

(Xk(t)−Xk(s))

∣∣∣∣∣
2+ε

6

6 Cλ−(2+ε)
(
E |X1(t)−X1(s)|2+ε+ε1

) 2+ε
2+ε+ε1 6

6 Cλ−(2+ε)
(
E |X1(t)−X1(s)|2+δ

) 2+ε
2+δ

.

P
(
I2 > λ2+ε

)
= Cλ−(2+ε)

(
E |X1(u)−X1(t)|2+δ

) 2+ε
2+δ

.

P
(
I > λ2

)
6 Cλ−(2+ε)

((
E |X1(t)−X1(s)|2+δ

) 2+ε
2+δ

+
(
E |X1(u)−X1(t)|2+δ

) 2+ε
2+δ

)
.

From the conditions of Theorem 2.3 and using (16) we have

P
(
|Sn (t)− Sn (s)|

2+ε
2 |Sn (u)− Sn (t)|

2+ε
2 > λ2+ε

)
6

6 Cλ−(2+ε) (F (t)− F (s)) log−(3+2ε)
(
1 + (F (t)− F (s))

−1
)
+

+Cλ−(2+ε) (F (u)− F (t)) log−(3+2ε)
(
1 + (F (u)− F (t))

−1
)
6

6 2Cλ−(2+ε) (F (u)− F (s)) log−(3+2ε)
(
1 + (F (u)− F (s))

−1
)
6 2Cλ−(2+ε)g3+2ε (F (u)− F (s)) .

Again as in the proof of previous theorems, to complete the proof of the theorem, it re-
mains to prove the convergence of the finite-dimensional distributions Sn (t). The convergence of
finite-dimensional distributions follows from Lemma 4 and the Cramer–Wold device [5]. Thus,
Theorems 2.3 is proved. 2
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Центральная предельная теорема для слабо зависимых
случайных величин со значениями в D [0, 1]

Олимжон Ш. Шарипов
Национальный университет Узбекистана

Ташкент, Узбекистан
Математический институт им. В. И. Романовского АНУз
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Анвар Ф. Норжигитов
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Ташкент, Узбекистан

Аннотация. Основной целью настоящей статьи является доказательство центральной предель-
ной теоремы для последовательностей случайных величин со значениями в пространстве D [0, 1].
Мы предполагаем, что последовательность удовлетворяет условиям перемешивания. В статье до-
казаны центральные предельные теоремы для последовательностей с сильным перемешиванием и
ρm-перемешиванием.

Ключевые слова: центральная предельная теорема, последовательность с перемешиванием, про-
странство D [0, 1].
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1. Introduction and preliminaries

Following of ( [3–5]) we define a general random censorship model in the following way:
Let Z be a real random variable (r.v.) with distribution function (d.f.) H(x) = P (Z 6 x),

x ∈ R. Let us assume that A(1), . . . , A(k) are pairwise disjoint random events for a fixed in-
teger k > 1. Let us define the subdistribution functions H(x; i) = P (Z 6 x,A(i)), i ∈ ℑ =

{1, . . . , k}. Suppose that when observing Z we are interested in the joint behaviour of the
pairs (Z,A(i)), i ∈ ℑ. Let {(Zj , A

(1)
j , . . . , A

(k)
j ), j > 1} be a sequence of independent replicas

of (Z,A(1), . . . , A(k)) defined on some probability space {Ω, A, P}. We assume throughout that
functions H(x),H(x; 1), . . . , H(x; k) are continuous. Let us denote the ordinary empirical d.f. of
Z1, . . . , Zn by Hn(x) and introduce the empirical sub d.f. Hn(x; i), i ∈ ℑ

Hn(x; i) =
1

n

n∑
j=1

δ
(i)
j I(Zj 6 x), (x; i) ∈ R×ℑ,

where R = [−∞;∞], δ
(i)
j = I(A

(i)
j ) is the indicator of event A(i)

j and

∗a-abdushukurov@rambler.ru
†sayfulloyevagulnoz@gmail.com

c⃝ Siberian Federal University. All rights reserved
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Hn(x; 1) + · · ·+Hn(x; k) =
1

n

n∑
j=1

I(Zj 6 x) = Hn(x), x ∈ R,

is the ordinary empirical d.f.. Properties of many biometric estimates depend on the limit
behaviour of proposed empirical statistics. The following results are straightforward consequences
of the Dvoretzky–Kiefer–Wolfowitz exponential inequality with constant D=2 [8, 12] :

For all n = 1, 2, . . . and ε > 0

P

(
sup

|x|<∞

∣∣Hn(x)−H(x)
∣∣ > ( (1 + ε)

2
· log n

n

)1/2
)

6 2n−(1+ε), (1)

and
P

(
sup

|x|<∞

∣∣Hn(x; i)−H(x; i)
∣∣ > 2

( (1 + ε)

2

log n

n

)1/2) 6 4n−(1+ε). (2)

Vector-valued empirical process
{
an(t) =

(
a
(0)
n (t0), a

(1)
n (t1), . . . , a

(k)
n (tk)

)
, t = (t0, . . . , tk) ∈

Rk+1
}

plays a decisive role, where a(0)n (x) =
√
n(Hn(x)−H(x)), a(i)n (x) =

√
n(Hn(x; i)−H(x; i)),

i ∈ ℑ. The following Burke–Csörgő–Horváth theorem [3, 4] is an extended analogue of Komlós–
Major–Tusnády’s result [9–11].

Theorem A([3, 4]). If the underlying probability space {Ω,A, P} is rich enough then one can
define k+1 sequences of Gaussian processes B(0)

n (x), B
(1)
n (x), . . . , B

(k)
n (x) such that for an(t) and

Bn(t) = (B
(0)
n (x0), B

(1)
n (x1), . . . , B

(k)
n (xk)), t = (t0, . . . , tk) we have

P

{
sup

t∈Rk+1

∥∥an(t)−Bn(t)
∥∥(k+1)

> n− 1
2 (M(log n) + z)

}
6 K exp (−λz), (3)

for all real z, where M = (2k+1)A1, K = (2k+1)A2 and λ = A3/(2k + 1) with A1, A2 and A3 are
absolute constants. Moreover, Bn is (k+1)-dimensional vector-valued Gaussian process that has
the same covariance structure as the vector an(t), namely, EB(i)

n (x) = 0, (x, i) ∈ R×ℑ = ℑ∪{0}.
We have for any i, j ∈ ℑ, i ̸= j, x, y ∈ R that

EB
(0)
n (x)B

(0)
n (y) = min

{
H(x),H(y)

}
−H(x) ·H(y),

EB
(i)
n (x)B

(i)
n (y) = min

{
H(x; i),H(y; i)

}
−H(x; i) ·H(y; i),

EB
(i)
n (x)B

(j)
n (y) = −H(x; i) ·H(y; j),

EB
(0)
n (x)B

(i)
n (y) = min

{
H(x; i),H(y; j)

}
−H(x) ·H(y; i).

(4)

If we set z =
(
(1 + ε)

λ
log n

)
in (3) then

P

{
sup

t∈Rk+1

∥∥an(t)−Bn(t)
∥∥(k+1)

> Cn− 1
2 log n

}
6 Kn−(1+ε),

where C = (2k + 1)

(
A1 +

(1 + ε)

A3

)
. Then

∥∥∥∥an(t)−Bn(t)

∥∥∥∥(k+1)
a.s.
= O

(
n−

1
2 log n

)
.
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Let us note that in proving Theorem A (Theorem 3.1 in [4]) the sequence of two-parametrical
Gaussian processes Q(0)(x, n),Q(2)(x, n), . . . ,Q(k)(x, n) was constructed such that for an(t) and
Q(t;n) =

(
Q(0)(x;n), . . . ,Q(k)(x;n)

)
, t ∈ Rk+1

the following approximation was used∥∥∥∥an(t)− n−
1
2Q(t, n)

∥∥∥∥(k+1)
a.s.
= O

(
n−

1
2 log2 n

)
,

where Q(t, n) is the (k + 1) dimensional vector-valued Gaussian process and Q(t;n)
D
=n

1
2 an(t).

Hence
EQ(i)(x;n) = 0, (x, i) ∈ R×ℑ

and we have for any i, j ∈ ℑ, i ̸= j, x, y ∈ R that

EQ(0)(x;n)Q(0)(y;m) = min(n,m)
{
min{H(x),H(y)} −H(x)H(y)

}
,

EQ(0)(x;n)Q(i)(y;m) = min(n,m)
{
min{H(x; i),H(y; i)} −H(x)H(y; i)

}
,

EQ(i)(x;n)Q(i)(y;m) = min(n,m)
{
min{H(x; i),H(y; i)} −H(x; i)H(y; j)

}
,

EQ(i)(x;n)Q(j)(y;m) = −min(n,m)H(x; i) ·H(y; j).

(5)

Let us observe that {Q(i), i ∈ ℑ} are Kiefer processes and they satisfy the distributional equality

Q(i)(x;n)
D
=W (i)(H(x; i);n)−H(x; i)W (i)(1;n), (6)

where
{
W (i)(y;n), 0 6 y 6 1, n > 1, i ∈ ℑ

}
are two-parametric Wiener processes with

EW (i)(y;n) = 0 and
EW (i)(y;n)W (i)(u;m) = min(n,m)min(y, u), i ∈ ℑ.

It is important to note that though Kiefer processes
{
Q(i), i ∈ ℑ

}
are dependent processes,

corresponding Wiener processes are independent. Indeed, it follows from the proof of Theorem
A that

Q(1)(x;n)
D
=K̃(H(x; 1);n),

Q(2)(x;n)
D
=K̃(H(x; 2)−H(+∞; 1);n)− K̃(H(+∞; 1);n),

· · · · · ·
Q(i)(x;n)

D
=K̃(H(x; i) +H(+∞; 1) + · · ·+H(+∞; i− 1);n)−
− K̃(H(+∞; 1) + · · ·+H(+∞; i− 1);n), i ∈ ℑ,

where H(+∞; i) = lim
x↑+∞

H(x; i), H(+∞; 1) + · · ·+H(+∞; k) = 1.

The Kiefer processes
{
K̃(y;n), 0 6 y 6 1, n > 1

}
are represented in terms of two-parametrical

Wiener processes
{
W (y;n), 0 6 y 6 1, n > 1

}
by distributional equality{

K̃(y;n), 0 6 y 6 1, n > 1
}D
=
{
W (y;n)− yW (1;n), 0 6 y 6 1, n > 1

}
. (7)

Then, taking into account (6) and (7), the Wiener process {W (i), i ∈ ℑ} also admits the
following representations for all (x; i) ∈ R×ℑ

W (1)(H(x; 1);n)
D
=W (H(x; 1);n),

W (2)(H(x; 2);n)
D
=W (H(x; 2) +H(+∞; 1);n)−W (1)(H(+∞; 1);n), . . . ,

W (i)(H(x; i);n)
D
=W (H(x; i) +H(+∞; i− 1);n)−W (H(+∞; 1) + · · ·+H(+∞; i− 1);n).

Now performing direct calculations of covariances of processes {W (i), i ∈ ℑ}, it is easy to
show that these processes are independent.
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2. Kac processes under general censoring

Following [9] we introduce the modified empirical d.f. of Kac by the following way. Along
with sequence {Zj , j > 1} on a probability space {Ω,A, P} consider also a sequence {νn, n > 1}
of r.v.-s that has Poisson distribution with parameter Eνn = n, n = 1, 2, . . . . Let us assume
throughout that two sequences {Zj , j > 1} and {νn, n > 1} are independent. The Kac empirical
d.f. is

H∗
n(x) =

{ 1

n

νn∑
j=1

I(Zj 6 x) if νn > 1 a.s.,

0 if νn = 0 a.s.,

while the empirical sub-d.f. is

H∗
n(x; i) =

{ 1

n

νn∑
j=1

I
(
Zj 6 x,A

(i)
j

)
, i ∈ ℑ if νn > 1 a.s.,

0, i ∈ ℑ if νn = 0 a.s.,

.

with H∗
n(x; 1)+ · · ·+H∗

n(x; k) = H∗
n(x) for all x ∈ R. Here we suppose that sequence {νn, n > 1}

is independent of random vectors
{(
Zj , δ

(1)
j , . . . , δ

(k)
j

)
, j > 1

}
, where δ(i)j = I(A

(i)
j ). Let us note

that statistics H∗
n(x; i) (and also H∗

n(x)) are unbiased estimators of H(x; i), i ∈ ℑ (and also of
H(x))

E(H∗
n(x; i)) =

1

n
E

{ ∞∑
m=1

E

[
n∑

k=1

δ
(i)
k · I(Zk 6 x)

]
, νn = m

}
=

=
1

n
E

{ ∞∑
m=1

E

[
n∑

k=1

δ
(i)
k · I(Zk 6 x)/νn = m

]
· P (νn = m)

}
=

=
1

n

∞∑
m=1

H(x; i)mP (νn = m) =
1

n
H(x; i)

∞∑
m=1

m · n
me−n

m!
=

= H(x; i)e−n
∞∑

m=0

nm

m!
= H(x; i), (x; i) ∈ R×ℑ.

Consequently,

E
[
H∗

n(x)
]
=

k∑
i=1

E
[
H∗

n(x; i)
]
=

k∑
i=1

H(x; i) = H(x), x ∈ R.

Let us define the empirical Kac processes a(i)∗n (x) =
√
n
(
H∗

n(x; i) − H(x; i)
)
, i ∈ ℑ and

a
(0)∗
n (x)=

√
n
(
H∗

n(x)−H(x)
)

.

Theorem 1. If the underlying probability space {Ω,A, P} is rich enough then one can
define k + 1 sequences of Gaussian processes W

(0)
n (x),W

(1)
n (x), . . . ,W

(k)
n (x) such that for

a∗n(t) =
(
a
(0)∗
n (t0), a

(1)∗
n (t1), . . . , a

(k)∗
n (tk)

)
and W ∗

n(t) =
(
W

(0)
n (t0),W

(1)
n (t1), . . . ,W

(k)
n (tk)

)
,

t = (t0, t1, . . . , tk) we have

P

{
sup

t∈Rk+1

∥∥∥∥a∗n(t)−W ∗
n(t)

∥∥∥∥(k+1)

> C∗n−
1
2 log n

}
6 K∗n−r, (8)

where r > 2 is an arbitrary integer, C∗ = C∗(r) depends only on r, and K∗ is an absolute
constant. Moreover, W ∗

n(t) is (k+1)-dimensional vector-valued Gaussian process with expectation
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EW (i)(x) = 0, (x, i) ∈ R×ℑ. We have for any i, j ∈ ℑ, i ̸= j, x, y ∈ R that

EW
(0)
n (x)W

(0)
n (y) = min

{
H(x),H(y)

}
,

EW
(i)
n (x)W

(j)
n (y) = min

{
H(x; i),H(y; j)

}
,

EW
(i)
n (x)W

(0)
n (y) = min

{
H(x; i),H(y)

}
.

(9)

The basic relation between an(t) and a∗n(t) is the following easily checked identity

a∗n(x) =

√
νn
n
a(i)νn

(x) +H(x; i)
(νn − n)√

n
, i ∈ ℑ. (10)

Hence, the approximating sequence have the form

W (i)
n (x) = B(i)

νn
(x) +H(x; i)

W ∗(n)√
n

, i ∈ ℑ,

where B
(i)
νn (x) is a Poisson indexed Brownian bridge type process of Theorem A and{

W (∗)(x), x > 0
}

is a Wiener process. It is easy to verify that
{
W

(i)
n (x), (x; i) ∈ R × ℑ

}D
={

W ∗(H(x; i)
)
, (x, i) ∈ R× ℑ

}
. The proof of Theorem 1 is similar to the proof of Theorem 1 of

Stute [6] and, it is omitted.
Since lim

x↑+∞
H∗

n(x) = H∗
n(+∞) =

νn
n

then using Stirlings formula, we obtain

P (νn = n) = P
(
H∗

n(+∞) = 1
)
=
nne−n

n!
=

1√
2πn

(1 + o(1)), n→ ∞,

and
P
(
H∗

n(+∞) > 1
)
= P (νn > n) =

∞∑
k=n+1

nke−n

k!
= o(1), n→ ∞.

Thus H∗
n(x) with positive probability is greater than 1. In order to avoid these undesirable

property the following modifications of the Kac statistics is proposed

H̃n(x) = 1−
(
1−H∗

n(x)
)
I
(
H∗

n(x) < 1
)
, x ∈ R,

H̃n(x; i) = 1−
(
1−H∗

n(x; i)
)
I
(
H∗

n(x; i) < 1
)
, (x; i) ∈ R×ℑ.

(11)

The following inequalities are useful in studying the Kac processes.

Theorem 2. Let {νn, n > 1} be a sequence of Poisson r.v.-s with Eνn = n. Then for any ε > 0
such that

n

log n
> ε

8(1 + e
3 )

2
, e = exp(1), (12)

we have

P

(∣∣νn − n
∣∣ > 1

2

(
ε

2
n log n

) 1
2
)

6 2n−εw, (13)

P

(
sup

|x|<∞

∣∣H∗
n(x; i)−H(x; i)

∣∣ > 2

(
ε log n

2n

) 1
2
)

6 4n−4εw, i ∈ ℑ, (14)

P

(
sup

|x|<∞

∣∣H̃n(x; i)−H(x; i)
∣∣ > 2

(
ε log n

2n

) 1
2
)

6 4n−4εw, i ∈ ℑ, (15)

where w =

[
16

(
1 +

e

3

)]−1

.
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Proof. Let γ1, γ2, . . . be a sequence of Poisson r.v.-s with Eγk = 1 for all k = 1, 2, . . . . Then

Sn = νn − n =
n∑

k=1

(γk − 1) =
n∑

k=1

ξk and

E exp(tξk) = e−t exp(tγ1) = exp
(
− (t+ 1)

) ∞∑
k=0

(et)k

k!
= exp

{
et − (t+ 1)

}
.

Using Taylor expansion for et, we obtain

E exp(tξk) = exp

{
1 + t+

t2

2
+ ψ(t)− (t+ 1)

}
= exp

{
t2

2
+ ψ(t)

}
,

where ψ(t) =
t3

6
exp(θt), 0 < θ < 1. Taking into account that t3 6 t2 for 0 6 t 6 1, we obtain

the estimate for ψ(t): ψ(t) 6 t3

6
e 6 e

t2

6
. Thus, E exp(tξk) = exp

{
t2

2

(
1 +

e

3

)}
, 0 6 t 6 1.

The following result (from [13]) is necessary for further considerations.

Lemma 1 ([13]). Let {ξn, n>1} be a sequence of independent r.v.-s with Eξn= 0, n=1, 2, . . . .
Suppose that U, λ1, . . . , λn are positive real numbers such that

E exp(tξk) 6 exp

(
1

2
λkt

2
k

)
for k = 1, 2, . . . , n |t| 6 U. (16)

Let Λ = λ1 + · · ·+ λn. Then

P
(∣∣ξ1 + · · ·+ ξk

∣∣ > z
)
6


2 exp

(
− z2

2Λ

)
if o 6 z 6 ΛU,

2 exp
(
− Uz

2

)
if z > ΛU.

Let us assume that λk = 1 +
e

3
, U = 1, z =

1

2

(
ε
2n log n

)1/2

in Lemma 1 then we obtain

(13). Here 0 6 z =
1

2

(
ε
2n log n

)1/2

6
(
1+ e

3

)
n = ΛU . Consider probability in (14). Using total

probability formula, we have

P

(
sup

|x|<∞

∣∣H∗
n(x; i)−H(x; i)

∣∣ > 2
(ε log n

2n

) 1
2

)
=

= P

(
sup

|x|<∞

∣∣∣Hn(x; i)−H(x; i) +
1

n

νn∑
k=n+1

δ
(i)
k I(Zk 6 x)

∣∣∣ > 2
(ε log n

2n

) 1
2
/
νn > n

)
· P (νn > n)+

+ P

(
sup

|x|<∞

∣∣∣H(x; i)−H(x; i)− 1

n

n∑
k=νn+1

δ
(i)
k I
(
Zk 6 x

)∣∣∣ > 2
(ε log n

2n

) 1
2
/
νn 6 n

)
· P (νn 6 n) 6

6 P

(
sup

|x|<∞

∣∣Hn(x; i)−H(x; i)
∣∣ > (ε log n

2n

) 1
2

)
+ P

(
sup

|x|<∞

∣∣∣∣ 1n
max(n,νn)∑

k=min(n,νn)+1

δ
(i)
k I(Zk 6 x)

∣∣∣∣ >
>
(ε log n

2n

) 1
2

)
6 2n−4ε + P

(∣∣∣∣νn − n

n

∣∣∣∣ > (ε log n2n

) 1
2

)
6 2n−4ε + 2n−4wε 6 4n−4wε, i ∈ ℑ,

where we applied (2) and (13) that proves (14). Let us define T (i)
n = inf

{
x : H̃n(x; i) = 1

}
, i ∈ ℑ.

If x > T̃
(i)
n and νn > n then H̃n(x; i) = 1 and H∗

n(x; i)−H (x; i) > H∗
n(x; i)− H̃(x; i) > 0. Then

assuming νn > n, we obtain

– 297 –



Abdurahim A. Abdushukurov, Gulnoz S. Saifulloeva On Approximation of Empirical Kac Processes . . .

sup
|x|<∞

∣∣∣H̃n(x; i)−H(x; i)
∣∣∣ = {max

[
sup

x<T̃
(i)
n

∣∣H∗
n(x; i)−H(x; i)

∣∣, sup
x>T̃

(i)
n

∣∣H̃n(x; i)−H(x; i)
∣∣]} 6

6
{
max

[
sup

x<T
(i)
n

∣∣H∗
n(x; i)−H(x; i)

∣∣, sup
x>T

(i)
n

∣∣H∗
n(x; i)−H(x; i)

∣∣]} =

= sup
|x|<∞

∣∣H∗
n(x; i)−H(x; i)

∣∣, i ∈ ℑ. (17)

With νn 6 n, it is obvious that H̃n(x; i) = H∗
n(x; i) for all (x; i) ∈ R×ℑ.

Now taking into account the last two relations, total probability formula and (14), we obtain
(15). Theorem 2 is proved. 2

Let ãn(t)=
(
ã
(0)
n (t0), ã

(1)
n (t1), . . . , ã

(k)
n (tk)

)
, where ã

(0)
n (x)=

√
n
(
H̃n(x)−H(x)

)
, ã

(i)
n (x)=

=
√
n
(
H̃n(x; i)−H(x; i)

)
, (x; i) ∈ R × ℑ. We will prove an approximation theorem of the

vector-valued modified empirical Kac process ãn(t) by the appropriate Gaussian vector-valued
process W ∗

n (t) , t ∈ Rk+1
from Theorem 2.

Theorem 3. Let {Tn, n > 1} be a numerical sequence satisfying for each n the condition
Tn < TH = inf {x : H(x) = 1} 6 ∞ such that

min
i∈ℑ

{
P (A(i))−H(Tn, i)

}
> 1−H(Tn) > 2

(
r log n

2wn

)1/2

. (18)

If for any ε > 0 condition (12) holds then on the probability space of Theorem 2 one can define k+
1 sequences of mean zero Gaussian processes W (0)

n (x) ,W
(1)
n (x), . . . ,W

(k)
n (x) with the covariance

structure (9) such that for ãn(t) and W ∗
n(t) =

(
W

(0)
n (t0),W

(1)
n (t1), . . . ,W

(k)
n (tk)

)
we have

P

{
sup

t∈(−∞;Tn](k+1)

∥ãn(t)−W ∗
n(t)∥

(k+1)
> C̃n

1
2 log n

}
6 K̃n−β , (19)

where K̃ is an absolute constant, C̃ = C̃(ε) and β = min (r, εw) for any ε > 0.

Proof. It is easy to see that probability in (19) can be estimated by the sum

−P
{

sup
x6Tn

∣∣∣ã(0)n (x)−W (0)
n (x)

∣∣∣ > C̃n
1
2 log n

}
+

+

k∑
i=1

P

(
sup
x6Tn

∣∣∣ã(i)n (x)−W (i)
n (x)

∣∣∣ > C̃n
1
2 log n

)
= q1n + q2n.

(20)

Taking into account that for any x 6 Tn, H
∗
n(x) 6 H∗

n(Tn), and if H∗
n(Tn) 6 1 then

ã
(0)
n (x)= ã

(0)∗
n (x). Using formula of total probability, we have

q1n 6 P

(
sup
x6Tn

∣∣∣ã(0)n (x)−W
(0)
n (x)

∣∣∣ > C∗n−
1
2 log n

/
H∗

n(Tn) 6 1

)
+ P (H∗

n(Tn) > 1) 6

6 P

(
sup
x6Tn

∣∣∣a(0)∗n (x)−W
(0)
n (x)

∣∣∣ > C∗n−
1
2 log n

)
+ P (H∗

n(Tn) > 1) 6

6 Kn−r + P (H∗
n(Tn)−H(Tn) > 1−H(Tn)) 6

6 K∗n−r + P

(
sup

|x|<∞
|H∗

n(x)−H(x)| >
(
r log n

2wn

) 1
2

)
6 Ln−r,

(21)
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where Theorem 1 and the analogue of (14) for H∗
n −H, L = K∗+ 4 are used. Analogously,

q2n 6
k∑

i=1

P

(
sup
x6Tn

∣∣∣ã(i)n (x)−W (i)
n (x)

∣∣∣ > C∗n
1
2 log n

)
+

k∑
i=1

P
(
H∗

n (Tn; i) > P
(
A(i)

))
6

6
k∑

i=1

P

(
sup
x6Tn

∣∣∣a(i)∗n (x)−W (i)(x)
∣∣∣ > C∗n−

1
2 log n

)
+

+

k∑
i=1

P

(
sup

|x|<∞

∣∣∣a(i)∗n (x)−W (i)(x)
∣∣∣ > C∗n−

1
2 log n

)
+

+ kP

(
|νn − n|

n
>

1

2

(
4r log n

2wn

) 1
2

)
6 kLn−r + 2kn−4r,

(22)

where inequalities (13), (15) and Theorem 1 are used. Now (19) follows from (21) and (22).
Theorem 3 is proved. 2

3. Estimation of exponential-hazard function

In many practical situations when we are interested in the joint behaviour of the pairs{(
Z,A(i)

)
, i ∈ ℑ

}
the so-called cumulative hazard functions

{
S(i)(x) = exp

(
−Λ(i)(x)

)
, i ∈ ℑ

}
plays a crucial role. Here Λ(i)(x) is the i-th hazard function

(
x∫

−∞
=

∫
(−∞;x]

)

Λ(i)(x) =

∫ x

−∞

dH(u; i)

1−H(u)
, i ∈ ℑ,

where Λ(1)(x) + · · · + Λ(k)(x) = Λ(x) =
x∫

−∞

dH(u)

1−H(u)
is the corresponding hazard function of

d.f. H(x).
Let us consider two important special cases of the considered generalized censorship model:

1. Let {X1, X2, . . . } be a sequence of independent r.v.-s with common continuous d.f. F .
They are censored on the right by a sequence {Y1, Y2, . . . } of independent r.v.-s. They
are independent of the X-sequence with common continuous d.f. G. One can only observe
the sequence of pairs

{
(Zk, δk) , k = 1, n

}
, where Zj = min (Xj , Yj) and δj = δ

(1)
j is the

indicator of event Aj = A
(1)
j = {Zj = Xj}. In this case k = 2, 1−H(x) = (1− F (x))(1−

G(x)), H(x; 1) =
x∫

−∞
(1−G(u))dF (u). Thus S(1)(x) = S(x) = 1−F (x). The useful special

case is 1−G(x) = (1− F (x))β , β > 0 which corresponds to independence of r.v.-s Zj and
δj , j > 1.

2. Let us assume that k > 1 and consider independent sequences
{
Y

(i)
1 , Y

(i)
2 , . . .

}
(i =

1, . . . , k) of independent r.v.-s with common continuous d.f. F . Let Zj =

min
(
Y

(1)
j , . . . , Y

(k)
j

)
. Let us observe the sequences

{(
Zj , δ

(i)
j

)
, i = 1, k

}n

j=1
, where δ(i)j

is the indicator of the event A
(i)
j =

=
{
Zj = Y

(i)
j

}
. This is the competing risks model with S(i)(x) = 1− F (i)(x), i ∈ ℑ.
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Let us define the natural Kac-type estimator

Λ̃(i)
n (x) =

∫ x

−∞

dH̃(u; i)

1− H̃n(u)
, i ∈ ℑ

of Λ(i)(x), i ∈ ℑ. Let w(i)
n (x) =

√
n
(
Λ̃
(i)
n (x)− Λ(i)(x)

)
, i ∈ ℑ, is an Kac-type hazard process,

wn(t) =
(
w

(1)
n (t1), . . . , w

(k)
n (tk)

)
, t = (t1, . . . , tk), and Yn(t) =

(
Y

(1)
n (t1), . . . , Y

(k)
n (tk)

)
is the

corresponding vector process with

Y (i)
n (x) =

∫ x

−∞

W
(0)
n (u)dH(u; i)

(1−H(u))2
+

W
(i)
n (x)

1−H(x)
−
∫ x

−∞

W
(i)
n (u)dH(u)

(1−H(u))2
, i ∈ ℑ

and
{
W

(0)
n (x),W

(1)
n (x), . . . ,W

(k)
n (x)

}
are Wiener processes with the covariance structure (9).

Then for i ∈ ℑ, EY
(i)
n = 0 and

EY (i)
n (x)Y (i)

n (y) = C(x, y),

where x, y 6 TH = inf {x : H(x) = 1} 6 ∞.

Theorem 4. Let {Tn, n > 1} be a numerical sequence satisfying for each n the condition Tn < TH
such that

n

log n
> max

{
32εw2,

2rb2n
w

,
2εb2n
w

}
, (23)

where bn = (1−H(Tn))
−1, ε > 0, r > 2. Then

P

(
sup

t∈(−∞;Tn](k)

∥wn(t)− Yn(t)∥(k) > r(n)

)
6 kΦ1n

−β , (24)

on a probability space of Theorem 2, where r(n) = Φ0b
2
nn

− 1
2 log n,

Phi0 = Φ0(ε, r), Φ1− are absolute constants.

Proof. It is sufficient to prove that for each i ∈ ℑ

P

(
sup
x6Tn

(
w(i)

n (x)− Y (i)
n (x)

)
> r(n)

)
6 Φ1n

−β . (25)

We have representation for each i ∈ ℑ for difference

w(i)
n (x)− Y (i)

n (x) =

∫ x

−∞

(
ã
(0)
n (u)−W

(0)
n (u)

)
dH(u; i)

(1−H(u))
2 +

ã
(i)
n (x)−W

(i)
n (x)

1−H(x)
−

−
∫ x

−∞

(
a
(i)
n (u)−W

(i)
n (u)

)
dH(u)

(1−H(u))
2 + n−

1
2

∫ x

−∞

(
ã
(0)
n (u)

)2
dH(u; i)

(1−H(u))
2
(
1− H̃n(u)

) +

+ n−
1
2

∫ x

−∞

ã
(0)
n (u)dã

(i)
n (u)

(1−H(u))
(
1− H̃n(u)

) =

4∑
m=1

R(i)
mn(x).

Using (15) and (19), we have for sum R
(i)
1n(x) +R

(i)
2n(x) +R

(i)
3n(x)

P

(
sup
x6Tn

∣∣∣∣∣
4∑

m=1

R(i)
mn(x)

∣∣∣∣∣ > 3C̃n− 1
2 log n+ εn− 1

2 b3n log n

)
6

6 3K̃n−β + 2Ln−wε 6 (3K̃ + 2L)n−β , i ∈ ℑ.

(26)
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Rewrite R(i)
4n in the form

R
(i)
4n(x) = n−

1
2

∫ x

−∞

(
ã
(0)
n (u)

)2
d(H(u; i)−H(u; i))

(1−H(u))
2
(
1− H̃n(u)

) +

+n−
1
2

∫ x

−∞

ã
(0)
n (u)dã

(i)
n (u)

(1−H(u))
2 = R

(i)

4n(x) +R
(i)

4n(x).

(27)

Then taking into account (15), we obtain for i ∈ ℑ

P

(
sup
x6Tn

∣∣∣R(i)

4n(x)
∣∣∣ > 2εn− 1

2 b3n log n

)
6 2Ln−wε 6 2Ln−β . (28)

There exists an absolute constant A such that

P

(
sup
x6Tn

∣∣∣R(i)

4n(x)
∣∣∣ > 3An− 1

2 b2n log n

)
6 P (H∗

n(Tn) > 1)+

+P

(
sup
x6Tn

n−
1
2

∣∣∣∣∣
∫ x

−∞

a
(0)∗
n (u)da

(i)∗
n (u)

(1−H(u))
2

∣∣∣∣∣ > 3An− 1
2 b2n log n

)
6 Ln−r + pn,

(29)

so that for any x 6 Tn,H
∗
n(x) 6 H∗

n(Tn) and if H∗
n(Tn) 6 1 then H∗

n(x; i) 6 H∗
n(Tn) and

hence ã
(i)
n (x) = a

(i)∗
n (x) for i ∈ ℑ. It is sufficient to estimate probability pn. According to

proof of Theorem 1 in [6], supposing a(0)νn (x) =
√
νn(H

∗
νn
(x)−H(x)), a

(i)
νn(x) =

√
νn(H

∗
νn
(x; i)−

H(x; i)), i ∈ ℑ and using representation (10), we have pn = p1n+ p2n+ p3n+ p4n, where

p1n = P

(
νn
n

sup
x6Tn

∣∣∣∣ ∫ x

−∞

a
(0)
νn (u)da

(i)
νn (u)

(1−H(u))
2

∣∣∣∣ > 3An− 1
2 b2n log n

)
,

p2n = P

(√
νn
n

· |νn − n|
n

sup
x6Tn

∣∣∣∣ ∫ x

−∞

a
(0)
νn (u)dH(u; i)

(1−H(u))
2

∣∣∣∣ > ε

2

(
3

2

)− 1
2

n−
1
2 b2n log n

)
,

p3n = P

(√
νn
n

· |νn − n|
n

sup
x6Tn

∣∣∣∣ ∫ x

−∞

H(u)daνn
(u)

(1−H(u))
2

∣∣∣∣ > ε

2

(
3

2

)− 1
2

n−
1
2 b2n log n

)
,

p4n = P

(
· |νn − n|2√

n
sup
x6Tn

{∫ x

−∞

H(u)dH(u; i)

(1−H(u))
2

}
>
ε

8
n−

1
2 b2n log n

)
.

Taking into account Lemma in [5], we have

P

(
sup
x6Tn

∣∣∣∣∣
∫ x

−∞

a
(0)
n (u)da

(i)
n (u)

(1−H(u))
2

∣∣∣∣∣ > Ab2n log n

)
6 Bn−ε, (30)

where A = A(ε) and B is an absolute constant. Moreover, using (13), we have

P

(
|νn − n|

n
>

1

2

)
6 2n−

2nw
log n . (31)

It follows from (30) and (31) that

p1n= P

(
sup
x6Tn

∣∣∣∣∫ x

−∞

a
(0)
νn (u)da

(i)
νn(u)

(1−H(u))
2

∣∣∣∣ >2Ab2n log νn
log n

log νn
,
n

2
6νn6

3n

2

)
+ P

(
|νn − n|

n
>

1

2

)
6

6 2n−
2nw
log n + P

(
sup
x6Tn

∣∣∣∣ ∫ x

−∞

a
(0)
νn (u)da

(i)
νn(u)

(1−H(u))
2

∣∣∣∣ > Ab2n log νn

)
+ 2n−

2nw
log n 6
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6 e−n +

∞∑
m=1

P

(
sup
x6Tn

∣∣∣∣ ∫ x

−∞

a
(0)
m (u)da

(i)
m (u)

(1−H(u))
2

∣∣∣∣ > Ab2n logm

)
P (νn = m) + 2n−

2nw
log n 6

6 e−n + 2n−
2nw
log n +B

∞∑
m=1

m−ε · n
m

m!
e−n 6 e−n + 2n−

2nw
log n + B̃n−ε. (32)

Analogously, using (31) and (1), we obtain

p2n= P

(√
νn
n

|νn − n|
n

sup
x6Tn

∣∣∣∣∣
∫ x

−∞

a
(0)
νn (u)dH(u; i)

(1−H(u))
2

∣∣∣∣∣ > ε

2

(
3

2

) 1
2

n−
1
2 b2n log n,

n

2
6 νn 6 3n

2

)
+

+P

(
|νn − n|

n
>

1

2

)
6 2n−

2nw
log n + 2n−wε + P

(
sup

|x|<∞

∣∣∣a(0)νn
(x)
∣∣∣ > (ε

2
log νn

) 1
2

)
6

6 2n−
2nw
log n + 2n−wε + e−n + D̃n−ε. (33)

Integrating by parts and using (2), we obtain

p3n 6 2n−
2nw
log n + 2n−wε + P

(
sup

|x|<∞

∣∣∣a(i)νn(x)
∣∣∣ > (2ε log νn)

1
2

)
6

6 2n−
2nw
log n + 2n−wε + e−n + 2Dn−ε.

(34)

Finally, using (13), we have

p4n 6 P

(
|νn − n|
n

1
2

>
1

2

(ε
2
log n

) 1
2

)
6 2n−wε. (35)

Now combining (26)-(29) and (32)-(35), we obtain (25). Theorem 4 is proved.

Corollary 1. It follows from (24) that for suitable r > 2 and ε > 0 one can obtain an approxi-
mation on (−∞;T ](k) with b−1 = 1−H(T ) > 0 :

sup
t∈(−∞;T ](k)

∥wn(t)− Yn(t)∥(k)
a.s.
= O

(
n−

1
2 log n

)
, n > 2. (36)

Now we consider joint estimation of exponential-hazard functions{
S(i)x) = exp

(
−Λ(i)(x)

)
, i ∈ ℑ

}
. Let us consider hazard function estimate

Λn(x) =

∫ x

−∞

dH̃n(u)

1− H̃n(u)

and corresponding hazard process w(0)(x) =
√
n (Λn(x)− Λ(x)). In the next Theorem 5 we

approximate w(0)
n (x) by sequence of Gaussian processes Y (0)

n (x) =
W

(0)
n (x)

1−H(x)
.

Theorem 5. Let {Tn, n > 1} be a numerical sequence that satisfies the condition Tn < TH for
each n such that (23) holds. Then on a probability space of Theorem 2 we have

P

(
sup
x6Tn

∣∣∣w(0)
n (x)− Y (0)

n (x)
∣∣∣ > r0(n)

)
6 Ψ1n

−β , (37)

where r0(n) = Φ0b
2
nn

− 1
2 log n and Φ0 = Φ0(ε, r), Ψ1 are absolute constants.
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Proof. It is easy to verify that

w(0)
n (x)− Y (0)

n (x) =

(
ã
(0)
n (x)−W

(0)
n (x)

)
1−H(x)

+ n−
1
2

∫ x

−∞

(
ã
(0)
n (u)

)2
dH(u)

(1−H(u))
2
(
1− H̃n(u)

) +

+ n−
1
2

∫ x

−∞

ã
(0)
n (u)da

(0)
n (u)

(1−H(u))
(
1− H̃n(u)

) .
Now further proof of (37) is similar to the proof of Theorem 4 and hence details are omitted.
Theorem 5 is proved. 2

One can obtain from Theorems 4 and 5 the following theorem on deviations of processes w(0)
n

and w(i)
n , i ∈ ℑ.

Theorem 6. Let {Tn, n > 1} be a numerical sequence that satisfies for each n the condition
Tn < TH such that (23) holds. Then

P

(
sup
x6Tn

∣∣∣w(0)
n (x)

∣∣∣ > r0(n) + 2bn(ε log n)
1
2

)
6 Ψ1n

−β + n−ε, (38)

and for i ∈ ℑ

P

(
sup
x6Tn

∣∣∣w(i)
n (x)

∣∣∣ > r0(n) + 6b2n(ε log n)
1
2

)
6 Ψ1n

−β + 3n−ε. (39)

Proof. It is easy to verify that for any n > 1

W (0)
n (x)

D
=W (H(x)) and W (i)

n (x)
D
=W (H(x; i)) , (x; i) ∈ R×ℑ,

where {W (y), 0 6 y 6 1} is a standard Wiener process on [0, 1]. Then probability in (38) is not
greater than

P

(
sup
x6Tn

∣∣∣w(0)
n (x)− Y

(0)
n (x)

∣∣∣ > r0(n)

)
+ P

(
sup
x6Tn

∣∣∣Y (0)
n (x)

∣∣∣ > 2bn (ε log n)
1
2

)
6

6 Ψ1n
−β + P

(
|W (1)| > 2 (ε log n)

1
2

)
6 Ψ1n

−β + n−ε,

(40)

where inequality (37) and well-known exponential inequality for Wiener process (see [14],
Eq. (29.2)) are used. Analogously, (39) follows from (25) and the second estimate in (40).
Theorem 6 is proved. 2

To estimate the exponential hazard functions
{
S(i)(x) = exp

(
−Λ(i)(x)

)
, i ∈ ℑ

}
we use the

following exponential of Altshuler-Breslow, product-limit of Kaplan-Meier and relative risk power
estimates of Abdushukurov ([1–3]):

S
(i)
1n (x) = exp

(
−Λ

(i)
n (x)

)
,

S
(i)
2n (x) =

∏
u6x

(
1−∆Λ

(i)
n (x)

)
,

S
(i)
3n (x) = [1−Hn(x)]

R(i)
n (x)

,

(41)

where R(i)
n (x) = Λ

(i)
n (x)(Λn(x))

−1, i ∈ ℑ.
It follows from the proof of Theorem 1.4.1 in [3] that for all (x; i) ∈ (−∞, Z(n)) × ℑ,

Z(n) = max(Z1, . . . , Zn)
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0 6 S
(i)
1n (x)− S

(i)
2n (x) 6

1

2n

∫ x

−∞

dH̃n(u; i)(
1− H̃n(u)

)2 a.s.
= O

(
1

n

)
,

0 6 S
(i)
1n (x)− S

(i)
3n (x) 6

1

2n

∫ x

−∞

dH̃n(u; i)(
1− H̃n(u)

)2 a.s.
= O

(
1

n

)
.

(42)

Hence it is sufficient to consider only estimator S
(i)
1n . Let us introduce vector-processes

Qn(t) =
(
Q(1)

n (t1), . . . ,Q(k)
n (tk)

)
and Q∗

n(t) =
(
Q(1)∗

n (t1), . . . ,Q(k)∗
n (tk)

)
, where Q(i)

n (x) =

=
√
n
(
S
(i)
1n (x)− S(i)(x)

)
and Q(i)∗

n (x) = S(i)(x)Y
(i)
n (x), i ∈ ℑ.

In the next theorem vector-valued process Qn(t) is approximated by Gaussian vector-valued
process Q∗

n(t), t ∈ Rk.

Theorem 7. Let {Tn, n > 1} be a numerical sequence that satisfies for each n the condition
Tn < TH such that inequality (23) holds. Then we have on a probability space of Theorem 2

P

(
sup

t∈(−∞;Tn](k)

∥Qn(t)−Q∗
n(t)∥

(k)
> r∗(n)

)
6 kR∗n−β , (43)

where r∗(n) =
{
r0(n) +

1

2
n−

1
2

(
r(n) + 6b2n (ε log n)

1
2

)2}
and R∗ is an absolute constant.

Proof. Using Taylor expansion for each i ∈ ℑ, we obtain

Q(i)
n (x) = S(i)(x)w(i)

n (x) +
1

2
n−

1
2 exp

(
−θ(i)n (x)

)(
w(i)

n (x)
)2
,

where θ(i)n (x) ∈
[
min

(
Λ
(i)
n (x),Λ(i)(x)

)
,max

(
Λ
(i)
n (x),Λ(i)(x)

)]
. Now using (24), (38) and (39),

we obtain the required result. Theorem 7 is proved. 2

4. Estimation of characteristic function under random right
censoring

Let X1, X2, . . . be independent identically distributed r.v.-s with common continuous d.f.
F . They are interpreted as an infinite sample of the random lifetime X. Another sequence of
independent and identically distributed r.v.-s Y1, Y2, . . . with common continuous d.f. G censors
on the right is introduced. This sequence is independent of {Xj}. Then the observations available
at the n-th stage consist of the pairs {(Zj , δj), 1 6 j 6 n} = C(n), where Zj = min(Xj , Yj) and
δj is the indicator of the event Aj = {Zj = Xj} = {Xj 6 Yj}. Let

C(t) =

∫ ∞

−∞
eitxdF (x)

be the characteristic function of d.f. F . The problem consists in estimating of d.f. F from
censored sample C(n). In some situations it is more desirable to estimate C(t) rather then
F . We consider estimator for C(t) in this model as Fourier–Stieltjes transform of estimator
Fn(x) = 1− S1n(x) = 1− exp

(
−Λ

(1)
n (x)

)
:

Cn(t) =

∫ ∞

−∞
eitxdFn(x), t ∈ R.
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It follows from (39) that when n→ ∞

sup
x6Tn

|Fn(x)− F (x)| a.s.= O

(
b2n

(
log n

n

) 1
2

)
, (44)

where b−1
n = 1−H(Tn). It also follows from (44) that when n→ ∞

1− Fn(Tn)
a.s.
= O (1− F (Tn)) , Fn(−Tn)

a.s.
= O (F (−Tn)) . (45)

It is obvious that ∆n(τ)
a.s.→0 when n → ∞ for any τ < ∞, where ∆n(τ) = sup

|t|6τ

|Cn(t)− C(t)|.

Let us consider quantity ∆n(τn) for some special numerical sequence τn that tends to +∞ when
n→ ∞.

In the following theorem we prove result of uniform convergence for the empirical character-
istic function.

Theorem 8. Let {τn, n > 1} be a numerical sequence that tends to +∞ slowly when n → ∞.
Then, ∆n(τn)

a.s.→0 when n→ ∞.

Proof. Let us choose a sequence {τn, n > 1} such that when n→ ∞

γn = max

{
1− F (Tn), F (−Tn), b2nτnTn

(
log n

n

) 1
2

}
→ 0, (46)

where {Tn, n > 1} is a sequence that satisfies condition (23). Introducing the truncated inte-
grals

bn(t) =

∫
|x|6Tn

eitxdFn(x), b̃n(t) =

∫
|
x| 6 Tne

itxdF (x)

and introducing dn(t) = bn(t)− b̃n(t), we have that

∆n(τn) 6 sup
|t|6τn

|dn(t)|+ sup
|t|6τn

|bn(t)− Cn(t)|+ sup
|t|6τn

∣∣∣̃bn(t)− C(t)
∣∣∣ . (47)

Integrating by parts, we obtain

sup
|t|6τn

|dn(t)| 6 sup
|t|6τn

∣∣∣∣∣
∫
|t|6Tn

eitxd (Fn(x)− F (x))

∣∣∣∣∣ 6
6 sup

|t|6τn

[∣∣eitx∣∣ |Fn(x)− F (x)|Tn

−Tn

]
+ sup

|t|6τn

∣∣∣∣∣it
∫
|x|6Tn

eitxd (Fn(x)− F (x))

∣∣∣∣∣ dx 6

6 2(1 + 2τnTn) sup
|x|6Tn

|Fn(x)− F (x)| .

(48)

On the other hand,

sup
|t|6τn

|bn(t)− Cn(t)| 6 sup
|t|6τn

∫
|x|>Tn

∣∣eitx∣∣ dFn(x) 6 1− Fn(Tn) + Fn(−Tn) (49)

and
sup

|t|6τn

∣∣∣̃bn(t)− C(t)
∣∣∣ 6 sup

|t|6τn

∫
|x|>Tn

∣∣eitx∣∣ dF (x) 6 1− F (Tn) + F (−Tn). (50)

Now adding (44)–(50), we have that ∆n(τn)
a.s.
= O(γn), n→ ∞. Theorem 8 is proved. 2
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[5] M.D.Burke, S.Csörgő, L.Horváth, A correction to and improvement of “Strong approxi-
mations of some biometric estimates under random censorship”, Probab. Th. Ret. Fields.,
79(1988), 51–57.
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Об аппроксимации эмпирических процессов Каца в общей
модели случайного цензурирования

Абдурахим А. Абдушукуров
Филиал Московского государственного университета в Ташкенте

Ташкент, Узбекистан
Гульназ С.Сайфуллоева

Навоийский государственный педагогический институт
Навои, Узбекистан

Аннотация. В статье рассматривается общая модель случайного цензурирования и доказывают-
ся результаты аппроксимации для эмпирических процессов Каца. Эта модель включает в себя
такие важные специальные случаи, как случайное цензурирование справа и модель конкурирую-
щих рисков. Наши результаты включают в себя теорию сильной аппроксимации, и нами постро-
ены оптимальные скорости аппроксимации. Также исследованы кумулятивные процессы риска.
Эти результаты использованы для оценивания характеристической функции в модели случайного
цензурирования справа.

Ключевые слова: цензурированные данные, конкурирующие риски, эмпирические оценки, оцен-
ка Каца, сильная аппроксимация, гауссовские процессы, характеристическая функция.
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Introduction

In the present article, we deduce explicit variational formulas for a solution vector and
for the elements of its monodromy group to a third-order ordinary differential equation on a com-
pact Riemann surface of genus g > 2 with respect to a variation in the spaces of quadratic
and cubic holomorphic differentials. These theorems are a continuation of results by D.Hejhal,
V.V. Chueshev, and M. I. Tulina.

In [1–3], D. Hejhal began to study the dependence of a solution vector and the generators
of the monodromy group of the equation on small variations in the space of holomorphic differ-
entials.

Variational formulas found applications in the theory of Teichmüller spaces in connection
with the uniformization of compact Riemann surfaces (see [3–4]).

The coefficients of a third-order differential equation on a compact Riemann surface must be
the quadratic and cubic differentials at the corresponding derivatives (see [5]).

In the previous papers [4, 6, 7], a compact method was proposed for deducing the variational
formulas for the vector solution and the elements of its monodromy group with the use of matrix-
vector notation.

In the present article, we obtain formulas for the first variation with respect to a basis
in spaces of holomorphic cubic differentials for a solution vector and the monodromy group
on a compact Riemann surface for a third-order linear ordinary differential equation with any
holomorphic coefficients. Moreover, we find explicit variational formulas for a variation in spaces

∗chueshev@ngs.ru https://orcid.org/0000-0002-7185-7736
c⃝ Siberian Federal University. All rights reserved

– 308 –



Alexander V. Chueshev, Victor V. Chueshev Variational Formulas of the Monodromy Group . . .

of holomorphic quadratic differentials for a solution vector as well as the formula for the first
variation of the solution vector for a variation with respect to a basis of quadratic holomorphic
differentials on a compact Riemannian surface of genus g > 2.

1. Preliminaries

Let F be a compact Riemann surface of genus g > 2, D be an open disk on the plane C.
Denote by Γ a Fuchsian group of the first kind uniformizing F in the disk D, i.e., F is conformally
equivalent to D/Γ.

Consider an linear ordinary differential equation

dnv

dtn
+ q2(t)

dn−2v

dtn−2
+ q3(t)

dn−3v

dtn−3
+ · · ·+ qn(t)v = 0, t ∈ D, (1)

where qj(t) is a meromorphic function on D, j = 2, . . . , n. Equation (1) has Fuchsian type on F
if it has only regular Fuchsian points and is preserved after the change of variables

ω = v(s)L′(t)
n−1
2 , (t, υ) → (s, ω), s = L(t), L ∈ Γ. (2)

A solution vector is a column-vector consisting of a basis in the space of holomorphic solutions
to an equation with holomorphic coefficients. Holomorphic differentials of order q have the form
Φ(z)dzq and are invariant under a change of coordinates on the surface, i.e.,

Φ(Lz)L′(z)q = Φ(z), z ∈ D, L ∈ Γ.

Denote by Ωq(F ) the vector space of holomorphic q-differentials on D/Γ, where q ∈ N (see [5]).

Lemma 1 ([2,3]). Suppose that a column vector U(t) consists of n linearly independent solutions
to equation (1) on F = D/Γ. Then the equality

U(Lt) = χ(L)U(t)ξL(t)
n−1, L ∈ Γ, ξL(t) =

√
L′(t), (3)

uniquely determines the monodromy homomorphism χ : Γ → GL(n,C) defined by the mapping
L→ χ(L), L ∈ Γ.

The monodromy group of equation (1) is the image χ(Γ) of the group Γ. This is a matrix
group describing the multivaluedness of a solution vector.

Note that for n = 2 the variation is possible only with respect to one coefficient of the equation

u(2)(z) + (Q0(z)− µr(z))u(z) = 0.

For n = 3, for the equation

u(3)(z) + (Q0(z)− λq(z))u(1)(z) + (R0(z)− µr(z))u(z) = 0 (4)

we have already three substantially different variations: (1) with respect to r, i.e., with respect
to µ, in the space of cubic differentials; (2) with respect to q, i.e., with respect to λ, in the space
of quadratic differentials; (3) with respect to r and q, i.e., with respect to λ and µ.

Let U(z) = (u(z), v(z), w(z))T be the solution vector to the Cauchy problem at a point
z0 ∈ D,  u(z0)

υ(z0)

w(z0)

 =

 1

0

0

 ,

 u′(z0)

υ′(z0)

w′(z0)

 =

 0

1

0

 ,

 u′′(z0)

υ′′(z0)

w′′(z0)

 =

 0

0

1

 , (5)
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for the unperturbed equation, i.e., for λ = 0 and µ = 0.

Put

W (x) =

 u υ w

u′ υ′ w′

u′′ υ′′ w′′

 , W (z0) = E,

W1(x) =

∣∣∣∣∣∣
0 υ w

0 υ′ w′

f υ′′ w′′

∣∣∣∣∣∣ = f(−1)4
∣∣∣∣ υ w

υ′ w′

∣∣∣∣ = [f = ru] = ru

∣∣∣∣ υ w

υ′ w′

∣∣∣∣ ,

W2(x) =

∣∣∣∣∣∣
u 0 w

u′ 0 w′

u′′ f w′′

∣∣∣∣∣∣ = f(−1)5
∣∣∣∣ u w

u′ w′

∣∣∣∣ = [f = rυ] = rυ

∣∣∣∣ u w

u′ w′

∣∣∣∣ ,

W3(x) =

∣∣∣∣∣∣
u υ 0

u′ υ′ 0

u′′ υ′′ f

∣∣∣∣∣∣ = f(−1)6
∣∣∣∣ u υ

u′ υ′

∣∣∣∣ = [f = rw] = rw

∣∣∣∣ u υ

u′ υ′

∣∣∣∣ .
Then

V (z) =

 W1(z) 0 0

0 W2(z) 0

0 0 W3(z)

 ,

is a solution to the Lagrange adjoint unperturbed third-order equation on D/Γ. It is known
from [3] that it satisfies the equality

V (Lz) = ξL(z)
2V (z)χ(L)−1, L ∈ Γ, ξL(z) =

√
L′(z), z ∈ D.

2. Expansion of the solution vector in a series under
variation in the space of quadratic differentials

Consider the perturbed vector equation

U (3)(z) +
(
Q0(z)− λq(z)

)
U (1)(z) +R0(z)U(z) = 0, (6)

where λ ∈ C, |λ| < ε, ε is a sufficiently small number, and q(z)dz2 is a nonzero holomorphic
differential on D/Γ.

Denote by

U(z;λ; 0) =

 u(z;λ; 0) 0 0

0 υ(z;λ; 0) 0

0 0 ω(z;λ; 0)

 =

 u(z;λ; 0)

υ(z;λ; 0)

ω(z;λ; 0)


the solution vector to the Cauchy problem (5) at a point z0 for the perturbed equation (6).
By Poincaré’s small parameter method and the Cauchy–Kovalevskaya theorem, expand the so-
lution vector in the Taylor series

U(z;λ; 0) = U(z) + λU10(z) + λ2U20(z) + . . .+ λmUm0(z) + . . . ,

convergent for |λ| < ϵ, z ∈ D (see [2; 3]).
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Inserting this series in (6), we obtain the infinite system of differential equations in vector-
matrix form
U (3)(z) +Q0(z)U

(1)(z) +R0U(z) = 0,

U
(3)
10 (z) +Q0(z)U

(1)
10 (z) +R0U10(z) = q(z)U (1)(z),

U
(3)
20 (z) +Q0(z)U

(1)
20 (z) +R0U20(z) = q(z)U

(1)
10 (z),

· · ·
U

(3)
n0 (z) +Q0(z)U

(1)
n0 (z) +R0Un0(z) = q(z)U

(1)
n−1,0(z),

· · ·

Theorem 1. The solution vector

U (3)(z) +
(
Q0(z)− λq(z)

)
U (1)(z) +R0(z)U(z) = 0

with condition (5) on a compact Riemann surface F of genus g > 2 satisfies the explicit varia-
tional formula

U(z;λ; 0) =
[
E + λA0(z) + λ2A1(z) + . . .+ λnAn−1(z) + . . .

]
U(z),

where z ∈ D, |λ| < ε,

A(x) = q(x)U (1)(x)V (x), D(x) = q(x)U(x)V (x), A0(z) =

∫ z

z0

A(x)dx,

An(z) =

∫ z

z0

[
A(x)Dn(x) +A0(x)A(x)D

n−1(x) +A1(x)A(x)D
n−2(x)

+ . . .+An−2(x)A(x)D(x) +An−1(x)A(x)
]
dx,

and E is the identity matrix of order 3.

Proof. Find the solution to the second equation of the system by Lagrange’s method of variation
of constants:

U10(z) =

∫ z

z0

q(x)U (1)(x)V (x)dxU(z).

If n = 1 then U10(z) = A0(z)U(z).

For n > 1, denote by Un0(z) = An−1(z)U(z), where

An−1(z) =

∫ z

z0

q(x)U
(1)
n−1,0(x)V (x)dx.

For n = 2, we have U20(z) = A1(z)U(z). On the other hand,

U20(z) = A1(z)U(z) =

∫ z

z0

q(x)U
(1)
10 (x)V (x)dxU(z) =

∫ z

z0

q(x)[A0(x)U(x)]′xV (x)dxU(z).

It follows that
A1(z) =

∫ z

z0

q(x)[A0(x)U(x)]′xV (x)dx =

=

∫ z

z0

q(x)
[
A′

0(x)U(x) +A0(x)U
(1)(x)

]
V (x)dx =

=

∫ z

z0

q(x)[A(x)U(x) +A0(x)U
(1)(x)]V (x)dx =
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=

∫ z

z0

A(x)q(x)U(x)V (x)dx+

∫ z

z0

A0(x)q(x)U
(1)(x)V (x)dx =

=

∫ z

z0

A(x)D(x)dx+

∫ z

z0

A0(x)A(x)dx.

Thus,

U20(z) =
(∫ z

z0

A(x)D(x)dx+

∫ z

z0

A0(x)A(x)dx
)
U(z).

For n = 3, we have the equality U30(z) = A2(z)U(z). On the other hand,

U30(z) = A2(z)U(z) =

∫ z

z0

q(x)U
(1)
20 (x)V (x)dxU(z) =

∫ z

z0

q(x)
[
A1(x)U(x)

]′
x
V (x)dxU(z),

where

A2(z) =

∫ z

z0

q(x)
[
A1(x)U(x)

]′
x
V (x)dx =

∫ z

z0

q(x)
[
A′

1(x)U(x) +A1(x)U
(1)(x)

]
V (x)dx =

=

∫ z

z0

q(x)
[
A(x)D(x)U(x)V (x)dx

]
+

∫ z

z0

q(x)
[
A0(x)A(x)U(x)V (x)dx

]
+

+

∫ z

z0

q(x)
[
A1(x)U

(1)(x)V (x)dx
]
=

∫ z

z0

[
A(x)D2(x) +A0(x)A(x)D(x) +A1(x)A(x)

]
dx.

Therefore,

A2(z) =

∫ z

z0

[
A(x)D2(x) +A0(x)A(x)D(x) +A1(x)A(x)

]
dx

and

U30(z) =

(∫ z

z0

[
A(x)D2(x) + +A0(x)A(x)D(x) +A1(x)A(x)

]
dx

)
U(z).

By the induction assumption, for n = m we have the equality

Am(z) =

∫ z

z0

[
A(x)Dm(x)+A0(x)A(x)D

m−1(x)+A1(x)A(x)D
m−2(x)+ . . .+Am−1(x)A(x)

]
dx.

Prove this assertion for the case n = m+ 1. We have

Um+1,0(z) = Am(z)U(z) =

∫ z

z0

q(x)U
(1)
m0(x)V (x)dxU(z),

where
Am(z) =

∫ z

z0

q(x)
[
Am−1(x)U(x)

]′
x
V (x)dx =

=

∫ z

z0

q(x)
[
A′

m−1(x)U(x) +Am−1(x)U
(1)(x)

]
V (x)dx =

=

∫ z

z0

q(x)
[
A(x)Dm−1(x) +A0(x)A(x)D

m−2(x)+

+A1(x)A(x)D
m−3(x) + · · ·+Am−2(x)A(x)

]
U(x)V (x)dx+

∫ z

z0

q(x)Am−1(x)U
(1)(x)V (x)dx =
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=

∫ z

z0

q(x)A(x)Dm−1(x)U(x)V (x)dx+

∫ z

z0

q(x)A0(x)A(x)D
m−2(x)U(x)V (x)dx+

+

∫ z

z0

q(x)A1(x)A(x)D
m−3(x)U(x)V (x)dx+

+ · · ·+
∫ z

z0

q(x)Am−2(x)A(x)U(x)V (x)dx+

∫ z

z0

Am−1(x)A(x)dx =

=

∫ z

z0

[
A(x)Dm(x) +A0(x)A(x)D

m−1(x)+

+A1(x)A(x)D
m−2(x) + · · ·+Am−2(x)A(x)D(x) +Am−1(x)A(x)

]
dx.

Consequently, by induction, we have proved the formula for the matrix An for any n.
Let us now introduce the explicit variational formula with respect to λ for the solution vector:

U(z;λ; 0) = U(z) + λU10(z) + λ2U20(z) + . . .+ λnUn0(z) + . . .

= EU(z) + λA0(z)U(z) + λ2A1(z)U(z) + . . .+ λnAn−1(z)U(z) + . . .

=
[
E + λA0(z) + λ2A1(z) + . . .+ λnAn−1(z) + . . .

]
U(z).

Thus, the theorem is proved.

Remark 1. This theorem gives an explicit vatiational formula for the solution vector, i.e., all
the variational terms of any order or the whole Taylor series in λ under variation with respect
to one holomorphic differential in Ω2(F ).

Proposition 1. Let q1(z)dz2, . . . , q3g−3(z)dz
2 be a basis of quadratic holomorphic differentials

on F = D/Γ of genus g > 2. Then the perturbed equation

U (3)(z) + (Q0(z)−
3g−3∑
j=1

λjqj(z))U
(1)(z) +R0(z)U(z) = 0

with condition (5) satisfies the formula for the first variation of the solution vector

U(z;λ1, . . . , λ3g−3; 0) =
[
E +

3g−3∑
j=1

λjA0;ej (z)
]
U(z) + o(λ1, . . . , λ3g−3),

where |λj | → 0, j = 1, . . . , 3g − 3, z ∈ D, A0;ej (z) =
z∫

z0

qj(x)U
(1)
x V (x)dx.

Proof. Since the coefficient at the first derivative depends holomorphically on λ = (λ1, . . . , λ3g−3),

the solution vector to this equation is representable as

U(z;λ1, . . . , λ3g−3; 0) = U(z) +

3g−3∑
j=1

λjU10;ej (z) + o(λ),

|λj | → 0, j = 1, . . . , 3g − 3. Here ej is the vector whose jth coordinate is equal to 1 and all
the remaining coordinates are zero. Now, put d = 3g − 3.
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Inserting this expression in the equation, we obtain the vector equality

U (3)(z) +

3g−3∑
j=1

λjU
(3)
10;ej

(z) + o(λ) +
(
Q0(z)− λ1q1(z)− . . . − λdqd(z)

)
×

×
(
U (1)(z) +

3g−3∑
j=1

λjU
(1)
10;ej

(z) + o(λ)

)
+R0(z)

(
U(z) +

3g−3∑
j=1

λjU10;ej (z) + o(λ)

)
= 0.

Note that here the following conditions are fulfilled:

U10;ej (z0) = U
(1)
10;ej

(z0) = U
(2)
10;ej

(z0) = 0, j = 1, . . . , d.

Hence we obtain a system of vector linear differential equations of the form

U (3)(z) +Q0(z)U
(1)(z) +R0(z)U(z) = 0,

U
(3)
10;ej

(z) +Q0(z)U
(1)
10;ej

(z) +R0(z)U10;ej (z) = qj(z)U
(1)(z), j = 1, . . . , d.

For each j, j = 1, . . . , d, solve the equation by Lagrange’s method of variation of constants:

U10;ej (z) =

[ ∫ z

z0

qj(x)U
(1)(x)V (x)dx

]
U(z).

Put Aj(z) = qj(z)U
(1)(z)V (z) and

A0;ej (z) =

∫ z

z0

Aj(x)dx, j = 1, . . . , d.

This gives the equality U10;ej (z) = A0;ej (z)U(z), j = 1, . . . , d. Therefore, we have the formula
of the first variation of the solution vector:

U(z;λ1, . . . , λ3g−3; 0) = U(z) + λ1A0;e1(z)U(z) + · · ·+ λdA0;ed(z)U(z) + o(λ1, . . . , λ3g−3) =

=
[
E + λ1A0;e1(z) + · · ·+ λdA0;ed(z)

]
U(z) + o(λ1, . . . , λ3g−3),

λ1 → 0, . . . , λ3g−3 → 0 under variation with respect to a basis of quadratic holomorphic differ-
entials on a compact Riemann surface of genus g > 1.

3. Elements of the monodromy group under a variation
with respect to a basis of cubic differentials

Consider the perturbed differential vector equation

U (3)(z) +Q0(z)U
(1)(z) + (R0(z)−

m∑
j=1

µjrj)U(z) = 0. (9)

on the surface F = D/Γ, where r1, . . . , rm is a basis of cubic holomorphic differentials
in the space Ω3(F ), m = 5g − 5, µ = (µ1, . . . , µm). As above, denote by U(z; 0;µ) =

= (u(z; 0;µ), v(z; 0;µ), w(z; 0;µ))T three linearly independent solutions to the Cauchy prob-
lem at a point z0 defined by the conditions

U(z0; 0, µ) = (1, 0, 0)T ; U (1)(z0; 0, µ) = (0, 1, 0)T ; U (2)(z0; 0, µ) = (0, 0, 1)T , (10)
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for every µ. By the Poincaré’s small parameter method and the Cauchy–Kovalevskaya theorem,
we have the solution to (9) in vector form

U(z; 0;µ1, . . . , µm) = U(z) +

m∑
k=1

µkU01;êk(z) + o(µ1, . . . , µm),

where µ1, · · · , µm → 0.

Inserting the last expression in (9), we obtain the vector equalities

U (3)(z) + µ1U
(3)
01;ê1

(z) + · · ·+ µmU
(3)
01;êm

(z) + o(µ)+

+Q0(z)(U
(1)(z) + µ1U

(1)
01;ê1

(z) + · · ·+ µmU
(1)
01;êm

(z) + o(µ))+

+(R0(z)−
m∑
j=1

µjrj(z))(U(z) + µ1U01;ê1(z) + · · ·+ µmU01;êm(z) + o(µ)) = 0.

Note that the following conditions are satisfied:

U01;êk(z0) = U
(1)
01;êk

(z0) = U
(2)
01;êk

(z0) = 0, k = 1, . . . ,m.

From this we obtain the system of vector linear differential equations

U (3)(z) +Q0(z)U
(1)(z) +R0(z)U(z) = 0;

U
(3)
01;êk

(z) +Q0(z)U
(1)
01;êk

(z) +R0(z)U01;êk(z) = rk(z)U(z), k = 1, . . . ,m.

For each k, k = 1, . . . ,m,, solve the second equation by Lagrange’s method of variation of con-
stants

U01;êk(z) =

∫ z

z0

rk(t)U(t)V (t)dtU(z).

Introduce the notations

Bk(z) = rk(z)U(z)V (z), B0;êk(z) =

∫ z

z0

Bk(t)dt, k = 1, . . . ,m.

Hence, we obtain the equalities

U01;êk(z) = B0;êkU(z), k = 1, . . . ,m.

Thus,

U(z; 0;µ1, . . . , µm) = U(z) +

m∑
k=1

µkB0;êk(z)U(z) + o(µ1, . . . , µm)

=

[
E +

m∑
k=1

µkB0;êk(z)

]
U(z) + o(µ1, . . . , µm),

where µ1, · · · , µm → 0.

For deducing the variational formulas for the elements of the monodromy group, we must
express U01;êk(Lz) through U(z) and the coefficients of the equation. We infer

U01;êk(Lz) =

[ ∫ Lz

z0

Bk(x)dx

]
U(Lz) =

[ ∫ Lz0

z0

Bk(x)dx+

∫ Lz

Lz0

Bk(x)dx

]
U(Lz) =
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= B0;êk(Lz0)χ(L)U(z)ξL(z)
2 + ξL(z)

2χ(L)U01;êk(z)

since ∫ Lz

Lz0

Bk(x)χ(L)dxξL(z)
2U(z) =< x = Lt >=

∫ z

z0

Bk(Lt)χ(L)dLtξL(z)
2U(z) =

=

∫ z

z0

rk(Lt)U(Lt)V (Lt)χ(L)L′(t)dtξL(z)
2U(z) =

=

∫ z

z0

rk(t)L
′(t)−3L′(t)χ(L)U(t)L′(t)V (t)χ(L−1)χ(L)L′(t)dtξL(z)

2U(z) =

= χ(L)

∫ z

z0

rk(t)U(t)V (t)dtξL(z)
2U(z) =

= χ(L)B0;êk(z)ξL(z)
2U(z) = χ(L)ξL(z)

2U01;êk(z).

Using the above-proven equality for U01;êk(Lz), deduce the first-order variational formula
for the elements of the monodromy group:

ξL(z)
2χ(L; 0;µ)U(z; 0;µ) = U(Lz; 0;µ) = U(Lz) +

m∑
k=1

µkU01;êk(Lz) + o(µ) =

= χ(L)U(z)ξL(z)
2 +

m∑
k=1

µk[B0;êk(Lz0)χ(L)U(z)ξL(z)
2 + χ(L)

m∑
k=1

µkU01;êk(z)ξL(z)
2 + o(µ) =

= χ(L)
[
U(z; 0;µ)ξL(z)

2 − o(µ)ξL(z)
2
]
+

m∑
k=1

µkB0;êk(Lz0)χ(L)U(z)ξL(z)
2 + o(µ) =

= χ(L)U(z; 0;µ)ξL(z)
2 − χ(L)o(µ)ξL(z)

2+

+

m∑
k=1

µkB0;êk(Lz0)χ(L)[U(z; 0;µ)ξL(z)
2 − o(1)ξL(z)

2] + o(µ) =

= χ(L)
[
U(z; 0, µ)− o(µ)

]
ξL(z)

2 +

m∑
k=1

µkB0;êk(Lz0)χ(L)U(z; 0, µ)ξL(z)
2−

−
m∑

k=1

µkB0;êk(Lz0)χ(L)o(1)ξL(z)
2 + o(µ) =

= [χ(L) +

m∑
k=1

µkB0;êk(Lz0)χ(L)]U(z; 0, µ)ξL(z)
2 − χ(L)o(µ)U−1(z; 0, µ)U(z; 0, µ)ξL(z)

2−

−
m∑

k=1

µkB0;êk(Lz0)χ(L)o(1)U
−1(z; 0, µ)U(z; 0, µ)ξL(z)

2 + o(µ).

Hence we obtain a formula for the first variation of the elements of the monodromy group:

χ(L; 0;µ) =

[
E +

m∑
k=1

µkB0;êk(Lz0)

]
χ(L)− o(µ)− o(µ), µ→ 0.

Thus, we have proved the following theorem:
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Theorem 2. The following variational formulas hold for the solution vector and the elements
of the monodromy group of equation (9) perturbed with respect to the basis of holomorphic cubic
differentials rj , j = 1, . . . ,m = 5g − 5, with normalization (10):

U(z; 0;µ1, . . . , µm) =
[
E + µ1B0;ê1(z) + · · ·+ µmB0;êm(z)

]
U(z) + o(µ1, . . . , µm)

and

χ(L; 0;µ) =

[
E +

m∑
k=1

µkB0;êk(Lz0)

]
χ(L) + o(µ),

µ1, · · · , µm → 0, where

Bk(z) = rk(z)U(z)V (z), B0;êk(z) =

∫ z

z0

Bk(t)dt, k = 1, . . . ,m.

Remark 2. These variational formulas show how the generators of the monodromy group
χ(A1), . . . , χ(Ag), χ(B1), . . . , χ(Bg) and the solution vector to the third-order equation depend
of the parameters (µ1, . . . , µm) under a variation with respect to a basis of cubic holomorphic
differentials on F.

Now, consider the equation perturbed simultaneously with respect to λ = (λ1, . . . , λd) and
to µ = (µ1, . . . , µm),

U (3)(z) +

(
Q0(z)−

3g−3∑
j=1

λjqj(z)

)
U (1)(z) +

(
R0(z)−

5g−5∑
j=1

µjrj(z)

)
U(z) = 0 (11)

and the Cauchy problem at a point z0 defined by the condition

U(z0;λ;µ) = (1, 0, 0)T ; U (1)(z0;λ;µ) = (0, 1, 0)T ;

U (2)(z0;λ;µ) = (0, 0, 1)T , (12)

for any µ and λ.

Corollary 1. The solution vector to equation (11) with the Cauchy problem (12) satisfies the for-
mulas of the first variation

U(z;λ;µ) =

[
E +

3g−3∑
j=1

λjA0;ej (z) +

5g−5∑
j=1

µjB0;êj (z)

]
U(z) + o(λ1, . . . , λ3g−3) + o(µ1, . . . , µ5g−5),

λ1, . . . , λ3g−3 → 0, µ1, . . . , µ5g−5 → 0, where

A0;ej (z) =

∫ z

z0

qj(x)U
(1)
x V (x)dx, j = 1, . . . , 3g − 3,

B0;êk(z) =

∫ z

z0

rk(x)U(x)V (x)dx, k = 1, . . . , 5g − 5.

Remark 3. The equality U(Lz)(L′(z))−1 = χ(L)U(z), L ∈ Γ, means that the solution vec-
tor U(z) for the Cauchy problem at z0 is the form of vector third-order Prym 1-differentials
on F = D/Γ with respect to the matrix character χ of the group Γ with values in GL(3,C),
or, more exactly, U(z) is a holomorphic section of the vector bundle χ ⊗ K−1, where K is
the canonical bundle on F = D/Γ [5].
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Introduction

In recent years, many researchers have paid great attention to generalizations, extensions, and
variations of Minkowski’s inverse inequalities (see [1–7]). On the other hand, the convex func-
tions have a very useful structure in terms of properties and play an important role in inequality
theory, this class of functions has many applications in different branches of mathematics (func-
tional analysis, numerical computation, probability theory, etc.). Many inequalities and results
are obtained by the Jensen inequality, and many articles relating to different versions of this
inequality have been found in the literature.

In this work, we will establish two results on the reverse Minkowski type integral inequali-
ties, the first one involving Hölder inequality with two parameters, Also, we will investigate a
second result via the Jensen integral inequality (convex function). Special cases will be given as
generalizations to some known results.

1. Model inequalities

The following inequality is well known in the literature as Minkowski’s inequality, it states
that, forp > 1, if

0 <

∫ b

a

fp(x)dx <∞ and 0 <

∫ b

a

gp(x)dx <∞,

∗bouharket.benaissa@univ-tiaret.dz https://orcid.org/0000-0002-1195-6169
c⃝ Siberian Federal University. All rights reserved
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then (∫ b

a

(f(x) + g(x))pdx

) 1
p

6
(∫ b

a

fp(x)dx

) 1
p

+

(∫ b

a

gp(x)dx

) 1
p

.

In this section, we give some recent results about the reverse Minkowski’s inequality.
Sulaiman [2] presented the following result related to the reverse Minkowski’s inequality: for
any f, g > 0, if p > 1 and

1 < m 6 f(x)

g(x)
6M

for all x ∈ [a, b], then

M + 1

M − 1

(∫ b

a

(f(x)− g(x))pdx

) 1
p

6
(∫ b

a

fp(x)dx

) 1
p

+

(∫ b

a

gp(x)dx

) 1
p

6

6 m+ 1

m− 1

(∫ b

a

(f(x)− g(x))pdx

) 1
p

.

(1)

Banyat Sroysang in [3] proved a significant extension of the above inequality as follows: for any
f, g > 0, if p > 1 and

0 < c < m 6 f(x)

g(x)
6M

for all x ∈ [a, b], then

M + 1

M − c

(∫ b

a

(f(x)− cg(x))pdx

) 1
p

6
(∫ b

a

fp(x)dx

) 1
p

+

(∫ b

a

gp(x)dx

) 1
p

6

6 m+ 1

m− c

(∫ b

a

(f(x)− cg(x))pdx

) 1
p

.

(2)

Benaissa in [1] gave a new result to the inverse Minkowski inequality according to the following
formula: For any f, g > 0, α > 0, if p > 1 and

0 < c < m 6 αf(x)

g(x)
6M

for all x ∈ [a, b], then

M + α

α(M − c)

(∫ b

a

(αf(x)− cg(x))pdx

) 1
p

6
(∫ b

a

fp(x)dx

) 1
p

+

(∫ b

a

gp(x)dx

) 1
p

6

6 m+ α

α(m− c)

(∫ b

a

(αf(x)− cg(x))pdx

) 1
p

.

(3)

2. Main results

Motivated by the above Theorems, we give a further improvement of the reverse Minkowski
Type inequality by introducing weight function and two parameters p, q > 0. Throughout this
section, the functions f, g are measurable and non-negative on interval (a, b), and w is weight
function (measurable and positive) on (a, b). In order to demonstrate our main results, we need
the following Lemma:
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Lemma 1. Let 0 < p 6 q < ∞ and f, w be non-negative measurable functions on (a, b) and

suppose that 0 <
b∫
a

fq(t)w(t)dt <∞, then

∫ b

a

fp(t)w(t)dt 6
(∫ b

a

w(t)dt

) q−p
q
(∫ b

a

fq(t)w(t)dt

) p
q

. (4)

The inequality (4) hold for −∞ < q 6 p < 0 and inverted for 0 < q 6 p <∞.

Proof. Using Hölder inequality for using the parameter
q

p
> 1, we have

∫ b

a

fp(t)w(t)dt =

∫ b

a

(
w

q−p
q (t)

)(
fp(t)w

p
q (t)

)
dt 6

6
(∫ b

a

w(t)dt

) q−p
q
(∫ b

a

fq(t)w(t)dt

) p
q

.

Jensen’s integral inequality
Let f be an integrable function defined on (a, b) and let ϕ : (a, b) −→ R be a convex function. If
ϕ ◦ f ∈ L(a, b), then

ϕ

(
1

b− a

∫ b

a

f(t)dt

)
6 1

b− a

(∫ b

a

ϕ(f(t))dt

)
, (5)

the above inequality (5) is inverted if ϕ is a concave function.
Taking ϕ(t) = tλ, thus the formula (5) can be rewritten in the following forms.

• If 1 6 λ, then ∫ b

a

fλ(t)dt > (b− a)1−λ

(∫ b

a

f(t)dt

)λ

, (6)

• if 0 < λ < 1, then ∫ b

a

fλ(t)dt 6 (b− a)1−λ

(∫ b

a

f(t)dt

)λ

. (7)

Let −∞ 6 a < b 6 +∞, for p > 0 we suppose that

0 <

∫ b

a

fp(x)w(x)dx <∞ and 0 <

∫ b

a

gp(x)w(x)dx <∞ ,

and we denote by Lw
p (a, b) the space of all Lebesgue measurable functions f on (a, b) for which

∥f∥Lw
p (a,b) =

(∫ b

a

fp(x)w(x)dx

) 1
p

.

Using the above lemmas, we give and prove the following theorems.
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Theorem 1. Let f, g > 0, 0 < p 6 q, α > 0, w be a weight function and

0 < c < m 6 αf(x)

g(x)
6M for all x ∈ [a, b], (8)

then
M + α

α(M − c)
(w(x))

p−q
pq

(∫ b

a

(αf(x)− cg(x))pw(x)dx

) 1
p

6

6
(∫ b

a

fq(x)w(x)dx

) 1
q

+

(∫ b

a

gq(x)w(x)dx

) 1
q

6

6 m+ α

α(m− c)

(∫ b

a

(αf(x)− cg(x))qw(x)dx

) 1
q

.

(9)

Proof. From the hypothesi (8) we get

0 <
1

c
− 1

m
6 1

c
− g(x)

αf(x)
6 1

c
− 1

M

then
M

M − c
6 αf(x)

αf(x)− c g(x)
6 m

m− c
, (10)

let 0 < p 6 q, from the inequality (10) we have[
M

α(M − c)
(αf(x)− c g(x))

]p
w(x) 6 fp(x)w(x),

and

fq(x)w(x) 6
[

m

α(m− c)
(αf(x)− c g(x))

]q
w(x).

Integrating the above inequalities on [a, b], we get

M

α(M − c)

(∫ b

a

(αf(x)− c g(x))pw(x)dx

) 1
p

6
(∫ b

a

fp(x)w(x)dx

) 1
p

, (11)

and (∫ b

a

fq(x)w(x)dx

) 1
q

6 m

α(m− c)

(∫ b

a

(αf(x)− c g(x))qw(x)dx

) 1
q

, (12)

from the inequalities (11) and (4), we get

M

α(M − c)

(∫ b

a

(αf(x)− c g(x))pw(x)dx

) 1
p

6

6
(∫ b

a

w(t)dt

) q−p
pq
(∫ b

a

fq(t)w(t)dt

) 1
q

,

this is same us

M

α(M − c)

(∫ b

a

w(t)dt

) p−q
pq
(∫ b

a

(αf(x)− c g(x))pw(x)dx

) 1
p

6
(∫ b

a

fq(x)w(x)dx

) 1
q

. (13)
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From the hypothesi (8), we deduce that

0 < m− c 6 αf(x)− c g(x)

g(x)
6M − c,

thus
αf(x)− c g(x)

M − c
6 g(x) 6 αf(x)− c g(x)

m− c
, (14)

let 0 < p 6 q, from the inequality (14), we obtain[
1

M − c
(αf(x)− c g(x))

]p
w(x) 6 gp(x)w(x),

and

gq(x)w(x) 6
[

1

m− c
(αf(x)− c g(x))

]q
w(x),

integrating on [a, b], we get

(∫ b

a

gq(x)w(x)dx

) 1
q

6 1

m− c

(∫ b

a

(αf(x)− c g(x))qw(x)dx

) 1
q

, (15)

and

1

M − c

(∫ b

a

(αf(x)− c g(x))pw(x)dx

) 1
p

6
(∫ b

a

gp(x)w(x)dx

) 1
p

, (16)

using the inequality (16) and (4), we get

1

M − c

(∫ b

a

w(t)dt

) p−q
pq
(∫ b

a

(αf(x)− c g(x))pw(x)dx

) 1
p

6
(∫ b

a

gq(x)w(x)dx

) 1
q

. (17)

By the inequalities (12), (15) and (13), (17) we result the inequality (9). 2

Now we present a new result involving Jensen integral inequality.

Theorem 2. Let f, g > 0, α > 0, w be a weight function and

0 < c < m 6 αf(x)

g(x)
6M for all x ∈ [a, b], (18)

then, for 1 < p 6 q

M + α

α(M − c)
(b− a)

1−p
q

(∫ b

a

(αf(x)− c g(x))
q
pw(x)dx

) p
q

6

6
(∫ b

a

fq(x)w(x)dx

) 1
q

+

(∫ b

a

gq(x)w(x)dx

) 1
q

6

6 m+ α

α(m− c)

(∫ b

a

(αf(x)− cg(x))qw(x)dx

) 1
q

,

(19)
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for 0 < q 6 p 6 1

M + α

α(M − c)

(∫ b

a

(αf(x)− c g(x))
q
pw(x)dx

) p
q

6

6
(∫ b

a

fq(x)w(x)dx

) 1
q

+

(∫ b

a

gq(x)w(x)dx

) 1
q

6

6 m+ α

α(m− c)
(b− a)

1−p
q

(∫ b

a

(αf(x)− cg(x))qw(x)dx

) 1
q

.

(20)

Proof. Firstly let 1 6 p 6 q, from the inequality (10), we have[
M

α(M − c)
(αf(x)− c g(x))

] q
p

w(x) 6 f
q
p (x)w(x),

and

fq(x)w(x) 6
[

m

α(m− c)
(αf(x)− c g(x))

]q
w(x),

Integrating the above inequalities on [a, b], we get(
M

α(M − c)

) q
p
∫ b

a

(αf(x)− c g(x))
q
pw(x)dx 6

∫ b

a

f
q
p (x)w(x)dx, (21)

and (∫ b

a

fq(x)w(x)dx

) 1
q

6 m

α(m− c)

(∫ b

a

(αf(x)− c g(x))qw(x)dx

) 1
q

, (22)

apply the Jensen inequality (7) for λ =
1

p
, hence from the inequality (21), we get

(
M

α(M − c)

) q
p
∫ b

a

(αf(x)− c g(x))
q
pw(x)dx 6

∫ b

a

f
q
p (x)w(x)dx 6

6 (b− a)1−
1
p

(∫ b

a

fq(x)w(x)dx

) 1
p

,

this give us

M

α(M − c)
(b− a)

1−p
q

(∫ b

a

(αf(x)− c g(x))
q
pw(x)dx

) p
q

6
(∫ b

a

fq(x)w(x)dx

) 1
q

. (23)

In another case, from the inequality (14) we result

gq(x)w(x) 6
[

1

m− c
(αf(x)− c g(x))

]q
w(x),

and [
1

M − c
(αf(x)− c g(x))

] q
p

w(x) 6 g
q
p (x)w(x),
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integrating on [a, b], we get(∫ b

a

gq(x)w(x)dx

) 1
q

6 1

m− c

(∫ b

a

(αf(x)− c g(x))qw(x)dx

) 1
q

, (24)

and (
1

M − c

) q
p
∫ b

a

(αf(x)− c g(x))
q
pw(x)dx 6

∫ b

a

g
q
p (x)w(x)dx, (25)

use Jensen integral inequality (7) and (25), we obtain

1

M − c
(b− a)

1−p
q

(∫ b

a

(αf(x)− c g(x))
q
pw(x)dx

) p
q

6
(∫ b

a

gq(x)w(x)dx

) 1
q

. (26)

By the inequalities (22), (24) and (23), (26) we result the inequality (19).

Secondly let 1 6 p 6 q, from the inequality (10) we deduce that[
M

α(M − c)
(αf(x)− c g(x))

]q
w(x) 6 fq(x)w(x),

and

f
q
p (x)w(x) 6

[
m

α(m− c)
(αf(x)− c g(x))

] q
p

w(x),

Integrating the above inequalities on [a, b], we get

M

α(M − c)

(∫ b

a

(αf(x)− c g(x))qw(x)dx

) 1
q

6
∫ b

a

fq(x)w(x)dx, (27)

and ∫ b

a

f
q
p (x)w(x)dx 6

(
m

α(m− c)

) q
p
∫ b

a

(αf(x)− c g(x))
q
pw(x)dx, (28)

apply the Jensen inequality (6) for λ =
1

p
, hence from the inequality (27), we get

(b− a)1−
1
p

(∫ b

a

fq(x)w(x)dx

) 1
p

6
∫ b

a

f
q
p (x)w(x)dx 6

6
(

m

α(m− c)

) q
p
∫ b

a

(αf(x)− c g(x))
q
pw(x)dx,

this give us(∫ b

a

fq(x)w(x)dx

) 1
q

6 m

α(m− c)
(b− a)

1−p
q

(∫ b

a

(αf(x)− c g(x))
q
pw(x)dx

) p
q

. (29)

In another case, from the inequality (14), we deduce that[
1

M − c
(αf(x)− c g(x))

]q
w(x) 6 gq(x)w(x),
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and

g
q
p (x)w(x) 6

[
1

M − c
(αf(x)− c g(x))

] q
p

w(x),

integrating on [a, b], we get

1

M − c

(∫ b

a

(αf(x)− c g(x))qw(x)dx

) 1
q

6
(∫ b

a

gq(x)w(x)dx

) 1
q

, (30)

and ∫ b

a

g
q
p (x)w(x)dx 6

(
1

m− c

) q
p
∫ b

a

(αf(x)− c g(x))
q
pw(x)dx, (31)

use the Jensen inequality (6) and (31), we obtain(∫ b

a

gq(x)w(x)dx

) 1
q

6 1

m− c
(b− a)

1−p
q

(∫ b

a

(αf(x)− c g(x))
q
pw(x)dx

) p
q

. (32)

By the inequalities (28), (30) and (29), (32) we result the inequality (20). 2

3. Application

We now give some new results of the above Theorems.

3.1. Reverse Minkowski weight type inequality

Put p = q in the Theorem 1 and p = 1 in the Theorem 2, we get the following corollary.

Corollary 1. Let f, g > 0, q > 0, α > 0, w be a weight function and

0 < c < m 6 αf(x)

g(x)
6M for all x ∈ [a, b],

then
M + α

α(M − c)

(∫ b

a

(αf(x)− cg(x))qw(x)dx

) 1
q

6

6
(∫ b

a

fq(x)w(x)dx

) 1
q

+

(∫ b

a

gq(x)w(x)dx

) 1
q

6

6 m+ α

α(m− c)

(∫ b

a

(αf(x)− cg(x))qw(x)dx

) 1
q

.

(33)

3.2. Reverse Minkowski type inequality

Using w ≡ 1 in Theorem 1 and Theorem 2, we get the following corollaries.

Corollary 2. Let f, g > 0, 0 < p 6 q, α > 0 and

0 < c < m 6 αf(x)

g(x)
6M for all x ∈ [a, b],
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then

M + α

α(M − c)
(b− a)

p−q
pq

(∫ b

a

(αf(x)− cg(x))pdx

) 1
p

6

6
(∫ b

a

fq(x)dx

) 1
q

+

(∫ b

a

gq(x)dx

) 1
q

6

6 m+ α

α(m− c)

(∫ b

a

(αf(x)− cg(x))qdx

) 1
q

.

(34)

Corollary 3. Let f, g > 0, α > 0 and

0 < c < m 6 αf(x)

g(x)
6M for all x ∈ [a, b],

then, for 1 < p 6 q

M + α

α(M − c)
(b− a)

1−p
q

(∫ b

a

(αf(x)− c g(x))
q
p dx

) p
q

6

6
(∫ b

a

fq(x)dx

) 1
q

+

(∫ b

a

gq(x)dx

) 1
q

6

6 m+ α

α(m− c)

(∫ b

a

(αf(x)− cg(x))qdx

) 1
q

.

(35)

for 0 < q 6 p 6 1

M + α

α(M − c)

(∫ b

a

(αf(x)− c g(x))
q
p dx

) p
q

6

6
(∫ b

a

fq(x)dx

) 1
q

+

(∫ b

a

gq(x)dx

) 1
q

6

6 m+ α

α(m− c)
(b− a)

1−p
q

(∫ b

a

(αf(x)− cg(x))qdx

) 1
q

.

(36)

The inequalities (34), (35) and (36) are new generalizations of the revers Minkowski inequality
with two parameters.

Conclusion

By using Hölder’s inequality, Jensen’s integral inequality and by introducing two parameters
of integrability, new generalizations of the inverse of Minkowski’s integral inequality have been
established and demonstrated. Two results are given in the application section, the reverse
Minkowski weight type inequality and we deduce a particular case the reverse Minkowski type
inequality, this is a new generalization of the classic reverse Minkowski inequality known in the
literature.
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[2] W.T.Sulaiman, Reverses of Minkowski’s, Hölder’s, and Hardy’s integral inequalities, Int.
J. Mod. Math. Sci., 1(2012), no. 1, 14–24.

[3] B.Sroysang, More on Reverses of Minkowski’s Integral Inequality, Mathematica Aeterna,
3(2013), no. 7, 597–600.

[4] S.Bobkov, M.Madiman, Reverse Brunn–Minkowski and reverse entropy power inequalities
for convex measures, J. Func. Anal., 262(2012), 3309–3339.

[5] G.Rahman et al, The Minkowski inequalities via generalized proportional fractional integral
operators, Adv. Difference Equ., 2019(2019), no. 287. DOI: 10.1186/s13662-019-2229-7

[6] S.Rashid, F.Jarad, Yu-M.Chu, A Note on Reverse Minkowski Inequality via Generalized
Proportional Fractional Integral Operator with respect to Another Function, Math. Probl.
Eng., 2020(2020), 1–12. DOI: 10.1155/2020/7630260

[7] S.Rashid et al, New generalized reverse Minkowski and related integral inequalities involving
generalized fractional conformable integrals, J. Inequal. Appl., 2020(2020), no. 177.
DOI: 10.1186/s13660-020-02445-2

Дальнейшее обобщение обратного неравенства типа
Минковского с помощью неравенств Гельдера и Йенсена

Буаркет Бенаисса
Лаборатория информатики и математики

Факультет материаловедения
Тиаретский университет

Алжир, Алжир

Аннотация. Основная цель этой статьи — установить новые обобщения обратных интегральных
неравенств Минковского путем введения весовых функций и двух параметров интегрируемости.
Будут доказаны две новые теоремы с использованием интегрального неравенства Йенсена и двухпа-
раметрического неравенства Гельдера, а также получены некоторые обратные интегральные нера-
венства типа Минковского.

Ключевые слова: выпуклая функция, неравенство Гельдера, неравенство Минковского, неравен-
ство Йенсена.
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1. Introduction, preliminaries and problem statement

The theory of functions of several complex variables, or multidimensional complex analysis,
currently is rather rigorously developed (see [1–4]). At the same time, many questions of clas-
sical complex analysis still do not have unambiguous multidimensional analogues. The matrix
approach to the presentation of the theory of multidimensional complex analysis was widely used
(see [5–8]).

In 1935 E.Cartan proved that there are only six possible types of classical domains, including
irreducible, homogeneous, bounded, symmetric domains, four of them K1,K2,K3 and K4 have
the form

K1 =
{
Z ∈ C [m× k] : I(m) − ZZ∗ > 0

}
,

K2 =
{
Z ∈ C [m×m] : I(m) − ZZ > 0, ∀Z ′ = Z

}
,

K3 =
{
Z ∈ C [m×m] : I(m) + ZZ > 0, ∀Z ′ = −Z

}
,

K4 =
{
z ∈ Cn : |zz′|2 + 1− 2zz′ > 0, |zz′| < 1

}
.

Here I(m) is the identity matrix of order m, Z∗ is the complex conjugate of transposed matrix
Z

′
(H > 0 means that hermitian matrix H is positive definite).
The dimensions of these domains are equal to mk, m(m+1)/2, m(m− 1)/2, n, respectively.

∗uktam_rakhmonov@mail.ru https://orcid.org/0000-0001-8926-9505
†jonibek-abdullayev@mail.ru https://orcid.org/0000-0001-8950-2135

c⃝ Siberian Federal University. All rights reserved

– 329 –



Uktam S. Rakhmonov, Jonibek Sh. Abdullayev On Properties of the Second Type Matrix Ball . . .

All these domains are biholomorphically non-equivalent, therefore, complex analysis is con-
structed differently for each of them.

It should be noted‡ that domain K4 is reducible for n = 2 (see [6]). In contrast, the other
domains of all four types are irreducible, but the same domains can be found. Switching the
places of m and k does not change domains in K1. Further, the unit circle of the complex plane
is obtained when m = k = 1 in K1, m = 1 in K2, m = 2 in K3 and n = 1 in K4. When m = 3,
k = 1 in domain K1 then K1 coincides with domain K3 including m = 3. When m = k = 2 in
domain K1 then K1 coincides with domain K4 including n = 4. When m = 2 in domain K2 then
K2 coincides with domain K4 including n = 3. Thus, we obtain different irreducible domains if
we demand m > k in K1, m > 2 in K2, m > 4 in K3 and n > 5 in K4. So, the number ψ(n)
of classes of irreducible bounded symmetric domains of an n-dimensional complex space is equal
to the total number of representations of n in one of the following forms

K1 : n = mk (m > k),

K2 : n =
1

2
m(m+ 1) (m > 2),

K3 : n =
1

2
m(m− 1) (m > 4),

K4 : n = m (n > 5),

K5,K6 : n = 16, n = 27.

All irreducible domains obtained in this way are topologically (but not analytically) equivalent
to the n-dimensional complex space.

Let us consider the space of m2 complex variables denoted by Cm2

. Points Z of this space
can be represented conveniently as a square [m ×m] matrices, i.e., in the form Z = (zij)

m
i,j=1.

With this representation of points the space Cm2

is denoted by C[m ×m]. The direct product
C[m×m]× · · · × C[m×m]︸ ︷︷ ︸

n

of n copies of [m×m] matrix spaces is denoted by Cn[m×m].

Let Z = (Z1, Z2, . . . , Zn) be a vector composed of square matrices Zj of order m consid-
ered over the field of complex numbers C. We can assume that Z is an element of the set
Cn[m×m] ∼= Cnm2

.
The matrix «scalar product» is defined as (Z,W ∈ Cn[m×m])

⟨Z,W ⟩ = Z1W
∗
1 + Z2W

∗
2 + · · ·+ ZnW

∗
n .

It is known that matrix balls B(1)
m,n, B(2)

m,n and B(3)
m,n of the first, second, and third types have

the following forms, respectively (see [9–11]):

B(1)
m,n = {(Z1, . . . , Zn) = Z ∈ Cn [m×m] : I − ⟨Z,Z⟩ > 0} ,

B(2)
m,n = {Z ∈ Cn [m×m] : I − ⟨Z,Z⟩ > 0 ∀Z ′

ν = Zν , ν = 1, . . . , n}

and
B(3)

m,n =
{
(Z ∈ Cn [m×m] : I + ⟨Z,Z⟩ > 0 ∀Z

′

ν = −Zν , ν = 1, . . . , n
}
.

‡When n=2, a homogeneous bounded domain is equivalent to the domain K=
{
ζ∈C2 : max (|ζ1|<1, |ζ2|<1)

}
,

after the change of variables: z1 = ζ1+ζ2
2

, z2 =
i(ζ1−ζ2)

2
.
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The skeletons (Shilov boundaries) of the matrix balls B(k)
m,n are denoted by X(k)

m,n, k = 1, 2, 3,
i.e.,

X(1)
m,n = {Z ∈ Cn [m×m] : ⟨Z,Z⟩ = I} ,

X(2)
m,n = {Z ∈ Cn [m×m] : ⟨Z,Z⟩ = I, Z ′

v = Zν , ν = 1, 2, . . . , n} ,

X(3)
m,n =

{
Z ∈ Cn [m×m] : I + ⟨Z,Z⟩ = 0, Z

′

ν = −Zν , ν = 1, 2, . . . , n
}
.

Note that B(1)
1,1 , B

(2)
1,1 and B

(3)
2,1 are unit disks, and X

(1)
1,1 , X(2)

1,1 , X(3)
2,1 are unit circles in the

complex plane C.
If n = 1, m > 1 then domains B(k)

m,1, k = 1, 2, 3 are the classical domains of the first,
second and the third type (according to the classification of E. Cartan (see [5])). The skeletons
X

(1)
m,1, X

(2)
m,1, and X

(3)
m,1 are unitary, symmetric unitary and skew-symmetric unitary matrices,

respectively.
The first type of matrix ball was considered by A. G. Sergeev (see [11,26]), G. Khudayberganov

(see [12,13]) and S. Kosbergenov (see [14,15]). The volume of a matrix ball of the first type and
its skeleton is studied in [16]. Holomorphic automorphisms for a matrix ball of the first type are
described in [17]. The integral formulas for the matrix ball of the second type were studied by
G.Khudayberganov and Z. Matyakubov [18,19] and the third type of the matrix ball was studied
by G. Khudayberganov, U.Rakhmonov, and the integral formulas were found [20,21]. We recall
that a bounded domain D ⊂ Cn is called classical if the complete group of its holomorphic
automorphisms is a classical Lie group and transitive on it. The biholomorphic equivalence of
bounded domains in Cn to their indicatrices for the Carathéodory and Kobayashi metrics was
studied [32]. From this, in particular, a description of that domains can be obtained when
indicatrices are classical domains. It was proved that first, second and third type matrix balls in
space Cn[m×m] are equivalent biholomorphically to Siegel domains of the second type [27–29].
However, the question of whether matrix balls B(1)

m,n , B(2)
m,n and B(3)

m,n are the classical domains
still remains open.

The problem of the holomorphic extendability of a function to a matrix ball, given on a piece
of its skeleton was discussed [26]. For this purpose complete orthonormal systems in the matrix
ball were used. The total volumes of a matrix ball of the third type and a generalized Lie ball
were calculated [22]. The full volumes of these domains are necessary for finding the kernels of
the integral formulas for these domains (the Bergman, Cauchy–Szegő kernels, Poisson kernels,
etc. [14, 19, 23, 30]). In addition, they are used for the integral representation of a holomorphic
function on these domains, in the mean value theorem and in other important concepts. Volumes
of classical supermanifolds such as supersphere, complex projective superspace, and the Stifel
and Grassmann supermanifolds were calculated with respect to natural metrics of symplectic
structures. It was shown that formulas for volumes of these supermanifolds can be obtained by
analytic continuation of the parameters from the formulas for the volumes of the corresponding
ordinary varieties (see [24]).

In this paper we describe automorphisms of the matrix ball associated with classical domains
of the second type, and also study the properties of the second type matrix ball. An automor-
phism of the second type matrix ball and the characteristic shape of this ball were studied [10].
Writing automorphism in this form causes inconvenience in applying it to practical issues. There-
fore, we consider automorphisms of a matrix ball of the second type which are convenient for
calculations. In addition, the total volume of the skeleton of this ball is calculated.
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2. Automorphisms for a matrix ball of the second type

Let B(2)
m,n be a matrix ball of the second type and X(2)

m,n is its skeleton. The following lemma
describes some properties of a matrix ball of the second type [18].

Lemma 1. A matrix ball B(2)
m,n has the following properties:

1) B(2)
m,n is a bounded domain;

2) B(2)
m,n is a full circular domain;

3) B(2)
m,n and its skeleton X

(2)
m,n are invariants under unitary transformations.

It is known that automorphism B
(2)
m,1 which maps the point P ∈ B

(2)
m,1 to the point 0 has the

form [8]
W = R(Z − P )(I − P̄Z)−1R̄−1,

where R is [m×m] matrix
R̄(I − P̄P ′)R′ = I.

Our goal is to find automorphisms for a matrix ball of the second type. Let us consider the
desired automorphism in the form

Wk =

(
A00 +

n∑
j=1

ZjAj0

)−1(
A0k +

n∑
j=1

ZjAjk

)
, k = 1, . . . , n. (1)

We need to find the coefficients Aij so that map (1) is an automorphism of the matrix ball
of the second type.

Let us introduce the following notation of block square matrices of order n+ 1

A =


A00 A01 . . . A0n

A10 A11 . . . A1n

. . . . . . . . . . . .

An0 An1 . . . Ann

 , H =


I(m) 0 . . . 0

0 −I(m) . . . 0

. . . . . . . . . . . .

0 0 . . . −I(m)

 ,

where Aij are square matrices of order m.
The following statement holds.

Theorem 1. Mapping (1) is an automorphism of the matrix ball B(2)
m,n if and only if coefficients

Aij , i, j = 0, 1, 2, . . . , n satisfy the following relations:

AHA∗ = H, AskA
′
j0 = Aj0A

′
jk, s = 0, . . . , n; j, k = 0, . . . , n. (2)

Proof. This theorem is proved in several stages, according to the properties of a matrix ball of
the second type.

10. Let us consider a linear transformation

ω0 =

n∑
j=0

ζjAj0, ωk =

n∑
j=0

ζjAjk, k = 1, . . . , n, (3)

where matrix A satisfies relations (2). Then we have

AHA∗ =


A00 A01 . . . A0n

A10 A11 . . . A1n

. . . . . . . . . . . .

An0 An1 . . . Ann




I(m) 0 . . . 0

0 −I(m) . . . 0

. . . . . . . . . . . .

0 0 . . . −I(m)

×
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×


A∗

00 A∗
10 . . . A∗

n0

A∗
01 A∗

11 . . . A∗
n1

. . . . . . . . . . . .

A∗
0n A∗

1n . . . A∗
nn

 =


I(m) 0 . . . 0

0 −I(m) . . . 0

. . . . . . . . . . . .

0 0 . . . −I(m)

 ,


A00 −A01 . . . −A0n

A10 −A11 . . . −A1n

. . . . . . . . . . . .

An0 −An1 . . . −Ann




A∗
00 A∗

10 . . . A∗
n0

A∗
01 A∗

11 . . . A∗
n1

. . . . . . . . . . . .

A∗
0n A∗

1n . . . A∗
nn

 =


I(m) 0 . . . 0

0 −I(m) . . . 0

. . . . . . . . . . . .

0 0 . . . −I(m)




A00A
∗
00 − · · · −A0nA

∗
0n A00A

∗
10 − · · · −A0nA

∗
1n . . . A00A

∗
n0 − · · · −A0nA

∗
nn

A10A
∗
00 − · · · −A1nA

∗
0n A10A

∗
10 − · · · −A1nA

∗
1n . . . A10A

∗
n0 − · · · −A1nA

∗
nn

. . . . . . . . . . . .

An0A
∗
00 − · · · −AnnA

∗
0n An0A

∗
10 − · · · −AnnA

∗
1n . . . An0A

∗
n0 − · · · −AnnA

∗
nn

 =

=


I(m) 0 . . . 0

0 −I(m) . . . 0

. . . . . . . . . . . .

0 0 . . . −I(m)

⇒

⇒


A00A

∗
00 −

n∑
s=1

A0sA
∗
0s = I(m),

Aj0A
∗
k0 =

n∑
s=1

AjsA
∗
ks, j ̸= k,

Aj0A
∗
j0 −

n∑
s=1

AjsA
∗
js = −I(m), j > 1.

(4)

20. Let matrix row ζ = (ζ0, ζ1, . . . , ζn) covers all matrices consisting of m rows and (n+ 1)m

columns such that ζHζ∗ > 0. Then

ζHζ∗ =
(
ζ0 ζ1 . . . ζn

)
I(m) 0 . . . 0

0 −I(m) . . . 0

. . . . . . . . . . . .

0 0 . . . −I(m)




ζ∗0
ζ∗1
. . .

ζ∗n

 =

=
(
ζ0 −ζ1 . . . −ζn

)
ζ∗0
ζ∗1
. . .

ζ∗n

 = ζ0ζ
∗
0 − ζ1ζ

∗
1 − · · · − ζnζ

∗
n > 0 ⇒

⇒ ζ0ζ
∗
0 > ζ1ζ

∗
1 + · · ·+ ζnζ

∗
n > 0.

Providing ζHζ∗ > 0, matrix ζ0 is not degenerate since otherwise there would be a non-zero
m-dimensional vector x such that xζ0 = 0.

We have a contradiction since

0 = xζ0ζ
∗
0x

∗ > x(ζ1ζ
∗
1 + · · ·+ ζnζ

∗
n)x

∗ > 0.

30. Now we consider the following matrices

Zk = ζ−1
0 ζk, k = 1, . . . , n.
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We obtain the following inequality from condition ζHζ∗ > 0

ζHζ∗ =
(
ζ0 ζ1 . . . ζn

)
I(m) 0 . . . 0

0 −I(m) . . . 0

. . . . . . . . . . . .

0 0 . . . −I(m)




ζ∗0
ζ∗1
. . .

ζ∗n

 =

=
(
ζ0 −ζ1 . . . −ζn

)
ζ∗0
ζ∗1
. . .

ζ∗n

 = ζ0ζ
∗
0 − ζ1ζ

∗
1 − · · · − ζnζ

∗
n =

= ζ0
(
I − ζ−1

0 ζ1ζ
∗
1 (ζ

∗
0 )

−1 − · · · − ζ−1
0 ζnζ

∗
n(ζ

∗
0 )

−1
)
ζ∗0 =

= ζ0

(
I(m) − Z1Z

∗
1 − · · · − ZnZ

∗
n

)
ζ∗0 = ζ0

(
I − ⟨Z,Z⟩

)
ζ∗0 > 0

⇒ I(m) − ⟨Z,Z⟩ > 0, i.e., Z ∈ B(2)
m,n.

40. Using (3) we consider the vector

ω = (ω0, ω1, . . . , ωn) = ζA

and multiply the block matrix by the right of the above-mentioned formula

Ã =


A∗

00 −A∗
10 . . . −A∗

n0

−A∗
01 A∗

11 . . . A∗
n1

. . . . . . . . . . . .

−A∗
0n A∗

1n . . . A∗
nn

 .

Note that the product of block matrices is carried out according to the usual rules for the product
of matrices. Since (4) is equivalent to the condition AÃ = I(m(n+1)), then we have

ωÃ = ζ,

i.e., map (3) is invertible (under condition (2)) and the matrix defines the inverse map.
Hence,

ωHω∗ = ζAHA∗ζ∗ = ζHζ∗ > 0. (5)

50. Now we prove that map Wk is an automorphism. Obviously,

ωHω∗ =
(
ω0 ω1 . . . ωn

)
I(m) 0 . . . 0

0 −I(m) . . . 0

. . . . . . . . . . . .

0 0 . . . −I(m)




ω∗
0

ω∗
1

. . .

ω∗
n

 =

=
(
ω0 −ω1 . . . −ωn

)
ω∗
0

ω∗
1

. . .

ω∗
n

 = ω0ω
∗
0 − ω1ω

∗
1 − · · · − ωnω

∗
n =

= ω0

(
I − ω−1

0 ω1ω
∗
1(ω

∗
0)

−1 − · · · − ω−1
0 ωnω

∗
n(ω

∗
0)

−1
)
ω∗
0 =

= ω0

(
I(m) −W1W

∗
1 − · · · −WnW

∗
n

)
ω∗
0 = ω0

(
I − ⟨W,W ⟩

)
ω∗
0 > 0 ⇒ I − ⟨W,W ⟩ > 0.
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Then transformation (3) generates a linear-fractional transformation

Wk= ω−1
0 ωk=

( n∑
j=0

ζjAj0

)−1( n∑
j=0

ζjAjk

)
=

(
ζ0A00 +

n∑
j=1

ζjAj0

)−1(
ζ0A0k +

n∑
j=1

ζjAjk

)
=

=

(
A00 +

n∑
j=1

ζ−1
0 ζjAj0

)−1

ζ−1
0 ζ0

(
A0k +

n∑
j=1

ζ−1
0 ζjAjk

)
=

=

(
A00 +

n∑
j=1

ZjAj0

)−1(
A0k +

n∑
j=1

ZjAjk

)
, k = 1, . . . , n.

60. Let us show that matrices Wk, k = 1, . . . , n are symmetric matrices. Let Wk = ω−1
0 ωk

then W ′
k = ω′

k(ω
′
0)

−1 and

Wk −W ′
k = ω−1

0 ωk − ω′
k(ω

′
0)

−1 = ω−1
0 (ωkω

′
0 − ω0ω

′
k)(ω

′
0)

−1;

ωkω
′
0 − ω0ω

′
k =

n∑
j=0

ζjAjk

n∑
j=0

A′
j0ζ

′
j −

n∑
j=0

ζjAj0

n∑
j=0

A′
jkζ

′
j =

= (ζ0A0k + ζ1A1k + · · ·+ ζnAnk)(A
′
00ζ

′
0 +A10ζ

′
1 + · · ·+A′

n0ζ
′
n)−

−(ζ0A00 + ζ1A10 + · · ·+ ζnAn0)(A
′
0kζ

′
0 +A1kζ

′
1 + · · ·+A′

nkζ
′
n) =

= ζ0(A0kA
′
00 −A00A

′
0k)ζ

′
0 + ζ0(A0kA

′
10 −A10A

′
1k)ζ

′
1 + · · ·+

+ζ0(A0kA
′
n0 −A00A

′
0k)ζ

′
n + ζ1(A1kA

′
00 −A10A

′
0k)ζ

′
0+

+ζ1(A1kA
′
10 −A10A

′
1k)ζ

′
1 + · · ·+ ζ1(A1kA

′
n0 −A10A

′
nk)ζ

′
n + · · ·+

+ζn(AnkA
′
00 −An0A

′
0k)ζ

′
0 + ζn(AnkA

′
10 −An0A

′
1k)ζ

′
1 + · · ·+

+ζn(AnkA
′
n0 −An0A

′
nk)ζ

′
n = 0.

The last equality is valid by virtue of (2).
Theorem 1 is proved. �
Further, using relation AÃ = I(m(n+1)), we obtain ÃA = I(m(n+1)). It means that

ÃA =


A∗

00 −A∗
10 . . . −A∗

n0

−A∗
01 A∗

11 . . . A∗
n1

. . . . . . . . . . . .

−A∗
0n A∗

1n . . . A∗
nn




A00 A01 . . . A0n

A10 A11 . . . A1n

. . . . . . . . . . . .

An0 An1 . . . Ann

 = I(m(n+1)),


A∗

00A00 − · · · −A∗
n0An0 A∗

00A01 − · · · −A∗
n0An1 . . . A∗

00A0n − · · · −A∗
n0Ann

−A∗
01A00 + · · ·+A∗

n1An0 −A∗
01A01 + · · ·+A∗

n1An1 . . . −A∗
01A0n + · · ·+A∗

n1Ann

. . . . . . . . . . . .

−A∗
0nA00 + · · ·+A∗

nnAn0 −A∗
0nA01 + · · ·+A∗

nnAn1 . . . −A∗
0nA0n + · · ·+A∗

nnAnn

⇒

⇒



A∗
00A00 −

n∑
j=1

A∗
j0Aj0 = I(m),

A∗
0kA0j =

n∑
s=1

A∗
skAsj , j ̸= k,

A∗
0kA0k −

n∑
j=1

A∗
jkAjk = −I(m) .

(6)
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Now let the point P = (P1, . . . , Pn) ∈ B
(2)
m,n. Let us consider the mapping

Wk = R−1(I(m) − ⟨Z,P ⟩)−1
n∑

s=1

(Zs − Ps)Gsk, k = 0, 1, . . . , n (7)

that transfers the point P to 0, where R,Gsk are arbitrary matrices.

Theorem 2. For a mapping of form (7) to be an automorphism of a matrix ball of the second
type it is necessary and sufficient that matrices R and G satisfy the following relations

R∗(I(m) − ⟨P, P ⟩)R = I(m), G∗(I(mn) − P ∗P )G = I(mn), (8)

where G is a block matrix.

Proof. Necessity. Let mapping of form (7) be an automorphism of the matrix ball B(2)
m,n that

maps the point P to 0. We have that

A00 = R, Aj0 = −P ∗
j R, j = 1, . . . , n,

Ajk = Gjk, j, k = 1, . . . , n,

A0k = −
n∑

s=1

PsGjk, k = 1, . . . , n,

(9)

(1) ⇒Wk =

(
A00 +

n∑
j=1

ZjAj0

)−1(
A0k +

n∑
j=1

ZjAjk

)
=

=

(
R−

n∑
j=1

ZjP
∗
j R

)−1(
−

n∑
s=1

PsGsk +

n∑
j=1

ZjGjk

)
=

= R−1

(
I − ⟨Z,P ⟩

)−1 n∑
s=1

(
Zs − Ps

)
Gsk.

Taking into account (6) and (9), we obtain (8)

R∗R−
n∑

j=1

R∗PjP
∗
j R = I(m) ⇒ R∗(I(m) − ⟨P, P ⟩)R = I(m),

n∑
s=1

G∗
skP

∗
s

n∑
s=1

PsGsk −
n∑

j=1

G∗
jkGjk = −I(m),

n∑
s=1

G∗
skP

∗
s

n∑
s=1

PsGsj =

n∑
s=1

G∗
skGsk, j ̸= k,

G∗(I(mn) − P ∗P )G = I(mn),

G =


G11 G12 . . . G1n

G21 G22 . . . G2n

. . . . . . . . . . . .

Gn1 Gn2 . . . Gnn

 , P ∗P =


P ∗
1 P1 P ∗

1 P2 . . . P ∗
1 Pn

P ∗
2 P1 P ∗

2 P2 . . . P ∗
2 Pn

. . . . . . . . . . . .

P ∗
nP1 P ∗

nP2 . . . P ∗
nPn

 .

Sufficiency. Sufficiency of the theorem follows from the existence of matrices R,Gsk that
satisfy (8). Substituting (9) into (6), we obtain (7).

Theorem 2 is proved. �
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3. Volumes of a matrix ball of the second type and its
skeleton

The volume of a matrix ball of the second type is calculated with the use of the following
theorem [22].

Theorem 3. Let m > 2 and Zν [m×m] be a symmetric matrix. Let us consider the integral

J(λ) =

∫
I−⟨Z,Z⟩>0

[det(I − ⟨Z,Z⟩)]λŻ,

where Ż =
m∏
i=1

mn∏
j=1

dxijdyij , xij + iyij = zij. Then

J(λ) =
π

m(m+1)
2 n

(λ+ 1) . . . (λ+mn)
· Γ(2λ+ 3)Γ(2λ+ 5) . . .Γ(2λ+ 2mn− 1)

Γ(2λ+mn+ 2)Γ(2λ+mn+ 3) . . .Γ(2λ+ 2mn)
.

In particular, when λ = 0 the volume of a matrix ball of the second type is

V (B(2)
m,n) =

π
m(m+1)

2 n

m!
· 2!4! . . . (2mn− 3)!

(mn+ 1)!(mn+ 2)! . . . (2mn− 1)!
. (10)

In particular, when n = 1 we obtain from (10) the well-known formula for the volume of
classical domain of the second type (see [8]).

Now Let us calculate the volume of the skeleton X
(2)
m,n of the matrix ball of the second type

B
(2)
m,n.

Theorem 4. The volume of the skeleton of a matrix ball of the second type is calculated as
follows

V
(
X(2)

m,n

)
= (2π)

nm(m+1)
2

 D (l1, . . . , lm)

1!2! . . . (m− 1)!
∏

16s6j6m

(ls + lj + 2)


n

,

where
D(l1, l2, . . . , lm) =

∏
16s<j6m

(ls − lj), 1 6 lk 6 m

and l1 + l2 + · · ·+ lm =
m (m+ 1)

2
.

Proof. Let U = (U1, . . . , Un) ∈ X
(2)
m,n and each matrix Uk, k = 1, . . . , n is a symmetric matrix.

It is known ([8, 25]) that for any symmetric matrix Zν ∈ C [m×m] there exists a unitary matrix
Uν ∈ U (m) (U (m) are set classes of the unitary matrices group) and real numbers λ(ν)1 > λ

(ν)
2 >

. . . > λ
(ν)
m > 0 such that

Zν = Uνdiag
(
λ
(ν)
1 , . . . , λ(ν)m

)
U ′

ν = UνΛνU
′
ν ,Λν =


λν1 0 . . . 0

0 λν2 . . . 0

. . . . . . . . . . . .

0 0 . . . λνm

 , ν = 1, . . . , n.

(12)
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By differentiating (12), we obtain

dZν = dUνΛνU
′
ν + UνdΛνU

′
ν + UνΛνdU

′
ν .

Introducing δUν = U∗
ν dUν , we have

U∗
ν dZνŪν = δUνΛν + dΛν + ΛνδU

′
ν .

Next we have
Sp (dZν · dZ∗

ν ) = Sp (U∗
ν dZν · UνU

∗
ν · dZ∗

ν · Uν) =

= Sp
{
(δUν · Λν + dΛν + ΛνδU

′
ν)
(
ΛνδU

∗
ν + dΛν + δŪν · Λν

)}
=

= Sp (dΛν · dΛν) + Sp
{
(δUν · Λν + ΛνδU

′
ν)
(
ΛνδU

∗
ν + δŪν · Λν

)}
.

Let us set
δUν · Λν + ΛνδU

′
ν =

(
dg

(ν)
jk

)
,
(
dg

(ν)
jk = dg

(ν)
kj

)
,

then

Sp (dZν · dZ∗
ν ) =

n∑
j=1

d
(
λ
(ν)
j

)2
+

n∑
j=1

∣∣∣dg(ν)jj

∣∣∣2 + 2

n∑
j<k

∣∣∣dg(ν)jk

∣∣∣2,
where

dg
(ν)
jk = λ

(ν)
k δu

(ν)
jk + λ

(ν)
j u

(ν)
kj , j < k,

dg
(ν)
jj = 2iλ

(ν)
j δu

(ν)
jj .

Now to define the volume element
{
U̇ν

}
of the set U (m) we set δu(γ)jk = δu′jk+ iδu

′′
jk. Then

we have

U̇ν = 2
m(m−1)

2

n∏
j=1

δu′′jj
∏
j<k

δu′jk · δu′′jk.

Thus

Żν = 2m
∏
j<k

∣∣∣∣(λ(ν)j

)2
−
(
λ
(ν)
k

)2∣∣∣∣λ(ν)1 . . . λ(ν)m dλ
(ν)
1 . . . dλ(ν)m U̇ν , (λ

(ν)
j ̸= λ

(ν)
k , ν = 1, 2, . . . , n).

(13)

For any Z = (Z1, . . . , Zn) ∈ X
(2)
m,n we have det

(
I(m) − ⟨Z,Z⟩

)
= 0. On the other hand, the

correspondence Zν and U (m)× Λν is one-to-one correspondence for all matrices

Z = (U1Λ1U
′
1, . . . , UnΛnU

′
n) ∈ X(2)

m,n. (14)

Then it follows from (12) and (14) that(
λ
(ν)
1

)2
+
(
λ
(ν)
2

)2
+ · · ·+

(
λ(ν)m

)2
= 1, ν = 1, 2, . . . , n. (15)

Then, using Fubini’s theorem for calculation of the volume of the skeleton X(2)
m,n, we obtain

V
(
X(2)

m,n

)
=

∫
X

(2)
m,n

Ż =

= 2mn

∫
{U1}×{Λ1}

∏
j<k

∣∣∣∣(λ(1)j

)2
−
(
λ
(1)
k

)2∣∣∣∣λ(1)1 . . . λ(1)m dλ
(1)
1 . . . dλ(1)m U̇1 ×
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× · · · ×
∫

{Un}×{Λn}

∏
j<k

∣∣∣∣(λ(n)j

)2
−
(
λ
(n)
k

)2∣∣∣∣λ(n)1 . . . λ(n)m dλ
(n)
1 . . . dλ(n)m U̇n =

=

∫
{U1}

U̇1

∫
(
λ
(1)
1

)2
+
(
λ
(1)
2

)2
+···+

(
λ
(1)
m

)2
<1

2m
∏
j<k

∣∣∣∣(λ(1)j

)2
−
(
λ
(1)
k

)2∣∣∣∣λ(1)1 . . . λ(1)m dλ
(1)
1 . . . dλ(1)m ×

× · · ·×
∫

{Un}

U̇n

∫
(
λ
(n)
1

)2
+
(
λ
(n)
2

)2
+···+

(
λ
(n)
m

)2
<1

2m
∏
j<k

∣∣∣∣(λ(n)j

)2
−
(
λ
(n)
k

)2∣∣∣∣λ(n)1 . . . λ(n)m dλ
(n)
1 . . . dλ(n)m .

It is known (Theorem 3.1.1 in [8]) that volume of the manifold {Uν (m)} of unitary matrices
is calculated by the following formula

V (Uν (m)) =
(2π)

m(m+1)
2

1!2! . . . (m− 1)!
.

Providing λ(ν)1 > λ
(ν)
2 > · · · > λ

(ν)
m > 0 for all ν-th integral, we have

Iν = V (Uν)

∫
(
λ
(ν)
1

)2
+
(
λ
(ν)
2

)2
+···+

(
λ
(ν)
m

)2
<1

2m
∏
j<k

∣∣∣∣(λ(ν)j

)2
−
(
λ
(ν)
k

)2∣∣∣∣λ(ν)1 . . . λ(ν)m dλ
(ν)
1 . . . dλ(ν)m =

= 2mV (Uν)

∫
(
λ
(ν)
1

)2
+
(
λ
(ν)
2

)2
+···+

(
λ
(ν)
m

)2
<1

∏
j<k

∣∣∣∣(λ(ν)j

)2
−
(
λ
(ν)
k

)2∣∣∣∣λ(ν)1 . . . λ(ν)m dλ
(ν)
1 . . . dλ(ν)m =

= 2mV (Uν)

∫
· · ·
∫

0<λ
(ν)
m <···<λ

(ν)
2 <λ

(ν)
1 <1

∏
j<k

∣∣∣∣(λ(ν)j

)2
−
(
λ
(ν)
k

)2∣∣∣∣λ(ν)1 . . . λ(ν)m dλ
(ν)
1 . . . dλ(ν)m =

= (−1)
m(m−1)

2 V (Uν)

∫
· · ·
∫

0<λ
(ν)
m <···<λ

(ν)
2 <λ

(ν)
1 <1

det

∣∣∣∣(λ(ν)s

)2lj ∣∣∣∣m
s,j=1

· λ(ν)1 . . . λ(ν)m dλ
(ν)
1 . . . dλ(ν)m =

=
V (Uν)D (l1, . . . , lm)∏
16s6j6m

(ls + lj + 2)
,

where the following conditions are satisfied

D(l1, l2, . . . , lm) =
∏

16s<j6m

(ls − lj), 1 6 lk 6 m

and l1 + l2 + · · ·+ lm =
m (m+ 1)

2
.

Here lemma from [8] (page 135) was used. Hence, we obtain relation from the statement of
the theorem:

V
(
X(2)

m,n

)
= (2π)

nm(m+1)
2

 D (l1, . . . , lm)

1!2! . . . (m− 1)!
∏

16s6j6m

(ls + lj + 2)


n

.
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Theorem 4 is proved. �
Note that when n = 1 we obtain the formula for calculating the volume of skeleton of classical

domain of the second type (see [8]).

The authors would like to thank professor G.Khudayberganov for his helpful advice in writing
this paper.
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О свойствах матричного шара второго типа B
(2)
m,n

из пространства Cn[m×m]

Уктам С. Рахмонов
Ташкентский государственный технический университет

Ташкент, Узбекистан
Джанибек Ш. Абдуллаев

Национальный университет Узбекистана
Ташкент, Узбекистан

Аннотация. В этой работе дано описание автоморфизмов матричного шара B
(2)
m,n, ассоциирован-

ных с классическими областями второго типа, также изучены некоторые свойства матричного шара
второго типа.

Ключевые слова: классическая область, матричный шар, автоморфизм матричного шара, объем,
границы Шилова.
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Abstract. In this paper, we establish some results on the existence and uniqueness of coupled common
fixed point theorems in partially ordered Ab-metric spaces. Examples have been provided to justify the
relevance of the results obtained through the analysis of extant theorem. Further, we also find application
to integral equations via fixed point theorems in Ab-metric spaces.
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1. Introduction and preliminaries

The study of fixed point theory comes from wider area of non-linear function analysis. How-
ever, its study began almost a century ago in the field of algebraic topology. Fixed point theorems
find applications in proving the existence and uniqueness of the solutions of certain differential
and integral equations that arise in physical, engineering and other optimization problems. In
the study of fixed point theory, some of the generalizations of metric space are 2-metric space, D-
metric space, D∗-metric space, G-metric space, S-metric space, Rectangular metric or metric-like
space, Partial metric space, Cone metric space. In 1989, I. A. Bakhtin [2] introduced the concept
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of b-metric space. Consequent upon the introduction of b-metric space, many generalizations
of metric spaces came into existence. In 2015, M. Abbas et al. [1] introduced the concept of
n-tuple metric space and studied its topological properties. M. Ughade et al. [15] introduced the
notion of Ab-metric spaces as a generalized form of n-tuple metric space. Subsequently N.Mlaiki
et al. [11] obtained unique coupled common fixed point theorems in partially ordered Ab-metric
spaces.

In this paper, we use the notion of a mixed weakly monotone pair of maps to state a coupled
common fixed point theorem on partially ordered Ab-metric spaces. We prove some unique
coupled common fixed point theorems in partially ordered Ab-metric space and also provide
example to support our results.

First we recall some notions, lemmas and examples which will be useful to prove our results.

Definition 1.1 (M.Abbas et al. [1]). Let ℑ be a non empty set and n(> 2) be a positive integer.
A function A : ℑn → [0,∞) is called an A-metric on ℑ, if for any ζi, a ∈ ℑ. i = 1, 2, . . . , n, the
following conditions hold.
(i) A(ζ1, ζ2, . . . , ζn−1, ζn) > 0,
(ii) A(ζ1, ζ2, . . . , ζn−1, ζn) = 0 if and only if ζ1 = ζ2 = · · · = ζn−1 = ζn,

(iii) A(ζ1, ζ2, . . . ζn−1, ζn) 6 [A(ζ1, ζ1, . . . , ζ1(n−1)
, a) +A(ζ2, ζ2, . . . , ζ2(n−1)

, a)+

+ · · ·+A(ζn−1, ζn−1, . . . , ζn−1(n−1)
, a) +A(ζn, ζn, . . . , ζn(n−1)

, a)].
The pair (ℑ, A) is called an A-metric space.

Definition 1.2 (T.G. Bhaskar et al. [6]). Let X be a non empty set. A b-metric on X is a
function d : X2 → [0,∞) such that the following conditions hold for all x, y, z ∈ X.
(i) d(x, y) = 0 ⇐⇒ x = y,
(ii) d(x, y) = d(y, x),
(iii) there exists s > 1, such that d(x, z) 6 s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space.

Definition 1.3 (M.Ughade et al. [14]). Let ℑ be a non empty set and n > 2. Suppose b > 1 is
a real number. A function Ab : ℑn → [0,∞) is called an Ab -metric on ℑ, if for any ζi, a ∈ ℑ,
i = 1, 2, . . . , n, the following conditions hold.
(i) Ab(ζ1, ζ2, . . . , ζn−1, ζn) > 0,
(ii) Ab(ζ1, ζ2, . . . , ζn−1, ζn) = 0 if and only if ζ1 = ζ2 = · · · = ζn−1 = ζn,
(iii) Ab(ζ1, ζ2, . . . , ζn−1, ζn) 6 b[Ab(ζ1, ζ1, . . . , ζ1(n−1)

, a) +Ab(x2, x2, . . . , x2(n−1)
, a) + . . .

+Ab(ζn−1, ζn−1, . . . , ζn−1(n−1)
, a) +Ab(ζn, ζn, . . . , ζn(n−1)

, a)].
The pair (ℑ, Ab) is called an Ab-metric space.

Note: In practice we write A for Ab when there is no confusion.

Example 1.4 (M.Ughade et al. [14]). Let ℑ = [1,∞) and n > 2. Define Ab : ℑn → [1,∞) by

Ab(ζ1, ζ2, . . . , ζn−1, ζn) =
n∑

i=1

∑
i<j

|ζi − ζj |2, for all ζi ∈ ℑ, i = 1, 2, . . . , n. Then (ℑ, Ab) is an

Ab-metric space with b=2.

Lemma 1.5 (M.Ughade et al. [14]). Let (ℑ, A) be Ab metric space, so that A : ℑn → [0,∞) for
some n > 2. Then A(ζ, ζ, . . . , ζ︸ ︷︷ ︸

(n−1)times

, y) 6 bA(y, y, . . . , y︸ ︷︷ ︸
(n−1)times

, ζ), for all ζ, y ∈ ℑ.
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Lemma 1.6 (M.Ughade et al. [14]). Let (ℑ, A) be Ab metric space, so that A : ℑn → [0,∞)
for some n > 2. Then A(ζ, ζ, . . . , ζ︸ ︷︷ ︸

(n−1)times

, z) 6 (n − 1)b A(ζ, ζ, . . . , ζ︸ ︷︷ ︸
(n−1)times

, y) + b2 A(y, y, . . . , y︸ ︷︷ ︸
(n−1)times

, z), for all

ζ, y, z ∈ ℑ.

Lemma 1.7 (M.Ughade et al. [14]). Let (X,A) be Ab metric space. Then (X2, DA) is Ab-metric
space on X ×X with DA defined by
DA((x1, y1), (x2, y2), . . . , (xn, yn)) = A(x1, x2, . . . , xn) + A(y1, y2, . . . , yn) for all xi, yi ∈ X,
i, j = 1, 2, . . . , n.

Definition 1.8. Let (X,A) be Ab-metric space. A sequence {xn} in X is said to converge to a
point x ∈ X, if A(xn, xn, . . . , xn︸ ︷︷ ︸

(n−1)times

, x) → 0 as n → ∞. That is, to each ε > 0 there exist N ∈ N

such that for all n > N , we have A(xn, xn, . . . , xn︸ ︷︷ ︸
(n−1)times

, x) 6 ε and we write lim
n→∞

xn = x.

Note: x is called the limit of the sequence {xn}.

Lemma 1.9 (N.Mlaiki et al. [11]). Let (X,A) be Ab-metric space. If the sequence {xn} in X
converges to a point x, then the limit x is unique.

Definition 1.10. Let (X,A) be Ab-metric space. A sequence {xn} in X is called a Cauchy
sequence, if A(xn, xn, . . . , xn︸ ︷︷ ︸

(n−1)times

, xm) → 0 as n,m→ ∞. That is, to each ε > 0, there exists N ∈ N

such that for all n,m > N, we have A(xn, xn, . . . , xn︸ ︷︷ ︸
(n−1)times

, xm) 6 ε.

Lemma 1.11 (N.Mlaiki et al. [11]). Every convergent sequence in a Ab-metric space is a Cauchy
sequence.

Definition 1.12. A Ab-metric space (X,A) is said to be complete, if every Cauchy sequence in
X is convergent.

Definition 1.13 (M.E. Gordji et al. [7]). Let (X,6) be a partially ordered set and f, g :
X ×X → X be mappings. We say that (f, g) has the mixed weakly monotone property on X, if
for any x, y ∈ X,
x 6 f(x, y), y > f(y, x) =⇒ f(x, y) 6 g((f(x, y), f(y, x)), f(y, x) > g((f(y, x), f(x, y))
and
x 6 g(x, y), y > g(y, x) =⇒ g(x, y) 6 f((g(x, y), g(y, x)), g(y, x) > f(g(y, x), g(x, y)).

Definition 1.14. Let X be a non-empty set and f, g : X ×X → X be maps on X ×X.
(i) A point (x, y) ∈ X ×X is called a coupled fixed pint of f , if x = f(x, y) and y = f(y, x)

(ii) A point (x, y) ∈ X × X is said to be a common coupled fixed pint of f and g, if
x = f(x, y) = g(x, y) and y = f(y, x) = g(y, x).

Note: (x, y) is said to be a Coupled coincidence point of f and g, if f(x, y) = g(x, y) and
f(y, x) = g(y, x).

We observe that a common coupled fixed pint of f and g is necessarily a Coupled coincidence
point of f and g.
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2. Main results

Now we prove our first main result.

Theorem 2.1. Let (X,6, A) be a partially ordered, complete Ab-metric space and let f, g :
X ×X → X be the mappings such that
(i) the pair (f, g) has mixed weakly monotone property on X and there exists x0, y0 ∈ X such
that x0 6 f(x0, y0), f(y0, x0) 6 y0 or x0 6 g(x0, y0), g(y0, x0) 6 y0,

(ii) there is an α such that αb2((n− 1)b+ 1) < 1 and

A(f(x, y), f(x, y), . . . , f(x, y), g(u, v)) +A(f(y, x), f(y, x), . . . , f(y, x), g(v, u)) 6 αM,

where

M = max

{[(
1 +D((x, y), (x, y), . . . , (x, y), (f(x, y), f(y, x)))

)
×

× (D((u, v), (u, v), . . . , (u, v), (g(u, v), g(v, u))))

(1 +D((x, y), (x, y), . . . , (x, y), (u, v)))

]
, D
(
(x, y), (x, y), . . . , (x, y), (u, v)

)
,(

D((x, y),(x, y), . . . (x, y),(f(x, y),f(y, x)))+D((u, v),(u, v), . . . (u, v),(g(u, v),g(v, u)))
)
,(

D((u, v),(u, v), . . . (u, v),(f(x, y),f(y, x)))+D((x, y),(x, y), . . . (x, y), (g(u, v), g(v, u)))
)}

(2.1)

for all x, y, u, v ∈ X with x 6 u and y > v,

(iii) if f or g is continuous.

Then f and g have a coupled common fixed point in X.

Proof. Let (x0, y0) be a given point in X × X, satisfying (i). Write x1 = f(x0, y0), y1 =
= f(y0, x0), x2 = g(x1, y1), y2 = g(y1, x1). Define the sequences {xn} and {yn} inductively

x2n+1 = f(x2n, y2n), y2n+1 = f(y2n, x2n)

x2n+2 = g(x2n+1, y2n+1), y2n+2 = g(y2n+1, x2n+1)

for all n ∈ N
(2.2)

Since x0 6 f(x0, y0) and y0 > f(y0, x0) and since (f, g) has mixed weakly monotone property,
we have
x1 = f(x0, y0) 6 g(f(x0, y0), f(y0, x0)) = g(x1, y1) = x2 =⇒ x1 6 x2

and x2 = g(x1, y1) 6 f(g(x1, y1), g(y1, x1)) = f(x2, y2) = x3 =⇒ x2 6 x3

also y1 = f(y0, x0) > g(f(y0, x0), f(x0, y0)) = g(y1, x1) = y2 =⇒ y1 > y2

and y2 = f(y1, x1) > f(g(y1, x1), g(x1, y1)) = f(y2, x2) = y3 =⇒ y2 > y3.

By induction,

i.e, x0 6 x1 6 x2 6 . . . 6 xn 6 xn+1 6 . . .

y0 > y1 > y2 > . . . > yn > yn+1 > . . .

for all n ∈ N
(2.3)

Now we show that these sequences are Cauchy.
Define Dn : X ×X → X by

Dn = D((xn, yn), (xn, yn), . . . , (xn, yn), (xn+1, yn+1))

= A(xn, xn, . . . , xn, xn+1) +A(yn, yn, . . . , yn, yn+1) for all xi, yi ∈ X, i, j = 1, 2, . . . , n.
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Now

D2n+1 =A(x2n+1, x2n+1, . . . , x2n+1, x2n+2) +A(y2n+1, y2n+1, . . . , y2n+1, y2n+2) =

=A(f(x2n, y2n), f(x2n, y2n), . . . , f(x2n, y2n), g(x2n+1, y2n+1))+

+A(f(y2n, x2n), f(y2n, x2n), . . . , f(y2n, x2n), g(y2n+1, x2n+1)) 6

6 αmax

{[(
1 +D((x2n, y2n), (x2n, y2n), . . . , (x2n, y2n), (f(x2n, y2n), f(y2n, x2n)))

)
×

× (D((x2n+1, y2n+1), (x2n+1, y2n+1), . . . , (x2n+1, y2n+1), (g(x2n+1, y2n+1), g(y2n+1, x2n+1))))

(1 +D((x2n, y2n), (x2n, y2n), . . . , (x2n, y2n), (x2n+1, y2n+1)))

]
,

D
(
(x2n, y2n), (x2n, y2n), . . . , (x2n, y2n), (x2n+1, y2n+1)

)
,(

D((x2n, y2n), (x2n, y2n), . . . , (x2n, y2n), (f(x2n, y2n), f(y2n, x2n)))+

+ (D((x2n+1, y2n+1), (x2n+1, y2n+1), . . . , (x2n+1, y2n+1), (g(x2n+1, y2n+1), g(y2n+1, x2n+1))))
)
,(

(D((x2n+1, y2n+1), (x2n+1, y2n+1), . . . , (x2n+1, y2n+1), (f(x2n, y2n), f(y2n, x2n))))+

+ (D((x2n, y2n), (x2n, y2n), . . . , (x2n, y2n), (g(x2n+1, y2n+1), g(y2n+1, x2n+1))))
)}

6

6 αmax{D
(
(x2n+1, y2n+1), (x2n+1, y2n+1), . . . , (x2n+1, y2n+1), (x2n+2, y2n+2)

)
,

D
(
(x2n, y2n), (x2n, y2n), . . . , (x2n, y2n), (x2n+1, y2n+1)

)
,(

D((x2n, y2n), (x2n, y2n), . . . , (x2n, y2n), (x2n+1, y2n+1))+

+ (D((x2n+1, y2n+1), (x2n+1, y2n+1), . . . , (x2n+1, y2n+1), (x2n+2, y2n+2)))
)
,(

D((x2n, y2n), (x2n, y2n), . . . , (x2n, y2n), (x2n+2, y2n+2))
)
}.

By using Lemma 1.6, we have

D2n+1 6 α
{
(n− 1)b[A(x2n, x2n, . . . , x2n, x2n+1) +A(y2n, y2n, . . . , y2n, y2n+1)]+

+ b2[A(x2n+1, x2n+1, . . . , x2n+1, x2n+2) +A(y2n+1, y2n+1, . . . , y2n+1, y2n+2)]
}
.

(2.4)

Similarly, we get

A(y2n+1, y2n+1, . . . , y2n+1, y2n+2) +A(x2n+1, x2n+1, . . . , x2n+1, x2n+2) 6
6 α{(n− 1)b[A(y2n, y2n, . . . , y2n, y2n+1) +A(x2n, x2n, . . . , x2n, x2n+1)]+

+ b2[A(y2n+1, y2n+1, . . . , y2n+1, y2n+2) +A(x2n+1, x2n+1, . . . , x2n+1, x2n+2)]}.
(2.5)

From (2.4) and (2.5) we have,

2D2n+1 = 2[A(x2n+1, x2n+1, . . . , x2n+1, x2n+2) +A(y2n+1, y2n+1, . . . , y2n+1, y2n+2)] 6
6 2α{(n− 1)b[A(x2n, x2n, . . . , x2n, x2n+1) +A(y2n, y2n, . . . , y2n, y2n+1)]+

+ b2[A(x2n+1, x2n+1, . . . , x2n+1, x2n+2) +A(y2n+1, y2n+1, . . . , y2n+1, y2n+2)]}.

Therefore

D2n+1 6 α{(n− 1)b[A(x2n, x2n, . . . , x2n, x2n+1) +A(y2n, y2n, . . . , y2n, y2n+1)]+

+ b2[A(x2n+1, x2n+1, . . . , x2n+1, x2n+2) +A(y2n+1, y2n+1, . . . , y2n+1, y2n+2)]}.
(2.6)

It gives that

D2n+1 6 α(n− 1)b

1− αb2
D2n. (2.7)
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Put β =
α(n− 1)b

1− αb2
, then 0 6 β < 1.

From (2.7),
D2n+1 6 βD2n.

Similarly we can show that

D2n+2 6 βD2n+1 for n = 0, 1, 2, . . . .

Hence
Dn+1 6 βDn.

Therefore
Dn+1 6 βn+1D0. (2.8)

Define

Dn,m = D((xn, yn), (xn, yn), . . . , (xn, yn)︸ ︷︷ ︸
(n−1)−times

, (xm, ym)) =

= A(xn, xn, . . . , xn︸ ︷︷ ︸
(n−1)−times

, xm) +A(yn, yn, . . . , yn︸ ︷︷ ︸
(n−1)−times

, ym).

Now we have to show that Dn,m is a Cauchy sequence.
By Lemma 1.6, for all n,m ∈ N, n 6 m, we have

Dn+1,m+1 = A(xn+1, xn+1, . . . , xn+1, xm+1) +A(yn+1, yn+1, . . . , yn+1, ym+1) 6
6 b(n− 1)[A(xn+1, xn+1, . . . , xn+1, xn+2) +A(yn+1, yn+1, . . . , yn+1, yn+2)]+

+ b2[A(xn+2, xn+2, . . . , xn+2, xm+1) +A(yn+2, yn+2, . . . , yn+2, ym+1)] =

= b(n− 1)Dn+1 + b2b(n− 1)[A(xn+2, xn+2, . . . , xn+2, xn+3)+

+ A(yn+2, yn+2, . . . , yn+2, yn+3)]+

+ b2b2[A(xn+3, xn+3, . . . , xn+3, xm+1) +A(yn+3, yn+3, . . . , yn+3, ym+1)] =

= b(n− 1)Dn+1 + b3(n− 1)Dn+2 + b5(n− 1)Dn+3 · · ·+

+ b2(m−n)−3(n− 1)[A(xm−1, xm−1, . . . , xm−1, xm)+A(ym−1, ym−1, . . . , ym−1, ym)]+

+ b2(m−n)−1(n− 1)[A(xm, xm, . . . , xm, xm+1) +A(ym, ym, . . . , ym, ym+1)].

From (2.8), we have that

Dn+1,m+1 6 b(n− 1)[βn+1 + b2βn+2 + b4βn+3 + · · ·+ b2(m−n)−2βm]D0 6

6 b(n− 1)βn+1[1 + b2β + (b2β)2 + · · ·+ (b2β)(m−n−1)]D0 =

= b(n− 1)βn+1[1 + γ + γ2 + · · ·+ γ(m−n−1)]D0 6

6 b(n− 1)βn+1

(
1

1− γ

)
D0

→ 0 as n→ ∞.

Thus
lim

n,m→∞
A(xn, xn, . . . , xn, xm) = lim

n,m→∞
A(yn, yn, . . . , yn, ym) = 0.
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Therefore {xn} and {yn} are both Cauchy sequences in X.
By the completeness of X, there exists x, y ∈ X such that xn → x and yn → y as n→ ∞.
Therefore Dn,m is a Cauchy sequence.
Now we show that (x, y) is a coupled fixed point of f and g.
Without loss of generality, we may suppose that f is continuous, we have

x = lim
n→∞

x2n+1 = lim
n→∞

f(x2n, y2n) = f
(
lim
n→∞

x2n, lim
n→∞

y2n

)
= f(x, y)

and
y = lim

n→∞
y2n+1 = lim

n→∞
f(y2n, x2n) = f

(
lim
n→∞

y2n, lim
n→∞

x2n

)
= f(y, x).

Thus (x, y) is a coupled fixed point of f .
From (2.1), taking x = u and y = v, we have,

A(x, x, , . . . , x, g(x, y)) +A(y, y, . . . , y, g(y, x)) =

= A(f(x, y), f(x, y), . . . , f(x, y), g(x, y)) +A(f(y, x), f(y, x), . . . , f(y, x), g(y, x)) 6

6 αmax

{[
(1 +D((x, y), (x, y) . . . (x, y), (x, y)))

(D((x, y), (x, y) . . . (x, y), (g(x, y), g(y, x))))

(1+D((x, y), (x, y) . . . (x, y), (x, y)))

]
,

D
(
(x, y), (x, y), . . . , (x, y), (x, y)

)
,
(
D((x, y), (x, y), . . . , (x, y), (x, y)) +

+D((x, y), (x, y), . . . , (x, y), (g(x, y), g(y, x)))
)
,
(
D((x, y), (x, y), . . . , (x, y), (x, y)) +

+D((x, y), (x, y), . . . , (x, y), (g(x, y), g(y, x)))
)}

6
6 αb ((g(x, y), g(y, x)), (g(x, y), g(y, x)), . . . , (g(x, y), g(y, x)), (x, y)).

Since αb < 1, we have (g(x, y), g(y, x)) = (x, y).
Therefore g(x, y) = x and g(y, x) = y.
Therefore (x, y) is a coupled fixed point of g.
Thus (x, y) is a coupled common fixed point of f and g.

Theorem 2.2. Let (X,6, A) be a partially ordered, complete Ab-metric space and f, g : X×X →
X be the mappings such that
(i) the pair (f, g) has mixed weakly monotone property on X and there exists x0, y0 ∈ X such
that x0 6 f(x0, y0), f(y0, x0) 6 y0 or x0 6 g(x0, y0), g(y0, x0) 6 y0,
(ii) there is an α such that αb2((n− 1)b+ 1) < 1 and

A(f(x, y), f(x, y), . . . , f(x, y), g(u, v)) +A(f(y, x), f(y, x), . . . , f(y, x), g(v, u)) 6 αM

where

M = max

{[
(1 +D((x, y), (x, y), . . . , (x, y), (f(x, y), f(y, x))))

(D((u, v), (u, v), . . . , (u, v), (g(u, v), g(v, u))))

(1 +D((x, y), (x, y), . . . , (x, y), (u, v)))

]
,

D
(
(x, y), (x, y), . . . , (x, y), (u, v)

)
,
(
D((x, y), (x, y), . . . , (x, y), (f(x, y), f(y, x))) +

+D((u, v), (u, v), . . . , (u, v), (g(u, v), g(v, u)))
)
,
(
D((u, v), (u, v), . . . , (u, v), (f(x, y), f(y, x))) +

+D((x, y), (x, y), . . . , (x, y), (g(u, v), g(v, u)))
)}

for all x, y, u, v ∈ X with x 6 u and y > v,
(iii) X has the following properties
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(a) if {xn} is an increasing sequence with xn → x, then xn 6 x for all n ∈ N,
(b) if {yn} is a decreasing sequence with yk → y, then y 6 yn for all n ∈ N.
Then f and g have coupled common fixed points in X.

Proof. Suppose X satisfies (a) and (b), by (2.3) we get xn 6 x and yn > y for all n ∈ N.
Applying Lemmas 1.5 and 1.6, we have

D((x, y), (x, y), . . . , (x, y), (f(x, y), f(y, x))) 6
6 b(n− 1)D((x, y), (x, y), . . . , (x, y), (x2n+2, y2n+2)+

+ b2D((x2n+2, y2n+2), (x2n+2, y2n+2), . . . , (x2n+2, y2n+2), (f(x, y), f(y, x))) =

= b(n− 1)D((x, y), (x, y), . . . , (x, y), (x2n+2, y2n+2))+

+ b2D((g(x2n+1, y2n+1), g(y2n+1, x2n+1)), (g(x2n+1, y2n+1), g(y2n+1, x2n+1)), . . .

. . . , (g(x2n+1, y2n+1), g(y2n+1, x2n+1)), (f(x, y), f(y, x))).

(2.9)

By (2.1), we get

A
(
(g(x2n+1, y2n+1)), (g(x2n+1, y2n+1)), . . . , (g(x2n+1, y2n+1)), (f(x, y))

)
+

+ A
(
(g(y2n+1, x2n+1)), (g(y2n+1, x2n+1)), . . . , (g(y2n+1, x2n+1)), (f(y, x))

)
6

6 αmax

{[(
1 +D((x2n+1, y2n+1), (x2n+1, y2n+1), . . . , , (x2n+1, y2n+1), (x2n+2, y2n+2))

)
×

× (D((x, y), (x, y), . . . , (x, y), (f(x, y), f(y, x))))

(1 +D((x2n+1, y2n+1), (x2n+1, y2n+1), . . . , (x2n+1, y2n+1), (x, y)))

]
,

D
(
(x2n+1, y2n+1), (x2n+1, y2n+1), . . . , (x2n+1, y2n+1), (x, y)

)
,(

D((x2n+1, y2n+1), (x2n+1, y2n+1), . . . , (x2n+1, y2n+1), (x2n+2, y2n+2)) +

+D((x, y), (x, y), . . . , (x, y), (f(x, y), f(y, x)))
)
,
(
D((x, y), (x, y), . . . , (x, y), (x2n+2, y2n+2)) +

+D((x2n+1, y2n+1), (x2n+1, y2n+1), . . . , (x2n+1, y2n+1), (f(x, y), f(y, x)))
)}
.

Taking the limit as n→ ∞ in (2.9), we obtain

D
(
(x, y), (x, y), . . . , (x, y), (f(x, y), f(y, x))

)
6 b2α D

(
(x, y), (x, y), . . . , (x, y), (f(x, y), f(y, x))

)
.

Since b2α < 1, we have D((x, y), (x, y), . . . , (x, y), (f(x, y), f(y, x))) = 0.
That is, f(x, y) = x and f(y, x) = y. Therefore (x, y) is a coupled fixed point of f .
Similarly we can show that g(x, y) = x and g(y, x) = y. Hence f(x, y) = x = g(x, y) and
f(y, x) = y = g(y, x).
Thus (x, y) is a coupled common fixed point of f and g.

Theorem 2.3. Suppose Theorem 2.1 or Theorem 2.2 satisfied, if further {xn} is an increasing
sequence with xn → x and xn 6 u for each n, then x 6 u. Then f and g have a unique coupled
common fixed points. Further more, any fixed point of f is a fixed point of g, and conversely.

Proof. Suppose the given condition holds. Let (x, y) and (u, v) ∈ X ×X, there exist (x∗, y∗) ∈
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X ×X , that is, comparable to (x, y) and (u, v).

D((x, y), (x, y), . . . , (x, y), (u, v)) =

= A(x, x, . . . , x, u) +A(y, y, . . . , y, u) =

= A(f(x, y), f(x, y), . . . , f(x, y), g(u, v)) +A(f(y, x), f(y, x), . . . , f(y, x), g(v, u)) 6

6 αmax

{[
(1 +D((x, y), (x, y), . . . , (x, y), (f(x, y), f(y, x))))×

× (D((u, v), (u, v), . . . , (u, v), (g(u, v), g(v, u))))

(1 +D((x, y), (x, y), . . . , (x, y), (u, v)))

]
, D((x, y), (x, y), . . . , (x, y), (u, v)),

(D((x, y), (x, y), . . . , (x, y), (f(x, y), f(y, x))) +D((u, v), (u, v), . . . , (u, v), (g(u, v), g(v, u)))),

(D((u, v), (u, v), . . . , (u, v), (f(x, y), f(y, x))) +D((x, y), (x, y), . . . , (x, y), (g(u, v), g(v, u))))
}
6

6 α (b+ 1)D((x, y), (x, y), . . . , (x, y), (u, v)).

Since α(b+ 1) < 1, so that
D((x, y), (x, y), . . . , (x, y), (u, v)) = 0
=⇒ (x, y) = (u, v) =⇒ x = u and y = v
Suppose (x, y) and (x∗, y∗) are Coupled common fixed points such that x 6 x∗ and y > y∗, then
x = x∗ and y = y∗.
Now

D((x, y), (x, y), . . . , (x, y), (x∗, y∗)) = A(x, x, . . . , x, x∗) +A(y, y, . . . , y, y∗) =

= A(f(x, y), f(x, y), . . . , f(x, y), g(x∗, y∗)) +A(f(y, x), f(y, x), . . . , f(y, x), g(y∗, x∗)) 6
6 α(b+ 1)D((x, y), (x, y), . . . , (x, y), (x∗, y∗)).

Since α(b+ 1) < 1, so that
D((x, y), (x, y), . . . , (x, y), (x∗, y∗)) = 0
=⇒ (x, y) = (x∗, y∗)
=⇒ x = x∗ and y = y∗

we show that any fixed point of f is a fixed point of g, and conversely.
That is, to show that (x, y) is a fixed point of f ⇐⇒ (x, y) is a fixed point of g.
Suppose that (x, y) is a coupled fixed point of f

D((x, y), (x, y), . . . , (x, y), (g(x, y), g(y, x))) =

= A(f(x, y), f(x, y), . . . , f(x, y), g(x, y)) +A(f(y, x), f(y, x), . . . , f(y, x), g(y, x)) 6
6 αb D((g(x, y), g(y, x)), (g(x, y), g(y, x)), . . . , (g(x, y), g(y, x)), (x, y)).

Since αb < 1, we have
D((g(x, y), g(y, x)), (g(x, y), g(y, x)), . . . , (g(x, y), g(y, x)), (x, y)) = 0
=⇒ (g(x, y), g(y, x)) = (x, y)
=⇒ x = g(x, y) and y = g(y, x)
Therefore (x, y) is a coupled fixed point of g, and conversely.

Taking M = D((x, y), (x, y), . . . , (x, y), (u, v)) and g = f in Theorem 2.1, we get the following

Corollary 2.4. Let (X,6, A) be a partially ordered, complete Ab-metric space and let f : X ×
X → X be the mapping such that
(i) f has mixed weakly monotone property on X and there exists x0, y0 ∈ X such that x0 6
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f(x0, y0), f(y0, x0) 6 y0,
(ii) there is an α such that α < 1 and

A(f(x, y), f(x, y), . . . , f(x, y), f(u, v))+A(f(y, x), f(y, x), . . . , f(y, x), f(v, u)) 6
6 α D((x, y), (x, y), . . . , (x, y), (u, v)),

(2.10)

for all x, y, u, v ∈ X with x 6 u and y > v,
(iii) if f is continuous.
Then f has a coupled fixed point in X.

We give an example to demonstrate the validity of the result 2.1.

Example 2.5. Let (R,6, A) be a partially ordered complete Ab-metric space with Ab-metric
defined as X = [−∞,+∞] by Ab : X

n → [−∞,+∞] by

Ab(x1, x2, . . . , xn−1, xn) =
n∑

i=1

∑
i<j

|xi − xj |2, for all xi ∈ X, i = 1, 2, . . . , n. Then (X,Ab) is an

Ab-metric space with b=2.

Let f, g : R→R be two maps defined by f(x, y)=
4x−2y+ 48n−2

48n
and g(x, y)=

6x− 3y+72n− 3

72n
.

Then the pair (f, g) has mixed weakly monotone property on R

A(f(x, y), f(x, y), . . . , f(x, y), g(u, v)) +A(f(y, x), f(y, x), . . . , f(y, x), g(v, u)) =

= (n− 1)(|f(x, y)− g(u, v)|) + (n− 1)(|f(y, x)− g(v, u)|) =

= (n− 1)

(∣∣∣∣4x− 2y + 48n− 2

48n
− 6u− 3v + 72n− 3

72n

∣∣∣∣)+

+ (n− 1)

(∣∣∣∣4y − 2x+ 48n− 2

48n
− 6v − 3u+ 72n− 3

72n

∣∣∣∣) =

=
(n− 1)

24n
(|2(x− u)− (y − v)|+ |2(y − v)− (x− u)|) 6 (n− 1)

24n
(3 |x− u|+ 3 |y − v|) 6

6 (n− 1)

8n
(|x− u|+ |y − v|) =

=
(n− 1)

8n
D((x, y), (x, y), . . . , (x, y), (u, v)).

For n = 2 and b=2, since αb2((n− 1)b+ 1) < 1 =⇒ α <
1

12
.

Then the contractive condition (2.1) is satisfied with α =
1

16
<

1

12
and also (1, 1) is the unique

coupled common fixed point of f and g.

3. Application

The following type system of integral equations:

u(t) = q(t) +

∫ b

a

λ(t, s)(f1(s, u(s)) + f2(s, v(s)))ds,

v(t) = q(t) +

∫ b

a

λ(t, s)(f1(s, v(s)) + f2(s, u(s)))ds,

(3.1)

where the space X = C([a, b],R) of continuous functions defined in [a, b]. Obviously, the space
with the metric is given by

A(u, v) = max
t∈[a,b]

|u(t)− v(t)| , u, v ∈ C([a, b],R)
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is a complete metric space.
Let X = C([a, b],R) the natural partial order relation, that is,
u, v ∈ C([a, b],R), u 6 v ⇐⇒ u(t) 6 v(t), t ∈ [a, b].

Theorem 3.1. Consider the corollary 2.4 and assume that the following conditions are hold:

(i) f1, f2 : [a, b]× R → R are continuous;

(ii) q : [a, b] → R is continuous;

(iii) λ : [a, b]× R → [0,∞) is continuous;

(iv) there exist c > 0 and 0 6 α < 1, such that for all u, v ∈ R, v > u,

0 6 f1(s, v)− f1(s, u) 6 cα(v − u)

0 6 f2(s, v)− f2(s, u) 6 cα(v − u);

(v) assume that c max
t∈[a,b]

b∫
a

λ(t, s)ds 6 1;

(vi) there exist x0, y0 ∈ X such that

x0(t) > q(t) +

∫ b

a

λ(t, s)(f(s, x0(s)) + g(s, y0(s)))ds,

y0(t) 6 q(t) +

∫ b

a

λ(t, s)(f(s, y0(s)) + g(s, x0(s)))ds.

Then the system of Volterra type integral equation (3.1) has a unique solution in X × X with
X = C([a, b],R).

Proof. Define the mapping F : X ×X → X by

F (u, v)(t) = q(t) +

∫ b

a

λ(t, s)(f1(s, u(s)) + f2(s, v(s)))ds (3.2)

for all u, v ∈ X and t ∈ [a, b].
Now we have to show that all the conditions of Corollary 2.4 are satisfied.
From (iv) of the Theorem 3.1, clearly F has mixed monotone property.
For x, y, u, v ∈ X with x > u and y 6 v, we have

A(F (x, y), F (x, y), . . . , F (x, y), F (u, v)) +A(F (y, x), F (y, x), . . . , F (y, x), F (v, u)) =

= (n− 1) max
t∈[a,b]

(|F (x, y)(t)− F (u, v)(t)|+ |F (y, x)(t)− F (v, u)(t)|) =

= (n− 1) max
t∈[a,b]

∣∣∣∣∣
∫ b

a

λ(t, s)(f1(s, x(s)) + f2(s, y(s)))ds−
∫ b

a

λ(t, s)(f1(s, u(s)) + f2(s, v(s)))ds

∣∣∣∣∣+
+(n− 1) max

t∈[a,b]

∣∣∣∣∣
∫ b

a

λ(t, s)(f1(s, y(s)) + f2(s, x(s)))ds−
∫ b

a

λ(t, s)(f1(s, v(s)) + f2(s, u(s)))ds

∣∣∣∣∣ 6
6 (n− 1) max

t∈[a,b]

(∫ b

a

|f1(s, x(s))− f1(s, u(s))| |λ(t, s)| ds+

+

∫ b

a

|f2(s, y(s))− f2(s, v(s))| |λ(t, s)| ds+

+

∫ b

a

|f1(s, y(s))− f1(s, v(s))| |λ(t, s)| ds+
∫ b

a

|f2(s, x(s))− f2(s, u(s))| |λ(t, s)| ds
)

6
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6 (n− 1) max
t∈[a,b]

cα

(∫ b

a

|x(s)− u(s)| |λ(t, s)| ds+
∫ b

a

|y(s)− v(s)| |λ(t, s)| ds+

+

∫ b

a

|y(s)− v(s)| |λ(t, s)| ds+
∫ b

a

|x(s)− v(s)| |λ(t, s)| ds
)

6

6 (n− 1)

(
max
t∈[a,b]

|x(t)− u(t)|+ max
t∈[a,b]

|y(t)− v(t)|+

+max
t∈[a,b]

|y(t)− v(t)|+ max
t∈[a,b]

|x(t)− u(t)|
)
cα

∫ b

a

|λ(t, s)| ds 6

6 2(n− 1)

(
max
t∈[a,b]

|x(t)− u(t)|+ max
t∈[a,b]

|y(t)− v(t)|
)
cα

∫ b

a

|λ(t, s)| ds 6

6 2(n− 1) α (A(x, x, . . . , x, u) +A(y, y, . . . , y, v)) =

= 2(n− 1) α D((x, y), (x, y), . . . , (x, y), (u, v)).

Therefore

A(F (x, y), F (x, y), . . . , F (x, y), F (u, v)) +A(F (y, x), F (y, x), . . . , F (y, x), F (v, u)) 6
6 2(n− 1) αD((x, y), (x, y), . . . , (x, y), (u, v)).

For n=2, α <
1

2
< 1. Which is the contractive condition in Corollary 2.4.

Thus, F has a coupled fixed point in X.
That is, the system of integral equations has a solution.
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Связанные теоремы о неподвижной точке через свойство
смешанной монотонности в Ab-метрических пространствах
и приложения к интегральным уравнениям
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Ч.Рагхавендра Найду
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Палаконда, Шрикакулам, Индия

Аннотация. В этой статье мы устанавливаем некоторые результаты о существовании и единствен-
ности связанных теорем об общей неподвижной точке в частично упорядоченных Ab-метрических
пространствах. Приведены примеры для обоснования актуальности результатов, полученных в
результате анализа существующей теоремы. Кроме того, мы также находим приложение к инте-
гральным уравнениям через теоремы о неподвижной точке в Ab-метрических пространствах.

Ключевые слова: связанная неподвижная точка, смешанная слабомонотонность, Ab-метрическое
пространство, интегральное уравнение.
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Abstract. In the present article, we characterize generalized derivations and left multipliers of prime
rings involving commutators with idempotent values. Precisely, we prove that if a prime ring of charac-
teristic different from 2 admits a generalized derivation G with an associative nonzero derivation g of R
such that [G(u), u]n = [G(u), u] for all u ∈ {[x, y] : x, y ∈ L}, where L a noncentral Lie ideal of R and
n > 1 is a fixed integer, then one of the following holds:

(i) R satisfies s4 and there exists λ ∈ C, the extended centroid of R such that G(x) = ax+ xa+ λx

for all x ∈ R, where a ∈ U, the Utumi quotient ring of R,

(ii) there exists γ ∈ C such that G(x) = γx for all x ∈ R.

As an application, we describe the structure of left multipliers of prime rings satisfying the condition
([Tm(u), u])n = [Tm(u), u] for all u ∈ {[x, y] : x, y ∈ L}, where m,n > 1 are fixed integers. In the end,
we give an example showing that the hypothesis of our main theorem is not redundant.

Keywords: prime ring, Lie ideal, generalized derivation, GPI.

Citation: G.S. Sandhu, Shakir Ali, Idempotent Values of Commutators Involving Generalized Deriva-
tions, J. Sib. Fed. Univ. Math. Phys., 2022, 15(3), 356–365.
DOI: 10.17516/1997-1397-2022-15-3-356-365.

1. Introduction

A celebrated result of Wedderburn states that: Every finite division ring is commutative
and also any Boolean ring is a commutative ring. In 1945, Jacobson [15] generalized this result
by proving the following: Any ring in which every element satisfies an equation of the form
xn(x) = x, is commutative, where n(x) > 1 is an integer related to x. In this vein Herstein [11]
proved the following theorem: If R is a ring with center Z(R), and if xn − x ∈ Z(R) for all
x ∈ R, then R is commutative, where n > 1 is a fixed integer, which is of course a generalization
of the classical theorem due to Jacobson. Later, Herstein [12] established the commutativity of
rings that satisfy the condition [x, y]n = [x, y], where n(x, y) > 1 is an integer. These results
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have inspired the development of several techniques to explore the conditions that force a ring
to be commutative, for instance, generalizing Herstein’s conditions, using certain polynomial
constraints, using restrictions on automorphisms, introducing identities involving derivations
and generalized derivations etc. For more details and references one can see a well organized
survey paper by Pinter–Lucke [20].

An additive mapping T : R→ R is said to be a left (resp. right) multiplier if T (xy) = T (x)y

(resp. T (xy) = xT (y)) holds for all x, y ∈ R. If T is both a left as well as a right multiplier of R,
then it is said to be a multiplier ofR (cf.; [23] and [25] for details). An additive mapping g : R→ R

is called a derivation if g(xy) = g(x)y + xg(y) holds for all x, y ∈ R. An additive mapping G is
called a generalized derivation if there is a derivation g of R satisfying G(xy) = G(x)y + xg(y)

for all x, y ∈ R. Obviously, any derivation is a generalized derivation, but the converse is not
true in general. A significant example is a map of the form F (x) = ax+ xb for all x ∈ R, where
a and b are fixed element of R. Moreover, the concept of generalized derivation includes both
the concepts of derivation and left multiplier. Hence, the concept of generalized derivation is
a natural generalization of the concept of derivation and left multiplier. Further, generalized
derivations have been primarily studied on operator algebras. Therefore, any investigation from
the algebraic point of view might be interesting (see for example Hvala [13] and Lee [18], where
further references can be looked). In the present paper, we describe the structure of generalized
derivations and left multipliers of prime rings under some specific situations.

The study of commutators involving derivations goes back to 1957, when Posner [21] proved
that a prime ring R admits a nonzero derivation d satisfying [d(x), x] = 0 for all x ∈ R, is
commutative. Since then, this result has been generalized in many directions. In 2000, Carini
and Filippis [6] studied the nilpotent values of commutators involving derivations of prime rings.
Precisely, they proved that: Let R be a prime ring of characteristic different from 2, L a non-
central Lie ideal of R, d a nonzero derivation of R and n > 1 is a fixed integer. If [d(x), x]n = 0

for all x ∈ L, then R is commutative. In 2006, Filippis [9] extended this result to the class of
generalized derivations as follows: Let R be a prime ring of characteristic different from 2, L

a noncentral Lie ideal of R and n > 1 is a fixed integer. If R admits a generalized derivation F

associated with a derivation d such that [F (x), x]n = 0 for all x ∈ L, then either R satisfies s4,
the standard identity in four noncommuting variables or there exists a ∈ U and λ ∈ C such that
F (x) = ax+ xa+ λx for all x ∈ R. Therefore, it is natural to look at the idempotent elements
of the set E = {[φ(x), x] : x ∈ L}, where φ is a mapping and L is a subset of a prime ring R.
Recently, Scudo and Ansari [22] considered this problem with generalized derivations of prime
rings. In fact, they proved the following theorem:

Theorem 1.1. Let R be a noncommutative prime ring with char(R) 6= 2, U the Utumi qotient
ring of R, C the extended centroid of R and L a noncentral Lie ideal of R. If G is a generalized
derivation of R with an associated derivation d of R such that [G(u), u]n = [G(u), u] for all
u ∈ L, where n > 1 a fixed integer, then one of the following holds:

(i) R satisfies the s4 identity and there exists a ∈ U and λ ∈ C such that G(x) = ax+xa+λx
for all x ∈ R.

(ii) there exists γ ∈ C such that G(x) = γx for all x ∈ R.

In this line of investigation, Filippis et al. [10] obtained the following result on multilinear
polynomials: Let R be a prime ring with char(R) 6= 2, C the extended centroid of R, d a nonzero
derivation of R, f(x1, · · · , xn) a multilinear polynomial over C, I a nonzero right ideal of R and
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m > 1 a fixed integer such that

[d(f(x1, · · · , xn)), f(x1, · · · , xn)]m = [d(f(x1, · · · , xn)), f(x1, · · · , xn)]

for all x1, · · · , xn ∈ I. Then either [f(x1, · · · , xn), xn+1]xn+2 is an identity for I or d(I)I = (0).
Very recently, Ashraf et al. [2] studied a related problem for automorphisms of prime rings.

Specifically, they proved the following theorem: Let R be a prime ring with char(R) 6= 2, 3 and
L a noncentral Lie ideal of R. If σ is an automorphism of R such that [σ(x), x]m = [σ(x), x] for
all x ∈ L, where m > 1 a fixed integer, then R is commutative.

The main objective of this paper is to study the above mentioned problem for the set [L,L] =
= {[x, y | x, y ∈ L}, where L is a noncentral Lie-ideal of a prime ring R. In fact, we describe the
structure of generalized derivations and left multipliers of prime rings with idempotent values on
commutators. Precisely, we prove the following results:

Theorem 1.2. Let n > 1 be a fixed integer. Next, let R be a prime ring with char(R) 6= 2, U
the Utumi quotient ring, C is the extended centroid and L is a noncentral Lie ideal of R. If R
admits a generalized derivation G associated with a derivation g such that [G(u), u]n = [G(u), u]
for all u ∈ {[x, y] : x, y ∈ L}, then one of the following holds:

(i) R satisfies s4 and there exists λ ∈ C such that G(x) = ax+ xa+ λx for all x ∈ R, where
a ∈ U.

(ii) there exists γ ∈ C such that G(x) = γx for all x ∈ R.

Further, as an application, we describe the structure of left multipliers of prime rings. In
particular, we establish the following:

Theorem 1.3. Let m,n > 1 be fixed integers. Next, let R be a prime ring with char(R) 6= 2, U
the Utumi quotient ring, C is the extended centroid of R and L is a noncentral Lie ideal of R.
If T is a left multiplier of R such that ([Tm(u), u])n = [Tm(u), u] for all u ∈ {[x, y] : x, y ∈ L},
then there exists γ ∈ C such that T (x) = γx for all x ∈ R.

2. Preliminaries

A ring R is said to be a prime if for any a, b ∈ R; aRb = (0) implies a = 0 or b = 0. An
additive mapping g : R → R is called a derivation if g(xy) = g(x)y + xg(y) for all x, y ∈ R. For
a fixed element a ∈ R, a mapping x 7→ [a, x] is a well-known example of a derivation, which is
called the inner derivation induced by a. By generalized derivation, we mean an additive mapping
F : R→ R such that F (xy) = F (x)y+xg(y), where g is a derivation of R associated with F. For
any x, y ∈ R, the symbol [x, y] denotes the Lie product (or commutator) xy − yx. An additive
subgroup L of R is known as Lie ideal of R if [x, r] ∈ L for all x ∈ L and r ∈ R. The Utumi
quotient ring of R is denoted by U and C the extended centroid of R. For more detail of these
objects and generalized polynomial identities, we refer the reader to [3]. By s4, we denote the
standard identity in four noncommuting variables, which is defined as follows:

s4(x1, x2, x3, x4) =
∑
σ∈S4

(−1)σxσ(1)xσ(2)xσ(3)xσ(4),

where S4 is the symmetric group of degree 4 and (−1)σ is the sign of permutation σ ∈ S4. It
is known that by the standard PI-theory, a prime ring R satisfying s4 can be characterized in
a number of ways, as follows: Let R be a prime ring with C its extended centroid. Then the
following assertions are equivalent:
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• dimC(RC) 6 4.

• R satisfies s4.

• R is commutative or R embeds into M2(F ), for a field F.

• R is algebraic of bounded degree 2 over C.

• R satisfies [[x2, y], [x, y]] (see [5, Lemma 1]).

In order to prove this result, we need the following remarks:

Remark 1 ( [18], Theorem 3). Every generalized derivation of R can be uniquely extended to a
generalized derivation of U and assumes the form that F (x) = ax+ g(x) for some a ∈ U and a
derivation g of U.

Remark 2 ( [7], Theorem 2). If I is a two-sided ideal of R, then I, R and U satisfy the same
generalized polynomial identities with coefficients in U.

3. Main results

We begin our discussions with the following lemma.

Lemma 1. Let R = Mk(C) be the ring of k × k matrices over a field C with char(R) 6= 2 and
a, b ∈ R. If k = 2 and n > 1 a fixed integer such that(

[a[u, v] + [u, v]b, [u, v]]
)n

= [a[u, v] + [u, v]b, [u, v]]

for all u, v ∈ [R,R], then b− a is central.

Proof. By the given hypothesis, R satisfies the generalized polynomial identity(
[a[[x1, x2], [x3, x4]] + [[x1, x2], [x3, x4]]b, [[x1, x2], [x3, x4]]]

)n−
−[a[[x1, x2], [x3, x4]] + [[x1, x2], [x3, x4]]b, [[x1, x2], [x3, x4]]].

(1)

Let us assume that b − a =
k∑

i,j=1

αijeij , where αij ∈ C and eij denotes the standard matrix

unit with (i, j)-th place 1 and 0 elsewhere. For i 6= j, we choose x1= eii, x2= eij , x3= eij and
x4 = eji.With this, we have [x1, x2] = eij , [x3, x4] = eii−ejj and hence [[x1, x2], [x3, x4]] = −2eij .
In this view, it follows from (1) that

4n
(
[aeij + eijb, eij ]

)n − 4[aeij + eijb, eij ] = 0.

Performing the computations and using the fact that char(R) 6= 2 and n > 1, we obtain
eij(b− a)eij = 0, where i 6= j. It implies that αji = 0 for all i 6= j, hence b − a is a diago-
nal matrix. For any C-automorphism ξ of R, ξ(b − a) enjoys the same property as b − a does;
i.e., (

[ξ(a)[[x1, x2], [x3, x4]] + [[x1, x2], [x3, x4]]ξ(b), [[x1, x2], [x3, x4]]]
)n−

−[ξ(a)[[x1, x2], [x3, x4]] + [[x1, x2], [x3, x4]]ξ(b), [[x1, x2], [x3, x4]]].

for all x1, x2, x3, x4 ∈ R, implies that ξ(b − a) is a diagonal matrix. In particular, let ξ(x) =
= (1 + eij)x(1− eij), where i 6= j, then we see that the (j, i)-th entry of ξ(b− a) is zero, i.e.,

0 = (ξ(b− a))ij = αij − αii + αjj − αji = −αii + αjj .

It implies αii = αjj with i 6= j. It forces that b− a central element in R.
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Lemma 2. Let R = Mk(C) be the ring of all k × k matrices over the field C with char(R) 6= 2
and q ∈ R. If k > 2, and n > 1 a fixed integer such that(

[q[[x1, x2], [x3, x4]], [[x1, x2], [x3, x4]]]
)n

= [q[[x1, x2], [x3, x4]], [[x1, x2], [x3, x4]]]

for all x1, x2, x3, x4 ∈ R, then q ∈ Z(R).

Proof. Let q ∈ R, i.e., q =
k∑

r,s=1
qrsers, where qrs ∈ C and ers denotes the usual matrix unit with

(r, s)-th entry 1 and 0 elsewhere. For i 6= j, we choose x1 = eii, x2 = eij , x3 = eij and x4 = eji.
With this, we have [[x1, x2], [x3, x4]] = −2eij . In this view, our situation yields

4n([qeij , eij ])
n − 4[qeij , eij ] = 0.

Since n > 1 and char(R) 6= 2, we get eijqeij = 0, where i 6= j. It implies that qji = 0 for all i 6= j,
hence q is a diagonal matrix. With the same reasoning of Lemma 1, we find that q ∈ Z(R).

Proposition 1. Let R be a noncommutative prime ring with char(R) 6= 2, U the Utumi quotient
ring and C the extended centroid of R. If for some a, b ∈ U and a fixed integer n > 1,

[a[u, v] + [u, v]b, [u, v]]n = [a[u, v] + [u, v]b, [u, v]]

for all u, v ∈ [R,R], then either R satisfies s4 and b− a ∈ C or a, b ∈ C.

Proof. By our assumption, R satisfies the generalized polynomial identity

[a[[x1, x2], [x3, x4]] + [[x1, x2], [x3, x4]]b, [[x1, x2], [x3, x4]]]
n =

= [a[[x1, x2], [x3, x4]] + [[x1, x2], [x3, x4]]b, [[x1, x2], [x3, x4]]].
(2)

Let us assume that

Ω(x1, x2, x3, x4) = [a[[x1, x2], [x3, x4]] + [[x1, x2], [x3, x4]]b, [[x1, x2], [x3, x4]]]
n−

−[a[[x1, x2], [x3, x4]] + [[x1, x2], [x3, x4]]b, [[x1, x2], [x3, x4]]].

Since R and U satisfy the same generalized polynomial identities (see Remark 2), we have
Ω(x1, x2, x3, x4) = 0 for all x1, x2, x3, x4 ∈ U. In case C is infinite, then Ω(x1, x2, x3, x4) = 0 for
all x1, x2, x3, x4 ∈ U ⊗C C, where C denotes the algebraic closure of C. Since U and U ⊗C C
are centrally closed (see [8, Theorem 2.5, Theorem 3.5]), we may replace R by U or U ⊗C C
according as C is finite or infinite, respectively. Therefore, we may assume that R is centrally
closed over C, which is either finite or algebraically closed. If both a, b ∈ C, then we have
nothing to prove. Therefore we assume that at least one of a and b is not in C. Then by
Remark 2, Ω(x1, x2, x3, x4) is a nontrivial generalized polynomial identity for R. Now, with the
aid of Martindale’s theorem [19], R is a primitive ring having nonzero socle H with C as the
associated division ring. In this sequel, a result due to Jacobson [14, p. 75] yields that R is
isomorphic to a dense ring of linear transformations of some vector space V over C. For some
positive integer k, let dimC(V ) = k <∞, then by density of R on V, R ∼=Mk(C). In view of our
assumption dimC(V ) 6= 1. Moreover, in case dimC(V ) = 2, then R satisfies s4 and b− a∈C by
Lemma 1.

We now assume that dimC(V ) > 3. For any v ∈ V, we first show that the vectors v and bv
are linearly C-dependent. In this view, we suppose that for some 0 6= v, the set {v, bv} is linearly
C-independent and show that a contradiction follows. Since dimC(V ) > 3, there exists some
w ∈ V such that the set {v, bv, w} is linearly C-independent. By the density of R, there exist
x1, x2, x3, x4 ∈ R such that

x1v = 0; x2v = −w; x3v = 0; x4v = w;

– 360 –



Gurninder S. Sandhu, Shakir Ali Idempotent Values of Commutators Involving . . .

x1bv = v; x2bv = 0; x3bv = 0; x4bv = w;

x1w = v; x2w = bv; x3w = v; x4w = 0.

With all this, our hypothesis implies that

0 = (([a[[x1, x2], [x3, x4]] + [[x1, x2], [x3, x4]]b, [[x1, x2], [x3, x4]]])
n −

−([a[[x1, x2], [x3, x4]] + [[x1, x2], [x3, x4]]b, [[x1, x2], [x3, x4]]]))v =

= (2n − 2)v.

Since char(R) 6= 2, it leads a contradiction. Thus for any v ∈ V, the vectors v and bv are linearly
C-dependent. Therefore, there exists some τv ∈ C such that bv = τvv for all v ∈ V. By a standard
argument, one can easily check that τv is not depending on the choice of v, i.e., bv = τv for all
v ∈ V. In this view, we have

[b, u]v = (bu)v − u(bv)

= τuv − uτv

= 0

for all v ∈ V. This argument shows that for each u ∈ V, [b, u] acts faithfully as a linear trans-
formation on the vector space V, and hence [b, u] = 0, i.e., b ∈ Z(R). Now Eq. (2) implies
that

[(a+ b)[[x1, x2], [x3, x4]], [[x1, x2], [x3, x4]]]
n − [(a+ b)[[x1, x2], [x3, x4]], [[x1, x2], [x3, x4]]] = 0.

for all x1, x2, x3, x4 ∈ R. In this case, we get a+ b ∈ C by Lemma 2. Hence, a ∈ C.
In case dimC(V ) = ∞, by Wong [24, Lemma 2], R satisfies the generalized polynomial identity

([a[u, v] + [u, v]b, [u, v]])n − [a[u, v] + [u, v]b, [u, v]] = 0.

In this case the conclusion follows from [22, Proposition]. It completes the proof.

3.1. Proof of Theorem 1.2

It is well known that every generalized derivation G takes the form G(x) = ax+ g(x) for all
x ∈ R, where a ∈ U (see Remark 1). By [4, Lemma 1], there exists a nonzero ideal I of R such
that [I, I] ⊆ L. Therefore our hypothesis gives(

[a[[x1, x2], [x3, x4]] + g([[x1, x2], [x3, x4]]), [[x1, x2], [x3, x4]]]
)n

=

= [a[[x1, x2], [x3, x4]] + g([[x1, x2], [x3, x4]]), [[x1, x2], [x3, x4]]]

for all x1, x2, x3, x4 ∈ I. In light of Remark 2, we find that R satisfies the GPI(
[a[[x1, x2], [x3, x4]] + g([[x1, x2], [x3, x4]]), [[x1, x2], [x3, x4]]]

)n−
−[a[[x1, x2], [x3, x4]] + g([[x1, x2], [x3, x4]]), [[x1, x2], [x3, x4]]].

(3)

If g is the U -inner derivation, i.e., for some c ∈ U, g(x) = [c, x] for all x ∈ R. In this view, we
have G(x) = (a+ c)x− xc for all x ∈ R. By Proposition 1, we are done.

We now assume that g is not U -inner, in this case we call g an outer derivation. On expending
(3), we get(

[a[[x1, x2], [x3, x4]] + [[g(x1), x2], [x3, x4]] + [[x1, g(x2)], [x3, x4]] + [[x1, x2], [g(x3), x4]]+

+[[x1, x2], [x3, g(x4)]], [[x1, x2], [x3, x4]]]
)n − [a[[x1, x2], [x3, x4]] + [[g(x1), x2], [x3, x4]]+

+[[x1, g(x2)], [x3, x4]] + [[x1, x2], [g(x3), x4]] + [[x1, x2], [x3, g(x4)]], [[x1, x2], [x3, x4]]] = 0.
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With aid of a result due to Kharchenko [16, Theorem 2], R and hence Usatisfies the GPI(
[a[[x1, x2], [x3, x4]] + [[A, x2], [x3, x4]] + [[x1, B], [x3, x4]] + [[x1, x2], [M,x4]]+

+[[x1, x2], [x3, N ]], [[x1, x2], [x3, x4]]]
)n − [a[[x1, x2], [x3, x4]] + [[A, x2], [x3, x4]]+

+[[x1, B], [x3, x4]] + [[x1, x2], [M,x4]] + [[x1, x2], [x3, N ]], [[x1, x2], [x3, x4]]] = 0.

In particular, we find(
[a[[x1, x2], [x3, x4]], [[x1, x2], [x3, x4]]]

)n − [a[[x1, x2], [x3, x4]], [[x1, x2], [x3, x4]]] = 0

for all x1, x2, x3, x4 ∈ R. In view of Lemma 2, it implies that a ∈ C. Thus the above relation
reduces to(
[[[A, x2], [x3, x4]] + [[x1, B], [x3, x4]] + [[x1, x2], [M,x4]] + [[x1, x2], [x3, N ]], [[x1, x2], [x3, x4]]]

)n−
−[[[A, x2], [x3, x4]] + [[x1, B], [x3, x4]]+ [[x1, x2], [M,x4]]+ [[x1, x2], [x3, N ]], [[x1, x2], [x3, x4]]]= 0.

Take A = B =M = 0. It implies that(
[[x1, x2], [x3, N ]], [[x1, x2], [x3, x4]]]

)n
= [[[x1, x2], [x3, N ]], [[x1, x2], [x3, x4]]]. (4)

Since it is a polynomial identity for R, in view of a result due to Lanski [17, Lemma 1], it
follows that for a suitable field F, we have R ∼= Mk(F ), moreover R and Mk(F ) satisfy same
generalized polynomial identity. Since R is noncommutative, k > 2. Choose x1 = eij , x2 = eji,
x3 = ejj , x4 = eji, N = −2eij . With this, we have [x1, x2] = eii − ejj , [x3, x4] = eji and
[x3, N ] = 2eij . In this view, from (4), we have

(−1)n8n(eii − ejj)
n = 8(eii − ejj). (5)

If n = 2, we find 82(eii − ejj)
2 = 8(eii − ejj). It implies that 7eii = −9ejj with i 6= j, a

contradiction. Now we suppose that n > 2. Right multiply the (5) by eij , we get

(−1)n8neij = 8eij , i.e., (−1)n8n−1eij = eij

with i 6= j, a contradiction. It completes the proof.

Following are immediate consequences of Theorem 1.2.

Corollary 1 ( [22], Main Theorem). Let R be a noncommutative prime ring with char(R) 6= 2,
U the Utumi qotient ring of R, C the extended centroid of R and L a noncentral Lie ideal of R.
If G is a generalized derivation of R with an associated derivation d of R such that [G(u), u]n =
= [G(u), u] for all u ∈ L, where n > 1 a fixed integer, then one of the following holds:

(i) R satisfies the s4 identity and there exists a ∈ U and λ ∈ C such that G(x) = ax+xa+λx
for all x ∈ R.

(ii) there exists γ ∈ C such that G(x) = γx for all x ∈ R.

Corollary 2. Let n > 1 are fixed integers. Next, let R be a prime ring with char(R) 6= 2, U the
Utumi quotient ring, C the extended centroid of R and L a noncentral Lie ideal of R. If T is a
left multiplier of R such that ([T (u), u])n = [T (u), u] for all u ∈ {[x, y] : x, y ∈ L}, then there
exists λ ∈ C such that T (x) = λx for all x ∈ R.
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Proof. It is well know that every left multiplier is generalized derivation with g = 0. Hence, G
takes the form G(x) = ax for all x ∈ R and some a ∈ U. The given hypothesis gives that R
satisfies

[a[[x1, x2], [x3, x4]], [[x1, x2], [x3, x4]]]
n = [a[[x1, x2], [x3, x4]], [[x1, x2], [x3, x4]]].

Set Ω(x1, x2, x3, x4) = [[x1, x2], [x3, x4]], [[x1, x2], [x3, x4]], a multilinear polynomial in the vari-
ables x1, x2, x3, x4. Thus, R satisfies

[aΩ(x1, x2, x3, x4),Ω(x1, x2, x3, x4)]
n = [aΩ(x1, x2, x3, x4),Ω(x1, x2, x3, x4)].

In light of [1, Lemma 3.10], it follows that a ∈ C, which completes the proof.

3.2. Proof of Theorem 1.3

Let m, n > 1 be fixed integers and T : R → R be left multiplier such that [Tm(u), u]n =

= [Tm(u), u] for all u ∈ {[x, y] : x, y ∈ L}, where L is noncentral Lie ideal of R. Then, by using
induction on m, it is straightforward to check that T is a left multiplier of a ring R if and only of
Tm is a left multiplier of R. Hence, direct application of Corollary 3.5 yields the required result.
This completes the proof of Theorem 1.3.

We conclude this article with the following example which demonstrates that Theorem 1.2
does not holds for arbitrary rings.

Example 1. Let H denotes the ring of quaternions and

R =


 0 a b

0 c d
0 0 0

 | a, b, c, d ∈ H

 ,

and L =


 0 0 b

0 0 d
0 0 0

 | a, b, d ∈ H

 be the noncentral Lie ideal of R. It can be seen that R

is not a prime ring. Let us define a mappings g, G : R → R such that G

 0 a b
0 c d
0 0 0

 =

=

 0 0 b
0 0 d
0 0 0

 and g

 0 a b
0 c d
0 0 0

 =

 0 a b
0 0 d
0 0 0

 . It is easy to check that G is a

nonzero generalized derivation with an associative derivation g of R and satisfying the iden-
tity [G(u), u]n = [G(u), u] for all u ∈ [L,L]. Since H is a noncommutative rings, it is not
difficult to accomplish that R does not satisfy the identity [[x2, y], [x, y]], which is equivalent to s4
(see [5, Lemma 1]), consequently R does not satisfy s4. Therefore, neither R satisfies s4 nor G
takes the form G(x) = λx for all x ∈ R and some λ ∈ C. Hence, the assumption of primeness in
Theorem 1.2 can not be omitted.

The research of the second author is supported by SERB-DST Project India under Grant
no. MTR/2019/000603.
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Идемпотентные значения коммутаторов с обобщенными
дифференцированиями

Гурниндер С. Сандху
Кафедра математики Мемориальный национальный колледж Пателя

Раджпура, Пенджаб, Индия
Шакир Али

Кафедра математики
Алигархский мусульманский университет

Алигарх, Уттар-Прадеш, Индия

Аннотация. В настоящей статье мы характеризуем обобщенные дифференцирования и левые
мультипликаторы первичных колец, включающие коммутаторы с идемпотентными значениями.
А именно, мы доказываем, что если первичное кольцо характеристики, отличной от 2, допускает
обобщенное дифференцирование G с ассоциативным ненулевым дифференцированием g кольца R
такое, что [G(u), u]n = [G(u), u] для всех u ∈ {[x, y] : x, y ∈ L}, где L — нецентральный идеал Ли R,
а n > 1 — фиксированное целое число, то выполняется одно из следующих утверждений:

(i) R удовлетворяет s4 и существует λ ∈C, расширенный центр тяжести R, такой, что
G(x) = ax+ xa+ λx для всех x ∈ R, где a ∈ U , фактор-кольцо Утуми кольца R,

(ii) существует λ ∈ C, такое, что G(x) = γx для всех x ∈ R.

В качестве приложения опишем строение левых мультипликаторов первичных колец, удовлетворя-
ющих условию ([Tm(u), u])n = [Tm(u), u] for all u ∈ {[x, y] : x, y ∈ L}, где m,n > 1 — фиксированные
целые числа. В заключение приведем пример, показывающий, что условие нашей основной теоремы
не является избыточным.

Ключевые слова: первичное кольцо, идеал Ли, обобщенный вывод, GPI.
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Abstract. Many biological and learning theory models have been investigated using probabilistic func-
tional equations. This article focuses on a specific kind of predator–prey relation in which a predator
has two prey options, each with a probability of x and 1 − x, respectively. Our aim is to investigate
the animal’s responses in such situations by proposing a general probabilistic functional equation. The
noteworthy fixed-point results are used to investigate the existence, uniqueness, and stability of solutions
to the proposed functional equation. An example is also given to illustrate the importance of our results
in this area of research.
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1. Introduction and preliminaries

Various mathematical learning experiments have recently shown that the behavior of a simple
learning experiment follows a stochastic model. Thus, it is not a novel idea (for detail, see [1,2]).
Following 1950, however, two critical features were apparent, most notably in the Bush, Estes,
and Mosteller research. First, one of the most critical characteristics of the proposed models is
the inclusive nature of the learning process. Second, such models may be evaluated in such a
manner that their statistical properties are revealed.

In 1976, Istrăţescu [3] examined the participation of predatory animals that feed on two
different kinds of prey using the following functional equation

R(x) = xR(r + (1− r)x) + (1− x)R((1− s)x), (1)

for all x ∈ J = [0, 1] and 0 < r 6 s < 1, where R : J → R is an unknown function.
The states x and (1−x) to r+(1−r)x and (1−s)x, respectively, were converted into Markov

transitions to explain such behavior by P(r+(1−r)x) = x and P((1−s)x) = 1−x. Sintunavarat
and Turab [4] discussed the properties of the above model (1) under the experimenter-subject
controlled events.

∗taurusnoor@yahoo.com https://orcid.org/0000-0002-5445-9728
c⃝ Siberian Federal University. All rights reserved
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In a two-choice scenario, in [2,5], the authors utilized such operators to monitor the movement
of a paradise fish under the reinforcement-extinction and the habit formation circumstances (for
detail, see Tab. 1).

Table 1. Operators for reinforcement-extinction and habit formation model

Operators for reinforcement-extinction model
Fish’s Responses Outcomes (Left side) Outcomes (Right side) Events
Reinforcement rx rx+ 1− r ERE

1

Non-reinforcement sx+ 1− s sx ERE
2

Operators for habit formation model
Fish’s Responses Outcomes (Left side) Outcomes (Right side) Events
Reinforcement rx rx+ 1− r EHF

1

Non-reinforcement sx sx+ 1− s EHF
2

Berinde and Khan [6] extended the preceding concept by introducing the subsequent func-
tional equation

R(x) = xR(V1(x)) + (1− x)R(V2(x)), (2)

for all x ∈ J , where V1,V2 : J → J are given mappings and satisfied the following boundary
conditions {

V1(1) = 1, and

V2(0) = 0.
(3)

Recently, Turab and Sintunavarat [7] utilized the above ideas and suggested the functional
equation stated below

R(x) = xR(ϖ1x+ (1−ϖ1)Θ1) + (1− x)R(ϖ2x+ (1−ϖ2)Θ2) ∀x ∈ J , (4)

where R : J → R is an unknown, 0 < ϖ1 6 ϖ2 < 1 and Θ1,Θ2 ∈ J . The aforementioned
functional equation was used to investigate a particular kind of psychological resistance in dogs
who were kept in a confined enclosure.

Several additional research on the behaviors of humans and animals in probability-learning
situations have yielded a variety of diverse conclusions (see [8–13]).

As a result of the previous research, we propose the following general probabilistic functional
equation

R(x) =

(
w − j

k − j

)(
τ(x)− j

k − j

)
R(V1(x)) +

(
w − j

k − j

)(
1− τ(x)− j

k − j

)
R(V2(x))+

+

(
1− w − j

k − j

)(
τ(x)− j

k − j

)
R(V3(x)) +

(
1− w − j

k − j

)(
1− τ(x)− j

k − j

)
R(V4(x)), (5)

for all x ∈ [j, k], where 0 6 w 6 1, R : [j, k] → R is an unknown and τ,V1,V2,V3,V4 : [j, k] →
[j, k] are given mappings.

The Banach fixed point theorem will be used to establish the existence and uniqueness results
of the above equation (5). Finally, we examine the stability of the suggested stochastic equation’s
solution.

The following stated result will be needed in later sections.
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Theorem 1.1 ( [14]). Let (J , d) be a complete metric space and R : J → J be a mapping
defined by

d(Rs,Rt) 6 Λd(s, t) (6)

for some Λ < 1 and for all s, t ∈ J . Then R has precisely one fixed point. Furthermore, the
Picard iteration {sn} in J which is defined by sn = Rsn−1 for all n ∈ N, where s0 ∈ J ,
converges to the unique fixed point of R.

2. Main results

Let J = [j, k] with j < k, where j, k ∈ R. We indicate the class R : J → R consisting of
all continuous real-valued functions by T such that R(j) = 0 and

sup
s̸=t

|R(s)− R(t)|
|s− t|

<∞.

We can see that (T , ∥·∥) is a normed space (for the detail, see [5, 15]), where ∥·∥ is given by

∥R∥ = sup
s̸=t

|R(s)− R(t)|
|s− t|

(7)

for all R ∈ T .
Next, we rewrite (5) as

R(x) =

(
w − j

k − j

)(
τ(x)− j

k − j

)
R(V1(x)) +

(
w − j

k − j

)(
k − τ(x)

k − j

)
R(V2(x)) +

+

(
k − w

k − j

)(
τ(x)− j

k − j

)
R(V3(x)) +

(
k − w

k − j

)(
k − τ(x)

k − j

)
R(V4(x)), (8)

where R : J → R is an unknown function such that R(j) = 0. Also, V1,V2,V3,V4 : J → J

are contraction mappings with contractive coefficients b1, b2, b3 and b4 respectively. Also, the
following condition holds

R(V2(j)) = j = R(V4(j)). (9)

Furthermore, τ : J → J is a non-expansive mapping with τ(j) = j and |τ(x)| 6 b5, for all
x ∈ J with b5 > 0.

Before proving the main results, we mention the following conditions here.

(A1): For the mappings V1,V2 : J → J , we have

|V1(u)− V2(v)| 6 b6 |u− v| , (10)

for all u, v ∈ J with u ̸= v, where b6 ∈ [0, 1).

(A2): For the mappings V3,V4 : J → J , we have

|V3(u)− V4(v)| 6 b7 |u− v| , (11)

for all u, v ∈ J with u ̸= v, where b7 ∈ [0, 1).

(A3): For the mappings V1,V2,V3,V4 : J → J , there exist points u⋆, v⋆ ∈ [j, k] such that

V1(u
⋆) = V2(u

⋆) and V3(v
⋆) = V4(v

⋆). (12)
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We begin with the succeeding outcome.

Theorem 2.1. Consider the probabilistic functional equation (8) with (9). Assume that the
conditions (A1) and (A2) hold with Λ1 < 1, where

Λ1 :=

∣∣∣∣(w − j

k − j

)[
b1

(
1 +

b5 − j

k − j

)
+ b2

(
k − b5
k − j

)
+ b6

]
+

+

(
k − w

k − j

)[
b3

(
1 +

b5 − j

k − j

)
+ b4

(
k − b5
k − j

)
+ b7

]∣∣∣∣ , (13)

and there is a nonempty subset E of S := {R ∈ T |R(k) 6 k} such that (E , ∥ · ∥) is a Banach
space, where ∥ · ∥ is given in (7), and the mapping K from E defined for each R ∈ T by

(K R)(x) =

(
w − j

k − j

)(
τ(x)− j

k − j

)
R(V1(x)) +

(
w − j

k − j

)(
k − τ(x)

k − j

)
R(V2(x)) +

+

(
k − w

k − j

)(
τ(x)− j

k − j

)
R(V3(x)) +

(
k − w

k − j

)(
k − τ(x)

k − j

)
R(V4(x)), (14)

for all x ∈ J is a self mapping. Then K is a Banach contraction mapping with the metric d
induced by ∥ · ∥.

Proof. Let R1,R2 ∈ E . For each u, v ∈ J with u ̸= v, we obtain

|Θu̸=v| :=
|K (R1 − R2)(u)− K (R1 − R2)(v)|

|u− v|
=

=

∣∣∣∣ 1

u− v

[(
w − j

k − j

)(
τ(u)− j

k − j

)
(R1 − R2)(V1(u)) +

(
w − j

k − j

)(
k − τ(u)

k − j

)
(R1 − R2)(V2(u))

+

(
k − w

k − j

)(
τ(u)− j

k − j

)
(R1 − R2)(V3(u)) +

(
k − w

k − j

)(
k − τ(u)

k − j

)
(R1 − R2)(V4(u))

−
(
w − j

k − j

)(
τ(v)− j

k − j

)
(R1 − R2)(V1(v))−

(
w − j

k − j

)(
k − τ(v)

k − j

)
(R1 − R2)(V2(v))

−
(
k − w

k − j

)(
τ(v)− j

k − j

)
(R1 − R2)(V3(v))−

(
k − w

k − j

)(
k − τ(v)

k − j

)
(R1 − R2)(V4(v))

]∣∣∣∣ =
=

∣∣∣∣ 1

u− v

[(
w − j

k − j

)(
τ(u)− j

k − j

)
(R1 − R2)(V1(u))−

(
w − j

k − j

)(
τ(u)− j

k − j

)
(R1 − R2)(V1(v))

]
+

1

u− v

[(
w − j

k − j

)(
k − τ(u)

k − j

)
(R1 − R2)(V2(u))−

(
w − j

k − j

)(
k − τ(u)

k − j

)
(R1 − R2)(V2(v))

]
+

1

u− v

[(
k − w

k − j

)(
τ(u)− j

k − j

)
(R1 − R2)(V3(u))−

(
k − w

k − j

)(
τ(u)− j

k − j

)
(R1 − R2)(V3(v))

]
+

1

u− v

[(
k − w

k − j

)(
k − τ(u)

k − j

)
(R1 − R2)(V4(u))−

(
k − w

k − j

)(
k − τ(u)

k − j

)
(R1 − R2)(V4(v))

]
+

1

u− v

[(
w − j

k − j

)(
τ(u)− j

k − j

)
(R1 − R2)(V1(v))−

(
w − j

k − j

)(
τ(v)− j

k − j

)
(R1 − R2)(V1(v))

]
+

1

u− v

[(
w − j

k − j

)(
k − τ(u)

k − j

)
(R1 − R2)(V2(v))−

(
w − j

k − j

)(
k − τ(v)

k − j

)
(R1 − R2)(V2(v))

]
+

1

u− v

[(
k − w

k − j

)(
τ(u)− j

k − j

)
(R1 − R2)(V3(v))−

(
k − w

k − j

)(
τ(v)− j

k − j

)
(R1 − R2)(V3(v))

]
+

1

u− v

[(
k − w

k − j

)(
k − τ(u)

k − j

)
(R1 − R2)(V4(v))−

(
k − w

k − j

)(
k − τ(v)

k − j

)
(R1 − R2)(V4(v))

]∣∣∣∣
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As V1−V4 are contraction mappings with the contractive coefficients b1− b4, respectively. Thus,
by using the definition of the norm (7), we have

|Θu̸=v| 6 Λ1 ∥R1 − R2∥ ,

where Λ1 is defined in (13). This gives that

d(K R1,K R2) = ∥K R1 − K R2∥ 6 Λ1 ∥R1 − R2∥ = Λ1d(R1,R2).

As 0 < Λ1 < 1, we conclude that K is a Banach contraction mapping with metric d induced
by ∥ · ∥ .

Theorem 2.2. Consider the probabilistic functional equation (8) associated with (9). Assume
that the conditions (A1) and (A2) hold with Λ1 < 1, where Λ1 is defined in (13). Also, there
exist a nonempty subset E of S := {R ∈ T |R(k) 6 k} such that (E , ∥ · ∥) is a Banach space,
where ∥ · ∥ is given in (7), and the mapping K from E defined for each R ∈ T by (10) is a self
mapping. Then, the functional equation (8) with (9) has a unique solution in E . Furthermore,
the iteration Rn in E can be defined by

(Rn)(x) =

(
w − j

k − j

)(
τ(x)− j

k − j

)
Rn−1(V1(x)) +

(
w − j

k − j

)(
k − τ(x)

k − j

)
Rn−1(V2(x))+

+

(
k − w

k − j

)(
τ(x)− j

k − j

)
Rn−1(V3(x)) +

(
k − w

k − j

)(
k − τ(x)

k − j

)
Rn−1(V4(x)), (15)

for all n ∈ N, where R0 ∈ E , converges to the unique solution of (8).

Proof. We get the conclusion of this theorem by combining Theorem 2.1 with the Banach fixed
point theorem.

Remark 2.3. Our proposed probabilistic equation (5) is a generalization of the functional equa-
tions discussed in [3,5–7].

Here, we shall look at different conditions. If V1,V2,V3,V4 : J → J are contraction
mappings with contractive coefficients b1 6 b2 6 b3 6 b4, respectively, then by Theorems 2.1 and
2.2, the outcomes are as follows.

Corollary 2.4. Consider the probabilistic functional equation (8) associated with (9). Assume
that the conditions (A1) and (A2) hold with Λ̃1 < 1, where

Λ̃1 :=

∣∣∣∣2b4 + 1

k − j
[(w − j)b6 + (k − w)b7]

∣∣∣∣ , (16)

and there is a nonempty subset E of S := {R ∈ T |R(k) 6 k} such that (E , ∥ · ∥) is a Banach
space, where ∥ · ∥ is given in (7), and the mapping K from E defined for each R ∈ T by

(K R)(x) =

(
w − j

k − j

)(
τ(x)− j

k − j

)
R(V1(x)) +

(
w − j

k − j

)(
k − τ(x)

k − j

)
R(V2(x)) +

+

(
k − w

k − j

)(
τ(x)− j

k − j

)
R(V3(x)) +

(
k − w

k − j

)(
k − τ(x)

k − j

)
R(V4(x)), (17)

for all x ∈ J is a self mapping. Then K is a Banach contraction mapping with the metric d
induced by ∥ · ∥.
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Corollary 2.5. Consider the probabilistic functional equation (8) associated with (9). Assume
that the conditions (A1) and (A2) hold with Λ̃1 < 1, where Λ̃1 is given in (16), and there is a
nonempty subset E of S := {R ∈ T |R(k) 6 k} such that (E , ∥ ·∥) is a Banach space, where ∥ ·∥
is given in (7), and the mapping K from E defined for each R ∈ T by (17) is a self mapping.
Then, the functional equation (8) with (9) has a unique solution in E . Furthermore, the iteration
Rn in E is defined as

(Rn)(x) =

(
w − j

k − j

)(
τ(x)− j

k − j

)
Rn−1(V1(x)) +

(
w − j

k − j

)(
k − τ(x)

k − j

)
Rn−1(V2(x))+

+

(
k − w

k − j

)(
τ(x)− j

k − j

)
Rn−1(V3(x)) +

(
k − w

k − j

)(
k − τ(x)

k − j

)
Rn−1(V4(x)), (18)

for all n ∈ N, where R0 ∈ E , converges to the unique solution of (8).

Theorem 2.6. Consider the probabilistic functional equation (8) with (9). Assume that the
condition (A3) holds with Λ2 < 1, where

Λ2 :=

∣∣∣∣(w − j

k − j

)(
b1

(
1 +

b5 − j

k − j

)
+ b2

(
1 +

k − b5
k − j

))
+

+

(
k − w

k − j

)(
b3

(
1 +

b5 − j

k − j

)
+ b4

(
1 +

k − b5
k − j

))∣∣∣∣ . (19)

Suppose that there is a nonempty subset E of S := {R ∈ T |R(k) 6 k} such that (E , ∥ · ∥) is a
Banach space, where ∥ · ∥ is given in (7), and the mapping K from E defined for each R ∈ T
by

(K R)(x) =

(
w − j

k − j

)(
τ(x)− j

k − j

)
R(V1(x)) +

(
w − j

k − j

)(
k − τ(x)

k − j

)
R(V2(x))+

+

(
k − w

k − j

)(
τ(x)− j

k − j

)
R(V3(x)) +

(
k − w

k − j

)(
k − τ(x)

k − j

)
R(V4(x)), (20)

for all x ∈ J is a self mapping. Then K is a Banach contraction mapping with the metric d
induced by ∥ · ∥.

Proof. The line of proof of this theorem is the same as Theorem 2.1. Here, we highlight those
parts which are different from the previous theorem.

Let R1,R2 ∈ E . For each u, v ∈ J with u ̸= v, we obtain

|Θu ̸=v| 6

6 1

|u− v|

(
w − j

k − j

)(
τ(u)− j

k − j

)
×
[
|(R1 − R2)(V1(u))− (R1 − R2)(V1(v))|

|V1(u)− V1(v)|
× |V1(u)− V1(v)|

]
+

1

|u− v|

(
w − j

k − j

)(
k − τ(u)

k − j

)
×
[
|(R1 − R2)(V2(u))− (R1 − R2)(V2(v))|

|V2(u)− V2(v)|
× |V2(u)− V2(v)|

]
+

1

|u− v|

(
k − w

k − j

)(
τ(u)− j

k − j

)
×
[
|(R1 − R2)(V3(u))− (R1 − R2)(V3(v))|

|V3(u)− V3(v)|
× |V3(u)− V3(v)|

]
+

1

|u− v|

(
k − w

k − j

)(
k − τ(u)

k − j

)
×
[
|(R1 − R2)(V4(u))− (R1 − R2)(V4(v))|

|V4(u)− V4(v)|
× |V4(u)− V4(v)|

]
+

(
1

k − j

)(
w − j

k − j

)
×
[
|(R1 − R2)(V1(v))− (R1 − R2)(V1(u

⋆))|
|V1(v)− V1(u⋆)|

× |V1(v)− V1(u
⋆)|
]

– 371 –



Ali Turab A Fixed Point Approach to Study a Class of Probabilistic Functional . . .

+

(
1

k − j

)(
w − j

k − j

)
×
[
|(R1 − R2)(V2(u

⋆))− (R1 − R2)(V2(v))|
|V2(u⋆)− V2(v)|

× |V2(u
⋆)− V2(v)|

]
+

(
1

k − j

)(
w − j

k − j

)
×
[
|(R1 − R2)(V3(v))− (R1 − R2)(V3(v

⋆))|
|V3(v)− V3(v⋆)|

× |V3(v)− V3(v
⋆)|
]

+

(
1

k − j

)(
w − j

k − j

)
×
[
|(R1 − R2)(V4(v

⋆))− (R1 − R2)(V4(v))|
|V4(v⋆)− V4(v)|

× |V4(v
⋆)− V4(v)|

]
. (21)

Here, we discuss the following cases.

Case 1: If v = u⋆ = v⋆, then by (21) we have

|Θu ̸=v| 6 Λ2 ∥R1 − R2∥ .

Case 2: If v ̸= u⋆, v = v⋆, then by (21) we have

|Θu ̸=v| 6 Λ2 ∥R1 − R2∥ .

Case 3: If v = u⋆, v ̸= v⋆, then by (21) we have

|Θu ̸=v| 6 Λ2 ∥R1 − R2∥ .

Case 4: If v ̸= u⋆ ̸= v⋆, then by (21) we have

|Θu ̸=v| 6 Λ2 ∥R1 − R2∥ ,

where Λ2 is defined in (19). This gives that

d(K R1,K R2) = ∥K R1 − K R2∥ 6 Λ2 ∥R1 − R2∥ = Λ2d(R1,R2).

As a result of 0 < Λ2 < 1, we can conclude that K is a Banach contraction mapping with metric
d induced by ∥ · ∥ .

Theorem 2.7. Consider the probabilistic functional equation (8) associated with (9). Assume
that the condition (A3) holds with Λ2 < 1, where Λ2 is defined in (19). Also, there is a nonempty
subset E of S := {R ∈ T |R(k) 6 k} such that (E , ∥ · ∥) is a Banach space, where ∥ · ∥ is given
in (7), and the mapping K from E defined for each R ∈ T by (20) is a self mapping. Then,
the functional equation (8) with (9) has a unique solution in E . Furthermore, the iteration Rn

in E can be defined by

(Rn)(x) =

(
w − j

k − j

)(
τ(x)− j

k − j

)
Rn−1(V1(x)) +

(
w − j

k − j

)(
k − τ(x)

k − j

)
Rn−1(V2(x))+

+

(
k − w

k − j

)(
τ(x)− j

k − j

)
Rn−1(V3(x)) +

(
k − w

k − j

)(
k − τ(x)

k − j

)
Rn−1(V4(x)), (22)

for all n ∈ N, where R0 ∈ E , converges to the unique solution of (8).

Proof. By coupling the Banach fixed point theorem with Theorem 2.6, we obtain the conclusion
of this theorem.

If V1,V2,V3,V4 : J → J are contraction mappings with contractive coefficients b1 6 b2 6
b3 6 b4, respectively, then by Theorems 2.6 and 2.7, the outcomes are as follows.
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Corollary 2.8. Consider the probabilistic functional equation (8) associated with (9). Assume
that the condition (A3) holds with Λ̃2 := 3b4 < 1. Also, there is a nonempty subset E of
S := {R ∈ T |R(k) 6 k} such that (E , ∥ · ∥) is a Banach space, where ∥ · ∥ is given in (7), and
the mapping K from E defined for each R ∈ T by

(K R)(x) =

(
w − j

k − j

)(
τ(x)− j

k − j

)
R(V1(x)) +

(
w − j

k − j

)(
k − τ(x)

k − j

)
R(V2(x))+

+

(
k − w

k − j

)(
τ(x)− j

k − j

)
R(V3(x)) +

(
k − w

k − j

)(
k − τ(x)

k − j

)
R(V4(x)), (23)

for all x ∈ J is a self mapping. Then K is a Banach contraction mapping with the metric d
induced by ∥ · ∥.

Corollary 2.9. Consider the probabilistic functional equation (8) associated with (9). Assume
that the condition (A3) holds with Λ̃2 := 3b4 < 1. Also, there is a nonempty subset E of
S := {R ∈ T |R(k) 6 k} such that (E , ∥ · ∥) is a Banach space, where ∥ · ∥ is given in (7), and
the mapping K from E defined for each R ∈ T by (23) is a self mapping. Then, the functional
equation (8) with (9) has a unique solution in E . Furthermore, the iteration Rn in E is defined
as

(Rn)(x) =

(
w − j

k − j

)(
τ(x)− j

k − j

)
Rn−1(V1(x)) +

(
w − j

k − j

)(
k − τ(x)

k − j

)
Rn−1(V2(x))+

+

(
k − w

k − j

)(
τ(x)− j

k − j

)
Rn−1(V3(x)) +

(
k − w

k − j

)(
k − τ(x)

k − j

)
Rn−1(V4(x)), (24)

for all n ∈ N, where R0 ∈ E , converges to the unique solution of (7).

Remark 2.10. The authors of [3, 4, 6] utilized the boundary conditions to prove their major
findings. However, compared to them, our results are independent of such conditions.

We now offer the following example to enhance our findings.

Example. Consider the probabilistic functional equation given below

R(x)= wxR

(
x

16
+

1

11

)
+ w(1− x)R

(x
6

)
+ (1− w)xR

(
x

19
+

1

33

)
+ (1− w)(1− x)R

( x
12

)
(25)

for all x ∈ J = [0, 1] and R ∈ T . If we set the mappings τ,V1,V2,V3,V4 : J → J by

τ(x) = x, V1(x) =
x

16
+

1

11
, V2(x) =

x

6
, V3(x) =

x

19
+

1

33
, V4(x) =

x

12
,

for all x ∈ J . So, our equation (25) is decreased to the equation (8). It is easy to see that
V1,V2,V3,V4 satisfy our boundary conditions (9). Also,

|V1u−V1v| 6
1

16
|u−v|, |V2u−V2v| 6

1

6
|u−v|, |V3u−V3v| 6

1

19
|u−v|, |V4u−V4v| 6

1

12
|u−v|

for all u, v ∈ J . This implies that V1 − V4 are contraction mappings with coefficients b1 =
1

16
,

b2 =
1

6
, b3 =

1

19
and b4 =

1

12
respectively. Also, there exist points u⋆, v⋆ ∈ [0, 1] such that

V1(u
⋆) = V2(u

⋆) and V3(v
⋆) = V4(v

⋆) (see Fig. 1).
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(a) L1(x) =
x

16
+

1

11
(orange) and

L2(x) =
x

6
(green)

(b) L3(x) =
x

19
+ 1

33 (red) and

L4(x) =
x

12
(blue)

Fig. 1. Graphs of L1(x), L2(x), L3(x), and L4(x)

Moreover, Λ2 =
47w + 86

456
< 1, for all w ∈ [0, 1], and there is a nonempty set E of S :=

{R ∈ T |R(1) 6 1} such that (E , ∥ · ∥) is a Banach space, and the mapping K from E defined
in (25) for all x ∈ J is a self mapping, thus it fulfill all the requirements of Theorem 2.6, and
therefore, we get the results related to the existence of the given equation (25)’ solution.

If we define R0 = x as a starting approximation, then by Theorem 2.7, the iteration stated
below converges to a unique solution of (25):

R1(x) =
1

10032

[
−737wx2 − 308x2 + 1444wx+ 1140x

]
,

R2(x) =
wx

28250112

[
−8107wx2 − 3388x2 + 230560wx+ 190784x+ 352512w + 284672

]
+

+
w(1− x)

361152

[
−737wx2 − 308x2 + 8664wx+ 6840x

]
+

+
(1− w)x

358533648

[
72963wx2 − 30492x2 + 2632146wx+ 2109228x+ 1539665w + 1224512

]
+

+
(1− w)(1− x)

1444608

[
−737wx2 − 308x2 + 17328wx+ 13680x,

]
. . .

Rn(x) = wxRn−1 (V1(x)) + w(1− x)Rn−1 (V2(x)) + (1− w)xRn−1 (V3(x)) +

+(1− w)(1− x)Rn−1 (V4(x))

for all n ∈ N.
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3. Stability analysis of the proposed probabilistic functional
equation

Now, we shall discuss the stability of the suggested functional equation (7) (for the details of
stability, we refer [16], [17].

Theorem 3.1. Under the hypothesis of Theorem 2.1, the equation K R = R, where K : E → E
is defined as

(K R)(x) =

(
w − j

k − j

)(
τ(x)− j

k − j

)
R(V1(x)) +

(
w − j

k − j

)(
k − τ(x)

k − j

)
R(V2(x)) +

+

(
k − w

k − j

)(
τ(x)− j

k − j

)
R(V3(x)) +

(
k − w

k − j

)(
k − τ(x)

k − j

)
R(V4(x)), (26)

for all R ∈ E and x ∈ J , has Hyers-Ulam-Rassias stability; that is, for a fixed function
φ : E → [0,∞), we have that for every R ∈ E with d(K R,R) 6 φ(R), there exists a unique
R̃ ∈ E such that K R̃ = R̃ and d(R, R̃) 6 ςφ(R) for some ς > 0.

Proof. Let R ∈ E such that d(K R,R) 6 φ(R). From Theorem 2.1, there exists a unique
R̃ ∈ E such that K R̃ = R̃. Then we have

d(R, R̃) 6 d(R,K R) + d(K R, R̃) 6 φ(R) + d(K R,K R̃) 6 φ(R) + Λ1d(R, R̃),

where Λ1 is defined in (13), and so

d(R, R̃) 6 ςφ(R),

where ς :=
1

1− Λ1
. This completes the proof.

From the above analysis, we obtain the following result related to the Hyers-Ulam stability.

Corollary 3.2. Under the hypothesis of Theorem 2.1, the equation K R = R, where K : E → E
is defined as

(K R)(x) =

(
w − j

k − j

)(
τ(x)− j

k − j

)
R(V1(x)) +

(
w − j

k − j

)(
k − τ(x)

k − j

)
R(V2(x)) +

+

(
k − w

k − j

)(
τ(x)− j

k − j

)
R(V3(x)) +

(
k − w

k − j

)(
k − τ(x)

k − j

)
R(V4(x)), (27)

for all R ∈ E and x ∈ J , has Hyers-Ulam stability; that is, for a fixed ν > 0, we have that
for every R ∈ E with d(K R,R) 6 ν, there exists a unique R̃ ∈ E such that K R̃ = R̃ and
d(R, R̃) 6 ςν, for some ς > 0.

Conclusion

The predator-prey paradigm, especially in a two-choice situation, is one of the most exciting
frameworks in mathematical biology. A predator has two possible prey choices in these models,
and the solution exists when the predator is fixed to one of them. We extended the research by
introducing a generic stochastic functional equation in this paper that may cover a wide range
of learning theory models in the existing literature. The existence, uniqueness, and stability of
the proposed stochastic equation’s solution were investigated using a fixed-point method. Our
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techniques do not rely on the boundary conditions discussed in [6, 9], which implies that the
proposed results cover more problems than the results described in the literature. Our method
is unique, and it may be used to solve a wide variety of mathematical models in the fields of
mathematical psychology and learning theory.
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Подход с фиксированной точкой для изучения класса
вероятностных функциональных уравнений,
возникающих в психологической теории обучения

Али Тураб
Департамент математики и статистики

Факультет науки и технологий
Таммасат университет Рангссит центр

Патум Тани, Таиланд

Аннотация. Многие биологические модели и модели теории обучения были исследованы с ис-
пользованием вероятностных функциональных уравнений. В этой статье основное внимание
уделяется особому типу отношений хищник–жертва, в котором у хищника есть два вариан-
та добычи, каждый с вероятностью x и 1 − x, соответственно. Наша цель состоит в том,
чтобы исследовать реакцию животного в таких ситуациях, предложив общее вероятностное
функциональное уравнение. Заслуживающие внимания результаты с фиксированной точкой ис-
пользуются для исследования существования, единственности и устойчивости решений пред-
ложенного функционального уравнения. Приведен также пример, иллюстрирующий важность
наших результатов в этой области исследований.
Ключевые слова: вероятностные функциональные уравнения, устойчивость, неподвижные
точки.
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Abstract. We investigate the well-known hypothesis of D. R. Hughes that the full collineation group of
a non-Desarguesian semifield projective plane of a finite order is solvable (the question 11.76 in Kourovka
notebook was written down by N. D. Podufalov). The spread set method allows us to prove that any non-
Desarguesian semifield plane of order pN , where p ≡ 1 (mod 4) is prime, does not admit an autotopism
subgroup isomorphic to the dihedral group of order 8. As a corollary, we obtain the extensive list of
simple non-Abelian groups which cannot be the autotopism subgroups.
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Introduction

A projective plane is called a semifield plane if its points and lines are coordinatized by a
semifield, that is a non-associative ring Q = (Q,+, ·) with identity where the equations ax = b

and ya = b are uniquely solved for any a, b ∈ Q\{0}. The study of finite semifields and semifield
planes started more than a century ago with the first examples constructed by L.E. Dickson [1].

By the mid-1950s, some classes of finite semifield planes had been found. All of them
had the common property that the collineation group (automorphism group) is solvable. So
D.R. Hughes conjectured in 1959 in his report that any finite projective plane coordinatized by
a non-associative semifield has the solvable collineation group. This hypothesis is presented in
the monography [2, Ch. VIII, Sec. 6]; it is proved also that the hypothesis is reduced to the
solvability of an autotopism group as a group fixing a triangle. In 1990 the problem was written
down by N. D. Podufalov in the Kourovka notebook ( [3], the question 11.76).

We represent the approach to study Hughes’ problem based on the classification of finite
simple groups and the theorem of J. G. Thompson on minimal simple groups. The spread set
method allows us to identify the conditions when the semifield plane with certain autotopism
subgroup exists. This method can be used also to construct examples, including computer
calculations. The elimination of some simple groups as autotopism subgroups follows to the
progress in solving the problem.

It is shown by the author in [4,5], that an autotopism of order two has the matrix represen-
tation convenient for calculations and reasoning. These marices are used further to represent the

∗ol71@bk.ru https://orcid.org/0000-0002-6005-2393
c⃝ Siberian Federal University. All rights reserved
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elementary abelian 2-subgroups and 2-elements in the autotopism group [6,7]. Also it was proved
that any non-Desarguesian semifield plane of odd order cannot admit an autotopism subgroup
isomorphic to the alternating group A5 [8].

Here we use the spread set method to prove that any semifield plane of order pN , p is prime
and p − 1 is divisible by 4, cannot admit an autotopism subgroup isomorphic to the dihedral
group D8 of order 8, see Theorem 2.1. The proof is based on a concretization of a geometric
sense of autotopisms of order 2 and 4, it uses also the matrix representation of autotopisms of
order 4. Obviously, the presence of this group in almost all simple non-Abelian groups allows us
to exclude an extensive list from possible autotopism subgroups.

1. Definitions and preliminary results

We use main definitions, according [2, 9], see also [6], for notifications.
Consider a linear space W , n-dimensional over the finite field GF (ps) (p be prime) and the

subset of linear transformations R ⊂ GLn(p
s) ∪ {0} such that:

1) R consists of pns square (n× n)-matrices over GF (ps);
2) R contains the zero matrix 0 and the identity matrix E;
3) for any A,B ∈ R, A ̸= B, the difference A−B is a non-singular matrix.

The set R is called a spread set [2]; it is an image of an injective mapping θ from W :
R = {θ(y) | y ∈W}. Determine the multiplication on W by the rule x ∗ y = x · θ(y) (x, y ∈W ).
Then ⟨W,+, ∗⟩ is a right quasifield of order pns [9, 10]. Moreover, if R is closed under addition
then ⟨W,+, ∗⟩ is a semifield. This semifield coordinatizes the projective plane π of order pns such
that:

1) the affine points are the elements (x, y) of the space W ⊕W ;
2) the affine lines are the cosets to subgroups

V (∞) = {(0, y) | y ∈W}, V (m) = {(x, xθ(m)) | x ∈W} (m ∈W );

3) the set of all cosets to the subgroup is the singular point;
4) the set of all singular points is the singular line;
5) the incidence is set-theoretical.

To construct and study finite semifields, we use a prime field Zp as a basic field. In this case
the mapping θ is presented using linear functions only; it greatly simplifies the reasoning and
calculations (also computer).

The solvability of a collineation group Aut π for a semifield plane is reduced [2] to the solv-
ability of an autotopism group Λ (collineations fixing a triangle). Without loss of generality, we
can assume that autotopisms are determined by linear transformations of the space W ⊕W :

λ : (x, y) → (x, y)

(
A 0

0 B

)
,

here the matrices A and B satisfy the condition (for instance, see [11])

A−1θ(m)B ∈ R ∀θ(m) ∈ R. (1)

The collineations fixing a closed configuration have special properties. It is well-known [2],
that any involutory collineation is a central collineation or a Baer collineation.
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A collineation of a projective plane is called central, or perspectivity, if it fixes a line pointwise
(the axis) and a point linewise (the center). If the center is incident to the axis then a collineation
is called an elation, and a homology in another case. The order of any elation is a factor of the
order |π| of a projective plane, and the order of any homology is a factor of |π| − 1. All the
perspectivities in an autotopism group are homologies in the case when a semifield plane is
of odd order. They form the cyclic subgroups [12] which are normal in Λ, and contain three
involution homologies:

h1 =

(
−E 0

0 E

)
, h2 =

(
E 0

0 −E

)
, h3 =

(
−E 0

0 −E

)
.

Obviously these homologies are all in the center of Λ.
A collineation of a finite projective plane π is called a Baer collineation if it fixes pointwise a

subplane of order
√

|π| (Baer subplane). We use the following results on the matrix representation
of a Baer involution τ ∈ Λ and of a spread set obtained earlier in [5].

Let π be a non-Desarguesian semifield plane of order pN (p > 2 be prime). If its autotopism
group Λ contains the Baer involution τ then N = 2n is even and we can choose the base of
4n-dimensional linear space over Zp such that

τ =

(
L 0

0 L

)
, (2)

where L =

(
−E 0

0 E

)
and the Baer subplane πτ fixed by τ is the set of points

πτ = {(0, . . . , 0, x1, . . . , xn, 0, . . . , 0, y1, . . . , yn) | xi, yi ∈ Zp}.

In this base the spread set R ⊂ GL2n(p) ∪ {0} consists of matrices

θ(V,U) =

(
m(U) f(V )

V U

)
, (3)

where V ∈ Q, U ∈ K; Q,K are the spread sets in GLn(p) ∪ {0}, m, f are additive injective
functions from K and Q into GLn(p) ∪ {0}, m(E) = E. Note that throughout the article, the
blocks-submatrices have the same dimension by default.

It is shown by author in [6,7], that the order of a semifield plane provides a natural restriction
to the order of an elementary abelian 2-subgroup and to the order of 2-element in an autotopism
group. We will use some results and so we state it here in the more convenient form.

Theorem 1.1. Let π be a semifield plane of order pN , p be prime, p ≡ 1 (mod 4), τ ∈ Λ is a
Baer involution.

1. If α is an autotopism of order 4 and α2 = τ then the restriction of α onto the Baer
subplane πτ is a Baer involution.

2. If σ ̸= τ is a Baer involution in CΛ(τ) then the restriction of σ onto the Baer subplane
πτ is a homology if σ = hiτ (i = 1, 2, 3) or a Baer involution.

Theorem 1.2. Let π be a semifield plane of order pN , p be prime, p ≡ 1 (mod 4), α is an
autotopism of order 4, τ = α2 is a Baer involution. Then N is divisible by 4, and the base of
the linear space can be chosen such that τ is (2) and

α =


iL 0 0 0
0 L 0 0
0 0 iL 0
0 0 0 L

 , (4)
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where i ∈ Zp, i2 = −1. The spread set R of the plane π is formed by matrices

θ(V1, U1, V2, U2) =


m1(U2) m2(V2) f1(V1) f2(U1)
m3(V2) m4(U2) f3(U1) f4(V1)
ν(U1) ψ(V1) µ(U2) φ(V2)
V1 U1 V2 U2

 , (5)

where any block-submatrix is (N/4 ×N/4)-dimensional, V1 ∈ Q1, U1 ∈ K1, V2 ∈ Q2, U2 ∈ K2,
the matrix sets Q1, K1, Q2, K2 are the spread sets of semifield planes of order pN/4, all the
functions are additive.

Note, that α is determined up to multiplying to involution homologies hi from the center of Λ
(see the proof in [7]). If we consider certain subgroup of Λ then we can ignore these homologies.

The second statement of the theorem 1.2 is missed in [7] because obviously but here we must
reconstruct it due to the importance for the main result.

Indeed, we consider the condition (1) for the autotopism α and the matrix θ(V,U) (3):(
−iL 0

0 L

)(
m(U) f(V )

V U

)(
iL 0

0 L

)
=

(
Lm(U)L −iLf(V )L

iLV L LUL

)
.

Then we conclude that

LV L ∈ Q, LUL ∈ K, m(LUL) = Lm(U)L, f(LV L) = −Lf(V )L, ∀V ∈ Q, ∀U ∈ K.

So the semifield planes of order pN/2 with the spreads Q and K admit the Baer involution (2)
and the matrices V ∈ Q, U ∈ K are of the same form as (3):

V =

(
ν(U1) ψ(V1)

V1 U1

)
, U =

(
µ(U2) φ(V2)

V2 U2

)
.

If we suppose that

m(U) = m(V2, U2) =

(
m1(V2, U2) m2(V2, U2)

m3(V2, U2) m4(V2, U2)

)
,

then from m(−V2, U2) = Lm(V2, U2)L we obtain that the functions m1, m4 depend on the
block U2 and other functions on V2. For the function f(V ) we use the condition f(−V1, U1) =

= −Lf(V1, U1)L and complete the proof.

2. Main result
Theorem 2.1. Any non-Desarguesian semifield plane π of order pN , where p > 2 is prime and
p ≡ 1 (mod 4), does not admit an autotopism subgroup isomorphic to the dihedral group of order
8 without homologies.

Proof. Let H ≃ D8 be a subgroup of Λ, H = ⟨α⟩ h ⟨σ⟩, |α| = 4, |σ| = 2, σασ = α−1. The
autotopism α2 = τ is a Baer involution, so we can choose the base of 2N -dimensional linear space
such that τ is the matrix (2), α is the matrix (4) and the spread set consists of matrices (5).

Further, σ is a Baer involution commuting with τ , and then we have

σ =


A1 0 0 0

0 A2 0 0

0 0 B1 0

0 0 0 B2

 , A2
1 = A2

2 = B2
1 = B2

2 = E.
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According the Theorem 1.1, the restriction of σ onto the Baer subplane πτ is a Baer involution,
so A2 ̸= ±E, B2 ̸= ±E. From the condition σασ = α−1, we have

A1LA1 = B1LB1 = −L, A2LA2 = B2LB2 = L,

A1 =

(
0 A11

A12 0

)
, A2 =

(
A21 0

0 A22

)
, B1 =

(
0 B11

B12 0

)
, B2 =

(
B21 0

0 B22

)
.

The restrictions of α and σ onto the Baer subplane πτ are commuting Baer involutions and, once
more from the Theorem 1.1 and [6], we can choose the base of πτ such that A21 = A22 = B21 =

B22 = L and

σ =



0 S 0 0 0 0 0 0

S−1 0 0 0 0 0 0 0

0 0 L 0 0 0 0 0

0 0 0 L 0 0 0 0

0 0 0 0 0 S 0 0

0 0 0 0 S−1 0 0 0

0 0 0 0 0 0 L 0

0 0 0 0 0 0 0 L


.

Here, for compactness, S = A11, and A2
1 = E follows A12 = S−1. The equality B1 = A1 we

obtain from the condition (1) for σ and θ(V,U) = E ∈ R:(
A1 0

0 A2

)(
B1 0

0 B2

)
=

(
A1B1 0

0 E

)
∈ R⇒ A1B1 = E.

Now we simplify the matrix σ changing the base by the block-diagonal transition matrix

T = diag (E,S,E,E,E, S,E,E).

This modification preserves the matrices τ and α, but allows us to write σ in the more convenient
form:

σ =



0 E 0 0 0 0 0 0

E 0 0 0 0 0 0 0

0 0 L 0 0 0 0 0

0 0 0 L 0 0 0 0

0 0 0 0 0 E 0 0

0 0 0 0 E 0 0 0

0 0 0 0 0 0 L 0

0 0 0 0 0 0 0 L


.

Consider the condition (1) for the spread set (5) and the Baer involution σ. For V2 = U2 = 0

we have: 
0 E 0 0

E 0 0 0

0 0 L 0

0 0 0 L




0 0 f1(V1) f2(U1)

0 0 f3(U1) f4(V1)

ν(U1) ψ(V1) 0 0

V1 U1 0 0




0 E 0 0

E 0 0 0

0 0 L 0

0 0 0 L

 =

=


0 0 f3(U1)L f4(V1)L

0 0 f1(V1)L f2(U1)L

Lψ(V1) Lν(U1) 0 0

LU1 LV1 0 0

 ∈ R.
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So, the matrices LU1 and LV1 belong to the spread sets Q1 and K1 for all V1 ∈ Q1, U1 ∈ K1.
For instance, we have L ∈ K1 if V1 = E. The spread set K1 of a semifield plane is closed
under addition, so the non-zero degenerate matrix L+E belongs to K1, that is impossible. This
contradiction proves the theorem.

Note that the absence of homologies inH is the natural condition for us because we investigate
the existence problem for simple non-Abelian subgroups in the autotopism group Λ (for instance,
minimal simple non-Abelian groups from the Thompson’s list). Indeed, the homologies generate
the normal subgroup of Λ; moreover, the involution homlogies are in the center of Λ.

Let G be a subgroup of Λ and S be the Sylow 2-subgroup of G. If two involutions in S

does not commute then they generate the dihedral subgroup in S. Further, using the results
of D. Goldschmidth [13] on strongly closed subgroups (see also D. Gorenstein [14, th. 4.128]),
we conclude that D8 is contained almost in all finite simple non-Abelian groups and list the
exceptions.

Theorem 2.2. Let π be a non-Desarguesian semifield plane of order pN , where p > 2 is prime
and p ≡ 1 (mod 4). Then its autotopism group Λ does not contain a simple non-Abelian subgroup,
except probably the following: PSL(2, 2n), n > 2, PSU(3, 2n), n > 2, Sz(2n), n is odd, n > 1,
PSL(2, q), q ≡ ±3 (mod 8), J1 or 2G2(3

n), n is odd, n > 1.

Referring to the Thompson’s list, we clarify also that the autotopism group Λ under the order
condition above does not contain PSL(2, 3n), n > 2 is prime, PSL(2, n), n ≡ ±1 (mod 8) is
prime, and PSL(3, 3).

Conclusion

In order to study Hughes’ problem on the solvability of the full collineation group of a finite
non-Desarguesian semifield plane, the author considers it possible to use the obtained results
to further investigations. The method applied will probably be useful to study other small
autotopism subgroups under the conditions on the plane order.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation (Agreement no. 075-02-2022-876).
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Группа диэдра порядка 8 в группе автотопизмов
полуполевой проективной плоскости нечетного порядка

Ольга В. Кравцова
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. Изучается известная гипотеза Д. Хьюза о разрешимости полной группы автомор-
физмов конечной недезарговой полуполевой проективной плоскости (также вопрос 11.76
Н. Д. Подуфалова в Коуровской тетради). Метод регулярного множества позволяет доказать, что
недезаргова полуполевая плоскость порядка pN , где p — простое, p− 1 делится на 4, не допускает
подгрупп автотопизмов, изоморфных диэдральной группе порядка 8. В качестве следствия выде-
ляется обширный список простых неабелевых групп, не являющихся подгруппами автотопизмов.

Ключевые слова: полуполевая плоскость, регулярное множество, бэровская инволюция, гомоло-
гия, автотопизм.
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Abstract. In this paper, we tackle the two-dimensional and irrotational flow of inviscid and incom-
pressible fluid over a trapezoidal obstacle. The free surface of the flow which is governed by the Bernoulli
condition is determined as a part of solution of the problem. This condition renders difficult an analyt-
ical solution of the problem. Hence, our work’s objective is utilize the Hilbert transformation and the
perturbation technique to provide an approximate solution to this problem for large Weber numbers and
various configurations of the obstacle. The obtained results demonstrate that the used method is easily
applicable, and provides approximate solutions to these kinds of problems.

Keywords: free surface flow, surface tension, incompressible flow, Hilbert method, perturbation tech-
nique.

Citation: M.M. Bounif, A. Gasmi, Perturbation Approach for a Flow over a Trapezoidal Obstacle, J.
Sib. Fed. Univ. Math. Phys., 2022, 15(3), 385-396. DOI: 10.17516/1997-1397-2022-15-3-385-396.

Our study begins with a consideration of the steady two-dimensional and irrotational fluid
flow over a trapezoidal obstacle. On the one hand, we assume the fluid is incompressible and
inviscid. On the other hand, we consider the surface tension effect but neglect the effect of
gravity. A major characteristic of the present problem is the nonlinear condition given through
the Bernoulli equation on the free surface of an unknown shape. The latter can be identified as
part of the solution to the problem. In addition, because this condition the proposed problem
become difficult to solve it analytically, so it is necessary to look for an approximate solution
to it.

Free-surface flow problems have been approached using different techniques and methods
over the past few decades. Of these techniques and methods we can mention the series trun-
cation technique and boundary integral method, which helps determine the free surface shape
for potential flows over given obstacles. For example Forbes and Schwartz [1], determine the
non-linear solutions of subcritical and supercritical flows over a semi-circular obstacle, Gasmi
and Mekias [2], Gasmi and Amara [3] and Vanden-Broeck [4], studied the problems of flow over
an obstruction in a channel, whilst Dias, Killer and Vanden-Broeck [5] , obtained solutions to
both subcritical and supercritical free-surface flows past a triangular obstacle, Wiryanto [6] take
the problem of the flow under a sluice gate, M.B. Abd-el-Malek and S. Z. Masoud [7] obtains
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the linear solution of the flow over a ramp, by representing the bottom in integral form using
Fourier’s double-integral theorem. M.B. Abd-el-Malek and S.N. Hanna [8] solved numerically
the problem of the flow over a ramp with gravity effect by the Hilbert Method and the per-
turbation technique. M. B.Abd-el-Malek, S. N. Hanna and M. T. Kamel [9] investigated the flow
over triangular bottom. Bounif and Gasmi [10] , on the other hand, examined the problem that
involves a free-surface flows over a step at the bottom of a channel, they offered a solution to the
problem using the perturbation method.

The method that we employ in this paper to approximate a solution of the considered prob-
lem follows three steps. Initially, we map the flow field of the physical plane onto the upper
half plane using the Schwartz–Christoffel transformation. Accordingly, the Hilbert method helps
us identify a system of nonlinear equation when applied to the new upper half plane’s mixed-
boundary value problem. Finally, the perturbation technique is utilized to provide a solution to
the system for some large values of the Weber number and varied trapezoidal obstacle config-
urations. The employability of our method will then be clear given the acquired results, as it
provides approximate solutions to the selected kind of problems.

The outline of the paper can be given in four main sections. The first of which will introduce
the mathematical formulation of the present problem. Section 2 presents the approximation of
equations of the problem, while Section 3 delineates the application of the perturbation technique
to solve it. Finally, we show certain free streamline shapes and results in final section.

1. Formulation of problem

Let us consider the motion of a two-dimensional flow of a fluid over a trapezoidal obstacle. The
fluid is assumed to be incompressible, irrotational and inviscid. The effect of gravity is neglected
but we take into account the superficial tension effect. The flow we propose is uniform and has a
constant discharge U1h1 = U2h2 , where Ui, i = 1, 2 designates the velocities and hi, i = 1, 2 are
the depths of the flow upstream and downstream respectively. Hence, the bottom consists of the
horizontal walls A0A−1 and A1A

′
and the asymmetric polygon A−1A−2 . . . A−NAN . . . A2A1 of

2N angles αi and (2N−1) straight-line segments. Furthermore, we choose Cartesian coordinates
with the origin in the point (see Fig. 1).

Fig. 1. Sketch of the flow and of the coordinates
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The dimensionless variables are defined by choosing U1 as the unit velocity and h1 as the
unit length. We introduce the complex potential f(z) = φ(z) + iψ(z), where φ is the potential
function, ψ the stream function (φ and ψ are conjugate solutions of Laplace’s equation) and f(z)
is an analytic function of z within the region of flow with complex conjugate velocity

η =
df(z)

dz
= u− iv = qe−iθ. (1)

Let
κ = ln η = ln q − iθ, (2)

where κ is called the logarithmic hodograph variable. Then, from (1) and (2) we get

z =

∫
e−ωdf. (3)

Without loss of generality, we choose φ = 0 at a point A−1 , ψ = 1 on the streamline A0A
′
, and

ψ = 0 on the streamline A0A−1A−2 . . . A−NAN . . . A1A
′
(see Fig. 2). We denote the dimension-

less trapezoid depth by ri, where
ri = li sin(αi), (4)

where

li =

{
|AiAi−1|, i = −1, . . . ,−N + 1,
|AiAi+1|, i = 1, . . . , N − 1.

(5)

On the free-surface, where the pressure is uniform, the dimensionless form of the Bernoulli
equation is given by:

q2 +
2

We

∣∣∣∣ ∂θ∂φ
∣∣∣∣ q = 1, (6)

where We is the adimensional parameter, known as the Weber number and defined by:

We =
ρU2

1h1
T

, (7)

T is the surface tension, and ρ is the density of the fluid.

Fig. 2. The potential f plane

Using the Schwartz-Christoffel transformation, we map the potential plane f as seen in Fig. 2
onto the upper half of an auxiliary t-plane see Fig. 3.

The tranformation used is:
f(t) = − 1

π
ln (1− t) . (8)
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Fig. 3. The auxiliary t plane

1.1. The Hilbert method

In order to express κ as the single variable t function, we need to use the Hilbert method for
the obtained mixed problem of the new plane. Hence, the solution for an analytic function χ(t)
in the upper half-plane (see [11]) is given by

χ(t) =
1

π
p.v.

∫ +∞

−∞

Im [χ(s)]

s− t
ds+

∞∑
j=0

Bjt
j . (9)

Where Bj are real constants and p.v. is the principal value of the integral.
The real and imaginary parts of κ (t) are given by

Im [κ (t)] = −θ (t) ,
Re [κ (t)] = ln q(t).

(10)

Where

θ (t) =



0, t < 0 = t1,

αi, ti < t < ti−1, i = −N + 1, . . . ,−1,

−αi, ti+1 < t < ti, i = 1, . . . , N − 1,

0, tN < t < 1,

θ (t) , t > 1.

(11)

To switch the function κ (t) to χ(t), we use an auxiliary function H(t)

H(t) =

{ √
1− t, t < 1,

−i
√
t− 1, t > 1.

(12)

Using (10) and (12), with χ(t) = κ(t)/H(t), we get

χ (t) =


ln q(t)− iθ(t)√

1− t
, t < 1,

ln q(t)− iθ(t)

−i
√
t− 1

, t > 1.

 = U(t) + iV (t). (13)

Examining the upstream condition, we have

Bj = 0, j = 0, 1, 2, . . . .

and hence

χ(t) =
1

π
p.v.

∫ +∞

−∞

Im [χ(s)]

s− t
ds. (14)
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Therefore, using (13) and (14), we obtain

U(t) =
1

π
p.v.

∫ +∞

−∞

V (s)

s− t
ds. (15)

V (t) = − 1

π
p.v.

∫ +∞

−∞

U(s)

s− t
ds. (16)

Along the real axis of the upper half-plane Im(t) = 0 (see Fig 3), the distribution of both real
and imaginary parts of χ(t) can be recapitulated; check Tab. 1. Therefore, q0 is defined in t < 0

and q∞ is defined in tN < t < 1.
Using (15), (16) and Tab. 1, we obtain the following systems of the nonlinear integral equations:

Table 1. Distribution of the flow quantities along Im(t) = 0

t U(t) V (t)

t < 0 = t−1
ln q0(t)√
1− t

0

ti < t < ti−1; i = −N + 1, . . . ,−1
ln qi(t)√
1− t

−αi√
1− t

ti+1 < t < ti; i = 1, . . . , N − 1
ln qi(t)√
1− t

αi√
1− t

tN < t < 1
ln q∞(t)√

1− t
0

t > 1
θ(t)√
t− 1

ln q(t)√
t− 1

θ(t) =

√
t− 1

π
p.v.

∫ +∞

1

ln q(s)

(s− t)
√
s− 1

ds+

−1∑
i=−N+1

2αi

π
tan−1

(
(mi −mi−1)

√
t− 1

t− 1 +mimi−1

)
−

−
N−1∑
i=1

2αi

π
tan−1

(
(mi+1 −mi)

√
t− 1

t− 1 +mi+1mi

)
, t > 1, (17)

where
mi =

√
1− ti. (18)

And

ln(qj(t)) =

√
1− t

π

{
p.v.

∫ +∞

1

ln q(s)

(s− t)
√
s− 1

ds+

−1∑
i=−N+1

αi

∫ ti−1

ti

ds

(s− t)
√
1− s

−

−
N−1∑
i=1

αi

∫ ti

ti+1

ds

(s− t)
√
1− s

}
, (19)

where p.v. is the principal value of the integral and for j=−N, . . . ,−1, qj(t) being the flow speed
in tj < t < tj−1, and for j = 1, . . . , N , qj(t) being the flow speed in tj+1 < t < tj .

Using (3) and (8), the coordinates of a point on the free-surface can be obtained as follows:

z(t) = z∞ − 1

π

∫ +∞

t

eiθ(s)

(1− s)q(s)
ds, t > 1. (20)
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By separating the real and imaginary parts, we get:

x(t) = x∞ − 1

π

∫ +∞

t

cos θ(s)

(1− s)q(s)
ds, t > 1, (21)

y(t) = 1− 1

π

∫ +∞

t

sin θ(s)

(1− s)q(s)
ds, t > 1. (22)

2. The approximate equations

In this section, we approximate the nonlinear integral equations (6), (17), (21) and (22) ,
when Weber number is large.

Using the first-order Taylor development with respect to
1

We

∣∣∣∣ ∂θ∂φ
∣∣∣∣, we can give the solution

to the Bernoulli equation as follows:

q(t) ≈ 1− 1

We

∣∣∣∣ ∂θ∂φ
∣∣∣∣ . (23)

Using the relation (8), we obtain:

∂θ

∂φ
=
∂θ

∂t

∂t

∂φ
= π(t− 1)

∂θ

∂t
, t > 1. (24)

Consequently, for t > 1 the flow speed is approximated by

q(t) ≈ 1− π

We
(t− 1)

∂θ

∂t
(t). (25)

which yields

ln q(t) ≈ − π

We
(t− 1)

∂θ

∂t
(t), (26)

and
1

q(t)
≈ 1 +

π

We
(t− 1)

∂θ

∂t
(t). (27)

For small angles αi, the change in θ will be minor, thus, allowing us to approximate sin θ by θ(t)
and cos θ by one.

Using (26), we can approximate the angle of the free surface with the horizontal (17) by

θ(t) ≈ −
√
t− 1

We
p.v.

∫ +∞

1

(s− 1)∂θ∂s (s)

(s− t)
√
s− 1

ds+

−1∑
i=−N+1

2αi

π
tan−1

(
(mi −mi−1)

√
t− 1

t− 1 +mimi−1

)
−

−
N−1∑
i=1

2αi

π
tan−1

(
(mi+1 −mi)

√
t− 1

t− 1 +mi+1mi

)
, t > 1, (28)

substituting (27) into (21) and (22), and after simplification, the free surface equations take the
form:

x(t) ≈ x∞ − 1

π

∫ +∞

t

1

(1− s)

[
1 +

π

We
(s− 1)

∂θ

∂s
(s)

]
ds

≈ x∞ − 1

π

∫ +∞

t

1

(1− s)
ds+

1

We

[
lim

s−→∞
θ(s)− θ(t)

]
≈ x∞ − 1

π

∫ +∞

t

1

(1− s)
ds− 1

We
θ(t), (29)
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and

y(t) ≈ 1− 1

π

∫ +∞

t

θ(s)

(1− s)

[
1 +

π

We
(s− 1)

∂θ

∂s
(s)

]
ds

≈ 1− 1

π

∫ +∞

t

θ(s)

(1− s)
ds+

1

2We

[
lim

s−→∞
θ2(s)− θ(t)2

]
≈ 1− 1

π

∫ +∞

t

θ(s)

(1− s)
ds− θ2(t)

2We
. (30)

To solve the system of the nonlinear integral equations (25), (28)–(30), we use the Perturbation
technique.

3. Perturbation technique

We expand X(t) in terms of the small parameters αi

X(t) =

N−1∑
j=−N+1

∞∑
k=0

αk
jXk,αj (t). (31)

Where X(t) stands for q(t), θ(t), θ
′
(t), x(t) and y(t).

3.1. Zero-order approximation

This case corresponds to the flow far upstream, which we consider as uniform. Then, the
zero-order approximation of the nonlinear integral equations (25), (28)–(30) is presented by:

• The velocity of the flow
q0(t) ≈ 1− π

We
(t− 1)θ

′

0(t) ≈ 1. (32)

• The velocity direction relative to the horizontal

θ0(t) ≈ −
√
t− 1

We
p.v.

∫ +∞

1

(s− 1)θ
′

0(s)

(s− t)
√
s− 1

ds ≈ 0. (33)

• The free streamline equations:

x0(t) ≈ x∞ − 1

π

∫ +∞

t

1

(1− s)
ds− 1

We
θ0(t)

≈ x∞ − 1

π

∫ +∞

t

1

(1− s)
ds. (34)

and

y0(t) ≈ 1− 1

π

∫ +∞

t

θ0(s)

(1− s)
ds− θ20(t)

2We
≈ 1. (35)

On the other hand, we have the formula:

x∞ ≈ 1

π
p.v.

∫ +∞

0

1

(1− s)
ds, (36)

hence
x0(t) ≈ − 1

π
ln(t− 1). (37)
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3.2. First-order approximation

Now, we find the first-order approximation of the nonlinear integral equations (25), (28)–(30)
by using development (31) and the zero-order approximation of the system.

Using the development (31), we can write

X1,αi(t) ≈
X(t)−X0(t)

αi
. (38)

Substituting (25) and (32) into (38) yields

q1,αi
(t) ≈ π

We
(t− 1)θ

′

1,αi
(t). (39)

From (28), (33) and (38) we get:
• for i = −N + 1, . . . ,−1,

θ1,αi(t) ≈ −
√
t− 1

We

∫ +∞

1

(s− 1)θ
′

1,αi
(s)

(s− t)
√
s− 1

ds+

−1∑
i=−N+1

2

π
tan−1

(
(mi −mi−1)

√
t− 1

t− 1 +mimi−1

)
, (40)

• for i = 1, . . . , N − 1,

θ1,αi(t) ≈ −
√
t− 1

We

∫ +∞

1

(s− 1)θ
′

1,αi
(s)

(s− t)
√
s− 1

ds−
N−1∑
i=1

2

π
tan−1

(
(mi+1 −mi)

√
t− 1

t− 1 +mi+1mi

)
. (41)

On the other hand, from (29), (30), (35), (37) and (38), we find:

x1,αi
(t) ≈ − 1

We
θ1,αi

(t), (42)

and

y1,αi
(t) ≈ − 1

π

∫ +∞

t

θ1,αi(s)

(1− s)
ds. (43)

From (40), (41), and for a very large value of the Weber number We, we may neglect the first
term with respect to the second one. Thus, we get the first-order approximation of the velocity
direction relative to the horizontal axis:

θ1,αi(t) ≈ 2

π
arctan

(
(mi −mi−1)

√
t− 1

t− 1 +mimi−1

)
, i = −N + 1, . . . ,−1, (44)

θ1,αi(t) ≈ − 2

π
arctan

(
(mi+1 −mi)

√
t− 1

t− 1 +mi+1mi

)
, i = 1, . . . , N − 1. (45)

Substituting (44), (45) into (42) and (43) and carrying out the integration, one finds

x1,αi
(t) ≈ − 2

πWe
arctan

(
(mi −mi−1)

√
t− 1

t− 1 +mimi−1

)
, i = −N + 1, . . . ,−1, (46)

x1,αi
(t) ≈ 2

πWe
arctan

(
(mi+1 −mi)

√
t− 1

t− 1 +mi+1mi

)
, i = 1, . . . , N − 1, (47)

and

y1,αi(t) ≈
4 (mi −mi−1)

π2√mimi−1
arctan

(√
mimi−1

t− 1

)
, i = −N + 1, . . . ,−1, (48)
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y1,αi
(t) ≈ −4 (mi+1 −mi)

π2√mi+1mi
arctan

(√
mi+1mi

t− 1

)
, i = 1, . . . , N − 1. (49)

Using results (35), (37), (46)–(49) and expanding (31) enables finding the approximate solutions
of the free-surface flow:

x(t) ≈ − 1

π
ln(t− 1)−

−1∑
i=−N+1

2αi

πWe
tan−1

(
(mi −mi−1)

√
t− 1

t− 1 +mimi−1

)

+

N−1∑
i=1

2αi

πWe
tan−1

(
(mi+1 −mi)

√
t− 1

t− 1 +mi+1mi

)
, (50)

and

y(t) ≈ 1 +

−1∑
i=−N+1

4 (mi −mi−1)αi

π2√mimi−1
tan−1

(√
mimi−1

t− 1

)

−
N−1∑
i=1

4 (mi+1 −mi)αi

π2√mi+1mi
tan−1

(√
mi+1mi

t− 1

)
, t > 1. (51)

4. Application example for N = 2 and α−2 = α2 = 0

The previous approximate scheme is used to calculate the solutions and the free surface
profiles for fixed values of flow with large Weber number are found throughout a range of different
Weber number. The Fig. 4 presented the variation of the free surface shape with respect to the
Weber number, fixed the angles values α−1 = α1 = π/6, l−2 = l2 = 1, and the depth of the
obstacle value r−1 = 0.65 .

Fig. 4. Effect of Weber number on the free-surface profile at a fixed the trapezoid depth
r−1 = 0.65 and the angles α−1 = π/6, α1 = π/6

As presented in Fig. 4, the curvature of the free surface is decreased if the Weber number
decreases, because this is an important characteristic property of the surface tension effects. The

– 393 –



May Manal Bounif, Abdelkader Gasmi Perturbation Approach for a Flow . . .

free-surface profiles for four different depths r−1 are plotted in Fig. 5 at a fixed Weber number
We = 200, l−2 = l2 = 1, α−1 = α1 =

π

8
. This clarifies that increasing the depth r−1 results in

more deviation of the free surface from the horizontal one.

Fig. 5. Effect of the trapezoid depth r−1 on the free-surface profile Weber number We = 200
and the angles α−1 = α1 = π/8

Fig. 6 shows the free-surface profiles for different angles α1 at a fixed α−1 = π/8,r−1 = 0.5,
and at a fixed Weber number We = 200. Fig. 6 shows the free-surface profiles for four different
angles α−1 at a fixed α1 = π/6,r−1 = 0.5 and at a fixed Weber number We = 200 .

Fig. 6. Effect of the angles α1 on the free-surface profile Weber number We = 200 , the angle
α−1 = π/6 and the trapezoid depth r−1 = 0.5
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Fig. 7. Effect of the angles α−1 on the free-surface profile Weber number We = 200 , the angle
α1 = π/8 and the trapezoid depth r−1 = 0.5

The two Fig. 6 and 7 evidently show that the deviation of the free-surface results from the
change in angles.

Conclusion

In this paper, the problem of flow over a trapezoidal obstacle is formulated as a system of
nonlinear integral equations. The perturbation technique is used to give an approximate solution
to this system for a large Weber number; the free surface profiles under the effect of small surface
tension and bottom configurations are illustrated and plotted. The obtained results demonstrate
that the used method is easily applicable, and provides approximate solutions to these kinds of
problems.
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Метод возмущений при обтекании трапециевидного
препятствия

Май Манал Боуниф
Абделькадеф Газми

Лаборатория чистой и прикладной математики
Факультет математики и информатики

Университет Мсила
Мсила, Алжир

Аннотация. В этой статье мы рассматриваем двумерное и безвихревое течение невязкой и несжи-
маемой жидкости над трапециевидным препятствием. Свободная поверхность обтекателя регули-
руется условием Бернулли, которое определяется в рамках решения задачи. Это условие затрудняет
аналитическое решение проблемы. Следовательно, цель нашей работы — использовать преобразо-
вание Герберта и технику возмущений, чтобы обеспечить приближенное решение этой проблемы
для больших чисел Вебера и различных конфигураций препятствия. Полученные результаты пока-
зывают, что используемый метод прост в применении и дает приблизительные решения подобных
задач.

Ключевые слова: свободный поверхностный поток, поверхностное натяжение, несжимаемый по-
ток, метод Гильберта, возмущение техника.
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Abstract. The purpose of this paper is to establish some common fixed point theorems for
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gral type contractions are presented in the space. Further, the monotone iterative technique has been
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Introduction

Ever since in fixed point theory and approximation theory, the classical Banach contraction
principle [1] plays a vital role to acquire the unique solution of many known results. It is very
important and popular tool in various disciplines of mathematics to solve the existing problems in
nonlinear analysis. Later, a lot of variety of generalizations of this Banach contraction principle [1]
have been taken place in a metrical fixed point theory by improving the underlying contraction
condition, some of which are in [2–11]. Thereafter, vigorous research work has been noticed by
weakening its hypotheses in various spaces with topological properties such as rectangular metric
spaces, pseudo metric spaces, fuzzy metric spaces, quasi metric spaces, quasi semi-metric spaces,
probabilistic metric spaces, D-metric spaces, G-metric spaces, F -metric spaces, cone metric
spaces etc. Prominent works on the existence and uniqueness of a fixed point in partially ordered
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metric spaces with different contractive conditions have been acquired by several researchers,
the readers may refer to [12–21] and the references therein, which generate natural interest to
establish usable fixed point theorems.

The concept of coupled fixed point for a certain mapping in ordered metric space was first
introduced by Bhaskar and Lakshmikantham [22] and then applied their results to a periodic
boundary value problem to obtain the unique solution. While, the theory of coupled coincidence
point and common fixed point results was first initiated by Lakshmikantham and Ćirić [23]
which generalized and extended the results of [22] by considering the monotone property of a
mapping in ordered metric spaces. Some generalized results on fixed point, coupled fixed point
and common fixed point under various contractive conditions in different spaces can be found
from [24–37]. Recently, Seshagiri Rao et al. [38–42] and Kalyani et al. [43] have investigated some
coupled fixed point theorems for the self mappings satisfying generalized rational contractions in
partially ordered metric spaces.

The aim of this paper is to present some common fixed point results for a pair of self-mappings
satisfying a generalized rational contraction condition in the context of complete partially or-
dered metric space. These results generalized and extended the results of Harjani et al. [15] and
Chandok [30] in the literature. Some consequences of the main result in terms of integral con-
tractions are presented. A numerical example has been provided to support the result obtained.
Moreover, an application of the result has been given by taking the integral equation using the
monotone iterative technique.

1. Mathematical preliminaries

Definition 1 ([38]). The triple (X, d,≼) is called a partially ordered metric space, if (X,≼) is
a partially ordered set together with (X, d) is a metric space.

Definition 2 ( [38]). If (X, d) is a complete metric space, then the triple (X, d,≼) is called
complete partially ordered metric space.

Definition 3 ([38]). Let (X,≼) be a partially ordered set. A mapping f : X → X is said to be
strictly increasing (or strictly decreasing), if f(x) ≺ f(y) (or f(x) ≻ f(y)), for all x, y ∈ X with
x ≺ y.

Definition 4 ([42]). Let f, T : A→ A be two mappings, where A ̸= ∅ subset of X. Then

(a) f and T are commutative, if fTx = Tfx for all x ∈ A.

(b) f and T are compatible, if for very sequence {xn} with lim
n→+∞

fxn = lim
n→+∞

Txn = µ for

some µ ∈ A, then lim
n→+∞

d(Tfxn, fTxn) = 0.

(c) f and T are said to be weakly compatible if they commute only at their coincidence points
(i.e., if fx = Tx then fTx = Tfx).

(d) T is called monotone f -nondecreasing, if

fx ≼ fy ⇒ Tx ≼ Ty for all x, y ∈ X.

(e) A is a well ordered set, if every two elements of it are comparable.

(f) a point x ∈ A is a common fixed (or coincidence) point of f and T , if fx = Tx = x
(orfx= Tx).
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2. Main results
We begin this section with the following coincidence point theorem.

Theorem 1. Let (X, d,≼) be a complete partially ordered metric space. Suppose that the map-
pings T, f : X → X are continuous, T is monotone f -nondecreasing, T (X) ⊆ f(X) and satisfying
the following contraction condition

d(Tx, Ty) 6 α
d(fx, Tx) d(fy, Ty)

d(fx, fy)
+ β [d(fx, Ty) + d(fy, Tx)] + γd(fx, fy), (1)

for all x, y ∈ X for which the distinct fx and fy are comparable and for some α, β, γ ∈ [0, 1)
with 0 6 α+ 2β + γ < 1. If there exists certain x0 ∈ X such that fx0 ≼ Tx0 and the mappings
T and f are compatible, then T and f have a coincidence point in X.

Proof. Let x0 ∈ X such that fx0 ≼ Tx0. Since, T (X) ⊆ f(X) then we can choose a point
x1 ∈ X such that fx1 = Tx0. But Tx1 ∈ f(X), then there exists another point x2 ∈ X such
that fx2 = Tx1. Similarly by continuing the same procedure, we construct a sequence {xn} ⊆ X
such that fxn+1 = Txn for all n > 0.

Again from the hypothesis, we have fx0 ≼ Tx0 = fx1. Since T is monotone f -nondecreasing
then we obtain that Tx0 ≼ Tx1. As by the similar argument, we get Tx1 ≼ Tx2, since fx1 ≼ fx2.
Continuing the process, we acquire that

Tx0 ≼ Tx1 ≼ · · · ≼ Txn ≼ Txn+1 ≼ . . . .

Case 1. Suppose that d(Txn, Txn+1) = 0 for some n ∈ N, then we have Txn+1 = Txn.
Therefore, Txn+1 = Txn = fxn+1. Hence, xn+1 is a coincidence point of T and f in X and we
have the result.

Case 2. Suppose d(Txn, Txn+1) > 0 for all n > 0, then from (1), we have

d(Txn+1, Txn) 6 α
d(fxn+1, Txn+1) d(fxn, Txn)

d(fxn+1, fxn)
+ β [d(fxn+1, Txn) + d(fxn, Txn+1)]+

+ γd(fxn+1, fxn),

which intern implies that

d(Txn+1, Txn) 6 αd(Txn, Txn+1) + β [d(Txn, Txn) + d(Txn−1, Txn+1)] + γd(Txn, Txn−1).

Finally, we arrive at

d(Txn+1, Txn) 6
(

β + γ

1− α− β

)
d(Txn, Txn−1).

Inductively, we get

d(Txn+1, Txn) 6
(

β + γ

1− α− β

)n

d(Tx1, Tx0).

Let k =
β + γ

1− α− β
< 1, then from the triangular inequality of a metric d for m > n, we have

d(Txm, Txn) 6 d(Txm, Txm−1) + d(Txm−1, Txm−2) + · · ·+ d(Txn+1, Txn) 6

6
(
km−1 + km−2 + · · ·+ kn

)
d(Tx1, Tx0) 6

kn

1− k
d(Tx1, Tx0),
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as m,n → +∞, d(Txm, Txn) → 0, which shows that the sequence {Txn} is a Cauchy sequence
in X. Therefore from the completeness of X, there exists a point µ ∈ X such that Txn → µ as
n→ +∞. Further the continuity of T implies that

lim
n→+∞

T (Txn) = T

(
lim

n→+∞
Txn

)
= Tµ.

Since fxn+1 = Txn and then fxn+1 → µ as n → +∞. Furthermore, from the compatibility of
the mappings T and f , we have

lim
n→+∞

d(Tfxn, fTxn) = 0.

By the triangular inequality, we have

d(Tµ, fµ) = d(Tµ, Tfxn) + d(Tfxn, fTxn) + d(fTxn, fµ),

on taking n→ +∞ and from the fact that T and f are continuous, we obtain that d(Tµ, fµ) = 0.
Thus, Tµ = fµ. Hence, µ is a coincidence point of T and f in X.

We have the following consequences from Theorem 1.

Corollary 1. Suppose (X, d,≼) be a complete partially ordered metric space. Let the mappings
T, f : X → X are continuous, T is monotone f -nondecreasing, T (X) ⊆ f(X) and satisfies

d(Tx, Ty) 6 α
d(fx, Tx) d(fy, Ty)

d(fx, fy)
+ β [d(fx, Ty) + d(fy, Tx)] ,

for all x, y ∈ X for which the distinct fx and fy are comparable and where α, β ∈ [0, 1) such
that 0 6 α+ 2β < 1. If fx0 ≼ Tx0 for some x0 ∈ X and the mappings T and f are compatible,
then T and f have a coincidence point in X.

Proof. The required proof can be obtained by setting γ = 0 in Theorem 1.

Corollary 2. Let (X, d,≼) be a complete partially ordered metric space. Assume that the map-
pings T, f : X → X are continuous, T is monotone f -nondecreasing, T (X) ⊆ f(X) and satisfies

d(Tx, Ty) 6 β [d(fx, Ty) + d(fy, Tx)] + γd(fx, fy)

for all x, y ∈ X for which fx, fy are comparable and β, γ ∈ [0, 1) such that 0 6 2β + γ < 1. If
for some x0 ∈ X such that fx0 ≼ Tx0 and the mappings T and f are compatible, then T and f
have a coincidence point in X.

Proof. Set α = 0 in Theorem 1.

We extract the continuity criteria of T in Theorem 1 is still valid by assuming the following
hypotheses in X:

If {xn} is a non-decreasing sequence in X such that xn → x, then xn ≼ x for all n ∈ N.

Theorem 2. Let (X, d,≼) be a complete partially ordered metric space. Suppose the mappings
T, f : X → X are continuous, T is monotone f -nondecreasing, T (X) ⊆ f(X) and satisfies

d(Tx, Ty) 6 α
d(fx, Tx) d(fy, Ty)

d(fx, fy)
+ β [d(fx, Ty) + d(fy, Tx)] + γd(fx, fy) (2)

for all x, y ∈ X for which fx ̸= fy are comparable and where α, β, γ ∈ [0, 1) such that
0 6 α+ 2β + γ < 1. If for some x0 ∈ X such that fx0 ≼ Tx0 and {xn} is a nondecreasing
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sequence in X such that xn → x, then xn ≼ x for all n ∈ N. If f(X) is a complete subset of X,
then T and f have a coincidence point in X. Further, if T and f are weakly compatible, then T
and f have a common fixed point in X.

Moreover, the set of common fixed points of T and f is well ordered if and only if T and f
have one and only one common fixed point in X.

Proof. Suppose f(X) is a complete subset of X. From Theorem 1, the sequence {Txn} is a
Cauchy sequence and hence, {fxn} is also a Cauchy sequence in (f(X), d) as fxn+1 = Txn and
T (X) ⊆ f(X). Since f(X) is complete, then there exists fu ∈ f(X) such that

lim
n→+∞

Txn = lim
n→+∞

fxn = fu.

Notice that the sequences {Txn} and {fxn} are nondecreasing. Then from the hypothesis, we
have Txn ≼ fu and fxn ≼ fu for all n ∈ N. But T is monotone f -nondecreasing, then we get
Txn ≼ Tµ for all n. Letting n→ +∞, we obtain that fu ≼ Tu.

Assume that fu ≺ Tu. Define a sequence {un} by u0 = u and fun+1 = Tun for all n ∈ N.
An argument similar to that in the proof of Theorem 1 yields that {fun} is a nondecreasing
sequence and lim

n→+∞
fun = lim

n→+∞
Tun = fv for some v ∈ X. Now, from the hypothesis, we have

sup fun ≼ fv and supTun ≼ fv, for all n ∈ N. Notice that

fxn ≼ fu ≼ fu1 ≼ fu2 ≼ · · · ≼ fun ≼ · · · ≼ fv.

Case 1. If fxn0
= fun0

for some n0 > 1 then we have

fxn0 = fu = fun0 = fu1 = Tu.

Thus, u is a coincidence point of T and f in X.

Case 2. If fxn0
̸= fun0

for all n, then from (2), we have

d(fxn+1, fun+1) = d(Txn, Tun) 6

6 α
d(fxn, Txn) d(fun, Tun)

d(fxn, fun)
+ β [d(fxn, Tun) + d(fun, Txn)] + γd(fxn, fun).

On taking limit as n→ +∞ in the above inequality, we obtain that

d(fu, fv) 6 (2β + γ)d(fu, fv) < d(fu, fv), since 2β + γ < 1.

Therefore, we have
fu = fv = fu1 = Tu.

Hence, we conclude that u is a coincidence point of T and f in X.
Assume that T and f are weakly compatible. Let w be the coincidence point of T and f ,

then we have

Tw = Tfz = fTz = fw, since w = Tz = fz for some z ∈ X.

From (2), we have

d(Tz, Tw) 6 α
d(fz, Tz) d(fw, Tw)

d(fz, fw)
+ β [d(fz, Tw) + d(fw, Tz)] + γd(fz, fw) 6

6 (2β + γ)d(Tz, Tw),

as 2β+γ < 1, we obtain that d(Tz, Tw) = 0. Thus, Tz = Tw = fw = w. Hence, w is a common
fixed point of T and f in X.
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Suppose that the set of common fixed points of T and f is well ordered. It is enough to
prove that the common fixed point of T and f is unique. Assume in contrary that, u ̸= v be two
common fixed points of T and f . Then from (2), we have

d(u, v) 6 α
d(fu, Tu) d(fv, Tv)

d(fu, fv)
+ β [d(fu, Tv) + d(fv, Tu)] + γd(fu, fv) 6

6 (2β + γ) d(u, v) < d(u, v), since 2β + γ < 1,

which is a contradiction. Hence, u = v. Conversely, suppose T and f have only one common
fixed point then the set of common fixed points of T and f being a singleton is well ordered.
This completes the proof.

We have the following results as a consequence of Theorem 2.

Corollary 3. Let (X, d,≼) be a complete partially ordered metric space. Suppose the mappings
T, f : X → X are continuous, T is monotone f -nondecreasing, T (X) ⊆ f(X) and satisfies the
following contraction conditions for all x, y ∈ X for which fx ̸= fy are comparable

(i) d(Tx, Ty) 6 α
d(fx, Tx) d(fy, Ty)

d(fx, fy)
+ β [d(fx, Ty) + d(fy, Tx)] ,

for some α, β ∈ [0, 1) with 0 6 α+ 2β < 1,

(ii) d(Tx, Ty) 6 β [d(fx, Ty) + d(fy, Tx)] + γd(fx, fy),

where β, γ ∈ [0, 1) such that 0 6 2β + γ < 1.
If for some x0 ∈ X such that fx0 ≼ Tx0 and {xn} is a nondecreasing sequence in X such

that xn → x, then xn ≼ x for all n ∈ N. If f(X) is a complete subset of X, then T and f have
a coincidence point in X. Moreover, if T and f are weakly compatible, then T and f have a
common fixed point in X.

Furthermore, the set of common fixed points of T and f is well ordered if and only if T and
f have one and only one common fixed point in X.

Proof. Setting γ = 0 and α = 0 in the Theorem 2, we obtain the required proof.

Remarks

(1) If β = 0 in Theorems 1 & 2, we obtain Theorems 2.1 & 2.3 of Chandok [30].

(2) If f = I and β = 0 in Theorems 1 & 2, then we get Theorems 2.1 & 2.3 of Harjani et
al. [15].

Now, we have the following consequence of Theorem 1 involving the integral type contraction.
Let Φ denote the set of all functions φ : [0,+∞) → [0,+∞) satisfying the following hypothe-

ses:
(i) each φ is Lebesgue integrable function on every compact subset of [0,+∞) and

(ii)
ϵ∫
0

φ(t)dt > 0, for any ϵ > 0.

Corollary 4. Let (X, d,≼) be a complete partially ordered metric space. Suppose that the map-
pings T, f : X → X are continuous, T is monotone f -nondecreasing, T (X) ⊆ f(X) satisfies

d(Tx,Ty)∫
0

φ(t)dt 6 α

d(fx,Tx) d(fy,Ty)
d(fx,fy)∫

0

φ(t)dt+ β

d(fx,Ty)+d(fy,Tx)∫
0

φ(t)dt+ γ

d(fx,fy)∫
0

φ(t)dt (3)
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for all x, y ∈ X for which the distinct fx and fy are comparable, φ(t) ∈ Φ and there exist
α, β, γ ∈ [0, 1) such that 0 6 α+ 2β + γ+ < 1. If for some x0 ∈ X such that fx0 ≼ Tx0 and the
mappings T and f are compatible, then T and f have a coincidence point in X.

We obtain some consequences of Corollary 4 by taking γ = 0 and α = 0.

Corollary 5. If β = 0 in Corollary 4, we obtain the Corollary 2.5 of Chandok [30].

Example 1. Define a metric d : X ×X → [0,+∞) by d(x, y) = |x− y|, where X = [0, 1] with
usual order 6. Let us define two self mappings T and f on X by Tx =

x

2
and fx =

x

1 + x
, then

T and f have a coincidence point in X.

Proof. By definition of a metric d, it is clear that (X, d) is a complete metric space. Obvi-
ously, (X, d,6) is complete partially ordered metric space with usual order. Let x0 = 0 ∈ X,
then f(x0) 6 T (x0). By definitions; T , f are continuous, T is monotone f -nondecreasing and
T (X) ⊆ f(X).

Now for any x, y ∈ X with x < y, we have

d(Tx, Ty) =
∣∣∣x
2
− y

2

∣∣∣ = 1

2
|x− y| <

<
α

4
xy(1− y) +

β

2

[
|x(2− y)− y|

(1 + x)
+

|y(2− x)− x|
(1 + y)

]
+ γ

|x− y|
(1 + x)(1 + y)

<

< α
| x
1+x − x

2 | |
y

1+y − y
2 |

x
1+x − y

1+y

+ β

[∣∣∣ x

1 + x
− y

2

∣∣∣+ ∣∣∣ y

1 + y
− x

2

∣∣∣]+ γ
|x− y|

(1 + x)(1 + y)
<

< α
d(fx, Tx) d(fy, Ty)

d(fx, fy)
+ β [d(fx, Ty) + d(fy, Tx)] + γd(fx, fy),

holds the contraction condition in Theorem 1 for some α, β, γ in [0, 1) such that 0 6 α+2β+γ < 1.
Therefore T and f have a coincidence point 0 ∈ X.

Similarly the following is one more example of main Theorem 1.

Example 2. A distance function d : X × X → [0,+∞) by d(x, y) = |x− y|, where X = [0, 1]
with usual order 6. Define the two self mappings T and f on X by Tx = x3 and fx = x4, then

T and f have two coincidence points 0, 1 in X with x0 =
1

3
.

3. Application
In this section, we discuss a unique solution of the integral equation by the method of upper

and lower solutions. The monotone iterative technique is the one to find the minimal and a
maximal solution between the lower and upper solutions which validate the maximal principle.

Let Λ ∈ Rn be a bounded and open set and H = L(Λ)2 be a Hilbert space with usual inner
product and norm then a linear operation L : D(L) ⊂ H → H is said to be a valid maximum
principle if there exists some λ ∈ R such that

Lu+ λu > 0 on Λ implies that u > 0 on Λ,u ∈ D(L),

where u > 0 on Λ if u(x) > 0 for a.e.x ∈ R.
(4)

Now consider the first order periodic boundary value problem of an integral equation given
in [18].
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u(x) =

∫ M

0

f(x,u(x), [Ku](x)])dx for a.e.x ∈ Λ = (0,M), u(0) = u(M)

or
u′(x) = f(x,u(x), [Ku](x)) for a.e.x ∈ (0,M), u(0) = u(M). (5)

where f is Caratheodary function, K is an integral operator

[Ku](x) =

∫ M

0

k(x,y)u(y)dy (6)

with kernal K ∈ L2(Λ× Λ). It is clear that for any u ∈ H = L2(Λ× Λ) then Ku ∈ H.
For a solution of (5), first we study the linear problem for λ ̸= 0

u′ + λu+ δKu = σ, u(0) = u(M). (7)

Its known that u is a solution of (7) if and only if

u(x) =

∫ M

0

g(x,y)[σ(y)− δKu(y)]dy = w(x) +

∫ M

0

R(x,y)u(y)dy, (8)

where

w(x) =

∫ M

0

g(x,y)σ(y)dy,

and

R(x,y) = −δ
∫ M

0

g(x,z)K(z,y)dz.

Let us define the linear operator L : D(L) ⊂ H → H, where D(L) = {u ∈ H1(Λ) : u(0) =
= u(M)} as

[Lu](x) = u′(x) + δ[Ku](x). (9)

Similarly, let N : D(N) ⊂ H → H is a nonlinear operator, where

[Nu](x) = f(x,u(x), [Ku](x)) + δ[Ku](x). (10)

Hence, (5) is equivalent to Lu = Nu, u ∈ D(L)∩D(N) and D(L) ⊂ L∞(Λ) ⊂ D(N), where
K ∈ L∞(Λ× Λ). Suppose that λ ̸= 0 and follow the conditions of [44], we have

||K||2 <
(2|λ|) 1

2 |1− e−λM |
|δ|(M(1− e−2λM ))

= d1. (11)

From Lemma 5.1 of [18] followed by above condition, the equation (7) has a unique solution
u ∈ H for each σ ∈ H and G : (L + λI)−1 : H → H is continuous, where

u(x) = [Gσ](x) =

∫ M

0

g(x,y)σ(y)dy.

Hence from Theorem 2.2 in [44] shows that the maximum principal (4) is valid for λ > 0 whenever
K ∈ L∞(Λ× Λ) and

||K||∞ <
λ2

|δ|(eλM + λM − 1)
= d2. (12)

From (11) and (12), we get D(L) ⊂ D(N). The functions α, β ∈ D(L) are said to be lower and
upper solution of (5) if α′(x) 6 f(x,u(x), [Ku](x)) 6 β′(x) for a.e. x ∈ R.
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Now suppose there exist the constants m, δ, λ with 0 < m 6 λ such that (12) is satisfied and
the following inequality holds.

f(x,u(x), [Ku](x))− f(x,v(x), [Kv](x)) >
> −m(u(x)− v(x))− δ([Ku](x))− [Kv](x)),

(13)

whenever x ∈ Λ, α(x) 6 v(x) 6 u(x) 6 β(x). Then applying Theorem 3.1 of [18] it is possible
to approximate the external solutions of (5) by monotone iterates between the lower solution α
and the upper solution β.

The authors do thankful to the editor and anonymous referees for their valuable suggestions
and comments which improved the contents of the paper.
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Результаты точки совпадения и их приложения
в частично упорядоченных метрических пространствах

Н.Сешагири Рао
Научно-технический университет Адамы

Адама, Эфиопия
Карусала Кальяни

Фонд науки, технологий и исследований Вигнан
Прадеш, Индия

Текле Гемечу
Научно-технический университет Адамы

Адама, Эфиопия

Аннотация. Целью данной работы является установление некоторых общих теорем о неподвиж-
ной точке для f -неубывающего отображения в себя, удовлетворяющего некоторому условию сжатия
рационального типа в репере метрических пространств, наделенных частичным порядком. Также
в пространстве представлены некоторые следствия результатов в терминах сжатий интегрального
типа. Кроме того, метод монотонной итерации был использован для нахождения единственного
решения интегрального уравнения.

Ключевые слова: упорядоченное метрическое пространство, рациональное сжатие, согласован-
ные отображения, точка совпадения, общая неподвижная точка.
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