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Abstract. In this article, in the context of the Magueijo–Smolin model and employing Ehrenfest’s
theorem, we investigate the classical limit of the Dirac equation within doubly special relativity. This
leads to obtaining deformed classical equations. Here, we assess the effectiveness of Ehrenfest’s theorem in
deriving the classical limit in the presence of Magueijo–Smolin model. Besides, we explore the deformed
classical equations under the discrete, CPT and Lorentz symmetries.
Keywords: Dirac equation, doubly special relativity, Magueijo-Smolin model, Ehrenfest’s theorem,
classical limit.
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Introduction
The Dirac equation is a relativistic quantum mechanical equation that specifically describes

massive particles with spin-1⁄2, such as electrons. It is a fundamental equation in quantum
mechanics, providing a framework for understanding the behavior of these particles within the
realm of relativistic effects. The classical limit (CL) of the Dirac equation can be investigated
by neglecting the influences of quantum mechanics. In doing so, we can describe the system’s
behavior using classical physics, providing insights into the classical aspects of the system. In
the CL, phenomena inherent to quantum mechanics, such as interference, superposition and
entanglement, are expected to diminish at the macroscopic scale, however, this demise is not easy
to explain. In this scenario, the quantum system adheres to the classical laws of physic. The CL
is commonly defined in terms of the limit of a vanishing Planck’s constant, i.e., ~ → 0 as scaled
with the system’s action. In this context, Hamilton’s principle adopts its classical expression,
and all operators commute. In the following, we present some scenarios and approaches that
help explain the exploration of the CL of the Dirac equation. So, one can initiate the exploration
by examining the solutions of the equation under conditions of large distances and durations, or
under the conditions of large energies and momenta. Within these limits, the effects of quantum
mechanics become negligible [1]. Put differently, the CL emerges if the system possesses a big
quantum number, undergoes significant interactions with its surroundings, or if its de Broglie
wavelength becomes significantly smaller compared to other relevant length measurements. A
frequent example illustrating the CL of a quantum system is the Bohr correspondence principle
[2], which asserts that in the limit of large quantum numbers, a quantum system exhibits behavior
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similar to the corresponding classical system. Also, the Ehrenfest’s theorem is considerably
used when exploring the CL of quantum mechanical systems [3]. This theorem establishes a
connection between the evolution of expected values of observables and classical equations of
motion. It serves as an effective tool for understanding the conduct of such systems. Through its
application, we observe the way quantum mechanical influences dissipate, giving way to classical
dynamics [4]. In the context of the Dirac equation, this theorem remains used to explore its
CL, there, the quantum influences will be very small, leading simplify the Dirac equation to its
classical counterpart.

In this work, we aim to investigate whether it can be asserted that Ehrenfest’s theorem is
applicable to the CL of the Dirac equation within a deformed framework, subject to specific
conditions. Extensive research in the literature [5–14] has delved into the alignment between
quantum and classical aspects. We also emphasize that other concepts may overlap with the
concept of the CL, such as the semiclassical and non-relativistic limits. Note that the semiclassical
limit of a quantum mechanical system, can be attained if external potentials vary slowly, like
in the case of the electrostatic potential [15]. On the other hand, the non-relativistic limit of
a relativistic quantum mechanical system as the Dirac equation [16, 17], is the limit where the
speed of the particle is much less than the speed of light, i.e., v ≪ c or low energy in front of
the rest energy, consequently, this limit permits to neglect the relativistic influences. However,
the non-relativistic and classical limits are related but distinct concepts, they address different
aspects of the system’s behavior. It is important to highlight that in many physical situations,
the CL and the non-relativistic limit can align, leading to similar descriptions of the system’s
behavior.

On the other side, recently, there has been a rising interest in the advancement of doubly
special relativity (DSR) theories. This type of special relativity emerges at energy scales close

to the domain of quantum gravity, specifically near the Planck energy κ =

√
c5~
G

= 1019GeV,
there special relativity may undergo deformation. This deformation entails κ transforming into
an observer-independent constant, analogous to the speed of light c. Amelino-Camelia [18–20],
in conjunction with Magueijo and Smolin [21,22], advanced the concept of DSR, which requires
adopted the parameter κ alongside the speed of light c. This incorporation implies a noncom-
mutative structure in space-time, resulting in the formation of the κ-Minkowski space-time. The
second parameter κ is assumed to be of the order of Planck energy κ = EP , or in the form of an
energy scale κ = 1/lp. The models based on this assumption are referred to as DSR. However,
as κ → ∞, special relativity is regained. Many studies and research in this regard have been
carried out in the literature. However, we will not delve into the historical background, as it is
thoroughly covered in Amelino-Camelia’s recent and comprehensive paper [23]. One of the latest
extensions of the DSR is the Deformed General Relativity introduced in [24], which associates
the geometric structure of an internal De Sitter space with a noncommutative curved space. It is
also worth highlighting the significant role of noncommutative geometry in modern physics today.
Its integration with several branches of physics greatly facililates understanding and overcoming
many complexities, especially those related to quantum field theory, string theory, cosmology,
black holes, and high energy. (For an overview, check Refs. [25–37]).

Our objective in this study is to investigate the CL of the Dirac equation within the framework
of the Magueijo–Smolin (MS) approach of the DSR by using the Ehrenfest’s theorem. In the
same context of the used framework, B. Hamil. et al. [38] have studied relativistic oscillators in
the context of MS noncommutative model. Likewise, S.Mignemi and A. Samsarov [39] addressed
the vacuum energy from withing noncommutative framework in several models including MS
model from DSR. In addition, M.Coraddu and S.Mignemi [40], studied the non-relativistic limit
of the motion of a classical particle from Klein-Gordon and Dirac equations in the MS model.
Moreover, they found that the rest masses of particles and antiparticles differ and violating the
CPT invariance. They claimed that this effect is close to observational limits and future exper-
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iments may give indications on its effective existence, etc. This work came as a continuation of
some works on the CL we did before. For instance, in [41], we studied the CL and Ehrenfest’s
theorem of noncommutative Dirac equation in the context of Minimal Uncertainty in Momen-
tum. Also, we explored the comparison between the CL and the non-relativistic limit of the
noncommutative Dirac equation in presence of minimal length. Furthermore, in [42], we have
investigated Ehrenfest’s theorem from the Dirac equation in a noncommutative phase-space.

The rest of the paper is organized as follows. Section 1 provides a concise review of the
MS modeld. In Section 2, the CL of the Dirac equation in the context of MS model using the
Ehrenfest’s theorem is explored, where in Sub-section A, a κ-deformed Dirac equation in presence
of an electromagnetic field is derived. In Sub-section B, based on the Ehrenfest’s theorem, κ-
deformed classical equations are obtained, subsequently, these obtained classical equations are
examined under the discrete, CPT and Lorentz symmetries in Sub-section C. Section 3 is devoted
to the conclusion and remarks.

1. Review of Magueijo–Smolin model
The model we employ belongs to the κ-Poincarй class and is referred to as the MS model [21].

However, there exist alternative models that could be beneficial for our calculations. For example,
we mention the Snyder model [43] and the Majid–Ruegg model [44]; the latter model belongs to
the κ-Poincarй class as well. We opt to employ the MS approach primarily due to its profound and
non-trivial results. The MS model considerations, similar to those outlined in [45–47], indicate
that the Euclidean theory can be defined following the prescription p0 → ip0, κ→ iκ. Now, the
MS model is defined by the following transformation between noncommutative variables Xµ, Pµ

and a canonical momentum variable pµ [39]:

Xµ = i
(

1 +
p0
κ

) ∂

∂pµ
, Pµ =

pµ(
1 + p0

κ

) , (1)

with p0 = E, where −∞ < pi < +∞, and 0 < p0 < +∞. Note that the operators Xµ and Pµ are
Hermitian and symmetric, i.e. ⟨χ|Xµ |ψ⟩ = ⟨ψ|Xµ |χ⟩, ⟨χ|Pµ |ψ⟩ = ⟨ψ|Pµ |χ⟩, with respsect to

the scalar product ⟨χ | ψ⟩ =

∫
dp(

1 + p0

κ

)χ× (p)ψ (p). The MS algebra, derived from equation (1)

(Heisenberg relations) in the Granik basis [48], can be expressed as follows:

[Xi, X0] =
i

κ
Xi, [Pi, X0] = − i

κ
Pi,

[Xi, Pj ] = iδij , [X0, P0] = −i
(

1 − P0

κ

)
,

(2)

where κ (with κ > P0) is the Planck momentum, which implies an upper bound for the allowed
particle energy in MS model. For this deformed Poincarй algebra, the Casimir operator takes
the form of:

M2 =
P 2
0 − P 2

i(
1 − P0

κ

)2 , (3)

where M is the physical mass.

2. Classical limit of the κ-deformed Dirac equation
In this section, we obtain the Dirac equation in the context of MS model and then use it to

investigate its CL through the Ehrenfest’s theorem. Additionally, the resulting classical equations
will be examined under the CPT symmetry.
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A. κ-Deformed Dirac equation
In a commutative phase-space, the time-independent Dirac equation in interaction with an

electromagnetic four-potential Aµ
(−→
A,Φ

)
is{

c−→α ·
(−→p − e

−→
A (−→x )

)
+ eΦ (−→x ) + βmc2

}
ψ (−→x ) = Eψ (−→x ) , (4)

where ψ (−→r ) =
(
ϕ (−→x ) χ(−→x )

)T is the bispinor in the Dirac representation. The momentum
−→p is given by −→p = −i~

−→
∇ and αi and β are the Dirac matrices, which satisfy the following

anticommutation relations:

{αi, αj} = 2δij , {αi, β} = 0 , α2
i = β2 = 1. (5)

Additionally, there is a clarification to make regarding equation (4). In our previous works

[17, 41], where we employed
e

c

−→
A rather than e

−→
A . Here, suppose to be no

1

c
factor in SI units;

instead, it appears in Gaussian units (old notation).
Now, the Dirac equation resulting from the DSR based on the MS model in the representation

of the noncommutative operators Xµ, Pµ is given as{
c−→α ·

(−→
P − e

−→
A
(−→
X
))

+ eΦ
(−→
X
)

+ βmc2
}
ψ
(−→
X
)

= P0ψ
(−→
X
)
, (6)

then, by applying the definition of the position and momentum operators reported in equation
(1), we obtain the following deformed Dirac equation{

c−→α ·

( −→p(
1 + p0

κ

) − e
−̃→
A (−→x )

)
+ eΦ̃ (−→x ) + βmc2

}
ψMS =

p0(
1 + p0

κ

)ψMS . (7)

Note that
−̃→
A (−→x ) =

−→
A
(−→
X
)

and Φ̃ (−→x ) = Φ
(−→
X
)

with

−→
X = i

(
1 +

p0
κ

) ∂

∂−→p
, (8)

then in more elegant simple form, we have{
c−→α ·

−̃→
Π +

(
1 +

p0
κ

)
eΦ̃+

(
1 +

p0
κ

)
βmc2

}
ψMS = EψMS , (9)

where the minimal substitution −→p − e
(

1 +
p0
κ

) −̃→
A =

−̃→
Π . Here ψMS is the wave function in the

DSR framework. Next, we move to employ the obtained deformed Dirac equation (9) to explore
the CL through Ehrenfest’s theorem.

B. Ehrenfest’s theorem in the context of MS model
Ehrenfest’s theorem, which originates from the Dirac equation, establishes that the time

evolution of expected values of observables in quantum mechanics aligns with classical equations
of motion. Essentially, it suggests that the average behavior of a quantum system corresponds
to classical physics. Additionally, it is noteworthy that this theorem applies to all quantum
systems. However, in the present context, we are computing the time derivatives of position and
kinetic momentum operators for Dirac particles interacting with an electromagnetic field in the
context of MS model of DSR. Consequently, the equation of motion for an arbitrary operator F̂
is expressed as follows:
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dF̂
dt

=
∂F̂
∂t

+
i

~

[
Ĥ , F̂

]
, (10)

where Ĥ is the Hamiltonian operator. Now, let commence with the operator of position

d−̂→x
dt

=
∂−̂→x
∂t

+
i

~

[
Ĥ MS

D , −̂→x
]

=
i

~

[
Ĥ MS

D , −̂→x
]
, (11)

and the Hamiltonian operator from equation (9) is given as:

Ĥ MS
D = c−→α ·

−̃→
Π +

(
1 +

p0
κ

)
eΦ̃+

(
1 +

p0
κ

)
βmc2, (12)

subsequently, the commutator expressed in equation (11) is as follows:[
Ĥ MS

D , −̂→x
]

= c
[−̂→α · −̂→p , −̂→x

]
− ec

(
1 +

p0
κ

)[−̂→α ·
−̃→
A, −̂→x

]
+ e

(
1 +

p0
κ

) [
Φ̃, −̂→x

]
+
(

1 +
p0
κ

)
mc2

[
β̂, −̂→x

]
,

(13)

The position operator x̂ is diagonal concerning the spinor indices, i.e., −̂→x ψ = −→x ψ and contains
no differentiation, thus

[
β̂, −̂→x

]
=
[−̂→α , −̂→x ] = 0, then for three arbitrary vectors

−→
A 1,

−→
A 2 and

−→
A 3

we use the identity [−→
A 1

−→
A 2,

−→
A 3

]
=
[−→
A 1,

−→
A 3

]−→
A 2 +

−→
A 1

[−→
A 2,

−→
A 3

]
. (14)

Then we have [−̂→α · −̂→p , −̂→x
]

= −i~−̂→α , (15)

also [
−̃→
A, −̂→x

]
=
[
Φ̃, −̂→x

]
= 0, (16)

because both
−̃→
A , Φ̃ are functions of

∂

∂−→p
. Consequently, we obtain

d−̂→x
dt

= c−̂→α . (17)

Let us subsequently see how the operator (17) acts on the Dirac spinor. By considering single
components ψ, then we obtain

dx̂

dt
ψ = ±cψ, (18)

where the eigenvalues of −̂→α are ± 1. This result has no classical analogy because despite the
considered effects, the Dirac particle is still moving at the speed of light.

Now, the equation of motion for the kinetic momentum operator
−̂→
Π = −̂→p − e

c

−→
A is

d
−̂→
Π

dt
=
∂
−̂→
Π

∂t
+
i

~

[
Ĥ MS

D ,
−̂→
Π

]
= −e∂

−→
A

∂t
+
i

~

[
Ĥ MS

D ,
−̂→
Π

]
, (19)

consequently, the commutator is given by[
Ĥ MS

D ,
−̂→
Π

]
=
[
Ĥ MS

D , −̂→p
]
− e

[
Ĥ MS

D ,
−→
A
]
. (20)
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At first, we calculate the first commutator in equation (20)[
Ĥ MS

D , −̂→p
]

= c
[−̂→α · −̂→p , −̂→p

]
− ce

(
1 +

p0
κ

)[−̂→α ·
−̃→
A, −̂→p

]
+
(

1 +
p0
κ

)
e
[
Φ̃, −̂→p

]
+
(

1 +
p0
κ

)
mc2

[
β̂, −̂→p

]
,

(21)

with
[
β̂, −̂→p

]
=
[−̂→α , −̂→p ] = 0 because β̂ and −̂→α are independent of space coordinates. Furthermore,

we have [
Φ̃, −̂→p

]
= i~

[−→
∇, Φ̃

]
= i~

(−→
∇Φ̃− Φ̃

−→
∇
)
, (22)

then through equation (22), we have[
Φ̃, −̂→p

]
ψ = i~

(−→
∇Φ̃− Φ̃

−→
∇
)
ψ = i~

(−→
∇Φ̃

)
ψ, (23)

and [−̂→α · −̂→p , −̂→p
]

= 0. (24)

Also [
−̂→α ·

−̃→
A, −̂→p

]
= −i~

∑
i,j

α̂i

[
Ãi,∇j

]
ej , (25)

then by considering the effect of equation (25) on ψ, we obtain:[
−̂→α ·

−̃→
A, −̂→p

]
ψ = i~

∑
i,j

α̂i

(
∇jÃiψ − Ãi∇jψ

)
ej = i~

∑
i,j

α̂i

(
∇jÃi

)
ejψ. (26)

Now, we pass to the second commutator in equation (20), so, we have[
Ĥ MS

D ,
−→
A
]

= c
[−̂→α · −̂→p ,

−→
A
]
− ce

(
1 +

p0
κ

)[−̂→α ·
−̃→
A,

−→
A

]
+
(

1 +
p0
κ

)
e
[
Φ̃,

−→
A
]

+
(

1 +
p0
κ

)
mc2

[
β̂,

−→
A
]
.

(27)

Thereafter, we move to calculate each commutator in equation (27), thus we start with[−̂→α · −̂→p ,
−→
A
]

= −i~
∑
i,j

α̂i [∇i, Aj ] ej , (28)

and its act on ψ yields [−̂→α · −̂→p ,
−→
A
]
ψ = −i~

∑
i,j

α̂i (∇iAj) ejψ. (29)

Note that in equations (26, 29), the gradient acts on
−→
A only. Then, we continue with[

β̂,
−→
A
]

=
[−̂→α ,−→A] = 0, (30)

and [
Φ̃,

−→
A
]

=

[
−̃→
A,

−→
A

]
= 0. (31)

Now in total, we have

d
−̂→
Π

dt
= −e

{
∂
−→
A

∂t
+
(

1 +
p0
κ

)(−→
∇Φ̃

)}
+ e

∑
i,j

(cα̂i)
{(

1 +
p0
κ

)
∇jÃi −∇iAj

}
ej . (32)
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By using equation (17), and after some simplifications we get

d
−̂→
Π

dt
= −e

(
1 +

p0
κ

)
∂

−→
A

(1+ p0
κ )

∂t
+
(−→
∇Φ̃

)+ e
(

1 +
p0
κ

)∑
i,j

vi

(
∇jÃi −∇i

Aj(
1 + p0

κ

)) ej . (33)

But if
−̃→
A =

−→
A(

1 + p0

κ

) , one has

−̃→
E = −1

c

∂
−̃→
A

∂t
−

−→
∇Φ̃, (34)

and ∑
i,j

vi

(
∇jÃi −∇iÃj

)
ej = −→v × curl

−̃→
A. (35)

Then, we have

d
−̂→
Π

dt
= e

(
1 +

p0
κ

){−̃→
E + −→v ×

−̃→
B

}
, (36)

where curl
−̃→
A =

−̃→
B .

As can be seen, equation (36) is a κ-deformed Lorentz force in the classical case. It is a force
exerted by the electromagnetic field on an electron having an electric charge e. Unlike the case
of velocity in equation (17), here the effect of MS model of DSR on the Lorentz force appears
widely in equation (36) through the parameter κ. In the limit of κ→ ∞, we have

d
−̂→
Π

dt
= e

{−→
E + −→v ×

−→
B
}
,with Φ̃→ Φ, (37)

which is the Lorentz force in the classical case. Now, let us discuss the findings:
It is observed that −̂→x does not comply with classical equations of motion. Nevertheless, a

classical equation of motion can be established for the operator
−̂→
Π . Interestingly, equation (36)

appears to formally align with the corresponding classical equation; however, it is crucial to bear
in mind that any expectation values derived from (37) lack utility due to Zitterbewegung, with
a reduction in velocity. At best, the projection of the even contributions from (37) yields result
pertinent to a classical single-particle description. Shifting focus to equation (36), it illustrates the
impact of DSR on the Lorentz force, which undergoes deformation based on these considerations.
Conversely, equation (17) indicates that DSR does not exert an influence on velocity. Notably,
the applied considerations of the MS model are found to impact Ehrenfest’s theorem.

C. CPT and Lorentz symmetries of κ-deformed Lorentz force
Both CPT and Lorentz symmetries hold a crucial role in modern quantum field theory, in-

cluding the standard model of particle physics, and its potential violation could have profound
implications for our understanding of fundamental physics and the nature of spacetime. Ongoing
experimental efforts aim to test the CPT symmetry with increasing precision, providing valuable
insights into the symmetrical underpinnings of the universe. However, the CPT symmetry com-
bines charge conjugation C, parity inversion P and time reversal T into a more encompassing
symmetry. This combined operation must be an exact symmetry. It ensures that the physics
laws remain unchanged when particles are replaced by their antiparticles, space is inverted and
time flows backward simultaneously. The CPT symmetry is a powerful concept that underlies
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our understanding of the fundamental symmetries of the universe. On the other hand, Lorentz
symmetry, ensures that laws of physics are the same for all observers in inertial reference frames.

Now, by applying the transformation rules from Tab. 1 to equation (33), we examine the
deformed Lorentz force under the discrete symmetries C, P, and T , as well as the CPT symmetry.
Consequently,

C

{
d
−̂→
Π

dt

}
̸=

{
d
−̂→
Π

dt

}
,

P

{
d
−̂→
Π

dt

}
̸=

{
d
−̂→
Π

dt

}
,

T

{
d
−̂→
Π

dt

}
̸=

{
d
−̂→
Π

dt

}
,

(38)

where
−→
A , Φ depend on x, but

−̃→
A , Φ̃ depend on p. Then

CPT

{
d
−̂→
Π

dt

}
̸=

{
d
−̂→
Π

dt

}
, (39)

this clearly means that the Lorentz force operator in the MS model of DSR violates the CPT
symmetry, this in turn violates the Lorentz symmetry. Moreover, under the discrete symmetries
C, P and T , the κ-deformed Lorentz force is not invariant. Note that the discrete symmetries of
−→
X (defined in equation (8)),

−̃→
A =

−→
A
(−→
X,B

)
and Φ̃ = Φ

(−→
X, e

)
are successively given as follows:

−→
X

C−→ −
−→
X,

−→
X

P−→ −
−→
X,

−→
X

T−→ −
−→
X,

(40)

then −̃→
A

C−→
−̃→
A,

−̃→
A

P−→ −
−̃→
A,

−̃→
A

T−→
−̃→
A,

(41)

and
Φ̃

C−→ Φ̃,

Φ̃
P−→ −Φ̃,

Φ̃
T−→ −Φ̃.

(42)

However, based on the equation (40), one can see that the noncommutative variable
−→
X

undergoes changes under discrete C, P, T and CPT transformations. Consequently, other related
physical aspects may also exhibit alterations.

3. Conclusion and remarks

In this study, using Ehrenfest’s theorem, we have analytically explored the CL of the Dirac
equation in interaction with electromagnetic potential and in the context of MS model of DSR.
We successfully examined the effects of the MS model on the CL, which yields a κ-deformed
classical equations. Our findings affirm the feasibility of obtaining CL within the framework of
DSR, specifically, the MS model. Once again, Ehrenfest’s theorem demonstrates its efficacy in
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deriving CL of the Dirac equation, regardless of the effects on the relativistic system. Conse-
quently, we emphasize the significance of this type of theorems. In addition, it is shown that
considering MS model of DSR in the CL of Dirac equation is not suitable for the invariance of the
CPT and Lorentz symmetries. Clearly, our results can be considered a useful tool for exploring
further related studies, encompassing non-relativistic and semiclassical limits, and other scenar-
ios involving specific models within the framework of DSR such as Snyder and Majid–Ruegg
models. Additionally, expanding the study to include more generalizations, such as particles
with arbitrary higher spins, would be a promising avenue for future research. Knowing that, in
the limit of κ → ∞, the κ-deformed Dirac and the obtained classical equations reduce to those
of ordinary quantum mechanics, confirms that our results are consistent with and reducible to
those found and discussed in the literature.

Appendix A: C, P and T discrete symmetries
The discrete symmetries play a fundamental role in modern theoretical physics and among

these symmetries, C, P and T are particularly significant and basic.

• The C symmetry, i.e., charge conjugation, involves exchanging particles with their corre-
sponding antiparticles while reversing their charges, e.g., e→ −e and i→ −i.

• The P symmetry, i.e., parity, reflects the spatial inversion of a physical system, interchang-
ing left and right, e.g., −→x → −−→x .

• The T symmetry, i.e., time reversal, entails reversing the direction of time in a process,
e.g., t→ −t.

In classical mechanics, the definitions of physical quantities like momentum, angular momentum
and energy etc., decide their transformation properties under P and T symmetries, but, C
symmetry does not enter the classical field. However, one could define it as an operation which
changes the charge of a particle, leaving other attributes the same. Consequently, classical
electrodynamics is invariant under C, provided the fields change sign under C. On the other
hand, while C has no place in non-relativistic quantum mechanics, it arises naturally in relativistic
quantum mechanics, particularly, it represents a symmetry between matter and antimatter.

Tab. 1 shows some of the discrete C, P and T symmetries operations known in the litera-
ture [41].

Table 1. Summary of some discrete symmetry operations

Quantity Notation P C T
Electric charge e 1 –1 1
Time derivative ∂

∂t 1 1 –1
Nabla vector

−→
∇ –1 1 1

Position −→x –1 1 1
Velocity −→v –1 1 –1

Momentum −→p –1 1 –1
Electric field

−→
E –1 –1 1

Magnetic field
−→
B 1 –1 –1

Scalar potential Φ 1 –1 1
Electromagnetic vector

−→
A∝ Bx –1 –1 –1
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Классический предел уравнения Дирака в контексте
модели Магейхо-Смолина двойной специальной теории
относительности с использованием теоремы Эренфеста

Ильяс Хауам
Лаборатория математической и субатомной физики (LPMPS)

Университет братьев Ментури
Константин 25000, Алжир

Аннотация. В этой статье в контексте модели Магейхо–Смолина и с использованием теоремы
Эренфеста мы исследуем классический предел уравнения Дирака в рамках двойной специальной
теории относительности. Это приводит к получению деформированных классических уравнений.
Здесь мы оцениваем эффективность теоремы Эренфеста при выводе классического предела в при-
сутствии модели Магейхо–Смолина. Кроме того, мы исследуем деформированные классические
уравнения относительно дискретной, CPT и симметрии Лоренца.

Ключевые слова: уравнение Дирака, дважды специальная теория относительности, модель
Магейхо-Смолина, теорема Эренфеста, классический предел.
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Abstract. This paper introduces the idea of interpolative contractions within the category of Kannan-
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1. Introduction
Fixed point theorems play a crucial role in the examination of cyclic mappings as they es-

tablish conditions that ensure the existence and uniqueness of fixed points. These conditions
may vary depending on the specific class of cyclic mappings being considered. For example,
the Banach fixed point theorem guarantees the existence and uniqueness of a fixed point for
contraction mappings defined on a complete metric space. Conversely, the Brouwer fixed point
theorem guarantees the existence of at least one fixed point for continuous mappings defined on
a compact, convex set.

It is important to note that while a fixed point theorem may guarantee the existence of fixed
points for a given class of mappings, it does not necessarily provide a method for finding those
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fixed points. In practice, finding fixed points for specific mappings can be challenging or even
impossible.

The uniqueness of fixed points is also significant in certain problems, and fixed point theorems
that guarantee uniqueness become particularly useful in such cases. example that applies to
contraction mappings see for example [13–20]

In 2003, Kirk et al. [13] introduced the concept of cyclical contractive mappings and extended
the Banach fixed point theorem to this class of cyclic mappings. They generalized the notion
of contractive mappings to cyclical contractive mappings and proved the existence of a a unique
fixed point for such mappings. This extension expanded the class of mappings for which the
existence and uniqueness of fixed points can be guaranteed, providing a new tool for studying
fixed points in various mathematical contexts.

Regarding the "interpolative Kannan- Meir-Keeler type contractive mapping" and its gener-
alization of Meir-Keeler’s fixed point theorem, it is interesting to observe that Erdal Karapınar
introduced this new type of mapping by incorporating the concept of interpolation into the
Kannan- Meir-Keeler framework. This approach likely allows for the generation of intermediate
points between known data points and expands the applicability of the original theorem.

The utilization of interpolation to generalize various forms of contractions is a common prac-
tice in mathematical research. By integrating interpolation techniques into contraction mappings,
researchers can extend the scope of existing theorems and provide a more flexible framework for
analyzing fixed points in metric spaces.

Furthermore, it appears that the interpolative method has been employed in other research
as well to generalize different types of contractions. This demonstrates the versatility and effec-
tiveness of the interpolation approach in expanding the theory of fixed points and providing new
insights into the existence and uniqueness of solutions.

For a more in-depth exploration of Karapinar’s work and the generalization of other forms
of contractions using the interpolative method, I recommend referring to the cited papers
[1–4,6–14,16] and exploring related research in the field. These sources should provide a com-

prehensive understanding of the interpolative Hardy-Rogers type contractive mapping and its
applications in fixed point theory.

Definition 1.1. Let (E, d) be a metric space and let X and Y be two nonempty subsets of E.
A mapping T : X ∪ Y → X ∪ Y is said to be a cyclic mapping provided that

T (X) ⊆ Y, T (Y ) ⊆ X. (1)

A point x ∈ X ∪ Y is called a best proximity point if d (x, Tx) = d (X,Y ) where d (X,Y ) =
inf (d (x, y) : x ∈ X, y ∈ Y ) .

In 1969 A. Meir, E. Keeler [14] proved

Theorem 1.2. Let (E, d) be a complete metric space and T be a self-mapping of E is said to be
a Meir-Keeler contraction on E , if for every ϵ > 0, there exists δ > 0 such that

ϵ 6 d (x, y) < ϵ+ δ ⇒ d (Tx, Ty) < ϵ (2)

for evrey x, y ∈ E. Then T has a unique fixed point in E.

Recently Karapinar [1] proposed a new Kannan-Meir-Keeler contractive mapping using the
concept of interpolation and proved a fixed point theorem in metric space. This new type of
mapping, called "interpolative Kannan-Meir-Keeler type contractive mapping" is a generalization
of Meir-Keeler ’s fixed point theorem. The interpolative method has been used in other research
to generalize other forms of contractions as well [1–4, 6–12] . This method is a powerful tool in
the study of fixed point theory, as it allows for the construction of new classes of contractive
mappings and the discovery of new fixed point theorems.
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2. Main results

The interpolation method has been used to generalize the definition of interpolation Meir-
Keeler contraction type cyclic contraction by incorporating the notion of interpolation. This
leads to a more general definition of a Meir-Keeler-type cyclic contraction that allows for the
construction of new classes of contractive mappings and the discovery of new fixed point theo-
rems. The idea is that, by incorporating interpolation, the definition of a Meir-Keeler-type cyclic
contraction can be expanded and new properties can be discovered.

Consequently, with the generalization of the definition of Meir-Keeler-type cyclic contraction
via interpolation, it becomes reasonable to anticipate the establishment of a fixed point theorem
for this newly introduced class of mappings.

Definition 2.1. Let (E, d) be a metric space and let X and Y be nonempty subsets of E. A
cyclic map T : X ∪ Y → X ∪ Y is said to be a interpolative Kannan- Meir-Keeler type cyclic
contraction on E, if there exists α ∈ (0, 1) such that

1. given ϵ > 0, there exists δ > 0 so that

ϵ < [d (Tx, x)]
α · [d (Ty, y)]

1−α
< δ + ϵ⇒ d (Tx, Ty) 6 ϵ (3)

2. d (Tx, Ty) < [d (Tx, x)]
α · [d (Ty, y)]

1−α (4)

for all (x, y) ∈ X × Y with x, y /∈ Fix (T )

The fixed point theorem for an interpolative Kannan- Meir-Keeler type cyclic contraction can
be stated as: In a complete metric space if a mapping satisfies certain conditions such as being
an interpolative Kannan- Meir-Keeler-type cyclic contraction, then it has a fixed point.

This theorem can be proved by using the properties of interpolative Kannan- Meir-Keeler-
type cyclic contraction mappings and the Banach fixed point theorem. By using interpolation,
we can construct a new class of contractive mappings with a unique fixed point.

Theorem 2.2. Let (E, d) be a complete metric space and let X and Y be nonempty subsets of
X and let T : X ∪ Y → X ∪ Y be interpolative Kannan- Meir-Keeler type cyclic contraction.
Then T has a fixed point in X ∩ Y .

Proof. Suppose that x is an arbitrary point in X each positive integer n
From (7) it follows that which yields that

d
(
Tn+2x, Tn+1x

)
= d

(
T
(
Tn+1x

)
, T (Tnx)

)
<

= <
[
d
(
T
(
Tn+1x

)
, Tn+1x

)]α · [d (T (Tnx) , Tnx)]
1−α

=

=
[
d
(
Tn+2x, Tn+1x

)]α ·
[
d
(
Tn+1x, Tnx

)]1−α

which yields that

d
(
Tn+2x, Tn+1x

)1−α
< .
[
d
(
Tn+1x, Tnx

)]1−α for all n > 0.

Then, the sequence
{
d
(
Tn+1x, Tnx

)}
is strictly nonincreasing and since d

(
Tn+1x, Tnx

)
> 0,

for n ∈ N ∪ {0} it follows that the sequence
{
d
(
Tn+1x, Tnx

)}
tends to a point r > 0. We claim

that r = 0. Indeed, if we suppose that r > 0, we can find N ∈ N,, such that:

r < d
(
Tn+1x, Tnx

)
< r + δ (r)
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for any n > N. Then, since r < d
(
Tn+1x, Tnx

)
<
[
d
(
Tn+1x, Tnx

)]α ·
[
d
(
Tnx, Tn−1x

)]1−α

keeping in mind (3), it follows that d
(
Tn+1x, Tnx

)
6 r, for any n > N. This is a contradiction,

and that’s why we get r = 0.
In order to show that {Tnx} is a Cauchy sequence, let ϵ > 0, be fixed and we can consider

that δ (ϵ) can be choose such that δ (ϵ) < ϵ. Since lim
n→∞

d
(
Tn+1x, Tnx

)
= 0, we can find l ∈ N

such that d
(
Tn+1x, Tnx

)
<
ϵ

2
, for n > l , and we claim that d (xn+1, xn) <

ϵ

2
, for m > l, and

we claim that
d
(
Tn+mx, Tnx

)
< ϵ (5)

for any m ∈ N. Of course, the above inequality holds for m = 1. Supposing that for some m, (5)
holds, we will prove it for m+ 1. Indeed, using the triangle inequality, together with (7) we have

d
(
Tn+m+1x, Tnx

)
6 d

(
Tn+m+1x, Tn+1x

)
+ d

(
Tn+1x, Tnx

)
=

= d
(
T
(
Tn+mx

)
, T (Tnx)

)
+ d

(
Tn+1x, Tnx

)
<

<
[
d
(
Tn+m+1x, Tn+mx

)]α ·
[
d
(
Tnx, Tn−1x

)]1−α
+ d

(
Tn+1x, Tnx

)
<

<
ϵ

2
+
ϵ

2
= ϵ.

Therefore, the sequence {Tnx} is Cauchy. Since (E, d) is complete there exists z ∈ E such
that Tnx→ z.

Hence {Tnx} is a Cauchy sequence. Then, there exists a z ∈ X ∪ Y such that Tnx→ z.
Notice that

{
T 2nx

}
is a sequence in X and

{
T 2n+1x

}
is a sequence in Y having the same

limit z. As X and Y are closed, we conclude z ∈ X ∩ Y , that is, X ∩ Y is nonempty.
We claim that Tz = z. Observe that:

d (z, Tz) = lim
n→∞

d
(
Tz, T 2nx

)
= lim

n→∞
d
(
Tz, TT 2n−1x

)
6

6 lim
n→∞

[d (Tz, z)]
α ·
[
d
(
T 2nx, T 2n−1x

)]1−α 6

6 lim
n→∞

[
d (Tz, z)]α · [d

(
T 2n−1x, T 2nx

)]1−α
.

Taking n→ ∞ in the inequality above, we derive that d (z;Tz) = 0 that is Tz = z.

Example 2.3. Let E = R2 and X = Y = {ξ1, ξ2, ξ3, ξ4} , where ξ1 = (1,−1) , ξ2 = (−1, 0),

ξ3 = (2,−1) , ξ4 = (2, 0) . Let d : E ×E → [0,∞) be defined as d (ζ, ζ ′)=

√
(x1, y1)

2
+ (x2 − y2)

2

for any ζ, ζ ′ ∈ E, ζ = (ζ1, ζ2) and ζ ′ = (ζ ′1, ζ
′
2) , with ζ1, ζ2,

′
1 , ζ

′
2 ∈ R. Define the mapping

T : E → E as follows

Tξ1 = Tξ3 = Tξ4 = ξ3, T ξ2 = ξ4, and Tζ = ζ for any ζ ∈ E\ {ξ1, ξ2, ξ3, ξ4} .

We choose α =
1

2
.

Thus, we claim that T satisfies the conditions of Theorem.
Indeed, for ϵ < 1, with δ =

√
2 − ϵ

ϵ < 1 =
√
d (ξ1, T ξ1) d (ξ4, T ξ4) =

√
d (ξ1, ξ3) d (ξ4, ξ3) <

√
2 = ϵ+ δ ⇒

d (Tξ1, T ξ4) = d (ξ3, ξ3) = 0 < ϵ

and also
d (Tξ1, T ξ4) <

√
d (ξ1, ξ3) d (ξ4, ξ3).
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For ϵ > 1, choosing δ = 1, we get

ϵ <
√
d (ξ1, T ξ1) d (ξ2, T ξ2) =

√
d (ξ1, ξ3) d (ξ2, ξ4) <

√
3 < ϵ+ δ ⇒

d (Tξ1, T ξ2) = d (ξ3, ξ4) = 1 < ϵ

and
d (Tξ1, T ξ2) = 1 <

√
3 =

√
d (ξ1, ξ3) d (ξ2, ξ4).

Similar,
ϵ <

√
d (ξ4, T ξ4) d (ξ2, T ξ2) =

√
d (ξ4, ξ3) d (ξ2, ξ4) <

√
3 < ϵ+ δ ⇒

d (Tξ4, T ξ2) = d (ξ3, ξ4) = 1 < ϵ

and
d (Tξ4, T ξ2) = 1 <

√
3 =

√
d (ξ1, ξ3) d (ξ2, ξ4)

T satisfies all the conditions of the above theorem. Hence T has fixed points in X ∩ Y . In fact
ξ3 = (2,−1) ∈ X ∩ Y is the fixed point. and all P ∈ E\ {ξ1, ξ2, ξ3, ξ4}.

Corollary 2.4. Let X and Y be two non-empty closed subsets of a complete metric space (E, d).
Let T1 : X → Y and T2 : Y → X be two functions. Assume that there exists α ∈ (0, 1) such that

1 given ϵ > 0, there exists δ > 0 so that

ϵ < [d (T1x, x)]
α · [d (T2y, y)]

1−α ⇒ d (T1x, T2y) 6 ϵ (6)

2 d (T1x, T2y) < [d (T1x, x)]
α · [d (T2y, y)]

1−α (7)

for all (x, y) ∈ X × Y with x, y /∈ Fix (Ti) i = 1, 2. Then there exists a unique z ∈ X ∩ Y such
that T1 (z) = T2 (z) = z.

Proof. Let T : X ∪ Y → X ∪ Y defined by

T (x) = T1 (x) if x ∈ XT2 (x) if x ∈ Y .

Then T be interpolative Kannan- Meir-Keeler type cyclic contraction on complete metric space
(E, d), we can now apply Theorem 2 to deduce that T has a fixed point z ∈ X ∩ Y such that
T1 (z) = T2 (z) = z.

Dedicated to my student Hafsa Said.
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[11] E.Karapınar, A.Fulga, Roldán López de Hierro, A.F. Fixed point theory in the setting of
(α, β, ψ, ϕ)-interpolative contractions, Adv. Differ. Equation, 2021(2021), 339.

[12] H.Aydi, C.M.Chen, E.Karapınar, Interpolative Cirić-Reich-Rus type contractions via the
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Аннотация. В данной статье представлена идея интерполяционных сокращений в категории цик-
лических сокращений типа Каннана-Меира-Килера. Кроме того, мы обеспечиваем демонстрацию,
устанавливающую существование неподвижной точки в полном метрическом пространстве.
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1. Introduction and preliminaries

We investigate maximal operators defined by the following formula:

Mf(y) := sup
t>0

| Atf(y) |, (1)

where
Atf(y) :=

∫
S

f(y − tx)ψ(x)dS(x) (2)

is an averaging operator, S ∈ Rn+1 is a hyper-surface, ψ is a fixed non-negative smooth function
with compact support, i.e. 0 6 ψ ∈ C∞

0 (Rn+1) and f ∈ C∞
0 (Rn+1).

The maximal operator of the form (1) is said to be bounded in Lp := Lp(Rn+1) if there exists
a positive number C, such that for any function f ∈ C∞

0 (Rn+1) the following inequality

∥Mf∥Lp 6 C ∥f∥Lp

holds, where ∥ · ∥Lp is the natural norm of the space Lp.
Denote by p ′(S) a minimal number such that for all p, satisfying p > p ′(S), the maximal

operator (1) is bounded in Lp. A number p ′(S) is said a critical (boundedness) exponent of the
maximal operator (1).

Firstly, the boundedness of the maximal operators (1) in Lp(Rn), when S is an unit sphere
centered at the origin, was proved by I. M. Stein with p ′(S) =

n

n− 1
, for n > 3 [1]. Later these

operators were investigated in the works of J. Bourgain [2], A. Greenleaf [3], K.D. Sogge [4, 5],
A. Iosevich, E. Sawyer and A. Seeger [6, 7].

∗usmanov-salim@mail.ru https://orcid.org/0000-0002-2065-8788
c⃝ Siberian Federal University. All rights reserved
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Also, the boundedness problem for the maximal operators (1) were studied in the papers of
I. A. Ikromov, M. Kempe and D.Müller [8, 9]. In these papers it is considered homogeneous and
smooth hypersurfaces of a finite type and proved the boundedness of maximal operators in the
space Lp(R3), when p > 2.

In [10], it was investigated maximal operators (1) associated with smooth hypersurfaces and
defined a boundedness exponent of these operators in the space Lp(Rn+1).

The papers [11–14] were devoted to the study of the boundedness of maximal operators
associated with singular surfaces.

2. Statement of the problem

The concept of fractional power series is defined using the following definition.
Definition. Let V ⊆ Rn

+ be an open connected set such that 0 ∈ V̄ , f is called a fractional power
series in the set V if there is an open set W ⊆ Rn, containing V̄ , a natural number N and a
real analytic function g in Φ−1

N (W ) such that the identity f = g ◦Φ1/N holds in the set V , where
ΦN : Rn → Rn is a map, given by the formula ΦN (x) = (xN1 , x

N
2 , . . . , x

N
n ) [15].

In the present work we consider singular surfaces in the space R3 given by the following
parametric equations

x1(u1, u2) = r1 + ua1
1 u

a2
2 g1(u1, u2), x2(u1, u2) = r2 + ub11 u

b2
2 g2(u1, u2),

x3(u1, u2) = r3 + uc11 u
c2
2 g3(u1, u2),

(3)

where r1, r2, r3 are arbitrary real numbers and a1, a2, b1, b2, c1, c2 are non-negative rational num-
bers, u1 > 0, u2 > 0, {gk(u1, u2)}3k=1 are fractional power series.

We use the following necessary denotations:

B1 =

∣∣∣∣a1 b1
a2 b2

∣∣∣∣ , B2 =

∣∣∣∣b1 c1
b2 c2

∣∣∣∣ , B3 =

∣∣∣∣a1 c1
a2 c2

∣∣∣∣ .
Remark 1. If at least one of the numbers B1, B2, B3 is nonzero, then the points of the surface
(3) lie in a sufficiently small neighborhood of the origin of the coordinate system Or1r2r3 and
outside the coordinate planes are nonsingular points. The points of the surface (3) lie in a
small neighborhood of zero and on the coordinate planes of the coordinate system Or1r2r3 may
be singular points (see lemma in [11]).

In the paper we study the following averaging operator defined by the relations (2) and (3)

Aϕ
t f(y) =

∫
R2

+

f
(
y1 − t

(
r1 + ua1

1 u
a2
2 g1(u1, u2)

)
, y2 − t

(
r2 + ub11 u

b2
2 g2(u1, u2)

)
,

y3 − t(r3 + uc11 u
c2
2 g3(u1, u2))

)
ψ1(u1, u2)

√
ϕ(u1, u2)du1du2,

(4)

here ϕ(u1, u2) = EG− F 2 is fractional power series, as usual, E,G, F are the coefficients of the
first quadratic form of the surface (3) and f ∈ C∞

0 (R3). Maximal operator, which corresponds
to the operator Aϕ

t f , is defined by the correlation

Mϕf(y) := sup
t>0

| Aϕ
t f(y) |, y ∈ R3.

In this paper we investigate the maximal operators (1) associated with singular surfaces (3).
More precisely, we study the maximal operator Mϕf in a sufficiently small neighborhood of
the point (r1, r2, r3) of the surface (3) and prove that these operators are bounded in the space
Lp(R3) for some p > 2.
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3. On the boundedness of the maximal operator Mϕf.

We use the following denotation:

p ′′(S) = max

{
a1

b1 + c1
,

a2
b2 + c2

,
b1

a1 + c1
,

b2
a2 + c2

,
c1

a1 + b1
,

c2
a2 + b2

}
.

The main result of the present paper is the following

Theorem 3.1. Let {gk(u1, u2)}3k=1 be fractional power series at the origin in R2 such that
gk(0, 0) ̸= 0 and B1B2B3 ̸= 0. If at least one of the numbers r1, r2, r3 is non-zero, then there
exists a neighborhood U of the point (r1, r2, r3) such that for any function ψ ∈ C∞

0 (U), the
maximal operator Mϕf is bounded in Lp(R3) for p > max{p ′′(S), 2}. Moreover, if ψ1(0, 0) =
ψ(r1, r2, r3) > 0 and p ′′(S) > 2, then the maximal operator Mϕf is not bounded in Lp(R3) when
2 < p 6 p ′′(S).

Proof. Assume first that r3 ̸= 0. We investigate the maximal operator Mϕf at nonsingular
points of the surface (3). After direct calculations for the function ϕ(u1, u2) in (4) we have

ϕ(u1, u2) := um1
1 um2

2 h21(u1, u2) + un1
1 un2

2 h22(u1, u2) + ul11 u
l2
2 h

2
3(u1, u2), (5)

where
m1 = 2(a1 + b1 − 1), m2 = 2(a2 + b2 − 1), n1 = 2(a1 + c1 − 1),

n2 = 2(a2 + c2 − 1), l1 = 2(b1 + c1 − 1), l2 = 2(b2 + c2 − 1)

and

h1(u1, u2) =
(
a1g1(u1, u2) + u1

∂g1(u1, u2)

∂u1

)(
b2g2(u1, u2) + u2

∂g2(u1, u2)

∂u2

)
−

−
(
a2g1(u1, u2) + u2

∂g1(u1, u2)

∂u2

)(
b1g2(u1, u2) + u1

∂g2(u1, u2)

∂u1

)
,

h2(u1, u2) =
(
a1g1(u1, u2) + u1

∂g1(u1, u2)

∂u1

)(
c2g3(u1, u2) + u2

∂g3(u1, u2)

∂u2

)
−

−
(
a2g1(u1, u2) + u2

∂g1(u1, u2)

∂u2

)(
c1g3(u1, u2) + u1

∂g3(u1, u2)

∂u1

)
,

h3(u1, u2) =
(
b1g2(u1, u2) + u1

∂g2(u1, u2)

∂u1

)(
c2g3(u1, u2) + u2

∂g3(u1, u2)

∂u2

)
−

−
(
b2g2(u1, u2) + u2

∂g2(u1, u2)

∂u2

)(
c1g3(u1, u2) + u1

∂g3(u1, u2)

∂u1

)
are fractional power series.

From the conditions B1B2B3 ̸= 0, gi(0, 0) ̸= 0 follow that hi(0, 0) ̸= 0.

We need to consider the following cases.
Case 1. Suppose that either min{m1, n1, l1}=m1, min{m2, n2, l2}=m2, or min{m1, n1, l1}=n1,
min{m2, n2, l2} = n2, or min{m1, n1, l1} = l1, min{m2, n2, l2} = l2. For these cases, we can find
easily that by formulas (4), (5) and by Theorem 3.1 in [13] the critical exponent of the maximal
operator Mϕf is equal to

p1(S) = max

{
c1

0, 5m1 + 1
,

c2
0, 5m2 + 1

}
,
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i.e., the maximal operator Mϕf is bounded in Lp(R3) for p > max{p1(S), 2}, and if ψ1(0, 0) > 0,
p1(S) > 2, then this operator is unbounded when 2 < p 6 p1(S).

Case 2. Assume that min{m1, n1, l1} = m1, min{m2, n2, l2} = n2. Then the function ϕ(u1, u2)

in (5) can be written in the form

ϕ(u1, u2) = um1
1 un2

2 η(u1, u2), (6)

where

η(u1, u2) = um2−n2
2 h21(u1, u2) + un1−m1

1 h22(u1, u2) + ul1−m1
1 ul2−n2

2 h23(u1, u2) (7)

is fractional power series.
Suppose that m2−n2, n1−m1, l1−m1, m2−l2, n1−l1, l2−n2 are positive rational numbers.

In this case η(0, 0) = 0 and consider the following two cases.
Case 2.1. Assume that the Newton diagram ( see [10, 16]) of the function η(u1, u2) consists
of segments γ1 and γ2 connecting points (l1 −m1, l2 − n2), (0,m2 − n2) and (l1 −m1, l2 − n2),
(n1 −m1, 0). In this case the point (l1 −m1, l2 − n2) lies below the line connecting the points
(n1 −m1, 0), (0,m2 − n2) and we have

l1 −m1

n1 −m1
+

l2 − n2
m2 − n2

< 1. (8)

Consider an open small square E = {(u1, u2) ∈ R2 : 0 < u1, u2 < ε}, where ε is a sufficiently
small positive number. Now following Section 2 of [16], we can divide E into the regions

V1 =
{

(u1, u2) ∈ E : M1u
s1
1 6 u2 6 δ1u

s1
1

}
,

V2 =
{

(u1, u2) ∈ E : M2u
s2
1 6 u2 6 δ2u

s2
1

}
,

which correspond to the edges γ1, γ2 and

V3 =
{

(u1, u2) ∈ E : δ2u
s2
1 < u2 < M1u

s1
1

}
V4 =

{
(u1, u2) ∈ E : u2 < M2u

s2
1

}
V5 =

{
(u1, u2) ∈ E : u2 > δ1u

s1
1

}
corresponding to the vertices (l1 − m1, l2 − n2), (n1 − m1, 0), (0,m2 − n2), respectively. Here
M1,M2, δ1, δ2 are some positive numbers,

s1 =
l1 −m1

m2 − l2
=
c1 − a1
a2 − c2

, s2 =
n1 − l1
l2 − n2

=
a1 − b1
b2 − a2

and s1 < s2, −
1

s1
, − 1

s2
are slopes of the edges γ1, γ2, respectively.

Following Lemma 2.2 in [16], we make the power transformation

u1 = v1, u2 = vs11 v2 (9)

in V1. Then from the relations (4), (6) and (9) follows

Aϕ1

t f(y) =

∫
R2

+

f
(
y1 − tva1+s1a2

1 va2
2 g̃1(v1, v2), y2 − tvb1+s1b2

1 vb22 g̃2(v1, v2),

y3 − t(1 + vc1+s1c2
1 vc22 g̃3(v1, v2)

)
ψ̃1(v1, v2) × v

0,5m1+(0,5m2+1)s1
1 v0,5n2

2

√
η̃1(v1, v2)dv1dv2,

– 458 –



Salim E. Usmanov On the Boundedness of Maximal Operators . . .

where ψ̃1(v1, v2) = ψ1(v1, v
s1
1 v2), g̃i(v1, v2) = gi(v1, v

s1
1 v2), i = 1, 2, 3,

η̃1(v1, v2) = vm2−n2
2 h̃21(v1, v2) + v

n1−m1−s1(m2−n2)
1 h̃22(v1, v2) + vl2−n2

2 h̃23(v1, v2),

h̃i(v1, v2) = hi
(
v1, v

s1
1 v2

)
, 0 < v1 < ε, M1 6 v2 6 δ1.

By (8) we have n1 −m1 − s1(m2 − n2) > 0 and η̃1(0, v2) > 0.

It is easy to see that the maximal operator Mϕ1f, which corresponds to the averaging operator
Aϕ1

t f, satisfies assumptions of Theorem 3.1 in [13]. Therefore, according to this theorem, maximal
operator Mϕ1f is bounded in Lp(R3) for

p > p2(S) = max

{
c1 + c2s1

0, 5m1 + 1 + (0, 5m2 + 1)s1
,

c2
0, 5n2 + 1

}
and is not bounded for 2 < p 6 p2(S), while p2(S) > 2, ψ1(0, 0) > 0.

Similarly, one can show that the critical exponent of the maximal operator Mϕf is equal to

p3(S) = max

{
c1 + c2s2

0, 5m1 + 1 + (0, 5m2 + 1)s2
,

c2
0, 5n2 + 1

}
in V2.

Next, to prove the boundedness of the maximal operator Mϕf in V3 we apply Lemma 2.1
in [16]. Let us write η(u1, u2) in (7) in the form η(u1, u2) = α(u1, u2) + β(u1, u2), where

α(u1, u2) = um2−n2
2 h21(u1, u2) + 0, 5ul1−m1

1 ul2−n2
2 h23(u1, u2),

β(u1, u2) = un1−m1
1 h22(u1, u2) + 0, 5ul1−m1

1 ul2−n2
2 h23(u1, u2).

Using the change of variables
u1 = w1, u2 = ws1

1 w2,

in V3 the function α(u1, u2) is represented as

α1(w1, w2) = w
l1−m1+s1(l2−n2)
1 × wl2−n2

2

(
wm2−l2

2 ĥ21(w1, w2) + 0, 5ĥ23(w1, w2)
)
, (10)

where 0<w1<ε, δ2w
s2−s1
1 <w2 < M1, ĥ1(w1, w2) =h1(w1, w

s1
1 w2), ĥ3(w1, w2) =h3(w1, w

s1
1 w2).

Assume that M1 is a sufficiently small positive number.
If we exchange the roles of the u1 and u2 axes, then we have

V ′
3 =

{
(u1, u2) ∈ E : M

− 1
s1

1 u
1
s1
2 < u1 < δ

− 1
s2

2 u
1
s2
2

}
.

After changing variables

u1 = ν1ν
1
s2
2 , u2 = ν2 (11)

in V ′
3 the function β(u1, u2) takes the form

β1(ν1, ν2) = νl1−m1
1 ν

1
s2

(n1−m1)

2

(
νn1−l1
1 h̄22(ν1, ν2) + 0, 5h̄23(ν1, ν2)

)
, (12)

where M
− 1

s1
1 ν

1
s1

− 1
s2

2 < ν1 < δ
− 1

s2
2 , 0 < ν2 < ε. We assume that δ2 is a sufficiently large number.

Consequently, by (6), (10) and (6), (12) we have

ϕ2(w1, w2) = wl1+s1l2
1 wl2

2 η̃2(w1, w2), (13)
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ϕ2(ν1, ν2) = νl11 ν
1
s2

n1+n2

2 η2(ν1, ν2), (14)

where
η̃2(w1, w2) = wm2−l2

2 ĥ21(w1, w2) + 0, 5ĥ23(w1, w2),

η2(ν1, ν2) = νn1−l1
1 h̄22(ν1, ν2) + 0, 5h̄23(ν1, ν2)

and η̃2(0, 0) > 0, η2(0, 0) > 0.

Thus, from the formulas (4), (13) and (14), we get

Aϕ2

t f(y) =
∫
R2

+
f
(
y1 − twa1+s1a2

1 wa2
2 ĝ1(w1, w2), y2 − twb1+s1b2

1 wb2
2 ĝ2(w1, w2),

y3 − t(1 + wc1+s1c2
1 wc2

2 ĝ3(w1, w2)
)
ψ̂1(w1, w2)w

0,5l1+(0,5l2+1)s1
1 w0,5l2

2 ×
√
η̃2(w1, w2)dw1dw2,

Aϕ2
t f(y) =

∫
R2

+

f
(
y1 − tνa1

1 ν
a1
s2

+a2

2 ḡ1(ν1, ν2), y2 − tνb11 ν
b1
s2

+b2

2 ḡ2(ν1, ν2), y3−

−t(1 + νc11 ν
c1
s2

+c2

2 ḡ3(ν1, ν2)
)
ψ̄1(ν1, ν2)ν0,5l11 ν

(0,5n1+1) 1
s2

+0,5n2

2 ×
√
η2(ν1, ν2)dν1dν2,

where ψ̂1(w1, w2) = ψ1(w1, w
s1
1 w2), ĝi(w1, w2) = gi(w1, w

s1
1 w2),

ψ1(ν1, ν2) = ψ1(ν1ν
1
s2
2 , ν2), gi(ν1, ν2) = gi(ν1ν

1
s2
2 , ν2), i = 1, 2, 3.

Obviously, the maximal operators Mϕ2f and Mϕ2f, which correspond to the operators Aϕ2

t f

and Aϕ2
t f, satisfy assumptions of Theorem 3.1 in [13]. Therefore, by means of this theorem the

boundedness exponent of these maximal operators is equal to

p4(S) = max

{
c1 + c2s1

0, 5l1 + 1 + (0, 5l2 + 1)s1
,

c1 + c2s1
0, 5n1 + 1 + (0, 5n2 + 1)s1

,
c1

0, 5l1 + 1
,

c2
0, 5l2 + 1

}
.

Analogously, it can be proved that using the power transformations (9) and (11) in the
domains V4 and V5, respectively, we get the following critical exponent for the maximal operator
Mϕf

p5(S)=max

{
c1 + c2s2

0, 5n1 + 1 + (0, 5n2 + 1)s2
,

c1 + c2s1
0, 5m1 + 1 + (0, 5m2 + 1)s1

,
c2

0, 5n2 + 1
,

c1
0, 5m1 + 1

}
.

Case 2.2. Assume that the Newton diagram of the function η(u1, u2) in (7) is a segment
connecting the points (n1 −m1, 0) and (0,m2 − n2).

Following section 2 of [16], we can divide the set E into the regions

D1 =
{

(u1, u2) ∈ E : N1u
s3
1 6 u2 6 λ1u

s3
1

}
,

which corresponds to the edge connecting the vertices (n1 −m1, 0), (0,m2 − n2) and

D2 =
{

(u1, u2) ∈ E : u2 < N1u
s3
1

}
, D3 =

{
(u1, u2) ∈ E : u2 > λ1u

s3
1

}
corresponding to the vertices (n1 −m1, 0), (0,m2 − n2), respectively. Here N1, λ1 are positive

numbers, s3 =
n1 −m1

m2 − n2
=
c1 − b1
b2 − c2

and − 1

s3
is a slope of the edge, n1 −m1 > 0, m2 − n2 > 0.

Similarly, as in the case 2.1, we obtain the boundedness exponent p1(S) for the maximal
operator Mϕf in the regions D1, D2 and D3 (see also Theorem 2, [11]).

It is easy to see that if at least one of the numbers n1 −m1, m2 − n2 is zero, i.e., s3 = 0 or
s3 = +∞ or n1−m1 = 0, m2−n2 = 0, then the boundedness exponent of the maximal operator
Mϕf remains unchanged.
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Analogously, one can investigate that if either min{m1, n1, l1} = m1,

min{m2, n2, l2} = l2, or min{m1, n1, l1} = n1, min{m2, n2, l2} = m2, or min{m1, n1, l1} = l1,

min{m2, n2, l2} = m2, or min{m1, n1, l1} = n1,

min{m2, n2, l2} = l2, or min{m1, n1, l1} = l1, min{m2, n2, l2} = n2, then the boundedness
exponent of the maximal operator is equal to p1(S).

Hence, we obtain p ′(S) = max
{
p1(S), p2(S), p3(S), p4(S), p5(S)

}
=max

{ c1
a1 + b1

,
c2

a2 + b2

}
.

Then making similar arguments for r1 ̸=0 or r2 ̸=0, we can get p6(S)=max
{ a1
b1+ c1

,
a2

b2+ c2

}
or p7(S) = max

{ b1
a1 + c1

,
b2

a2 + c2

}
, respectively.

Thus, assuming p ′′(S) = max
{
p ′(S), p6(S), p7(S)

}
, we complete the proof of Theorem 3.1.

In the proof of the main result, we assumed that l1−m1, m2− l2, n1− l1, l2−n2 are positive
rational numbers. It should be noted that if at least one of these numbers is equal to zero then
the exponent of the boundedness of maximal operator remains unchanged. It is not difficult to
see that the following remarks hold.

Remark 2. By the conditions of Theorem 3.1 there are no cases when all numbers l1 − m1,
m2 − l2, n1 − l1, l2 − n2 or any three of these numbers are zero. In other words, if either s1
and s2 does not exist, i.e., @s1, @s2, either @s1, s2 = +∞, or s1 = +∞, @s2, or @s1, s2 = 0, or
s1 = 0, @s2, then they are contradictions to the conditions B ̸= 0, B1 ̸= 0, B2 ̸= 0.

Remark 3. If either @s1, s2 > 0, or s1 = +∞, s2 = 0, or s1 > 0,@s2, or s1 = +∞, s2 > 0, or
s1 > 0, s2 = 0, then they contradict the to inequality (8).

Remark 4. If either s1 = 0, s2 = 0, or s1 = 0, s2 = +∞, or s1 = +∞, s2 = +∞, then the
boundedness indicator of the maximal operator is equal to p1(S).

Remark 5. If either s1 = 0, s2 > 0 or s1 > 0, s2 = +∞, then it is easy to show that the critical
exponent of the maximal operator Mϕf is equal to p1(S).

Proposition 1. Let {gi(u1, u2)}3i=1, ϕ(u1, u2) be real analytic functions at the origin in R2.

Then the statements of Theorem 3.1 are true.
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Об ограниченности максимальных операторов,
ассоциированных с сингулярными поверхностями

Салим Э. Усманов
Самаркандский государственный университет

имени Ш.Рашидова
Самарканд, Узбекистан

Аннотация. Статья посвящена к исследованию максимальных операторов, ассоциированных с
сингулярными поверхностями. Доказана ограниченность этих операторов в пространстве Lp, когда
сингулярные поверхности задаются параметрическими уравнениями в R3.

Ключевые слова: максимальный оператор, оператор усреднения, дробно-степенной ряд, несин-
гулярная точка, критический показатель.
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Abstract. In this paper, we prove the infinite differentiability of an integral operator of the potential
type for an infinitely differentiable function defined on the boundary of a bounded domain with the
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We consider n-dimensional complex space Cn, n > 1 with variables z = (z1, . . . , zn). Let’s
introduce the vector module |z| =

√
z21 + . . .+ z2n and the differential forms dz = dz1 ∧ . . .∧ dzn

and dz̄ = dz̄1 ∧ . . . ∧ dz̄n and also dz[k] = dz1 ∧ . . . ∧ dzk−1 ∧ dzk+1 ∧ . . . ∧ dzn.
A bounded domain D ⊂ Cn has boundary of class ∂D ∈ C∞ if D = {z ∈ Cn : ρ(z) < 0},

where ρ is real-valued function of class C∞ on some neighborhood of the closure of domain D,
and the differential dρ ̸= 0 on ∂D. Let’s denote the "complex" guiding cosines

ρk =
1

| grad ρ|
∂ρ

∂zk
, ρk̄ =

1

| grad ρ|
∂ρ

∂z̄k
.

We will also consider infinitely differentiable functions f ∈ C∞(∂D) on the boundary of the
domain D.

Consider the Bochner–Martinelli kernel, which is an exterior differential form U(ζ, z) of type
(n, n− 1) (see, for example, [1, Ch. 1]), given by

U(ζ, z) =
(n− 1)!

(2πi)n

n∑
k=1

(−1)k−1 ζ̄k − z̄k
|ζ − z|2n

dζ̄[k] ∧ dζ.

This kernel plays an important role in multidimensional complex analysis (see, for example, [1,2]).
Let g(ζ, z) be the fundamental solution to the Laplace equation:

g(ζ, z) = − (n− 2)!

(2πi)n
1

|ζ − z|2n−2
, n > 1,

then

U(ζ, z) =

n∑
k=1

(−1)k−1 ∂g

∂ζk
dζ̄[k] ∧ dζ.

For the function f ∈ C∞(∂D), we introduce the Bochner–Martinelli integral (integral opera-
tor)

M(f) =

∫
∂D

f(ζ)U(ζ, z), z /∈ ∂D,

∗asmyslivets@sfu-kras.ru
c⃝ Siberian Federal University. All rights reserved
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and also the single-layer potential (integral operator)

Φ(f) = in2n−1

∫
∂D

f(ζ)g(ζ, z) dσ(ζ), z /∈ ∂D,

where dσ is the Lebesgue surface measure on ∂D.
We formulate theorems on the derivatives of integrals M(f) and Φ(f), proved in [1, Ch. 1].

These statements are derived from the classical formulas of the potential theory [3].

Theorem 1. If ∂D ∈ C2 and f ∈ C2(∂D), then the integral M(f) extends to D and Cn \D as
a function of class C1+α for 0 < α < 1. At the same time, the formulas are valid

∂M(f)

∂zm
=

∫
∂D

(
∂f

∂ζm
− ρm

n∑
k=1

ρk
∂f

∂ζ̄k

)
U(ζ, z)+

+ in2n−1

∫
∂D

n∑
s,k=1

[
ρk

∂

∂ζs

(
ρmρk̄

∂f

∂ζ̄s

)
− ρm

∂

∂ζk

(
ρmρk̄

∂f

∂ζ̄s

)]
g(ζ, z)dσ(ζ)

and

∂M(f)

∂z̄m
=

∫
∂D

(
∂f

∂ζ̄m
− ρm̄

n∑
k=1

ρk
∂f

∂ζ̄k

)
U(ζ, z)+

+ in2n−1

∫
∂D

n∑
s,k=1

[
ρk

∂

∂ζ̄s

(
ρm̄ρk̄

∂f

∂ζ̄s

)
− ρm̄

∂

∂ζk

(
ρm̄ρk̄

∂f

∂ζ̄s

)]
g(ζ, z)dσ(ζ).

Theorem 2. If ∂D ∈ C2 and f ∈ C2(∂D), then for the integral Φ(f) the formulas are valid

∂Φ(f)

∂zm
= −

∫
∂D

fρmU(ζ, z) + in2n−1

∫
∂D

n∑
k=1

[
ρk

∂

∂ζm

(
fρk̄

)
− ρm

∂

∂ζk

(
fρk̄

)]
g(ζ, z)dσ(ζ)

and

∂Φ(f)

∂z̄m
= −

∫
∂D

fρm̄U(ζ, z) + + in2n−1

∫
∂D

n∑
k=1

[
ρk

∂

∂ζ̄m

(
fρk̄

)
− ρm̄

∂

∂ζk

(
fρk̄

)]
g(ζ, z)dσ(ζ).

It follows from the theorems 1 and 2 that the partial derivatives of the integrals M(f) and
Φ(f) are the application of the integral operators M and Φ to some differential operators of the
function f .

Thus, if we denote the integral operator

I(f1, f2) = M(f1) + Φ(f2), z /∈ ∂D,

for some functions f1(z), f2(z) of class C∞ on the boundary of the domain D, then the statement
is true

Corollary 1. These equalities are valid

∂I(f1, f2)

∂zm
= I(Lm(f1, f2),Km(f1, f2)) = M(Lm(f1, f2)) + Φ(Km(f1, f2)),
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where

Lm(f1, f2) =
∂f1

∂ζm
− ρm

n∑
k=1

ρk
∂f1

∂ζ̄k
− f2ρm,

Km(f1, f2) =

n∑
s,k=1

[
ρk

∂

∂ζs

(
ρmρk̄

∂f1

∂ζ̄s

)
− ρm

∂

∂ζk

(
ρmρk̄

∂f1

∂ζ̄s

)]
+

+in2n−1
n∑

k=1

[
ρk

∂

∂ζm

(
f2ρk̄

)
− ρm

∂

∂ζk

(
f2ρk̄

)]
.

correspondingly

∂I(f1, f2)

∂z̄m
= I(Lm̄(f1, f2),Km̄(f1, f2)) = M(Lm̄(f1, f2)) + Φ(Km̄(f1, f2)),

where

Lm̄(f1, f2) =
∂f1

∂ζ̄m
− ρm̄

n∑
k=1

ρk
∂f1

∂ζ̄k
− f2ρm̄,

Km̄(f1, f2) =

n∑
s,k=1

[
ρk

∂

∂ζs

(
ρm̄ρk̄

∂f1

∂ζ̄s

)
− ρm̄

∂

∂ζk

(
ρm̄ρk̄

∂f1

∂ζ̄s

)]
+

+in2n−1
n∑

k=1

[
ρk

∂

∂ζm̄

(
f2ρk̄

)
− ρm̄

∂

∂ζk

(
f2ρk̄

)]
.

Thus, the derivatives of the operator I(f1, f2) are again the operator I from some derivatives
of the functions f1, f2.

From corollary 1 we get the statement

Theorem 3. If ∂D ∈ C∞ and f1, f2 ∈ C∞(∂D), then both integrals I(f1, f2) (z ∈ D, z ∈ Cn\D)
continue by D and on Cn \D as infinitely differentiable functions.

Proof. Let’s first find the second derivatives of this integral using the corollary

∂2I(f1, f2)

∂zl∂zm
=

∂

∂zl
I
(
Lm(f1, f2),Km(f1, f2)

)
=

= I
(
Ll(Lm(f1, f2),Km(f1, f2)),Kl(Lm(f1, f2),Km(f1, f2))

)
=

= M
(
Ll(Lm(f1, f2),Km(f1, f2))

)
+ Φ

(
Kl(Lm(f1, f2),Km(f1, f2))

)
. (1)

Derivatives are also written out

∂2I(f1, f2)

∂z̄l∂zm
,
∂2I(f1, f2)

∂zl∂z̄m
,
∂2I(f1, f2)

∂z̄l∂z̄m
.

Denote by α = (α1, . . . , αt), t = 1, 2, . . . a set of indexes of size t that take any values from the
set of indexes 1, . . . , n and 1̄, . . . , n̄. Therefore, we have

∂tI(f1, f2)

∂zα
=

∂tI(f1, f2)

∂zα1 · · · ∂zαt

where
∂

∂zαj

=
∂

∂zm
, if αj = m and

∂

∂zαj

=
∂

∂z̄m
, if αj = m̄.
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Then we get that
∂tI(f1, f2)

∂zα

there is a sum of the Bochner–Martinelli integral of an infinitely differentiable function and the
single-layer potential of an infinitely differentiable function. From here and from the properties
of the Bochner–Martinelli integral (see, for example, [1, 2]) and the single-layer potential (see,
for example, [3]), it follows that the integral I(f1, f2) is an infinitely differentiable function up
to the boundary. 2

Corollary 2. If ∂D ∈ C∞ and f ∈ C∞(∂D), then the Bochner-Martinelli integral M(f) contin-
ues on D and on Cn \D as an infinitely differentiable function.

Consider the case when f1 = f and f2 = 0. Then

Lm(f, 0) = Lm(f) =
∂f

∂ζm
− ρm

n∑
k=1

ρk
∂f

∂ζ̄k
,

Km(f, 0) = Km(f) = in2n−1
n∑

s,k=1

[
ρk

∂

∂ζs

(
ρmρk̄

∂f

∂ζ̄s

)
− ρm

∂

∂ζk

(
ρmρk̄

∂f

∂ζ̄s

)]
,

correspondingly,

Lm̄(f, 0) = Lm̄(f) =
∂f

∂ζ̄m
− ρm̄

n∑
k=1

ρk
∂f

∂ζ̄k
,

Km̄(f, 0) = Km̄(f) = in2n−1
n∑

s,k=1

[
ρk

∂

∂ζs

(
ρm̄ρk̄

∂f

∂ζ̄s

)
− ρm̄

∂

∂ζk

(
ρm̄ρk̄

∂f

∂ζ̄s

)]
.

Then, according to the corollary 1, we get

∂I(f, 0)

∂zm
=
∂M(f)

∂zm
= I
(
Lm(f, 0),Km(f, 0)

)
= M

(
Lm(f)

)
+ Φ

(
Km(f)

)
,

∂I(f, 0)

∂z̄m
=
∂M(f)

∂z̄m
= I
(
Lm̄(f, 0),Km̄(f, 0)

)
= M

(
Lm̄(f)

)
+ Φ

(
Km̄(f)

)
,

Now let’s consider the case when f1 = 0 and f2 = f . Then

Lm(0, f) = L̃m(f) = −fρm,

Km(0, f) = K̃m(f) = +in2n−1
n∑

k=1

[
ρk

∂

∂ζm

(
fρk̄

)
− ρm

∂

∂ζk

(
fρk̄

)]
,

correspondingly,
Lm̄(0, f) = L̃m̄(f) = −fρm̄,

Km̄(0, f) = K̃m̄(f) = in2n−1
n∑

k=1

[
ρk

∂

∂ζm̄

(
fρk̄

)
− ρm̄

∂

∂ζk

(
fρk̄

)]
.

Then, according to the corollary 1, we get

∂I(0, f)

∂zm
=
∂Φ(f)

∂zm
= I
(
Lm(0, f),Km(0, f)

)
= M

(
L̃m(f)

)
+ Φ

(
K̃m(f)

)
,

∂I(0, f)

∂z̄m
=
∂Φ(f)

∂z̄m
= I
(
Lm̄(0, f),Km̄(0, f)

)
= M

(
L̃m̄(f)

)
+ Φ

(
K̃m̄(f)

)
.
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We got that

∂M(f)

∂zm
= M(Lm(f)) + Φ(Km(f)) = I(Lm(f),Km(f))

∂Φ(f)

∂zm
= M(L̃m(f)) + Φ(K̃m(f)) = I(L̃m(f), K̃m(f)).

Consider the second derivative of the Bochner–Martinelli integral

∂2M(f)

∂zm∂zl
=
∂M(Lm(f))

∂zl
+
∂Φ(Km(f))

∂zl
=

= I
(
Ll ◦ Lm(f),Kl ◦ Lm(f)

)
+ I
(
L̃l ◦Km(f), K̃l ◦Km(f)

)
.

It follows that

∂2M(f)

∂zm∂zl
=
∂I(Lm(f),Km(f))

∂zl
= I
(
Ll ◦ Lm(f),Kl ◦ Lm(f)

)
+ I
(
L̃l ◦Km(f), K̃l ◦Km(f)

)
.

Therefore, the derivative of the integral operator I is the sum of two integral operators I, in
which the arguments of the first operator I will be the operators L and K applied to the first
argument of this operator, and the arguments of the second operator I will be the operators L̃
and K̃ applied to the second argument of this operator.

It follows that, for example, the following third-order derivative will be equal to

∂3M(f)

∂zm∂zl∂zt
= I
(
Lt ◦ Ll ◦ Lm(f),Kt ◦ Ll ◦ Lm(f)

)
+ I
(
L̃t ◦Kl ◦ Lm(f), K̃t ◦Kl ◦ Lm(f)

)
+

+I
(
Lt ◦ L̃l ◦Km(f),Kt ◦ L̃l ◦Km(f)

)
+ I
(
L̃t ◦ K̃l ◦Km(f), K̃k ◦ K̃l ◦Km(f)

)
.

The derivatives with a different set of variables are calculated in the same way.
We denote, as in the Theorem 3, by α = (α1, . . . , αt), t = 1, 2, . . . a set of indices of size t

that take any values from the set of indices 1, . . . , n and 1̄, . . . , n̄. Therefore, we have

∂tM(f)

∂zα
=

∂tM(f)

∂zα1 · · · ∂zαk

,

where
∂

∂zαj

=
∂

∂zm
, if αj = m and

∂

∂zαj

=
∂

∂z̄m
, if αj = m̄.

Corollary 3. The derivative
∂tM(f)

∂zα
of order t from the Bochner-Martinelli integral is the sum

of 2t−1 integral operators I applied to various compositions of operators L, K, L̃, K̃ from the
function f .
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Интегральный оператор типа потенциала для бесконечно
дифференцируемых функций

Симона Г.Мысливец
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. В этой статье доказана бесконечная дифференцируемость интегрального оператора
типа потенциала для бесконечно дифференцируемых функций, определенных на границе ограни-
ченной области вплоть до границы области с обеих сторон.

Ключевые слова: дифференцируемость интегрального оператора типа потенциала вплоть до
границы.
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Abstract. Given a list L(v) for each vertex v, we say that the graph G is L-colorable if there is a proper
vertex coloring of G where each vertex v takes its color from L(v). The graph is uniquely k-list colorable
if there is a list assignment L such that |L(v)| = k for every vertex v and the graph has exactly one
L-coloring with these lists. If a graph G is not uniquely k-list colorable, we also say that G has property
M(k). The least integer k such that G has the property M(k) is called the m-number of G, denoted by
m(G). In this paper, we characterize uniquely list colorability of the graph G = Kn

2 +Or. We shall prove
that m(K2

2 +Or) = 4 if and only if r > 9, m(K3
2 +Or) = 4 for every 1 6 r 6 5 and m(K4

2 +O1) = 4.
Keywords: vertex coloring (coloring), list coloring, uniquely list colorable graph, complete r-partite
graph.
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1. Introduction and preliminaries
All graphs considered in this paper are finite undirected graphs without loops or multiple

edges. If G is a graph, then V (G) and E(G) (or V and E in short) will denote its vertex-set
and its edge-set, respectively. The set of all neighbours of a subset S ⊆ V (G) is denoted by
NG(S) (or N(S) in short). The subgraph of G induced by W ⊆ V (G) is denoted by G[W ]. The
empty and complete graphs of order n are denoted by On and Kn, respectively. Unless otherwise
indicated, our graph-theoretic terminology will follow [2].

A graph G = (V,E) is called r-partite graph if V admits a partition indaguiActato r classes
V = V1 ∪ V2 ∪ . . . ∪ Vr such that the subgraphs of G induced by Vi, i = 1, . . . , r, is empty.
An r-partite graph in which every two vertices from different partition classes are adjacent is
called complete r-partite graph and is denoted by K|V1|,|V2|,...,|Vr| . The complete r-partite graph
K|V1|,|V2|,...,|Vr| with |V1| = |V2| = . . . = |Vr| = s is denoted by Kr

s .
Let G1 = (V1, E1), G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅. Their union

G = G1 ∪ G2 has, as expected, V (G) = V1 ∪ V2 and E(G) = E1 ∪ E2. Their join defined is
denoted G1 +G2 and consists of G1 ∪G2 and all edges joining V1 with V2.

Let G = (V,E) be a graph and λ is a positive integer.
A λ-coloring of G is a mapping f : V (G) → {1, 2, . . . , λ} such that f(u) ̸= f(v) for any

adjacent vertices u, v ∈ V (G). The smallest positive integer λ such that G has a λ-coloring is
called the chromatic number of G and is denoted by χ(G). We say that a graph G is n-chromatic
if n = χ(G).

Let (L(v))v∈V be a family of sets. We call a coloring f of G with f(v) ∈ L(v) for all v ∈ V is
a list coloring from the lists L(v). We will refer to such a coloring as an L-coloring. The graph
G is called λ-list-colorable, or λ-choosable, if for every family (L(v))v∈V with |L(v)| = λ for all
v, there is a coloring of G from the lists L(v). The smallest positive integer λ such that G has a

∗lxhung@hunre.edu.vn
c⃝ Siberian Federal University. All rights reserved
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λ-choosable is called the list-chromatic number, or choice number of G and is denoted by ch(G).
The idea of list colorings of graphs is due independently to V.G. Vizing [19] and to P.Erdös,
A. L. Rubin, and H. Taylor [7].

Let G be a graph with n vertices and suppose that for each vertex v in G, there exists a list
of k colors L(v), such that there exists a unique L-coloring for G, then G is called a uniquely
k-list colorable graph or a UkLC graph for short. If a graph G is not uniquely k-list colorable, we
also say that G has property M(k). So G has the property M(k) if and only if for any collection
of lists assigned to its vertices, each of size k, either there is no list coloring for G or there exist
at least two list colorings. The least integer k such that G has the property M(k) is called
the m-number of G, denoted by m(G). The idea of uniquely colorable graph was introduced
independently by Dinitz and Martin [6] and by Mahmoodian and Mahdian [14].

For example, one can easily see that the graph K1,1,2 has the property M(3) and it is U2LC,
so m(K1,1,2) = 3.

The list coloring model can be used in the channel assignment. The fixed channel allocation
scheme leads to low channel utilization across the whole channel. It requires a more effective
channel assignment and management policy, which allows unused parts of channel to become
available temporarily for other usages so that the scarcity of the channel can be largely mitigated
[20]. It is a discrete optimization problem. A model for channel availability observed by the
secondary users is introduced in [20]. The research of list coloring consists of two parts: the
choosability and the unique list colorability. In [10], we characterized list-chromatic number of
the graph G = Kn

2 +Or. In [11] and [12], we characterized uniquely list colorability of the graph
G = Kn

2 +Kr. In [13], we characterized uniquely list colorability of complete tripartite graphs.
In this paper, we characterize uniquely list colorability of the graph G = Kn

2 + Or. We shall
prove that m(K2

2 + Or) = 4 if and only if r > 9, m(K3
2 + Or) = 4 for every 1 6 r 6 5 and

m(K4
2 +O1) = 4.

2. Preliminaries
We need the following Lemmas 1–20 to prove our results.

Lemma 1 ( [14]). Each UkLC graph is also a U(k − 1)LC graph.

Lemma 2 ( [14]). The graph G is UkLC if and only if k < m(G).

Lemma 3 ( [14]). A connected graph G has the property M(2) if and only if every block of G is
either a cycle, a complete graph, or a complete bipartite graph.

Lemma 4 ( [14]). For every graph G we have m(G) 6 |E(G)| + 2.

Lemma 5 ( [14]). Every UkLC graph has at least 3k − 2 vertices.

If n = 1 then G = Kn
2 +Or is a complete bipartite graph, by Lemma 3, G has the property

M(2).

Lemma 6. With G = Kn
2 +Or, we have m(G) 6 r2 − r + 2n+ 4

2
.

Proof. It is clear that |E(G)| =
r2 − r + 2n

2
. By Lemma 4,

m(G) 6 r2 − r + 2n+ 4

2
.

Lemma 7. If G = Kn
2 +Or is UkLC then k 6 2n+ 1.
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Proof Suppose that G is UkLC. Then there exists a list of k colors L(v), such that there
exists a unique L-coloring f for G. Let V (G) = V1 ∪ V2 ∪ . . . ∪ Vn+1 is a partition of V (G) such
that |V1| = |V2| = . . . = |Vn| = 2, |Vn+1| = r and for every i = 1, 2, . . . , n+ 1 the subgraphs of G
induced by Vi, is empty graph. Set Vn+1 = {v1, v2, . . . , vr}.

It is clear that |f(V1 ∪ V2 ∪ . . . ∪ Vn)| 6 2n and |L(v1) \ {f(v1)}| = k − 1. If k > 2n+ 1 then
|L(v1) \ {f(v1)}| > 2n. So there exists c ∈ L(v1) \ {f(v1)} such that c /∈ f(V1 ∪ V2 ∪ . . . ∪ Vn).
It follows that there exists a unique L-coloring f ′ for G: f(v) = f ′(v) if v ∈ V (G) \ {v1} and
f(v1) = c. It is not difficult to see that f ̸= f ′, a contradiction. Thus, k 6 2n+ 1. 2

Lemma 8. m(K2
2 +Or) = 3 for every 1 6 r 6 2.

Proof. By Lemma 3, G = K2
2 +Or is U2LC. Suppose that G is U3LC. By Lemma 5, |V (G)| > 7,

a contradiction. So m(G) = 3.

Lemma 9 ( [14]). m(K2
2 +O3) = 3.

Lemma 10 ( [23]). m(K2
2 +Or) = 3 for every 4 6 r 6 8.

Lemma 11. m(K2
2 +Or) = 3 for every 1 6 r 6 8.

Proof. It follows from Lemma 8, Lemma 9 and Lemma 10.

Lemma 12 ( [23]). G = K2
2 +O9 is U3LC.

The join of Or and Kn, Or +Kn = S(r, n), is called a complete split graph. It is clear that
S(1, n) is a complete graph for every n > 1, by Lemma 3, m(S(1, n)) = 2 for every n > 1.

Lemma 13. (i) m(S(1, n)) = 2 for every n > 1;
(ii) m(S(r, 1)) = 2 for every r > 1;
(iii) m(S(2, n)) = 3 for every n > 2.

Proof. (i) It is clear that S(1, n) is a complete graph for every n > 1, by Lemma 3, m(S(1, n)) = 2
for every n > 1.

(ii) It is clear that S(r, 1) is a complete bipartite graph for every r > 1, by Lemma 3,
m(S(r, 1)) = 2 for every r > 1.

(iii) By Lemma 3, G = S(2, n) is U2LC for every n > 2.
It is not difficult to see that |E(G)| = 1. By Lemma 4, m(S(2, n)) 6 3 for every n > 2.
Thus, m(S(2, n)) = 3 for every n > 2.

Lemma 14 ( [8]). m(S(3, n)) = 3 for every n > 2;

Lemma 15 ( [8]). For every r > 2, m(S(r, 3)) = 3.

Lemma 16 ( [9]). The graph S(4, 4) has the property M(3).

Lemma 17 ( [16]). The graph S(4, 5) has the property M(3).

Lemma 18. (i) G = S(4, n) has the property M(4) for every n > 2;
(ii) S(4, n) is U3LC for every n > 6;
(iii) m(S(4, n)) = 4 for every n > 6.

Proof. Let G = S(4, n) is a complete split graph with V (G) = I ∪K, G[I] = O4 , G[K] = Kn,
n > 2. Set

I = {u1, u2, u3, u4}, K = {v1, v2, . . . , vn}.

(i) For suppose on the contrary that graph G = S(4, n) is U4LC. So there exists a list of 4
colors L(v) for each vertex v ∈ V (G), such that there exists a unique L-coloring f for G. We
consider separately four cases.
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Case 1: |f(I)| = 1.
In this case, let f(ui) = a for every i = 1, 2, 3, 4. Set graph H = G − I, it is not difficult to

see that H is a complete graph Kn. We assign the following lists L′(v) for the vertices v of H:
(a) If a ∈ L(v) then L′(v) = L(v) \ {a}.
(b) If a /∈ L(v) then L′(v) = L(v) \ {b}, where b ∈ L(v) and b ̸= f(v).

It is clear that |L′(v)| = 3 for every v ∈ V (H). By Lemma 3, H has the property M(2), so H
has the property M(3). It follows that with lists L′(v), there exist at least two list colorings for
the vertices v of H. So it is not difficult to see that with lists L(v), there exist at least two list
colorings for the vertices v of G, a contradiction.

Case 2: |f(I)| = 2.
In this case, let f(I) = {a, b}. Set graph H = G − I, it is not difficult to see that H is a

complete graph Kn. We assign the following lists L′(v) for the vertices v of H:
(a) If a, b ∈ L(v) then L′(v) = L(v) \ {a, b}.
(b) If a ∈ L(v), b /∈ L(v) then L′(v) = L(v) \ {a, c}, where c ∈ L(v) and c ̸= f(v).
(c) If a /∈ L(v), b ∈ L(v) then L′(v) = L(v) \ {b, c}, where c ∈ L(v) and c ̸= f(v).
(d) If a, b /∈ L(v) then L′(v) = L(v) \ {c, d}, where c, d ∈ L(v), c ̸= d and c, d ̸= f(v).

It is clear that |L′(v)| = 2 for every v ∈ V (H). By Lemma 3, H has the property M(2). It
follows that with lists L′(v), there exist at least two list colorings for the vertices v of H. So it
is not difficult to see that with lists L(v), there exist at least two list colorings for the vertices v
of G, a contradiction.

Case 3: |f(I)| = 3.
In this case, let f(I) = {a, b, c}. Without loss of generality, we may assume that f(u1) =

f(u2) = a, f(u3) = b, f(u4) = c. Set graph G′ = (V ′, E′), with

V ′ = I ∪K, E′ = (E(G) ∪ {u1u3, u1u4, u2u3, u2u4}).

It is clear that G′ is complete split graph S(2, n+ 2) with V (G′) = I ′ ∪K ′, where

I ′ = {u1, u2}, K ′ = {u3, u4, v1, v2, . . . , vn}

By (iii) of Lemma 13, with lists L(v), there exist at least two list colorings for the vertices v
of G′. So it is not difficult to see that with lists L(v), there exist at least two list colorings for
the vertices v of G, a contradiction.

Case 4: |f(I)| = 4.
In this case, f(ui) ̸= f(uj) for every i, j ∈ {1, 2, 3, 4}, i ̸= j. Set graph G′′ = (V ′′, E′′), with

V ′′ = I ∪K, E′′ = E(G) ∪ {uiuj |i, j = 1, 2, 3, 4; i ̸= j}.

It is clear that G′′ is a complete graph Kn+4. By Lemma 3, G′′ has the property M(2), so with
lists Lv, there exist at least two list colorings for the vertices v of G′′. Since V (G) = V (G′′), it
is not difficult to see that with lists Lv, there exist at least two list colorings for the vertices v of
G, a contradiction.

(ii) We assign the following lists for the vertices of G:
L(u1) = {1, 3, 4}, L(u2) = {1, 7, 8}, L(u3) = {2, 5, 6}, L(u4) = {2, 7, 8};
L(v1) = {1, 2, 3}, L(v2) = {1, 2, 4}, L(v3) = {1, 2, 5}, L(v4) = {1, 2, 6}, L(v5) = {1, 2, 7},

L(v6) = L(v7) = . . . = L(vn) = {1, 2, 8}.
A unique coloring f of G exists from the assigned lists:

f(u1) = 1, f(u2) = 1, f(u3) = 2, f(u4) = 2;
f(v1) = 3, f(v2) = 4, f(v3) = 5, f(v4) = 6, f(v5) = 7, f(v6) = f(v7) = . . . = f(vn) = 8.
(iii) It follows from (i) and (ii).

Lemma 19 ( [21]). (i) For every n > 2, S(5, n) has the property M(4);
(ii) If n > 5 then m(S(5, n)) = 4.
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Lemma 20. m(S(r, n)) 6 4 for every 1 6 r 6 5 and n > 6.

Proof It follows from Lemma 13 to Lemma 19. 2

3. On property M(4) of the graph Kn
2 +Om

Set the graph G = Kn
2 + Or. Let V (G) = V1 ∪ V2 ∪ . . . ∪ Vn+1 is a partition of V (G)

such that |V1| = |V2| = . . . = |Vn| = 2, |Vn+1| = r and for every i = 1, 2, . . . , n + 1 the
subgraphs of G induced by Vi, is empty graph. Set Vi = {ui1, ui2} for every i = 1, 2, . . . , n and
Vn+1 = {v1, v2, . . . , vr}.

Theorem 21. m(Kn
2 +Or) 6 m(Kn−1

2 +Or) + 2 for every r > 1, n > 2.

Proof. Put m(Kn−1
2 + Or) = t. For suppose on the contrary that graph G = Kn

2 + Or satisfies
m(G) = k > t+ 2. So there exists a list of k− 1 colors L(v) for each vertex v ∈ V (G), such that
there exists a unique L-coloring f for G. Set graph H = G− V1, it is not difficult to see that H
is a graph Kn−1

2 +Or. We consider separately two cases.
Case 1: |f(V1)| = 1.
In this case, f(u11) = f(u12) = a. We assign the following lists L′(v) for the vertices v of H:
(a) If a ∈ L(v) then L′(v) = L(v) \ {a}.
(b) If a /∈ L(v) then L′(v) = L(v) \ {b}, where b ∈ L(v) and b ̸= f(v).

It is clear that |L′(v)| = k − 2 > t + 1 for every v ∈ V (H). Since H has the property M(t), by
Lemma 1, H has the property M(t + 1), so H has the property M(k − 2). It follows that with
lists L′(v), there exist at least two list colorings for the vertices v of H. So it is not difficult to see
that with lists L(v), there exist at least two list colorings for the vertices v of G, a contradiction.

Case 2: |f(V1)| = 2.
In this case, f(u11) = a, f(u12) = b, a ̸= b. We assign the following lists L′(v) for the vertices

v of H:
(a) If a, b ∈ L(v) then L′(v) = L(v) \ {a, b}.
(b) If a ∈ L(v), b /∈ L(v) then L′(v) = L(v) \ {a, c}, where c ∈ L(v) and c ̸= f(v).
(c) If a /∈ L(v), b ∈ L(v) then L′(v) = L(v) \ {b, c}, where c ∈ L(v) and c ̸= f(v),
(d) If a, b /∈ L(v) then L′(v) = L(v) \ {c, d}, where c, d ∈ L(v), c ̸= d and c, d ̸= f(v).
It is clear that |L′(v)| = k − 3 > t for every v ∈ V (H). Since H has the property M(t), by

Lemma 1, H has the property M(k− 3). It follows that with lists L′(v), there exist at least two
list colorings for the vertices v of H. So it is not difficult to see that with lists L(v), there exist
at least two list colorings for the vertices v of G, a contradiction.

Thus, m(Kn
2 +Or) 6 m(Kn−1

2 +Or) + 2 for every r > 1, n > 2.

Corollary 22. The graph G = K2
2 +Or has the property M(4) for every r > 1.

Proof. It is clear that K1
2 + Or is a complete bipartite graph K2,r. By Lemma 3, K1

2 + Or has
the property M(2). By Theorem 13, G = K2

2 +Or has the property M(4) for every r > 1.

Theorem 23. (i) G = K2
2 +Or is U3LC if and only if r > 9;

(ii) m(K2
2 +Or) = 4 if and only if r > 9.

Proof. (i) Firrst we prove the necessity. Suppose that G = K2
2 +Or is U3LC. If 1 6 r 6 8 then

by Lemma 11, m(G) = 3, a contradiction. Therefore, r > 9.
Now we prove the sufficiency. We assign the following lists for the vertices of G: L(u11) =

{1, 2, 6}, L(u12) = {3, 4, 5}; L(u21) = {1, 3, 6}, L(u22) = {2, 4, 6};
L(v1) = {1, 4, 5}, L(v2) = {1, 3, 6}, L(v3) = {1, 4, 6}, L(v4) = {1, 5, 6}, L(v5) = {2, 3, 4},

L(v6) = {2, 3, 5}, L(v7) = {2, 3, 6}, L(v8) = {2, 4, 6}, L(v9) = L(v10) = . . . = L(vr) = {2, 5, 6}.
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A unique coloring f of G exists from the assigned lists: f(u11) = 6, f(u12) = 5; f(u21) = 3,
f(u22) = 4;

f(v1) = f(v2) = f(v3) = f(v4) = 1, f(v5) = f(v6) = . . . = f(vr) = 2.
(ii) It follows from (i) and Corollary 22.

Theorem 24. (i) G = K3
2 +Or is U3LC for every r > 1;

(ii) m(K3
2 +Or) = 4 for every 1 6 r 6 5.

Proof. (i) We assign the following lists for the vertices ofG: L(u11) = {1, 4, 5}, L(u12) = {2, 4, 5},
L(u21) = {1, 2, 3}, L(u22) = {3, 4, 5}, L(u31) = {1, 2, 4}, L(u32) = {3, 4, 5}, L(v1) = L(v2) =
. . . = L(vr) = {3, 4, 5}.

A unique coloring f of G exists from the assigned lists: f(u11) = 1, f(u12) = 2, f(u21) = 3,
f(u22) = 3, f(u31) = 4, f(u32) = 4, f(v1) = f(v2) = . . . = f(vr) = 5.

(ii) By (i), m(K3
2 +Or) > 4 for every r > 1. For suppose on the contrary that m(K3

2 +Or) =
t > 5 for every 1 6 r 6 5. Then for each vertex v in G = K3

2 + Or, there exists a list of t − 1
colors L(v), such that there exists a unique L-coloring for G. We consider separately two cases.

Case 1: There exists i ∈ {1, 2, 3} such that |f(Vi)| = 1.
Without loss of generality, we may assume that |f(V1)| = 1 and f(u11) = f(u12) = a. Set

graph H = G − V1, it is not difficult to see that H is graph K2
2 + Or. We assign the following

lists L′(v) for the vertices v of H:
(a) If a ∈ L(v) then L′(v) = L(v) \ {a}.
(b) If a /∈ L(v) then L′(v) = L(v) \ {b}, where b ∈ L(v) and b ̸= f(v).
It is clear that |L′(v)| = t − 2 > 3 for every v ∈ V (H). Since 1 6 r 6 5, by Lemma 11,

m(H) = 3. It follows that with lists L′(v), there exist at least two list colorings for the vertices
v of H. So it is not difficult to see that with lists L(v), there exist at least two list colorings for
the vertices v of G, a contradiction.

Case 2: |f(Vi)| = 2 for every i ∈ {1, 2, 3}.
Set graph G′ = (V ′, E′), with

V ′ = V (G), E′ = (E(G) ∪ {u11u12, u21u22, u31u32}).

It is clear that G′ is complete split graph S(m, 6) with V (G′) = I ′ ∪K ′, where

I ′ = {v1, v2, . . . , vr}, K ′ = {u11, u12, u21, u22, u31, u32}.

By Lemma 20, m(G′) 6 4. So with lists L(v), there exist at least two list colorings for the
vertices v of G′. So it is not difficult to see that with lists L(v), there exist at least two list
colorings for the vertices v of G, a contradiction.

Theorem 25. (i) If n > 4 and r > 1 then G = Kn
2 +Or is UkLC with k =

⌊n
2

⌋
+ 1;

(ii) m(K4
2 +O1) = 4.

Proof. (i) Put t =
⌊n

2

⌋
. We assign the following lists for the vertices of G:

L(ui1) = {1, 2, . . . , t+ 1} for every i = 1, 2, . . . , t+ 1;
L(ui2) = {t+ 2, t+ 3, . . . , 2t+ 1, i} for every i = 1, 2, . . . , t+ 1;
L(u(t+i)j) = {2, 3, . . . , t+ 1, t+ 1 + i} for every i = 1, 2, . . . , n− t, j = 1, 2;
L(v1) = L(v2) = . . . = L(vr) = {2, 3, . . . , t+ 1, n+ 2}.

A unique coloring f of G exists from the assigned lists:
f(ui1) = i for every i = 1, 2, . . . , t+ 1;
f(ui2) = i for every i = 1, 2, . . . , t+ 1;
f(u(t+i)j) = t+ 1 + i for every i = 1, 2, . . . , n− t, j = 1, 2;
f(v1) = f(v2) = . . . = f(vr) = n+ 2.
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(ii) By (i), G is U3LC. If G is U4LC then by Lemma 5, |V (G)| > 10, a contradiction. So
m(G) = 4.

References
[1] M.Behzad, Graphs and thei chromatic number, Doctoral Thesis (Michigan State Univer-

sity), 1965.

[2] M.Behzad, G.Chartrand, Introduction to the theory of graphs, Allyn and Bacon, Boston,
1971.

[3] M.Behzad, G.Chartrand, J Cooper, The coloring numbers of complete graphs, J. London
Math. Soc., 42(1967), 226–228.

[4] J.A.Bondy, U.S.R.Murty, Graph theory with applications, MacMillan, 1976.

[5] R.Diestel, Graph Theory, Springer–Verlag, New York, 2000.

[6] J.H.Dinitz, W.J.Martin, The stipulation polynomial of a uniquely list colorable graph, Aus-
tralas. J. Combin., 11(1995) 105–115.

[7] P.Erdös, A.L.Rubin, H.Taylor, Choosability in graphs. In: Proceedings of west coast confer-
ence on combinatorics, graph theory, and computing, number 26 in Congr. Numer., pages
125–157, Arcata, CA, September 1979.

[8] M.Ghebleh, E.S.Mahmoodian, On uniquely list colorable graphs, Ars Combin., 59(2001),
307–318.

[9] W.J.He, Y.N.Wang, Y.F.Shen, X.Ma, On property M(3) of some complete multipartite
graphs, Australasian Journal of Combinatorics, 35(2006), no. 2, 211–220.

[10] Le Xuan Hung, List-chromatic number and chromatically unique of the graph Kr
2 + Ok,

Selecciones Matemáticas, Universidad Nacional de Trujillo, 6(2019), no. 1, 26–30.
DOI: 10.17268/sel.mat.2019.01.04

[11] Le Xuan Hung, Colorings of the graph Km
2 +Kn, J. Sib. Fed. Univ. Math. Phys, 13(2020),

no. 3, 297–305. DOI: 10.17516/1997-1397-2020-13-3-297-305

[12] Le Xuan Hung, Unique list colorability of the graph Kn
2 + Kr, Prikladnaya Diskretnaya

Matematika, no. 55, 88–94, 2022. DOI: 10.17223/20710410/55/6

[13] Le Xuan Hung, Uniquely list colorability of complete tripartite graphs, Chebyshevskii
sbornik, 23(2022), no. 2, 170–178. DOI: 10.22405/2226-8383-2022-23-2-170-178

[14] M.Mahdian, E.S.Mahmoodian, A characterization of uniquely 2-list colorable graphs, Ars
Combin., 51(1999), 295–305.

[15] R.C.Read, An introduction to chromatic polynomials, J. Combin. Theory, 4(1968), 52–71.

[16] Y.F.Shen, Y.N Wang, On uniquely list colorable complete multipartite graphs, Ars Combin.,
88(2008), 367–377.

[17] Ngo Dac Tan, Le Xuan Hung, On colorings of split graphs, Acta Mathematica Vietnammica,
31(2006), no. 3, 195–204.

[18] V.G.Vizing, On an estimate of the chromatic class of a p-graph, Discret. Analiz., 3 (1964)
23–30 (in Russian)

– 476 –



Le Xuan Hung On Property M(4) of the Graph Kn
2 +Om

[19] V.G.Vizing. Coloring the vertices of a graph in prescribed colors. In Diskret. Analiz, number
29 in Metody Diskret. Anal. v Teorii Kodov i Shem, pages 3–10, 1976.

[20] W.Wang, X.Liu, List-coloring based channel allocation for open-spectrum wireless networks,
in Proceedings of the IEEE International Conference on Vehicular Technology (VTC ’05),
2005, 690–694.

[21] Y.Wang, Y.Shen, G.Zheng, W.He, On uniquely 4-list colorable complete multipartite graphs,
Ars Combinatoria, 93(2009), 203–214.

[22] R.J.Wilson, Introduction to graph theory, Longman group ltd, London, 1975.

[23] Yancai Zhao, Erfang Shan, On characterization of uniquely 3-list colorable complete multi-
partite graphs, Discussiones Mathematicae Graph Theory, 30(2010 ), 105–114.
DOI: 10.1007/978-3-540-70666-3_30

О свойстве M(4) графа Kn
2 +Om

Ли Хуан Ханг
Ханойский университет природных ресурсов и окружающей среды

Ханой, Вьетнам

Аннотация. Учитывая список L(v) для каждой вершины v, мы говорим, что граф G является
L-раскрашиваемым, если существует правильная раскраска вершин графа G, при которой каждая
вершина v принимает свой цвет из L(v). Граф однозначно раскрашивается в k-список, если суще-
ствует такое задание списка L, что |L(v)| = k для каждой вершины v и граф имеет ровно одну
L-раскраску этими списками. Если граф G не является однозначно раскрашиваемым в k-списке,
мы также говорим, что G обладает свойством M(k). Наименьшее целое число k такое, что G обла-
дает свойством M(k), называется m-числом G и обозначается m(G). В этой статье мы однозначно
характеризуем список раскрашиваемости графа G = Kn

2 + Or. Мы докажем, что m(K2
2 + Or) = 4

тогда и только тогда, когда r > 9, m(K3
2 +Or) = 4 для каждого 1 6 r 6 5 и m(K4

2 +O1) = 4.

Ключевые слова: раскраска вершин (раскраска), раскраска списков, граф, однозначно раскра-
шиваемый списком, полный r-раздельный граф.
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Abstract. A one-dimensional problem of reacting flow thermal stability in a U-shaped channel is
studied. A finite difference scheme is proposed for this problem. Borders of domain of existence of a
bounded solution are estimated. Calculations are carried out for two variants of the inlet boundary
condition. Relationship between critical parameter and other parameters is obtained.
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Thermal explosion problems are problems with critical parameters for which the solution ex-
ists only under restrictions on values of these parameter. Frank–Kamenetsky considered classical
thermal explosion problems related to the stability of reacting media [1]. The thermal stabil-
ity of reacting flows which is directly related to problems of chemical and energy engineering
were studied [2, 3]. The influence of forced and free convection was considered [4–9]. Thermal
explosion equations contain source terms responsible for heat release (often, this is an exother-
mic chemical reaction, Joule heat, or viscous dissipation [10–15]) and terms responsible for heat
transfer (thermal conductivity, convection). As a rule, these are local relations. Non-local trans-
port mechanisms appear, for example, in media with radiative heat transfer [16–18] or in media
of complex structure [19–21]. In this work, thermal explosion equation with non-local term is
studied. It naturally appears when considering recuperative heat exchange surface in a U-shaped
channel. Combustion in such channels was previously considered in many works (for example,
see [22–25]).

1. Thermal explosion equation for a U-shaped channel
The classical thermal explosion problem for plane symmetry with conductive heat transfer

may be written as follows [1]
d2θ

dx2
(ξ) + Fk exp [θ (ξ)] = 0. (1)

Here θ is temperature, ξ is spatial coordinate, and Fk is Frank–Kamenetsky number (critical
parameter of the problem). Frank–Kamenetsky number is defined as the ratio between heat

source intensity and conductive heat transfer rate: Fk =
EaL

2Qw (T0)

λRgT 2
0

(here Ea is chemical

reaction activation energy, L is a reactor size, Q is a reaction heat, T0 is ambient temperature,
∗donskoy.chem@mail.ru http://orcid.org/0000-0003-2309-8461
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w (T0) is reaction rate at ambient conditions, λ is thermal conductivity, Rg is the universal gas
constant).

Boundary conditions are as follows

dθ

dξ
(0) = 0; θ (1) = 0. (2)

The critical value of Fk is about 0.88. Equation (1) does not have a solution at higher Fk
because reacting medium becomes unstable reaching high-temperature conditions when equation
(1) is not applicable. In the presence of convective heat transfer (for example, in the presence of
reacting mixture flow in a channel), the equation can be written in the form

−Pedθ
dξ

(ξ) +
d2θ

dx2
(ξ) + Fk exp [θ (ξ)] = 0. (3)

Here Pe is the Peclet number, Pe =
cρuL

λ
. Here c is heat capacity, ρ is fluid density, u is

mean velocity, L is a channel length. It was shown that as Pe increases the critical value of
Fk also increases reaching limit Fkcr −→ Pe [26]. Equation (2) is correct for small heat losses.
Otherwise, it should be modified as follows

−Pedθ
dξ

(ξ) +
d2θ

dx2
(ξ) + Fk exp [θ (ξ)] −Bienvθ (ξ) = 0. (4)

Here Bi is the Biot number, Bi =
αL

λ
(α is heat transfer coefficient). Generally, the Biot

number depends on the Peclet number but in this paper they are considered as independent
parameters. Equation (4) describes the stationary heat transfer in one-dimensional linear channel
(Fig. 1a). As the numbers Pe and Bi increase the critical value of Fk also increases [27]. The non-
stationary behaviour of reacting flow was considered in [28]. In the present work, the primarily
interest is in ignition conditions (how Fkcr depends on conditions) rather than its dynamic
features.

Fig. 1. Schemes of a linear channel (a) and a U-shaped channel (b). Corresponding finite
difference grids are shown below plots

Let us consider a U-shaped one-dimensional channel. It is a simple model of a recuperative
burner (Fig. 1b). The inner surface of such channel allows heat exchange between sections. The
reaction products heat the fresh mixture which enlarges the stable combustion ranges compared
with linear channels [22–25]. It is possible to represent a U-shaped channel in the form of a
one-dimensional graph [29] as shown in Fig. 1b. Additional connections appear between the two
halves of the channel (dashed lines). The thermal explosion equation can be written as follows

−Pedθ
dξ

(ξ) +
d2θ

dx2
(ξ) + Fk exp [θ (ξ)] −Bi [θ (ξ) − θ (1 − ξ)] = 0. (5)
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Equation (5) contains the term responsible for heat loss which is non-local, i.e., it depends
on temperature at two points. With additional bending of the channel temperature dependence
may become more complex.

The problem with two counterflow channels is not quite equivalent to equation (4) since
equation (5) is continuous at the inflexion point while in the problem with two channels the
choice of suitable boundary conditions is required [22, 23]. The critical condition for equation
(5) corresponds only to the upper limit of thermal stability. Therefore it does not reflect the
range of high-temperature stationary states. Our estimates have rather limited applicability. A
regime map for a similar problem with two counterflow channels was presented [22, 23], where
one can find several possible types of behaviour. In this paper, only the stability limit of low-
temperature steady states is considered, i.e., conditions of self-ignition of reacting flow are found.
***********************************************************************

2. Finite difference scheme
Equation (5) can be approximated with the following finite difference scheme

(1 + hPe) θi−1 −
(
2 + hPe+ h2Bi

)
θi + θi+1 + h2BiθN+1−i = −h2Fk exp

(
θ̃i

)
. (6)

The difference system produces system of linear equations if the right hand side is linearised
or fixed. It can be solved using standard solvers.

Assuming Bi = 0 and expanding the exponential function in equation (5), one can obtain
truncated linear differential equation that can be solved analytically to test difference scheme
(6). Results of numerical solution are presented in Fig. 2. Numerical error ε is defined as the
integral of absolute difference between numerical solution and exact solution, and N is a number
of grid nodes. Upper graphs correspond to the equation with constant and uniform heat source:

−Pedθ
dξ

(ξ) +
d2θ

dx2
(ξ) + Fk = 0. (7)

Lower graphs were obtained for the linear heating source:

−Pedθ
dξ

(ξ) +
d2θ

dx2
(ξ) + Fk (1 + θ) = 0. (8)

The difference scheme is stable and approximates the original differential equation with the
first order of accuracy (this is due to the convective term). Calculations show that when Peclet
number is less then 100 upwind scheme does not suffer from numerical diffusion. High Peclet
numbers were not considered due to requirements of laminar flow.

Stability of the difference scheme (6) is supported by fixing the right hand side (heat source).
After each iteration temperature distribution is updated, and the problem is solved for updated
fixed heat source. The space step h = 0.002 was used in the calculations. The critical value of
the Fk number can be found by the bisection method as described in [30].

3. Results and discussion
It is natural to expect that when Pe = 0 and Bi = 0 the critical number Fk will be equal to

0.88. For Bi = 0 the relationship between Fkcr and Pe was obtained in [26, 27]. Fig. 3 shows
the relationship between critical value Fk and numbers Pe, Bi. As Pe increases at a constant
Bi the critical value of Fk increases over almost the entire calculated region. However, in the
range of Pe numbers close to 4 the relationship between Fkcr and Bi changes. At lower Pe,
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Fig. 2. Relationship between numerical error and number of grid nodes for linearised equations:
(a) constant heating source; (b) linear heating source. Numbers on the right are orders of
accuracy

an increase in Bi leads to an increase in Fkcr and vice versa at higher Pe. It means that heat
transfer intensification between the channel parts narrows the region of stable ignition for low
flow rates.

Fig. 4 shows the effect of Bi in more detail. As Bi increases the values of Fkcr and the
maximum temperature converge to the same limit. Interestingly, for large Bi numbers the
maximum temperature is reached not at the reactor outlet but in its middle, at the channel
inflexion point. Fig. 5 shows the temperature profiles at the stability border. The temperature
profile does not depend on Pe in the limit of large Bi. This phenomenon can be explained as
follows. With high intensity of heat transfer through the inner wall of the channel the temperature
distribution becomes more and more symmetrical. In this case, the critical value Fkcr is equal to
the critical value in the half-channel. The dimensional analysis gives the value of 0.88×22 = 3.52
which is close to calculated values. The maximum admissible temperature in this setting is 1.2
which is also observed from calculations.

The boundary conditions for problem (5) in form (2) are not quite correct. The inlet Dirichlet
boundary condition choice leads to the situation when the main heat loss at low Pe is due to heat
transfer through the inlet boundary (which corresponds to the transition region in Fig. 2). It
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Fig. 3. Relationship between critical value of Fk (isolines) and parameters Bi, Pe under Dirichlet
inlet boundary condition

Fig. 4. Relationship between Fkcr, θmax and Bi under Dirichlet inlet boundary condition

means that condition (2) corresponds to the case when reactive mixture enters into the channel
from a temperature-controlled reservoir. It may not quite accurately reflect the physical picture
of the problem. If the reactor does not have such a control then heat flow through the left
boundary may lead to a dangerous situation when preheated fresh mixture reacts before entering
the channel. In this case a more reasonable choice is thermally isolated flow-permeable left
boundary that is described by the Danckwerts boundary condition [31]

dθ

dξ
(0) = −Peθ (0) . (9)

Fig. 6 shows the relationship between critical value Fk and Pe, Bi under boundary condition
(9). This relationship is monotonic in both variables. However, for small Pe the heat loss through
the inlet boundary is low so the reaction mixture ignites already at small Fk. It means that for
low Pe heat recuperation occurs due to the thermal conductivity of the reaction mixture itself.
In this case, the temperature near the inlet becomes close to critical. This may cause a flashback
of the flame into the reservoir. Another reason for the low Fkcr values is the neglect of heat
losses through the outer channel walls.

Fig. 7 shows temperature profiles at the thermal stability border. As in the previous case,
profiles tend to have a symmetric parabolic shape in the large Bi limit but the number Pe
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Fig. 5. Temperature profiles in U-shaped channel under Dirichlet inlet boundary condition

Fig. 6. Relationship between critical value of Fk (isolines) and parameters Bi, Pe under Danck-
werts inlet boundary condition

included in the boundary condition determines the reaction mixture temperature at the inlet.
As Pe increases the difference between solutions corresponding to boundary conditions (2) and (9)
decreases. In general, as Bi increases the critical number Fk decreases (Fig. 8), i.e., the ignition
region is expanding. Heat recuperation makes it possible to achieve the ignition of mixtures with
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a lower calorific value (although the notable effect requires heat transfer intensification by orders
of magnitude).

Fig. 7. Temperature profiles in U-shaped channel under Danckwerts inlet boundary condition

Fig. 8. Relationship between Fkcr, θmax and Bi under Danckwerts inlet boundary condition

It should be noted once again that applicability of the results is limited by the self-ignition
phenomenon. Free variation of parameters Pe and Bi is also an approximation. In the general
case, the number Bi is found from the solution of the conjugate heat transfer problem [32]. In
addition, the thermophysical properties of the reacting mixture are assumed to be constant while
in practice this is not the case. For example, during the combustion of gases the density is very
sensitive to temperature. Since velocity is determined from the continuity equation then the
velocity depends on the chemical reaction rate (such relationship may be one of the reasons for
fluctuations in the combustion front). Finally, the model does not take into account the heat
losses of the outer channel walls. Their presence will significantly change the regime map.
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Conclusion
In this work, the behaviour of the temperature distribution in a channel with a counterflow

heat transfer is numerically studied which makes it possible to recuperate the heat released during
an exothermic reaction. The relationship between critical parameter Fk and the flow rate (Pe)
and the heat transfer coefficient (Bi) is calculated. It is shown that when the Dirichlet inlet
boundary condition is used non-physical solutions appear. This corresponds to conductive heat
loss through the boundary. These solutions vanish when the Danckwerts boundary condition is
used. The obtained results can be useful to study the limits of self-ignition in reactors with heat
recuperation.

The research was carried out under State Assignment Project (no. FWEU-2021-0005) of
the Fundamental Research Program of Russian Federation 2021-2030 using the resources of the
High-Temperature Circuit Multi-Access Research Center.
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Влияние граничных условий на критические параметры
зажигания в реагирующем потоке в канале
с рекуперацией теплоты

Игорь Г.Донской
Институт систем энергии

Иркутск, Российская Федерация

Аннотация. Исследована одномерная задача тепловой устойчивости реагирующего потока в U-
образном канале. Для этого предложена разностная схема решения нелокального уравнения кон-
вективного теплопереноса. Оценены границы области существования ограниченного решения. Про-
ведены расчеты для двух вариантов входного граничного условия. Получены зависимости значения
критического параметра от расхода и интенсивности теплоотдачи.

Ключевые слова: дифференциальные уравнения, тепловой взрыв, численное решение, рекупе-
ративный теплообмен.
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Abstract. Variations of the van der Corput lemmas that involve Mittag-Leffler functions are studied
in this paper. The extension involves replacing the exponential function with a Mittag–Leffler-type
function. It allows one to analyze oscillatory integrals encountered in the study of time-fractional partial
differential equations. Several generalizations of both the first and second van der Corput lemmas are
established. Optimal estimates for decay orders in specific cases of Mittag–Leffler functions are also
derived.

Keywords: Mittag–Leffler functions, phase function, amplitude.

Citation: A.R. Safarov, U.A. Ibragimov, Oscillatory Integrals for Mittag–Leffler
Functions, J. Sib. Fed. Univ. Math. Phys., 2024, 17(4), 488–496. EDN: KMGUEU.

1. Introduction and preliminaries

The Mittag–Leffler function Eα(z ) is named after the Swedish mathematician Gösta Magnus
Mittag–Leffler (1846–1927) who defined it by the power series

Eα (z) =

∞∑
k=0

zk

Γ(αk + 1)
, α ∈ C, Re (α) > 0,

and studied its properties in 1902–1905 [13–16] in connection with his summation method for
divergent series. It was also studied independently by Humbert and Agarval [1, 6, 7] and by
Dzherbashyan [2–4] (see also [5] and the references therein).

In this paper, a special case of the generalized Mittag–Leffler function is considered. It is
defined as

Eα,β (x) =

∞∑
k=0

xk

Γ(αk + β)
, α > 0, β ∈ R.

Obviously,
E1,1 (x) = ex. (1)

Let us consider the following integral with phase ϕ and amplitude ψ

Iα,β(λ) =

∫ b

a

Eα,β (iλϕ (x))ψ(x)dx, (2)
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c⃝ Siberian Federal University. All rights reserved
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where 0 < α 6 1, β > 0 and λ > 0.
If α = β = 1 in integral (2) then integral I1,1 is called classical oscillatory integral. In harmonic

analysis, the most important estimate for oscillatory integrals is van der Corput lemma [18,19,28].
Estimates for oscillatory integrals with polynomial phase can be bound [8–12] and also [22–27]. In
this paper exponential function is replaced with the Mittag–Leffler type function and oscillatory
type integrals (2) are studied. Analogues of the van der Corput lemmas involving Mittag–Leffler
functions for one dimensional integrals were considered [20] and [21]. Result of [20] is extended
for the case where amplitude is more general.

The main results of the paper are the following

Theorem 1. Let −∞ 6 a < b 6 +∞. Let ϕ : [a, b] → R be a measurable function and let
ψ ∈ Lp[a, b], p > 1. If 0 < α < 1, β > 0 and m = ess infx∈[a,b] |ϕ (x)| > 0 then there is
estimate

|Iα,β(λ)| 6
C∥ψ∥Lp[a,b]

1 +mλ
, (3)

where C does not depend on ϕ, ψ and λ > 0.

Theorem 2. Let −∞ 6 a < b 6 +∞ and 0 < α < 1, β > 0. Let ϕ ∈ L∞[a, b] be a
real-valued differentiable monotonic function on [a, b] with m = infx∈[a,b] |ϕ′ (x)| > 0, and let
ψ ∈ Lp [a, b] , 1 < p 6 ∞. Assume that ϕ has finitely many zeros {cj} ⊂ [a, b]then

(i): If 1 < p <∞ then we have

|Iα,β(λ)| 6
Cp∥ψ∥Lp[a,b]

(1 +mλ)
1− 1

p

, λ > 0. (4)

(ii): If p = ∞ then we have

|Iα,β(λ)| 6
C∥ψ∥Lp[a,b]

1 +mλ
log(2 + λ∥ϕ∥Lp[a,b]) , λ > 0, (5)

here C does not depend on λ and Cp depends only on p.

Theorem 3. Let −∞ < a < b < +∞ and 0 < α < 1, β > 0, p > 1. Let ϕ is a real valued
function such that ϕ ∈ Ck[a, b] and let ψ ∈ Lp [a, b] , 1 < p 6 ∞. If ϕ has finitely many zeros on
[a,b] and

∣∣ϕ(k) (x)
∣∣ > 1, k > 2 for all x ∈ [a, b]then

(i): If 1 < p <∞ then∣∣∣∣∣
∫ b

a

Eα,β (iλϕ (x))ψ(x)dx

∣∣∣∣∣ 6 Ck∥ψ∥Lp[a,b]

(1 + λ)
1
k− 1

pk

, λ > 0. (6)

(ii): If p = ∞, then∣∣∣∣∣
∫ b

a

Eα,β (iλϕ (x))ψ (x) dx

∣∣∣∣∣ 6 Ck∥ψ∥Lp[a,b]

(1 + λ)
1
k− 1

pk

log
(

2 + λ∥ϕ∥Lp[a,b]

)
, (7)

here Ck does not depend on λ > 0.

2. Proof of main results

In this section, some auxiliary statements are briefly reviewed for the sake of the rest of the
paper and results are proved.
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Proposition 1. ( [17]) If 0 < α < 2, β is an arbitrary real number, µ is such that πα/2 < µ <

min{π, πα}then there is C > 0 such that

|Eα,β (z)| 6 C

1 + |z|
, z ∈ C, µ 6 |arg(z)| 6 π. (8)

Proposition 2. ( [1]) Let α, β > 0 and ϕ : [a, b] → C. Then for all λ ∈ C

Eα,β (iλϕ (x)) = E2α,β

(
−λ2ϕ2 (x)

)
+ iλϕ (x)E2α,β+α

(
−λ2ϕ2 (x)

)
. (9)

Proof of Theorem 1. For small λ integral (2) is just bounded. Let us consider the case λ > 1.
Let ϕ: [a, b] → R be a measurable function and let ψ ∈ Lp[a, b]. Then

|Iα,β(λ)| =

∣∣∣∣∣
∫ b

a

Eα,β (iλϕ (x))ψ(x)dx

∣∣∣∣∣ 6
∫ b

a

|Eα,β (iλϕ (x))| |ψ(x)| dx. (10)

Using formula (9) and estimate (8) we have that

|Eα,β (iλϕ (x))| 6
∣∣E2α,β

(
−λ2ϕ2 (x)

)∣∣+ λ |ϕ (x)|
∣∣E2α,β+α

(
−λ2ϕ2 (x)

)∣∣ 6
6 C

1 + λ2ϕ2 (x)
+

Cλ |ϕ (x)|
1 + λ2ϕ2 (x)

6 (11)

6 C
1 + λ |ϕ (x)|
1 + λ2ϕ2 (x)

.

Using inequality (11) in integral (10), we obtain

|Iα,β(λ)| 6
∫ b

a

|Eα,β (iλϕ (x))| |ψ(x)| dx 6

6 C

∫ b

a

1 + λ |ϕ (x)|
1 + λ2ϕ2 (x)

|ψ(x)| dx 6

6 2C

∫ b

a

1 + λ |ϕ (x)|
(1 + λ |ϕ (x)|)2

|ψ(x)| dx 6

6 C

∫ b

a

|ψ(x)|
1 + λ |ϕ (x)|

dx.

(12)

Then using the Hölder inequality and m = ess infx∈[a,b] |ϕ (x)| for the last integral, we establish

|Iα,β(λ)| 6 C

(∫ b

a

|ψ (x)|pdx

) 1
p
(∫ b

a

dx

(1 + λ |ϕ (x)|)q

) 1
q

6
C∥ψ∥Lp[a,b]

1 +mλ
,

where
1

p
+

1

q
= 1 and p, q ∈ [1,∞]. The proof is complete. 2

Proof of Theorem 2. Since Iα,β(λ) is bounded for small λ it is assumed that λ > 1. Without loss

of generality, suppose that function ϕ has one zero at c ∈ [a, b]. Let q be such that
1

p
+

1

q
= 1.

Let us assume that p ̸= ∞ so that q > 1. Then using the Hölder inequality in integral (12), we
obtain

|Iα,β(λ)| 6 C

(∫ b

a

|ψ (x)|pdx

) 1
p
(∫ b

a

dx

(1 + λ |ϕ (x)|)q

) 1
q

.
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Here and in what follows it is assumed that M is an arbitrary constant independent of λ. Without
loss of generality one can assume that ϕ increases.

If a = −∞ then Lp[a, b] is understanded as Lp(−∞, b]. If b = +∞ then Lp[a, b] is under-
standed as Lp[a,∞). Similarly, if a = −∞ and b = +∞ then Lp[a, b] is understanded as Lp(R).
Since ϕ ∈ Lq[a, b] is differentiable function with m = infx∈[a,b] |ϕ′ (x)| > 0 we replace ϕ(x) by y
and obtain

|Iα,β(λ)| 6 C∥ψ∥Lp[a,b]

(∫ b

a

dx

(1 + λ |ϕ (x)|)q

) 1
q

6

6 C∥ψ∥Lp[a,b]

(∫ ϕ(b)

ϕ(a)

1

(1 + λ |y|)q
dy

ϕ′ (ϕ−1 (y))

) 1
q

6

6
C∥ψ∥Lp[a,b]

m
1
q

(∫ ϕ(b)

ϕ(a)

dy

(1 + λ |y|)q

) 1
q

.

Since ϕ increases one can define ϕ(a) and ϕ(b) as the limit at a and b if a = −∞ or b = +∞.
Since ϕ ∈ Lq[a, b], q > 1 we have −∞ < ϕ (a) 6 ϕ (b) < +∞.
Replacing λy by u in the above inequality, we obtain

|Iα,β (λ)| 6
C∥ψ∥Lp[a,b]

m
1
q

(∫ ϕ(b)

ϕ(a)

dy

(1 + λ |y|)q

) 1
q

=

=
C∥ψ∥Lp[a,b]

(mλ)
1/q

(∫ λϕ(b)

λϕ(a)

du

(1 + |u|)q

) 1
q

=

=
C∥ψ∥Lp[a,b]

(mλ)
1/q

(∫ 0

λϕ(a)

du

(1 − u)
q +

∫ λϕ(b)

0

du

(1 + u)
q

) 1
q

=

=
C∥ψ∥Lp[a,b]

(1 +mλ)
1/q

(
1

q − 1

[
2 − 1

(1 + λ (−ϕ (a)))
q−1 − 1

(1 + λ (ϕ (b)))
q−1

]) 1
q

6

6
Cq∥ψ∥Lp[a,b]

(1 +mλ)
1/q

,

where Cq is some coefficient that depends only on q and hence only on p.
Let us consider now the case q = 1. Notice that coefficient Cq → +∞ as q → 1. Therefore

one cannot directly obtain the required estimate from the estimate for q > 1. As q = 1, we have
p = ∞ and ψ ∈ L∞. In view of (12), first we estimate the integral as

|Iα,β (λ)| 6 C

∫ b

a

|ψ (x)|
1 + λ |ϕ (x)|

dx 6 C sup
x∈[a,b]

|ψ (x)|
∫ b

a

dx

1 + λ |ϕ (x)|
6

6 C∥ψ∥L∞[a,b]

∫ b

a

dx

1 + λ |ϕ (x)|
.

Since ϕ ∈ L∞[a, b] is differentiable function with m = infx∈[a,b] |ϕ′ (x)| > 0 we replace ϕ(x)

by y and obtain

|Iα,β (λ)| 6 C∥ψ∥L∞[a,b]

∫ ϕ(b)

ϕ(a)

1

1 + λ |y|
dy

ϕ′ (ϕ−1 (y))
6
C∥ψ∥L∞[a,b]

m

∫ ϕ(b)

ϕ(a)

dy

1 + λ |y|
.
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Replacing λy by u in the above inequality, we obtain

|Iα,β (λ)| 6
C∥ψ∥L∞[a,b]

mλ

∫ λϕ(b)

λϕ(a)

du

1 + |u|
=

=
C∥ψ∥L∞[a,b]

mλ

(∫ 0

λϕ(a)

du

1 − u
+

∫ λϕ(b)

0

du

1 + u

)
6

6
C∥ψ∥L∞[a,b]

1 +mλ
[log(1 + λ(−ϕ (a)) + log(1 + λ(ϕ (b)) ] 6

6
C∥ψ∥Lp[a,b]

1 +mλ
log(2 + λ∥ϕ∥L∞[a,b]) .

In the case when ϕ has several zeros in [a, b] estimates (4) and (5) can be obtained using the
given above calculations. The proof is complete. 2

Proof of Theorem 3. For small λ there is bounded estimate for the integral Iα,β (λ). Let λ > 1

and k = 2. Let c ∈ [a, b] be a point where |ϕ′(c)| 6 |ϕ′(x)| for all x ∈ [a, b]. As ϕ′′(x) is
non-vanishing, it cannot be the case that c is the interior local minimum/maximum of ϕ′(x).
Therefore, either ϕ′ (c) = 0 or c is one of the endpoints a or b. One can assume that ϕ′′ > 1.

Let ϕ′ (c) = 0. If x ∈ [c+ ε, b] then

ϕ′ (x) = ϕ′ (x) − ϕ′ (c) =

∫ x

c

ϕ′′(s)ds > x− c > ε.

There is similar estimate for x ∈ [a, c− ε]. Now, one can write∫ b

a

Eα,β (iλϕ (x))ψ(x)dx =

(∫ c−ε

a

+

∫ c+ε

c−ε

+

∫ b

c+ε

)
Eα,β (iλϕ (x))ψ (x) dx.

First, applying the results of Theorem 2 withm = ε and estimate
1

ελ
> 1

1 + ελ
for p ̸= ∞, λ > 1,

one can obtain ∣∣∣∣∫ c−ε

a

Eα,β (iλϕ (x))ψ(x)dx

∣∣∣∣ 6 Cp∥ψ∥Lp[a,b]

(ελ)
1− 1

p

,

and ∣∣∣∣∣
∫ b

c+ε

Eα,β (iλϕ (x))ψ(x)dx

∣∣∣∣∣ 6 Cp∥ψ∥Lp[a,b]

(ελ)
1− 1

p

.

As ∣∣∣∣∫ c+ε

c−ε

Eα,β (iλϕ (x))ψ(x)dx

∣∣∣∣ 6 2 ε∥ψ∥Lp[a,b]

then ∣∣∣∣∣
∫ b

a

Eα,β (iλϕ (x))ψ(x)dx

∣∣∣∣∣ 6 2Cp∥ψ∥Lp[a,b]

(ελ)
1− 1

p

+ 2 ε∥ψ∥Lp[a,b].

Taking ε =
1√
λ

, we obtain estimate

∣∣∣∣∣
∫ b

a

Eα,β (iλϕ (x))ψ(x)dx

∣∣∣∣∣ 6 2Cp∥ψ∥Lp[a,b]

λ
1
2−

1
2p

+
2∥ψ∥Lp[a,b]

λ
1
2

6
Cp∥ψ∥Lp[a,b]

(1 + λ)
1
2−

1
2p

.
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This gives inequality (6) for k = 2. The case c = a or c = b can be proved similarly.
Let k > 3 and λ > 1. Let us prove estimate (6) by induction method with respect to k. Let

us assume that (6) is true for k > 3. Assuming ϕ(k+1) (x) > 1 for all x ∈ [a, b], we prove estimate
(6) for k + 1. Let c ∈ [a, b] be a unique point where

∣∣ϕ(k) (c)
∣∣ 6 |ϕ(k) (x) | for all x ∈ [a, b]. If

ϕ(k) (c) = 0 then we obtain ϕ(k) (x) > ε on interval [a, b] outside (c − ε, c + ε). Now, we obtain
b∫
a

Eα,β (iλϕ (x))ψ(x)dx as

∫ b

a

Eα,β (iλϕ (x))ψ(x)dx =

(∫ c−ε

a

+

∫ c+ε

c−ε

+

∫ b

c+ε

)
Eα,β (iλϕ (x))ψ (x) dx.

By inductive hypothesis∣∣∣∣∫ c−ε

a

Eα,β (iλϕ (x))ψ(x)dx

∣∣∣∣ 6 Ck∥ψ∥Lp[a,b]

(1 + ελ)
1
k− 1

pk

6

6
Cp∥ψ∥Lp[a,b]

(ελ)
1
k− 1

pk

and ∣∣∣∣∣
∫ b

c+ε

Eα,β (iλϕ (x))ψ(x)dx

∣∣∣∣∣ 6 Ck∥ψ∥Lp[a,b]

(1 + ελ)
1
k− 1

pk

6

6
Cp∥ψ∥Lp[a,b]

(ελ)
1
k− 1

pk

.

As ∣∣∣∣∫ c+ε

c−ε

Eα,β (iλϕ (x))ψ(x)dx

∣∣∣∣ 6 2 ε∥ψ∥Lp[a,b]

then ∣∣∣∣∣
∫ b

a

Eα,β (iλϕ (x))ψ(x)dx

∣∣∣∣∣ 6 2Cp∥ψ∥Lp[a,b]

(ελ)
1
k− 1

pk

+ 2 ε∥ψ∥Lp[a,b].

Taking ε = λ−
1

k+1 , we obtain estimate (6) for k + 1. This proves the result. The cases when
c = a or c = b can be proved similarly.
Second, by induction method for case p = ∞, one can obtain estimate (7). 2

3. Decay estimates for the time-fractional PDE

Let us consider the time-fractional Schrödinger-type equation

Dα
0+,tu (t, x) − λDα

0+,tuxx (t, x) + iuxx (t, x) − iµuxx (t, x) = 0, t > 0, x ∈ R (13)

with Cauchy data
u (0, x) = ψ (x) , x ∈ R (14)

where λ, µ > 0 and Dα
0+,tu (t, x) =

1

Γ(1 − α)

∫ t

a

(t− s)
−α
us(s, x)ds is the Caputo fractional

derivative of order 0 < α < 1.
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Using the direct and inverse Fourier and Laplace transforms, one can obtain a solution of
problem (13)–(14) in the form

(t, x) =

∫
R
eixξEα,1

(
i
ξ2 + µ

1 + λξ2
tα
)
ψ̂(ξ)dξ, (15)

where ψ̂ (ξ) =
1

π

∫
R
e−iyξψ(y)dy. Suppose that ψ ∈ L1(R) and ψ̂ ∈ L1(R). As

inf
ξ∈R

ξ2 + µ

1 + λξ2
= min

{
µ,

1

λ

}
> 0,

and using Theorem 1, the following dispersive estimate is obtained

∥u(t, ·)∥L∞(R) 6 C(1 + t)
−α
∥∥∥ψ̂∥∥∥

Lp(R)
, t > 0, p > 1.
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Осциллирующие интегралы для функций
Миттаг-Леффлера

Акбар Р.Сафаров
Улугбек А. Ибрагимов

Узбекско-Финский педагогический институт
Самарканд, Узбекистан

Аннотация. В данной статье изучаются аналоги лемм Ван дер Корпута, связанные с функциями
Миттаг–Леффлера. Обобщение состоит в том, что мы заменяем показательную функцию функ-
цией типа Миттаг–Леффлера для изучения интегралов осциллирующего типа, появляющихся при
анализе дробных по времени уравнений в частных производных. Доказаны некоторые обобщения
первой и второй лемм Ван дер Корпута. Получены также оптимальные оценки порядков убывания
для частных случаев функций Миттаг–Леффлера.

Ключевые слова: функции Миттаг–Леффлера, фазовая функция, амплитуда.
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Abstract. In this work, a study of iron and silver nanoparticles was carried out by Raman spectroscopy.
The spectra were obtained by changing the temperature. The positions of individual spectral lines were
found to determine the presence or absence of second-order phase transitions. Based on the data on the
shift of spectral lines, one can also draw a conclusion about the stability of the objects of study under
changing external conditions and how this affects changes in the suspensions in which they are included.
Absorption coefficients were measured, and the sizes of the studied nanoparticles in aqueous suspensions
were determined.
Keywords: suspensions of iron and silver nanoparticles, lubricants, Raman scattering of light, shift of
spectral lines.
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Interest in nanoparticles arose at the end of the last century and has been continuously
growing since then. The area of application of nanoparticles is also expanding. For instance,
they are used as catalysts for chemical reactions, and special coatings are created to absorb
solar energy The efficiency of using nanoparticles depends on many factors, such as surface
chemistry, size, size distribution, shape, particle morphology, particle composition, agglomeration
and dissolution rate, reactivity of particles in solutions, etc. [1]. Nanoparticles of metals such as
iron and silver have found great use in medicine. For example, the most famous property of iron
nanoparticles (FeNPs) is that it can be used as a material that destroys the membrane of cancer
cells, while silver nanoparticles (AgNPs) are used as a sterilizing material, which is best shown by
drugs based on colloidal silver used as a biologically active additive [2–7]. In addition to medical
applications, FeNPs and AgNPs are widely used in electronics and technological processes [2–4].
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The increased interest is primarily associated with the manifestation of properties that are
different from the properties of systems consisting of coarse particles. In particular, these special
properties make the properties of suspensions, in which nanoparticles are an integral part, also
non-standard. Suspensions of nanoparticles, also called nanofluids, have received a wide range
of applications. At present, much attention is paid to the creation of highly efficient lubricants
with improved properties through the use of ultrafine powders with particles 10–100 nm in size
and a specific surface area up to 450 m−2/g. The effectiveness of the use of nanomaterials and
nanofunctional additives is confirmed by the results of studies [8–11]. For example, in [8], ex-
pressions were obtained for the dependence of the efficiency, power loss due to friction, taking
into account the presence of nanoparticles in lubricants. The derivation of a relation describing
the change in the viscosity of a lubricant composite material on the volume of a dispersed filler
is presented. The study [9] proposed a new rheological model of suspensions based on the gener-
alized Casson model and showed its application to particles of various shapes and sizes in media
with different viscosities. The injection of nanosized SiO2, FeO, Fe2O3, Na2O, K2O particles
into the lubricating medium makes it possible to improve the antifriction and antiwear properties
of tribocouplers of the support units of mechanisms and machines [12]. Nanotribological studies
carried out by domestic and foreign researchers have shown that fullerenes and fullerene blacks
can be successfully used as antifriction, antiwear, and antiseize additives [13,14]. In [15,16], the
mechanical properties of thin lubricating layers of several molecular diameters of octamethylcy-
clotetrasiloxane were studied using a surface force apparatus, it was shown that the sliding of
liquid layers is in good agreement with expectations based on bulk viscosity, while sliding in the
upper part solid substrate is 35 times higher. Experimental studies of the rheological properties
of lubricating oils with and without nanoparticles show that nanoparticles have a significant
effect on rheological parameters [17]. The results showed that the apparent viscosity increases
with increasing concentration of nanoparticles. In this regard, it seems relevant to study the
viscoelastic properties of colloidal suspensions of nanoparticles by various methods.

Metal nanoparticles are used as materials that complement research methods, improving their
qualitative and quantitative characteristics. They are used especially effectively to obtain giant
Raman scattering, which makes it possible to obtain spectra of higher intensity compared to its
traditional technique [18,19]. Since Raman spectroscopy is one of the most sensitive and powerful
non-destructive optical spectral measurement methods, it was chosen as a method for studying
FeNPs and AgNPs at various temperatures.

In this work, iron and silver nanoparticles were studied using Raman spectroscopy. It has
been established that the position of individual spectral lines determines the presence or absence
of second-order phase transitions. For the first time, the ultrasound attenuation spectra of
suspensions were measured. The difference in the behaviour of the attenuation coefficient for
AgNPs suspension and FeNPs suspension from the ultrasound frequency was shown.

1. Experiment

The measurements were carried out in order to determine the presence or absence of phase
transitions, which may be evidenced by a significant shift in the spectral lines or a significant
change in the spectral composition. The substances under study were iron [20] and silver [21]
nanoparticles, since there are no data for them obtained by Raman spectroscopy at temper-
atures below room temperature [22,23]. The spectra of silver nanoparticles were obtained in
the frequency range of 180–3200 cm−1, and the spectra of iron nanoparticles in the range of
20–1200 cm−1. Since FeNPs have a much higher absorption capacity compared to AgNPs, it
took an order of magnitude longer time for signal accumulation to obtain spectra with resolvable
lines

The spectra were obtained on a Horiba Jobin Yvon T64000 triple Raman spectrometer. The
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excitation source was solid-state laser radiation at a wavelength of 532 nm. The spectral resolu-
tion at which the Raman spectra (RS) were obtained was 2 cm−1 for both FeNPs and AgNPs.
The measurements were carried out with a temperature change in the range of 223–328 K, with
a stabilization accuracy better than 0.1 K. All spectral data were obtained in backscattering
geometry.

Particle suspensions with a mass concentration of 1% were prepared. Suspensions were pre-
pared using a two-stage method. First, the particle powder was mixed in distilled water using a
high-speed stirrer during 30 minutes, and after that it was treated with an ultrasound disperser
UZTA-0.4/22-OM (power 400 W, frequency 22 kHz, 30 minutes).

Ultrasound attenuation spectra of 1 wt.% suspensions were measured using an acoustic and
electroacoustic spectrometer DT1202 (Dispersion Technologies). In addition, this device allows
you to determine the particle size distribution over a wide range of particle concentrations. The
acoustic sensor of the device measures the attenuation coefficient of ultrasound in a wide dynamic
frequency range (from 3 to 100 MHz). The spectrometer has a chamber in which an ultrasound
wave emitter and an ultrasound signal receiver are located. The chamber is filled with the test
liquid, in which ultrasound propagates from the emitter to the receiver. In this case, ultrasound
waves are scattered by particles, which leads to changes in the spectrum of the ultrasound signal,
which is recorded by the device.

2. Results and discussion
Let us consider AgNPs first. Since the spectra extend over a wide frequency range, to simplify

their processing, the obtained spectra were divided into three frequency ranges: 180–950 cm−1,
950–1770 cm−1 and 2780–3200 cm−1. The frequency interval 1770–2780 cm−1 is not subject to
investigation, since no spectral lines with the intensity exceeding the noise level were found in
our spectra of this frequency range.

In the frequency range 180–950 cm−1 (Fig. 1), it is inappropriate to divide the experimental
contour into components due to the proximity of overlapping low-intensity spectral lines, which
makes it impossible to trace the positions of individual lines.

Fig. 1. Raman spectra of AgNPs at various temperatures (indicated to the right of the spectrum)
in the frequency range 180–950 cm−1

In Fig. 2a, the two most intense lines correspond to vibrations of the carbon atom, which is
explained by the AgNPs synthesis method. Also, as a result of the interaction of Ag nanoparticles
with air and carbon, a large number of additional spectral contours appear. Due to the strong
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electrostatic interaction between the nanoparticles of the studied substance and the detected
elements, the lines corresponding to Ag vibrations cannot be detected in their pure form.

In Fig. 2b, there are no sharp jumps in the intensities of individual lines; therefore, in the
frequency range of 2780–3200 cm−1, the most obvious pattern of line positions is presented.

Fig. 2. Raman spectra of AgNPs at different temperatures (indicated to the right of the spectrum)
divided into different ranges: a) 950–1770 cm−1, b) 2780–3200 cm−1 (frequencies in cm−1 are
indicated above the spectra)

In this regard, dependences of the position of the Raman lines on temperature were plotted
(Fig. 3). It can be seen from the figure that the shifts of the lines are small and new lines do not
appear. The disappearance of the line at a frequency of 3019 cm−1 at a temperature of 313 K
occurs due to a decrease in its intensity, that is why the signal-to-noise ratio does not allow it to
be further resolved. The highest frequency component of the spectrum undergoes the greatest
shift. With an increase in temperature and a strong influence of noise, the determination of its
position has an error of the order of 7 cm−1. The high level of noise with respect to the signal
is explained by the presence of chemisorption in the test substance [24].

Fig. 3. Dependence of the Raman shifts of AgNPs on temperature in the range of 2780–3200 cm−1
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In the presence of a phase transition, the Raman spectrum undergoes changes, which are a
jump in frequency, the appearance of new lines, and a non-chaotic change in intensity during
further measurements. The spectral data were obtained from different points, which means a
different orientation of the nanoparticles for each individual measurement; as a result, at different
temperatures the intensity of individual lines is very different, but this does not indicate the
presence or absence of a second-order phase transition in AgNPs.

A similar procedure for separating spectral contours into components was carried out for
FeNPs (Fig. 4). Since iron is very actively oxidized when exposed to the atmosphere, double
iron oxide FeO∆Fe2O3 (or Fe3O4) is formed on nanoparticles, and therefore it is very difficult
to obtain vibrations of FeNP in its pure form.

Fig. 4. Raman spectra of iron nanoparticles at different temperatures (indicated to the right
of the spectrum) divided into different ranges: a) 60–260 cm−1, b) 250–900 cm−1 (frequencies
in cm−1 are indicated above the spectra)

Since iron atoms are much heavier than oxygen atoms, we can say that the more we descend
into the low-frequency region, the more vibrations correspond to Fe atoms. The frequency range
from 350 cm−1 and above refers to vibrations of O2 molecules. The frequency range above
900 cm−1 is not considered due to the absence of spectral lines in it (Fig. 5).

Thus, vibrations at frequencies of 218 and 501 cm−1 belong to vibrations of the A1g symmetry
type. Vibrations occurring at frequencies of 146, 202, 290, 404 and 622 cm−1 refer to vibrations
of Eg symmetry type. Due to the high noise level compared to the intensity of the Raman
spectrum in the region of about 100 cm−1, it is not possible to resolve two separate lines at all
temperatures, so the separation of the contour in this frequency range is not reliable. Within the
specified temperature range, no significant deviations were found in the location of the spectral
line maxima, which indicates the absence of phase transitions in silver and iron nanoparticles.
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Fig. 5. Raman spectrum of AgNPs at room temperature

Also ultrasound attenuation spectra suspensions were collected. Fig. 6 shows the attenuation
spectra of ultrasound in suspensions. The behavior of the ultrasound attenuation coefficients for
suspensions with AgNPs and FeNPs is significantly different. For FeNPs suspensions, the at-
tenuation coefficient grows with increasing radiation frequency, which indicates a predominantly
viscous attenuation mechanism. For AgNPs suspensions, the behavior of the attenuation coeffi-
cient as a function of frequency is more complex. At frequencies below 30 MHz, the absorption
coefficient decreases with increasing radiation frequency. With a further increase in frequency,
the absorption coefficient grows. This behavior suggests that in this case, the predominant
mechanism of sound attenuation is scattering by AgNPs.

Fig. 6. Ultrasound attenuation spectrum in a 1% suspension: a) AgNPs; b) FeNPs

Based on the attenuation spectra, particle size distributions were obtained (Fig. 7). The
average particle size in a silver suspension is 340 nm, and in an iron oxide suspension is 930 nm.
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Fig. 7. Particle size distribution in water: a) AgNPs; b) FeNP

Conclusion
The Raman spectra of AgNPs and FeNPs were obtained in a wide frequency range within a

temperature range from 223 K to 328 K. As a result of spectral data processing, the absence of
abrupt changes in the spectral composition was shown, and the shifts of individual lines are linear,
which indicates that the ongoing changes in the structure of the investigated particles remain
within the limits of one phase. Also, it can be concluded that the particles have high structural
stability, which makes them promising for use in the composition of colloidal suspensions with
pronounced viscoelastic properties, which are used as lubricants for technological machines and
equipment.

The mechanisms of attenuation on the studied nanoparticles were determined. Numerical
values of the average sizes of silver and iron nanoparticles were also measured.

The authors would like to express their special thanks to Krasnoyarsk Regional Center of
Research Equipment of Federal Research Center "Krasnoyarsk Science Center SB RAS" for
providing measurements on Raman spectrometer Horiba Jobin Yvon T64000.

Experimental measurements of suspension attenuation of suspensions is partially financed by
Ministry of Science and Higher Education of the Russian Federation (project no. FSRZ-2020-
0012).
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Аннотация. В работе было проведено исследование наночастиц железа и серебра методом спек-
троскопии комбинационного рассеяния света. Спектры были получены при изменении температу-
ры. Были получены значения частот отдельных спектральных линий для определения наличия
или отсутствия фазовых переходов второго рода. На основании данных о смещении спектральных
линий также можно сделать вывод об устойчивости объектов исследования при изменении внешних
условий и о том, как это повлияет на изменения суспензий, в состав которых они входят.

Ключевые слова: суспензии наночастиц железа и серебра, смазочные материалы, комбинацион-
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Introduction

This article contains some results related to the holomorphic extension of functions integrable
on the boundary of a bounded domain into this domain. We consider functions that satisfy the
multidimensional Morera boundary condition. It consists in the equality to zero of the integrals
of a given function over the intersection of the boundary of the domain with complex lines.
E.Grinberg [1] studied functions with the Morera property in a ball (in fact, this result was
contained in the article by M.L. Agranovsky and R.E. Valsky [2]). I. Globevnik and E. L. Stout [3]
obtained Morera’s boundary theorem for an arbitrary bounded domain with a twice smooth
boundary. A local version of Morera’s theorem was considered by I. Globevnik [4], D. Govekar-
Leban [5]. In the work of S.G. Myslivets [6] she considered functions with the Morera property
along complex curves. In the works [7–11] and [12] there have been given some families of complex
lines sufficient for holomorphic continuation functions. The monographs [13] and [14] present
some results related to this problem.

This article considers integrable functions defined on the boundary of a bounded domain D

in Cn, n > 1, and possessing the generalized Morera boundary property.

∗shoimkba@rambler.ru
†bayko-2020@mail.ru https://orcid.org/0000-0001-6683-5199

c⃝ Siberian Federal University. All rights reserved

– 506 –



Bakhodir A. Shoimkulov, Baymurat J. Kutlimuratov Some Classes of Sets Sufficient . . .

1. Basic notations and definitions

We consider the set of complex lines intersecting the germ of a smooth manifold of real
dimension (2n − 2). Let D ⊂ Cn (n > 1) be a bounded domain with a connected boundary of
class C1 of the form

D = {z ∈ Cn : ρ(z) < 0} ,

where ρ(z) is a smooth function of class C1 being real in a neighbourhood of the set D such that
dρ |∂D ̸= 0. We identify Cn with R2n as follows: z = (z1, . . . , zn), where zj = xj + iyj , xj , yj ∈
R, j = 1, . . . , n.

We consider complex lines lz,b of the form

lz,b = { ζ ∈ Cn : ζj = zj + bjt, j = 1, 2, . . . , n, t ∈ C} (1)

passing through the point z ∈ Cn along the vector b = {b1, . . . , bn} ∈ CPn−1 (the direction b is
defined up to a multiplication by a complex number λ ̸= 0 ).

Definition 1. An integrable function f on ∂D (f ∈ Lp(∂D), p > 1) satisfies the Morera prop-
erty along complex planes l of dimension k, (1 6 k 6 n− 1), if∫

∂D∩l

f(ζ)β(ζ) = 0

for each differential form β of the type (k, k − 1) with constant coefficients.

The plane l is assumed to intersect the boundary of the domain D transversally.
If lz,b is a complex line intersecting ∂D transversally, then the Morera property along the

planes lz,b becomes ∫
∂D∩lz,b

f(z + bt)dt =

∫
∂D∩lz,b

f(z1 + b1t, . . . , zn + bnt)dt = 0 (2)

for a given parameterization ζ = z + bt along a complex line lz,b.
For complex lines we consider a more general condition. Let m be a fixed nonnegative integer,

then the condition∫
∂D∩lz,b

f(z + bt)tmdt =

∫
∂D∩lz,b

f(z1 + b1t, . . . , zn + bnt)t
mdt = 0 (3)

we will call the generalized Morera property. For m = 0 the conditions (3) become the Morera
boundary condition (2) (see [3]).

Let Γ be the germ of a C1 manifold of real dimension (2n − 2). We assume that 0 ∈ Γ and
in some neighbourhood of the origin the manifold Γ is of the form

Γ = {ζ ∈ Cn : Φ(ζ) + iψ(ζ) = 0},

where Φ, ψ are C1 smooth, real-valued functions in the neighbourhood of the point zero. Here
ζ = (ζ1, . . . , ζn) and ζj = ξj + iηj , ξj , ηj ∈ R, j = 1, . . . , n. The smoothness condition of the
manifold Γ is that

rang A = rang


∂Φ

∂ξ1
. . .

∂Φ

∂ξn

∂Φ

∂η1
. . .

∂Φ

∂ηn
∂ψ

∂ξ1
. . .

∂ψ

∂ξn

∂ψ

∂η1
. . .

∂ψ

∂ηn

 = 2
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at each point ζ ∈ Γ.
We consider complex lines of form (1) and recall the following lemmas.

Lemma 1. Let a vector b0 = (b01, . . . , b
0
n) ∈ CPn−1 be such that D∩ l0,b0 ̸= ∅. Then there exists

ε > 0 such that for all z such that |z| < ε and for all b such that
∣∣b− b0

∣∣ < ε, the following
intersections are non-empty: D ∩ lz,b ̸= ∅ and Γ ∩ lz,b ̸= ∅.

Lemma 2. Let for some z and for all ζ, b such that Γ ∩ lz,b ̸= ∅ for ζ ∈ ∂D ∩ lz,b, the function
ρ defining the domain D satisfies the conditions

n∑
j=1

∂ρ

∂ζj
bj ̸= 0, (4)

then the curves ∂D ∩ lz,b are smooth.

For instance, the assumptions of Lemma 2 are satisfied by domains in Cn that are strongly
star-shaped with respect to a point z ∈ D, strongly convex, and strongly linear convex.

Lemma 3. If f ∈ Lp(∂D), (p > 1) then a function f ∈ Lp(∂D∩ lz,b) for almost all b ∈ CPn−1.

Proof. Let f ∈ Lp(∂D), (p > 1) and lz,b be one-dimensional complex lines of the form (1) passing
through the point z. Consider an open set W ⊂ CPn−1 such that ∂D ∩ lz,b be smooth curves
for b ∈W . We denote the open set by S =

∪
b∈W

∂D ∩ lz,b. Then by Fubini’s theorem we have

∫
S

|f(ζ)|pdσ(ζ) =

∫
W

dσ(b)

∫
∂D∩lz,b

|f((z + bt)|p
∣∣∣∣dσ(ζ)

dσ(b)

∣∣∣∣ dt,
where dσ(ζ), σ(b) and dt are Lebesgue measures, respectively, on S, W and ∂D ∩ lz,b, and∣∣∣∣dσ(ζ)

dσ(b)

∣∣∣∣ be module of the Jacobian arising when passing to the iterated integral. The inner

integral converges for almost all b ∈W . And since

0 < c1 6
∣∣∣∣σ(ζ)

σ(b)

∣∣∣∣ 6 c2 <∞,

the following estimates hold

0 < c1

∫
∂D∩lz,b

|f |
p

dt 6
∫

∂D∩lz,b

|f |
p ∣∣∣∣σ(ζ)

σ(b)

∣∣∣∣ dt 6 c2

∫
∂D∩lz,b

|f |
p

dt <∞

The lemma is proven. 2

2. Main result
Theorem 1. Let a domain D ⊂ Cn satisfy conditions (4) for the points z lying in a neighbour-
hood of the manifold Γ such that ∂D ∩ Γ = ∅. Let a function f ∈ Lp(∂D), (p > 2) satisfy the
generalized Morera conditions (3), that is,∫

∂D∩lz,b

f(z1 + b1t, . . . , zn + bnt)t
mdt = 0

for each z ∈ Γ, b ∈ CPn−1 and a fixed nonnegative integer number m. Then the function f has
a holomorphic continuation into the domain D.
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Proof. We consider the Bochner–Martinelli kernel

U(ζ, z) =
(n− 1)!

(2πi)
n

n∑
k=1

(−1)
k−1 ζk − zk

|ζ − z|2n
dζ[k] ∧ dζ.

As it is known, in coordinates b and t (see [13], Lemma 3.2.1), the kernel U(ζ, z) reads as:

U(ζ, z) = λ(b) ∧ dt

t
, (5)

where λ(b) is a differential form of type (n−1, n−1) in CPn−1, independent of t, while z /∈ ∂D.
We consider the integral

Mαf(z) =

∫
∂Dζ

(ζ − z)αf(ζ)U(ζ, z),

where α = (α1, . . . , αn) is an arbitrary multi-index such that

∥α∥ = α1 + · · · + αn = m+ 1

and
(ζ − z)

α
= (ζ1 − z1)

α1 . . . (ζn − zn)
αn .

By the Fubini theorem and the form of the kernel (5) we obtain:

Mαf(z) =

∫
CPn−1

bαλ(b)

∫
∂D∩lz,b

f(z1 + b1t, . . . , zn + bnt)t
mdt.

By the conditions of Theorem 1 and Lemma 1, the identities∫
∂D∩lz,b

f(z1 + b1t, . . . , zn + bnt)t
mdt = 0

hold for all sufficiently small z, nearby to b0, and any b. Then

Mαf(z) =

∫
∂Dζ

(ζ − z)αf(ζ)U(ζ, z) ≡ 0 (6)

for all z such that |z| < ε.
We rewrite a function Mαf(z) in another form. We consider differential forms Us(ζ, z):

Us(ζ, z =
(−1)

s
(n− 2)!

(2πi)
n

s−1∑
j=1

(−1)
j ζj − zj

|ζ − z|2n−2 dζ[j, s]+

+

n∑
j=s+1

(−1)
j−1 ζj − zj

|ζ − z|2n−2 dζ[s, j]

 ∧ dζ.

Here
∂
(

1
ζs−zs

Us(ζ, z)
)

=
∂

∂zs

(
1

ζs − zs
Us(ζ, z)

)
=

=
(n− 1)!

(2πi)
n

n∑
j=1

(−1)
j−1 ζj − zj

|ζ − z|2n
dζ[j] ∧ dζ = U(ζ, z)
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at ζs ̸= zs, s = 1, . . . , n. Then condition (6) can be rewritten as∫
∂Dζ

f(ζ)∂
(

(ζ − z)
β
Us(ζ, z)

)
≡ 0, (7)

for z such that |z| < ε and for all monomials (ζ − z)
β with ∥β∥ = m.

We are going to show that the condition (7) holds for monomials (ζ − z)
γ with ∥γ∥ = m.

Indeed, we consider a monomial (ζ − z)
γ with ∥γ∥ = m − 1. Then the condition (7) holds for

the monomials of the form:

(ζ − z)
β

(ζk − zk), k = 1, . . . , n,

since the degree of these monomials is equal to m.
The identity holds:

∂

∂ζk
((ζ − z)

γ
(ζk − zk)Us(ζ, z)) = (γk + 1)(ζ − z)

γ
Us(ζ, z)−

−(n− 1)(ζ − z)
γ (ζk − zk)(ζk − zk)

|ζ − z|2
Us(ζ, z).

(8)

Summing up identities (8) over k, we obtain:

n∑
k=1

∂

∂ζk
((ζ − z)

γ
(ζk − zk)Us(ζ, z)) = (∥γ∥ + 1) (ζ − z)

γ
Us(ζ, z). (9)

Since the condition (7) can be differentiated in z as |z| < ε, and the derivatives of expressions
(9) in z and ζ differ only by the sign, it follows from (9) that the degree of the monomial in (7)
can be lessen by one. By successively decreasing this degree, we arrive at the following conditions∫

∂Dζ

f(ζ)∂Us(ζ, z) ≡ 0

for |z| < ε and s = 1, . . . , n, i.e. ∫
∂Dζ

(ζs − zs)f(ζ)U(ζ − z) ≡ 0 (10)

for |z| < ε and s = 1, . . . , n.
Applying the Laplace operator with respect to z to the left side of the equality (10)

∆ =
∂2

∂z1∂z1
+ · · · +

∂2

∂zn∂zn

we obtain that
∂

∂zs

∫
∂Dζ

f(ζ)U(ζ, z) ≡ 0

for |z| < ε and s = 1, . . . , n. Here we used the harmonicity of the kernel U(ζ, z) and the identity

∆(gh) = h∆g + g∆h+

n∑
j=1

∂g

∂zj
· ∂h
∂zj

+

n∑
j=1

∂g

∂zj

∂h

∂zj
·
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Hence, the Bochner–Martinelli integral of the function f ∈ Lp(∂D), namely,

Mf(z) =

∫
∂Dζ

f(ζ)U(ζ, z)

is a function holomorphic in a neighbourhood of the origin.
If Γ ⊂ Cn\D, then Mf(z) ≡ 0 outside D since the boundary is connected and then the

function f is continued holomorphically in the domain D (see [13]).
If Γ ⊂ D, then the function Mf is holomorphic in D and the boundary values of Mf coincide

with f . 2

Corollary 1. Let a domain D satisfy the conditions of Theorem 1 and the function f ∈
Lp(∂D) (p > 2) satisfies the condition (2) for all z ∈ Γ and b ∈ CPn−1. Then the function
f can be holomorphically continued into D.
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О некоторых классах множеств, достаточных для
голоморфного продолжения интегрируемых функций
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Аннотация. В данной статье рассматриваются интегрируемые функции, заданные на границе
ограниченной области D в Cn, n > 1, и обладающие обобщенным граничным свойством Морера.
Исследуется вопрос о существовании голоморфного продолжения таких функций в область D для
некоторых достаточных множеств Γ комплексных прямых.

Ключевые слова: голоморфное продолжение, граничное условие Морера, ядро Бохнера-
Мартинелли.
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Abstract. We describe the strong dual space (Os(D))∗ for the space Os(D) = Hs(D) ∩ O(D) of holo-
morphic functions from the Sobolev space Hs(D), s ∈ Z, over a bounded simply connected plane domain
D with infinitely differential boundary ∂D. We identify the dual space with the space of holomorhic
functions on Cn \D that belong to H1−s(G \D) for any bounded domain G, containing the compact D,
and vanish at the infinity. As a corollary, we obtain a description of the strong dual space (OF (D))∗ for
the space OF (D) of holomorphic functions of finite order of growth in D (here, OF (D) is endowed with
the inductive limit topology with respect to the family of spaces Os(D), s ∈ Z). In this way we extend
the classical Grothendieck–Köthe–Sebastião e Silva duality for the space of holomorphic functions.

Keywords: duality theorems, holomorphic functions of finite order of growth.
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One of the first dualities in the spaces of holomprphic functions was discovered in 1950-’s
independently by A.Grothendieck [1], GKöthe [2] and J. Sebastião e Silva [3], who described the
strong dual (O(D))∗ for the space of holomorphic functions O(D) (endowed with the standard
Frechét topology) in a bounded simply connected domain D ⊂ C:

(O(D))∗ ∼= O(Ĉ \D), (1)

where O(Ĉ \D) is the space of holomorphic functions on neighborhoods of the closed set C \D,
vanishing at the infinity, endowed with the standard inductive limit topology of holomorphic
functions on closed sets. One of the most general results, describing the duality for the spaces of
solutions to elliptic differential operators with the topology of uniform convergence on compact
sets, belong to A.Grothendieck, see [4, Theorems 3 and 4]; it is similar in a way to (1). Another
general scheme of producing dualities for (both determined and overdetermined) elliptic systems
was presented in [5]. It involves the concept of Hilbert space with reproducing kernel and
the constructed pairings are closely related to the inner products of the used Hilbert spaces.
However it works easily for formally self-adjoint strongly elliptic operators, while in general case
the application of the scheme depends on the very subtle information regarding the properties
of the reproducing kernel that is not always at hands. Actually, similar results (with the use of
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classical Bergmann reproducing kernel and pairing induced by the inner product of the Lebesgue
space L2(D)) was obtained by E. Straube [6, Sec. 3] for harmonic and holomorphic functions
of finite order of growth of many complex variables. Paper [5] contains also description of a
Grothendick type duality for spaces of solutions of finite order of growth to strongly elliptic
systems.

In the present short note we describe a Grothendick type duality for the spaces Os(D) of
holomorphic Sobolev functions and OF (D) of holomorphic functions of finite order of growth
over a bounded simply connected plane domain D with infinitely differential boundary ∂D with
the use the pairing induced by the inner product of the Lebesgue space L2(∂D).

1. Duality for the space of Sobolev holomorphic functions

Let L2(D) be the Lebesgue space and Hs(D), s ∈ N, be the Sobolev space of functions over
plane domain D, endowed with the standard inner products. As it is known the scale extends
to all values s > 0, as the Sobolev-Slobodetskii scale. We denote by H−s(D), s > 0, the strong
dual for the space Hs

0(D) (i.e. for the closure of smooth functions with compact support in D

in Hs
0(D)); the related pairing between elements of H−s(D) and Hs(D) is induced by the inner

product in the Lebesgue space L2(D). Denote by h(D) the space of harmonic functions in D,
set hs(s) = Hs(D) ∩ h(D) and, similarly, Os(s) = Hs(D) ∩O(D), s ∈ Z, where O(D) the space
of holomorhic functions in D. By the standard a priori estimates for harmonic functions, hs(s)
and Os(s) are closed subspaces of Hs(D), s ∈ Z, see, for instance, [6, p. 568]. We note that
a holomorphic function is harmonic and then Os(D) is a closed subspace in hs(D). According
to [6, Corollary 1.7], any element u ∈ hs(D) has a weak boundary value u|∂D on ∂D belonging to
Hs−1/2(∂D), s ∈ Z. Of course, u|∂D coincides with the usual trace of u on ∂D if s ∈ N. It tollows
immediately from [6, Corollary 1.7] that for each u ∈ hs(D) the functional ∥u|∂D∥Hs−1/2(∂D)

defines a norm on hs(D) that is equivalent to the standard one. As Os(D) ⊂ hs(D), we prefer
to endow Os(D) with the norm ∥u|∂D∥Hs−1/2(∂D).

In any case, Os(s), s ∈ Z, is a Hilbert space (because ∥ · ∥Hs−1/2(∂D) posesses parallelogram
property) and we immediately have the standard Riesz duality with the pairing related to the
corresponding inner product:

(Os(D))∗ ∼= Os(D). (2)

However we want to produce a Grothendieck type duality for Os(D). With this purpose, denote
by Os(Ĉ \ D), s ∈ Z, the space of holomorphic functions in C \ D vanishing at the infinity
that belong to Hs(G \ D) for any bounded domain G, containing the compact D. By the
discussion above, any element v ∈ Os(Ĉ \D) has a weak boundary value v|∂D on ∂D belonging
to Hs−1/2(∂D). Then, taking into the account the connection between the interior and exterior
Dirichlet problems for the Laplace operator, for each v ∈ Os(Ĉ \D) functional ∥v|∂D∥Hs−1/2(∂D)

defines a norm on Os(Ĉ \D) and, by the discussion above, Os(Ĉ \D) is Hilbert space.

Theorem 1.1. Let D be a bounded simply connected domain with C∞-smooth boundary. Then
for each s ∈ Z we have an isomorphism of Banach spaces:

(Os(D))∗ ∼= O1−s(Ĉ \D). (3)

Proof. We begin with the description of the related pairing. First, we note that since ∂D is a
compact, then Hs′(∂D) = Hs′

0 (∂D) for each s′ ∈ R. Hence there is a natural duality

H−s′(∂D) ∼= Hs′(∂D), s′ ∈ R, (4)

– 514 –



Arkadii B. Levskii, Alexander A. Shlapunov On the Grothendieck duality for the space . . .

with the pairing
⟨·, ·⟩∂D,s′ : H−s′(∂D) ×Hs′(∂D) → C,

induced by the inner product in L2(∂D). In particular,

|⟨u, v⟩∂D,s′ | 6 ∥u∥Hs′ (∂D)∥v∥H−s′ (∂D) for all v ∈ H−s′(∂D), u ∈ Hs′(∂D). (5)

For the sake of notations we drop the index s′ in the pairing.
Thus, for each s ∈ Z we obtain a natural pairing

⟨u|∂D, v|∂D⟩∂D : Os(D) ×O1−s(Ĉ \D) → C, (6)

inducing a continuous (conjugate-) linear mapping

O1−s(Ĉ \D) ∋ v → fv ∈ (Os(D))∗, fv(u) = ⟨u|∂D, v|∂D⟩∂D. (7)

As (4) is an isomorphism of normed spaces, we see that

∥fv∥(Os(D))∗ = ∥v|∂D∥Hs−1/2(∂D).

Now we note that the integral Cauchy formula may be extended to the elements of the space
Os(D) with the use of the notion of the weak boundary values. Namely, for a distribution
u0 ∈ Hs−1/2(∂D) denote by Ku0 its integral Cauchy transform:

(Ku0)(z) =
1

2πι
⟨(· − z)−1, u0⟩∂D, z ̸∈ ∂D,

where ι is the imaginary unit. Of course, Ku0(z) is just the Cauchy integral for u0 if s ∈ N.
Then for any u ∈ Os(D) we have

(Ku|∂D)(z) =

{
0, z ̸∈ D,

u(z) z ∈ D;
(8)

see, for instance, [7, 8] even for the Martinelli-Bochner integral in Cn. Similarly, taking into
the account the behaviour at the infinity and the orientation of the curve ∂D, for elements
v ∈ O1−s(Ĉ \D) we have

−(Kv|∂D)(z) =

{
0, z ∈ D,

v(z) z ̸∈ D.
(9)

It follows from (9) that if fv(u) = 0 for all u ∈ Os(D) then, as the kernel (ζ−z)−1 is holomorphic
in D with respect to ζ for all z ̸∈ D, we conclude that

0 = ⟨(· − z)−1, v|∂D⟩∂D = 2πι (Kv|∂D)(z) = 2πι v(z) for all z ̸∈ D,

i.e. mapping (7) is injective.
To finish the proof we have to show that mapping (7) is surjective. As we noted above,

the space Os(D) can be treated as a closed subset of the Hilbert space Hs−1/2(∂D). Then, by
Hahn–Banach theorem and Riesz theorem on functionals on Hilbert spaces, for any functional
f ∈ (Os(D))∗ there is a function v0 = v0(f) ∈ H1/2−s(∂D) such that

f(u) = ⟨u|∂D, v0⟩∂D for all u ∈ Os(D).

Next, denote by (Kv0)− the restriction of the integral Cauchy transform to D and (Kv0)+ its
restriction to C \D. Then theorems on the boundedness of potentials, see [9, Sec. 2.3.2.5], and
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the structure of the Cauchy kernel yield (Kv0)− ∈ O1−s(D), (Kv0)+ ∈ O1−s(Ĉ \D). Now, by
the weak jump theorem of the Cauchy transform, see [8], we have in the sense of weak boundary
values:

(Kv0)−|∂D − (Kv0)+|∂D = v0 on ∂D.

Clearly, by the definition of the weak boundary values and the classical Cauchy theorem, we have

⟨u|∂D, (Kv0)−|∂D⟩∂D = 0 for all u ∈ Os(D).

Therefore
f(u) = −⟨u|∂D, (Kv0)+|∂D⟩∂D for all u ∈ Os(D),

and then mapping (7) is surjective (i.e. v = v(f) = −(Kv0)+ ∈ O1−s(Ĉ \D)).

2. Holomorphic functions of finite order of growth

One says that a function u ∈ h(D) has a finite order of growth near ∂D, if for each point
z0 ∈ ∂D there are positive numbers γ, C and R such that

|u(z)| 6 C|z − z0|−γ for all z ∈ D, |z − z0| < R.

The space of such functions we denote by hF (D). E. Straube [6] proved that

hF (D) = ∪s∈Z h
s(D)

and hence we may endow the space with the inductive limit topology with respect to the family
{hs(D)}s∈Z of Banach spaces, see, for instance, [10, Sec. 6]. Again, as O(D) ⊂ h(D), we obtain

OF (D) = ∪s∈Z Os(D); (10)

we endow this space of holomorphic functions of finite order of growth near ∂D with the same
topology as hF (D). According to [10, Ch. 4, Exercise 24e], OF (D) is a DF-space and then
its dual is expected to be a Fréchet space, see [10, Ch. 4, Exercise 24a]. Thus, we denote by
O(Ĉ \D) the space of holomorphic functions in C \D vanishing at the infinity. By the Sobolev
Embedding Theorem,

O(Ĉ \D) ∩ C∞(C \D) = ∩s∈ZOs(Ĉ \D). (11)

We endow the space with the projective limit topology with respect to the family {Os(Ĉ\D)}s∈Z
of the Banach spaces, see [6, Ch. I, Sec. 5]. Thus, O(Ĉ \D) is a Fréchet space, see [6, Ch. II,
Sec. 6, Corollary 1].

Theorem 2.1. Let D be a bounded simply connected domain with C∞-smooth boundary. Then
we have a topological isomorphism:

(OF (D))∗ ∼= O(Ĉ \D) ∩ C∞(C \D). (12)

Proof. It follows almost immediately from Theorem 2.1. Indeed, as v|∂D ∈ C∞(∂D) for each
O(Ĉ \D) ∩ C∞(C \D), formulae (10) and (11) imply that (6) defines a sesquilinear pairing

⟨u|∂D, v|∂D⟩∂D : OF (D) ×O(Ĉ \D) ∩ C∞(C \D) → C. (13)
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Again, taking into the account the topologies of the space and inequality (5), we may define
continuous mapping

O(Ĉ \D) ∩ C∞(C \D) ∋ v → fv ∈ (OF (D))∗, fv(u) = ⟨u|∂D, v|∂D⟩∂D. (14)

Its injectivity and surjectivity follow by the same arguments as in the proof of Theorem 2.1.
Finally, the continuity of the inverse mapping follows from the Closed Graph Theotem for Fréchet-
spaces, see [10, Ch. 3, Theorem 2.3].

Similarly, we obtain the following statement.

Theorem 2.2. Let D be a bounded simply connected domain with C∞-smooth boundary. Then
we have a topological isomorphism:

(O(D) ∩ C∞(D))∗ ∼= OF (Ĉ \D). (15)

The investigation was supported by the Krasnoyarsk Mathematical Center and financed by
the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-
02-2024-1429).
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О двойственности для пространств голоморфных
функций конечного порядка роста

Аркадий Б. Левский
Александр А. Шлапунов

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. Мы описываем сильное сопряженное пространство (Os(D))∗ для пространства
Os(D) = Hs(D) ∩ O(D) голоморфных функций из пространства Соболева Hs(D), s ∈ Z, над
ограниченной односвязной плоской областью D с бесконечной гладкой границей ∂D. Мы иденти-
фицируем сопряженное пространство как пространство голоморфных функций на Cn \D, которые
принадлежат H1−s(G \ D) для любой ограниченной области G, содержащей компакт D, и равны
нулю в бесконечности. Как следствие, мы получаем описание сильного сопряженного простран-
ства для пространства OF (D) голоморфных функций конечного порядка роста в D (здесь, OF (D)
снабжено топологией индуктивного предела относительно семейства пространств Os(D) голоморф-
ных соболевских функций, s ∈ Z). Таким образом, мы обобщаем классическую двойственность
Гротендика–Кёте–Себастиана и Сильвы для голоморфных функций.

Ключевые слова: теоремы о двойственности, голоморфные функции конечного порядка роста.
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Abstract. In this work, we introduce the concept of maximal m-convex (m − cv) functions and we
solve the Dirichlet Problem with a given continuous boundary function for strictly m-convex domains
D ⊂ Rn. We prove that for the solution of the Dirichlet problem in the class of m − cv functions its
Hessian Hn−m+1

ω = 0 in the domain D.
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Introduction

In this work, we introduce the concept of maximal functions and for strictlym-convex domains
D ⊂ Rn we solve the Dirichlet Problem with a given continuous boundary function. We prove
that that for the solution of the Dirichlet problem in the class m − cv of functions, its Hessian
Hn−m+1

ω = 0 in the domain D.
The potential theory in the class of strongly m-subharmonic functions is based on differ-

ential forms and currents (ddcu)
k ∧ βn−k > 0, k = 1, 2 . . . , n − m + 1, where β = ddc∥z∥2

the standard volume form in Cn, while the potential theory in the class of m − cv functions,
in particular, maximal m − cv functions, and the Dirichlet problem are related to Hessians
Hk(u) > 0, k = 1, 2, . . . , n−m+ 1. The main method for studying maximal m − cv functions,
which in general are not smooth, is to connect m − cv functions with strongly m-subharmonic
(shm) functions. Theory of shm functions is well studied and currently the subject of study by
many mathematicians (see Z.B locki [6], S. Dinew and S. Kolodzej [7], S. Li [8], H.C. Lu [9, 10],
A. Sadullaev, B. Abdullaev [11,12] etc.)
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1. Strongly m-subharmonic and m-convex functions

A twice smooth function u(z) ∈ C2(D), D ⊂ Cn, is called strongly m-subharmonic u ∈
shm(D), if at each point of the domain D one has

shm(D) =
{
u ∈ C2 : (ddcu)

k ∧ βn−k > 0, k = 1, 2, . . . , n−m+ 1
}

=

=
{
u ∈ C2 : ddcu ∧ βn−1 > 0, (ddcu)

2 ∧ βn−2 > 0, . . . , (ddcu)
n−m+1 ∧ βm−1 > 0

}
, (1)

where β = ddc∥z∥2 is the standard volume form in Cn.

Operators (ddcu)
k ∧ βn−k are closely related to the Hessians. For a twice smooth function,

u ∈ C2(D) the second-order differential ddcu =
i

2

∑
j,k

∂2u

∂zj∂z̄k
dzj ∧dz̄k (at the fixed point o ∈ D)

is a Hermitian quadratic form. After a unitary transformation of coordinates, it is reduced to

diagonal form ddcu =
i

2
[λ1dz1 ∧ d z̄1 + . . .+ λndzn ∧ d z̄n], where λ1, . . . , λn the eigenvalues of

the Hermitian matrix
(

∂2u

∂zj∂ z̄k

)
, which are real: λ = (λ1, . . . , λn) ∈ Rn. Note that the unitary

transformation does not change the differential form β = ddc∥z∥2. It is easy to see that

(ddcu)
k ∧ βn−k = k!(n− k)!Hk(u)βn, (2)

whereHk(u) =
∑

16j1<···<jk6n

λj1 . . . λjk is the Hessian of dimension k of the vector λ = λ(u) ∈ Rn.

Consequently, a twice smooth function u(z) ∈ C2(D), D ⊂ Cn, is strongly m-subharmonic
if at each point o ∈ D the next inequalities hold

Hk(u) = Hk
o (u) > 0, k = 1, 2, . . . , n−m+ 1. (3)

Note that the concept of a strongly m-subharmonic function is defined, in general, in the
sense of distributions.

Definition 1. A function u ∈ L1
loc(D) is called shm in the domain D ⊂ Cn, if it is upper

semicontinuous and for any twice smooth shm functions v1, . . . , vn−m the current ddcu∧ ddcv1 ∧
· · · ∧ ddcvn−m ∧ βm−1 defined as[

ddcu ∧ ddcv1 ∧ ... ∧ ddcvn−m ∧ βm−1
]

(ω) =

=

∫
u ddcv1 ∧ · · · ∧ ddcvn−m ∧ βm−1 ∧ ddcω, ω ∈ F 0,0 (4)

is positive.

In the work of B locki [6], it was proven that this definition is correct, that for functions
u ∈ C2(D) this definition coincides with the original definition of shm functions. Moreover, the
class of bounded shm functions define the operators (ddcu)

k ∧βn−k > 0, k = 1, 2, . . . , n−m+ 1

as Borel measures in the domain D (see [6, 11]).
Now let D ⊂ Rn and u(x) ∈ C2(D). Similar to (2) we want to define m-convex functions

in the domain D ⊂ Rn. The matrix
(

∂2u

∂xj∂ xk

)
is orthogonal,

∂2u

∂xj∂ xk
=

∂2u

∂xk∂ xj
. Therefore,

after a suitable orthonormal transformation, it is transformed into a diagonal form

(
∂2u

∂xj∂ xk

)
→


λ1 0 . . . 0

0 λ2 . . . 0

. . . . . . . . . . . .

0 0 . . . λn

 ,
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where λj = λj (x) ∈ R are the eigenvalues of the matrix
(

∂2u

∂xj∂ xk

)
. Let Hk(u) = Hk(λ) =

=
∑

16j1<···<jk6n

λj1 . . . λjk the Hessian of the dimension k of the eigenvalue vector λ =

= (λ1, λ2, . . . , λn).

Definition 2. A twice smooth function u ∈ C2(D) is called m-convex in D ⊂ Rn, u ∈ m−cv(D),
if its eigenvalue vector λ = λ(x) = (λ1(x), λ2(x), . . . , λn(x)) satisfies the conditions

m− cv ∩ C2(D) =
{
Hk(u) = Hk (λ(x)) > 0, ∀x ∈ D, k = 1, . . . , n−m+ 1

}
.

Theory of m− cv functions is poorly studied and is a new direction in real geometry. How-
ever, when m = n the class n − cv ∩ C2(D) = {λ1 + · · · + λn > 0} coincides with the class
of subharmonic functions, and when m = 1 this class 1 − cv ∩ C2(D) =

{
H1 (λ) > 0

}
=

{λ1 > 0, . . . , λn > 0} coincides with functions that are convex functions in Rn. The class of con-
vex functions is well studied (A. Alexandrov, I. Bakelman, A. Pogorelov, see [1–5]). This m > 1

class was studied in a series of works by N. Ivochkina, N. Trudinger, H. Wang, etc. (see. [16–22]).
Principal difficulties in the theory of m− cv functions are the introduction of the class m−

cv ∩L1
loc, i.e. the definition of m− cv(D) functions in the class of upper semicontinuous, locally

integrable or bounded functions. So, for m = n (the case of subharmonic functions) in the class of
upper semicontinuous, locally integrable functions u(x) ∈ n− cv(D) is defined as a distribution,
where the Laplace operator ∆u is a Borel measure.

The key point to study m− cv ∩ L1
loc functions is the following relationship between m− cv

and shm functions (see. [14]). We embed Rn
x into Cn

z , by Rn
x ⊂ Cn

z = Rn
x + iRn

y (z = x+ iy), as a
real n-dimensional subspace of the complex space Cn

z .

Theorem 1. A twice smooth function u(x) ∈ C2(D), D ⊂ Rn
x , is m − cv in D if and only if

a function uc(z) = uc(x + iy) = u(x) that does not depend on variables y ∈ Rn
y , is shm in the

domain D × Rn
y .

Definition 3. An upper semicontinuous function u (x) in a domain D ⊂ Rn
x is called m-convex

D, if the function uc (z) is strongly m-subharmonic,uc (z) ∈ shm
(
D × Rn

y

)
.

If a function u(x) is locally bounded and m-convex in the domain D ⊂ Rn
x , then uc(z)

will be also locally bounded, strongly m-subharmonic function in the domain D × Rn
y ⊂ Cn

z ,
uc(z) ∈ shm ∩ L∞

loc

(
D × Rn

y

)
. Therefore, the operators are correctly defined

(ddcuc)
k ∧ βn−k, k = 1, 2, . . . , n−m+ 1

as Borel measures in the domain D × Rn
y ⊂ Cn

z , µk = (ddcuc)
k ∧ βn−k.

Since for a twice smooth function (ddcuc)
k ∧ βn−k = k!(n − k)!Hk (uc)βn, for a locally

bounded, strongly m-subharmonic function in the domain, D × Rn
y ⊂ Cn

z it is natural to define
its Hessians, equating them to the measure

Hk (uc) =
µk

k!(n− k)!
=

1

k!(n− k)!
(ddcuc)

k ∧ βn−k. (5)

By using (5) we can now define Hessians Hk, k = 1, 2, . . . , n−m+ 1, in the class of locally
bounded, m-convex functions in the domain D ⊂ Rn

x . Let u(x) be a locally bounded, m-convex
function in the domain D ⊂ Rn

x . Let us define Borel measures in the domain D × Rn
y ⊂ Cn

z

µk = (ddcuc)
k ∧ βn−k, k = 1, 2, . . . , n−m+ 1.
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Since uc ∈ shm
(
D × Rn

y

)
does not depend on y ∈ Rn

y , for any Borel sets, Ex ⊂ D, Ey ⊂ Rn
y

the measures
1

mesEy
µk (Ex × Ey) do not depend on the set Ey ⊂ Rn

y , i.e.
1

mesEy
µk (Ex × Ey) =

νk (Ex). Borel measures

νk : νk (Ex) =
1

mesEy
µk (Ex × Ey) , k = 1, 2, . . . , n−m+ 1, (6)

we call Hessians Hk = Hk (Ex) , k = 1, 2, . . . , n−m+1, for a locally bounded, m-convex u(x) ∈
m − cv(D) function in the domain D ⊂ Rn

x . For a twice smooth function, u(x) ∈ m − cv(D) ∩
C2(D) the Hessians are ordinary functions, however, for a non-twice smooth, but bounded upper
semicontinuous function, u(x) ∈ m− cv(D) ∩ L∞(D), the Hessians Hk, k = 1, 2, . . . , n−m+ 1,
are positive Borel measures (see [13,15]).

2. Maximal functions and the Dirichlet problem

Similar to the Monge-Ampere operator (ddcu)
n−m+1 ∧ βm−1 in the class of shm functions,

the Hessian measures Hn−m+1
u in the class m− cv(D) also have the property of dominance: the

function, with smaller total mass is closer to maximal.

Theorem 2 (Comparison principle). If u, v ∈ m−cv(D)∩C(D) and a set F = {x ∈ D : u(x) <
v(x)} ⊂⊂ D, then

Hn−m+1
u (F ) > Hn−m+1

v (F ). (7)

Proof. The proof of the theorem is carried out in several stages.
1) IfD ⊂ Rn is a bounded domain with a smooth boundary ∂D and u, v ∈ m−cv(D)∩C2(D̄) :

u|D < v|D , u|∂D ≡ v|∂D , then Hn−m+1
u (D) > Hn−m+1

v (D).

Actually, put Rn
x in Cn

z , Rn
x ⊂ Cn

z = Rn
x + iRn

y (z = x + iy), and construct the func-
tions uc(z) = u(x) ∈ shm(D × Rn

y ), vc(z) = v(x) ∈ shm(D × Rn
y ). We take the cylinder

Ω =
{

(x, y) ∈ D × Rn
y : x ∈ D, ∥y∥ < 1

}
. The boundary of the cylinder is ∂Ω = S1 ∪ S2, where

S1 = D × {∥y∥ = 1} , S2 = ∂D × {∥y∥ < 1} .
According to the Stokes formula we have∫

Ω

[
(ddcuc)

n−m+1 ∧ βm−1 − (ddcvc)
n−m+1 ∧ βm−1

]
=

=

∫
Ω

[(ddcuc) − (ddcvc)]∧

[
(ddcuc) ∧ (ddcvc)

n−m
+ (ddcuc)

2 ∧ (ddcvc)
n−m−1

+ · · · + (ddcuc)
n−m ∧ (ddcvc)

]
∧ βm−1 =

=

∫
∂Ω

[(dcuc) − (dcvc)]∧

[
(ddcuc) ∧ (ddcvc)

n−m
+ (ddcuc)

2 ∧ (ddcvc)
n−m−1

+ · · · + (ddcuc)
n−m ∧ (ddcvc)

]
∧ βm−1.

Note that the differential form[
(ddcuc) ∧ (ddcvc)

n−m
+ (ddcuc)

2 ∧ (ddcvc)
n−m−1

+ · · · + (ddcuc)
n−m ∧ (ddcvc)

]
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is positive and [(dcuc) − (dcvc)] = dc(uc−vc) represents the derivative along the internal normal

vector [(dcuc) − (dcvc)] = dc(uc − vc) ∼ ∂(uc − vc)

∂n
. Since the function uc − vc does not depend

on y,
∂(uc − vc)

∂n

∣∣∣∣
∥y∥=1

= 0. Therefore,

∫
S1

[(dcuc) − (dcvc)]∧

[
(ddcuc) ∧ (ddcvc)

n−m
+ (ddcuc)

2 ∧ (ddcvc)
n−m−1

+ · · · + (ddcuc)
n−m ∧ (ddcvc)

]
∧ βm−1 = 0.

For the integral over S2 ∫
S2

[(dcuc) − (dcvc)]∧[
(ddcuc) ∧ (ddcvc)

n−m
+ (ddcuc)

2 ∧ (ddcvc)
n−m−1

+ · · · + (ddcuc)
n−m ∧ (ddcvc)

]
∧ βm−1 > 0,

since uc − vc < 0 inside D and (uc − vc)|∂D = 0. Therefore, dc(uc − vc) is positive on S2.
That is why ∫

Ω

[
(ddcuc)

n−m+1 ∧ βm−1 − (ddcvc)
n−m+1 ∧ βm−1

]
=

=

∫
D×{∥y∥61}

[
(ddcuc)

n−m+1 ∧ βm−1 − (ddcvc)
n−m+1 ∧ βm−1

]
> 0.

From here we get ∫
D×{∥y∥61}

(ddcuc)
n−m+1 ∧ βm−1 >

∫
D×{∥y∥61}

(ddcvc)
n−m+1 ∧ βm−1

and according to (6) Hn−m+1
u (D) > Hn−m+1

v (D).

2) If u, v ∈ C2(D) and the open set F = {u < v} ⊂⊂ D, then from 1) it follows easily that

Hn−m+1
u (F ) > Hn−m+1

v (F ).

3) In general: u, v ∈ C(D). Then the set

F = {x ∈ D : u(x) < v(x)}

will be an open set. Fixing domains G, G′ : F ⊂⊂ G ⊂⊂ G′ ⊂⊂ D, a number δ > 0 and
an open set Fδ = {u(x) + δ < v(x)} ⊂⊂ F , we construct sequences of approximations uj , vj ∈
m − cv(G′) ∩ C∞(G′), j = 1, 2, . . . : uj ↓ u, vj ↓ v. Due to continuity of u, v the convergence
uj ↓ u, vj ↓ v will be uniform in G and, therefore, ∃j0, k0 : F3δ ⊂ F ′ = {uk + 2δ < vj} ⊂
Fδ, j > j0, k > k0. According to 2) we have

Hn−m+1
uk

(F ′) > Hn−m+1
vj (F ′), k > k0, j > j0.

Hence, for such k and j

Hn−m+1
vj (F3δ) 6 Hn−m+1

vj (F ′) 6 Hn−m+1
uk

(F ′) 6 Hn−m+1
uk

(F̄δ).

Then j → ∞, k → ∞ according to the properties of Borel measures, we have

Hn−m+1
v (F3δ) 6 Hn−m+1

u

(
F̄δ

)
.
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As δ → 0 from here we get that Hn−m+1
v ({u < v}) 6 Hn−m+1

u

(
{u < v}

)
. Applying this in-

equality to the functions u+ ε, v we have Hn−m+1
v ({u+ ε < v}) 6 Hn−m+1

u

(
{u+ ε < v}

)
and

by tending ε→ 0 we obtain the proof of the theorem. 2

Definition 4. A function u(x) ∈ m − cv(D) is called maximal in the domain D ⊂ Rn if for
this function the maximum principle holds in the class of m − cv(D), i.e. if v ∈ m − cv(D) :
lim

x→∂D
(u(x) − v(x)) > 0, then u(x) > v(x), ∀x ∈ D.

Note that the following convenient maximality criterion is often used: a function u(x) ∈
m − cv(D) is maximal in the domain D ⊂ Rn if and only if for any domain G ⊂⊂ D the
inequality u(x) > v(x), ∀x ∈ G holds for all functions v ∈ m− cv(D) : u|∂G > v|∂G.

Maximal functions are closely related to the Dirichlet problem.

Theorem 3. Let D = {ρ(x) < 0} be a strictly m − cv convex domain in Rn and φ(ξ) be a
continuous function defined on the boundary ∂D. Put

U(φ,D) =
{
u ∈ m− cv(D) ∩ C(D̄) : u|∂D 6 φ

}
and

ω(x) = sup {u(x) : u ∈ U(φ,D)} . (8)

Then, ω(x) ∈ m − cv(D) ∩ C(D̄), ω|∂D = φ and in addition, ω(x) is the maximal m − cv
function in D.

Recall that a domain D = {ρ(x) < 0} is strictly m− cv convex if the function ρ(x) is strictly
m− cv in a neighborhood D+ ⊃ D̄, ρ(x) ∈ m− cv (D+) , ρ(x) − δ|x|2 ∈ m− cv (D+) for some
δ > 0.

It is natural to call the function ω(x) a solution to the Dirichlet problem: ω(x) maximal and
ω|∂D = φ. Moreover, it is easy to see that a function u ∈ m− cv(D) ∩ C(D) is maximal if and
only if the function uc(z) ∈ shm(D × Rn

y ) ∩ C(D × Rn
y ) is a maximal shm function. It follows

that (ddcuc)
n−m+1 ∧ βm−1 = 0 or Hn−m+1(uc) = 0. This is equivalent to Hn−m+1(u(x)) = 0.

Proof of Theorem 3. Note that if in (8) instead of the class m− cv(D) we consider a wider class
of subharmonic functions n − cv(D) = sh(D) ⊃ m − cv(D), then we would obtain a solution
to the classical Dirichlet problem: ν(x) = sup

{
u ∈ sh(D) ∩ C(D̄) : u|∂D 6 φ

}
. In this case

∆ν ≡ 0, ν|∂D ≡ φ. It is clear that ω(x) 6 ν(x) and

lim
x→ξ

ω(x) 6 φ(ξ), ∀ξ ∈ ∂D. (9)

On the other hand, any fixed boundary point ξ0 ∈ ∂D of a strictly m−convex domain
D = {ρ(x) < 0} , ρ(x)− strictly m− cv function in some neighborhood D+ ⊃ D̄, is a peak point:
there exists v ∈ m− cv(D) ∩ C(D̄) : v(ξ0) = 0, v|D̄\{ξ0} < 0.

In fact, since ρ(x) strictly m − cv function in a certain neighborhood D+ ⊃ D̄, then for a
sufficiently small positive number δ > 0 the difference ρ(x) − δ

∥∥x− ξ0
∥∥2 is m-convex in D+.

Considering instead ρ(x) the function

v(x) = ρ(x) − δ
∥∥x− ξ0

∥∥2 ∈ m− cv(D) ∩ C(D̄) : v(ξ0) = 0, v|D̄\{ξ0} < 0

we make sure that the point ξ0 ∈ ∂D is a peak point.
Hence, for any fixed number ε > 0 there is a large number M > 0 that M · v(x) +φ(ξ0)− ε ∈

U (φ,D). Therefore, M · v(x) + φ(ξ0) − ε 6 ω(x) and lim
x→ξ0

ω(x) > φ(ξ0) − ε. Since the number
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ε > 0 and point ξ0 ∈ ∂D are arbitrary, lim
x→ξ

ω(x) > φ(ξ), ∀ξ ∈ ∂D. Combining this with (9) we

get lim
x→ξ

ω(x) = φ(ξ), ∀ξ ∈ ∂D.

For regularization ω∗ which is a m − cv function in the domain D the condition of con-
tinuity on the boundary is also satisfied: lim

x→ξ
ω∗(x) = φ(ξ), ∀ξ ∈ ∂D. From ω∗(x) ∈

m − cv(D), lim
x→∂D

ω∗ = φ follows that ω∗(x) 6 ω(x), i.e. ω∗(x) ≡ ω(x) and ω(x) is m − cv

function. Let us show that it is maximal.
Assume the contrary, let there be a domain G ⊂⊂ D and a function ϕ(x) ∈ m − cv(D) :

ϕ|∂G 6 ω|∂G, but ϕ(x0) > ω(x0) at some point x0.
The function

w(x) =

{
max {ω(x), ϕ(x)} if x ∈ Ḡ

ω if x ∈ D\G

is m-convex, w(x) ∈ m− cv(D), w|∂D = ω|∂D = φ. Therefore, w(x) 6 ω(x) and ϕ(x0) 6 ω(x0).
This is a contradiction.

It remains to prove that the function ω will be continuous in the closure. Let us construct
an approximation

ωδ(x) = ω ◦Kδ(x− y) ∈ m− cv(Dδ) ∩ C∞(Dδ), Dδ = {x ∈ D : ρ(x) < δ} ,

ωδ(x) ↓ ω(x), as δ ↓ 0. For small enough δ > 0 each interior normal line nξ, ξ ∈ ∂D intersects
∂Dδ at a single point η(ξ) ∈ ∂Dδ, so that a homeomorphism nδ is defined nδ : ∂D → ∂Dδ. Let
us put φδ(η) = φ(nδ(ξ)), η ∈ ∂Dδ, ξ ∈ D. Since lim

x→ξ
ω(x) = φ(ξ), ∀ξ ∈ ∂D, then for any fixed

ε > 0 there is a δ0 > 0 such that |ω(x) − φδ0(x)| < ε, ∀x ∈ ∂Dδ0 . For a fixed δ0 > 0 the domain
Dδ0 ⊂⊂ D and the approximation ωδ(x) ↓ ω(x), for δ ↓ 0 covers the domain Dδ0 .

Now applying Hartogs’ lemma to a compact set ∂Dδ0 and a function φδ0(x) ∈ C(∂Dδ0) we
find 0 < δ′ < δ0 such that

ωδ(x) < ωδ0(x) + 3ε, ∀x ∈ ∂Dδ0 , δ < δ′. (10)

Since the solution to the Dirichlet problem ω(x) is maximal in D, from ωδ(x) < φδ0(x) +

3ε, ∀x ∈ ∂Dδ0 , δ < δ′ follows that ωδ(x) < ω(x) + 4ε, ∀x ∈ Dδ0 , δ < δ′ because ω(x) >

φδ0(x) − 3ε, ∀x ∈ ∂Dδ0 . From here, ω(x) < ωδ(x) < ω(x) + 4ε, ∀x ∈ ∂Dδ0 , δ < δ′, i.e.
|ωδ(x) − ω(x)| < 4ε, ∀x ∈ Dδ0 , δ < δ′(δ0). Since ε > 0 arbitrary, the convergence ωδ(x) ↓ ω(x)

will be uniform inside D and ω(x) ∈ C(D), because ωδ(x) ∈ C∞(Dδ). The theorem is proven 2

Theorem 4. A continuous m− cv function u(x) ∈ m− cv(D)∩C(D) is maximal if and only if
the Borel measure is Hn−m+1

u = 0.

Proof. We proved above the equality Hn−m+1
u = 0 for the maximal function u(x) ∈ m− cv(D)∩

C(D). Let now Hn−m+1
u = 0 and we will show that u is maximal. Assume that u is not

maximal. Then for some domain G ⊂⊂ D there is a function v ∈ m− cv(D) : u|∂G > v|∂G, but
v(x0) − u(x0) = ε > 0 for some point x0 ∈ G.

Approximating v by infinitely smooth m − cv functions vj ↓ v, and then using Hartogs’
lemma, we find j0 ∈ N such that vj0 |∂G < u|∂G +

ε

2
. Let us compare the function u(x)

with the function vj0(x) + δ ∥x∥2, where δ =
ε

3 · max
{
∥x∥2 : x ∈ Ḡ

} . For such δ > 0 a set
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F =
{
u(x) +

ε

2
< vj0(x) + δ ∥x∥2

}
is not empty and lies compactly in G. Then according to the

comparison principle (Theorem 2)

δn
∫
F

(
ddc ∥x∥2

)n
6
∫
F

(
ddcv + δddc∥x∥2

)n 6
∫
F

(ddcu)
n

= 0,

which contradicts to
∫
F

(
ddc ∥x∥2

)n
> 0. The theorem is proven. 2
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Аннотация. В этой работе мы вводим понятие максимальных m-выпуклых (m − cv) функций и
для строго m-выпуклых областей D ⊂ Rn решаем Задачу Дирихле с заданной граничной непре-
рывной функцией. Докажем, что для решения задачи Дирихле в классе m−cv функций его Гессиан
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Introduction

Systems of differential equations are important in natural sciences. Often these equations are
difficult to solve by integrating them directly. To solve complex systems of differential equations
their group properties are studied, that is, the properties of leaving the differential manifold of
the equation under consideration invariant when independent and differential variables undergo
transformations of a certain group of transformations. If this property exists then it is said that
system of equations admits a group. When transforming from this group any solution of the
system goes back into the solution of this system. It makes possible to obtain various classes of
partial solutions of the system by integrating simpler systems of equations.

In this paper, equations of a viscous inhomogeneous fluid in a Hele-Shaw cell are studied
by group analysis method. The movement of a viscous fluid is described by the Navier-Stokes
equations. Two-layer flows in a Hele-show cell were described in [3]. The geometry of the flow
of a two-layer fluid in the cell is shown in Figure 1. The dimensions of the cell in the directions
of the x and y axes significantly exceed the width of the gap between the cell plates.

Let us consider a system of differential equations of the form [3]

∗aarod54@mail.ru
†nikita.a.saveliev@gmail.com

c⃝ Siberian Federal University. All rights reserved
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Fig. 1. Geometry of Hele-Shaw cell [3]

ρ(ut + β(uux + vuy)) + px = −µu,
py = −ρg,

ux + vy = 0,

ρt + uρx + vρy = 0,

µ = µ(ρ).

(1)

Here the independent variables x and y are spatial coordinates in the Hele–Shaw cell, t is time.
The differential variables u, v are horizontal and vertical components of velocity, p is pressure, ρ
is the density. In addition, there is an arbitrary element viscosity µ which is unknown function
of density. From the physical sense it is assumed that µ > 0. The equations also include two
constants: g — acceleration of gravity and β = 1.2.

1. Infinitesimal operator and its extension

Let us study equations (1) using group analysis. To do this, the algorithm for searching for
group transformations allowed by a differential equation given in [1, 2] is used.

Let us introduce the following notation for independent variables x1 = x, x2 = y, x3 = t and
for differential variables u1 = u, u2 = v, u3 = p, u4 = ρ. Let us denote partial derivatives with
respect to independent variables as

ux = u11, vx = u21, px = u31, ρx = u41,
uy = u12, vy = u22, py = u32, ρy = u42,
ut = u13, vt = u23, pt = u33, ρt = u43.

In the new notation equations (1) take the form

u4u13 + βu1u4u11 + βu2u4u12 + u31 + µ(u4)u1 = 0,

u32 + gu4 = 0,

u11 + u22 = 0,

u43 + u1u41 + u2u42 = 0.

(2)

Equations (1) define manifold E in the space of variables. The following substitution is
required to move to manifold E
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u31 = −u4u13 − βu4(u1u11 + u2u12) − µ(u4)u1,

u32 = −gu4,
u22 = −u11,

u43 = −u1u41 − u2u42.

(3)

The infinitesimal operator is sought in the form

X = ξ1
∂

∂x1
+ ξ2

∂

∂x2
+ ξ3

∂

∂x3
+ η1

∂

∂u1
+ η2

∂

∂u2
+ η3

∂

∂u3
+ η4

∂

∂u4
,

ξi = ξi(x1, x2, x3, u1, u2, u3, u4), ηj = ηj(x1, x2, x3, u1, u2, u3, u4).

To obtain the continuation of the operator to the first derivatives its necessary to use the

following formula X
1

= X + ζαi
∂

∂uαi
, where ζαi = Di(η

α) − uαjDi(ξ
j). Summation is carried out

according to indices of independent (i, j) and differential (α) variables: Di =
∂

∂xi
+uαi

∂

∂uα
+ . . .

[1].

2. Defining equations

Let us apply the invariance criterion [2] by acting on the second equation of system (2) by
operator X

1

X
1

(u32 + gu4) = X
1

(u32) + gX
1

(u4) = ζ32 + gη4
∣∣∣
[E]

= 0.

Let us move to manifold [E] using substitutions (3)

η32 + u12η
3
u1 + (−u11)η3u2 + (−gu4)η3u3 + u42η

3
u4−

− (−u4u13 − βu4u1u11 − βu4u2u12 − µu1)(ξ12 + u12ξ
1
u1 + (−u11)ξ1u2+

+ (−gu4)ξ1u3 + u42ξ
1
u4) − (−gu4)(ξ22 + u12ξ

2
u1 + (−u11)ξ2u2 + (−gu4)ξ2u3 + u42ξ

2
u4)−

− u33(ξ32 + u12ξ
3
u1 + (−u11)ξ3u2 + (−gu4)ξ3u3 + u42ξ

3
u4) + gη4 = 0.

Here quantities uαi are independent variables. Let us split the equation into independent
variables u11, u12, u13, u33, u42 and obtain

ξ1u1 = ξ1u2 = ξ1u4 = ξ3u1 = ξ3u2 = ξ3u4 = 0,

η32 − η3u3gu4 + η4g + µξ12u
1 − µξ1u3gu1u4 + ξ22gu

4 − ξ2u3ggu4u4 = 0,

βξ12u
1u4 − βξ1u3gu1u4u4 − η3u2 − µξ1u2u1 − ξ2u2gu4 = 0,

βξ1u1u1u4 − βξ1u2u2u4 = 0,

βξ12u
2u4 − βξ1u3gu2u4u4 + η3u1 + µξ1u1u1 + ξ2u1gu4 = 0,

ξ12u
4 − ξ1u3gu4u4 = 0,

−ξ32 + ξ3u3gu4 = 0,

η3u4 + µξ1u4u1 + ξ2u4gu4 = 0.
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Performing similar operations with the first, third and fourth equations of the system to
processing, one can obtain

ξ12 = ξ1u1 = ξ1u2 = ξ1u3 = ξ1u4 = 0,

ξ2u1 = ξ2u2 = ξ2u3 = ξ2u4 = 0,

ξ31 = ξ32 = ξ3u1 = ξ3u2 = ξ3u3 = ξ3u4 = 0,

η1u2 = η1u3 = η1u4 = 0,

η2u4 = 0,

η3u1 = η3u2 = η3u4 = 0,

η4u1 = η4u2 = η4u3 = 0,

as well as a set of defining equations
DE1.1: η13u4 + βη11u

1u4 + βη12u
2u4 + η31 − µη3u3u1 + µξ11u

1 + ξ21gu
4 + η4µu4u1 + η1µ = 0,

DE1.2: −β−1ξ13u
4 + η4u1 + η1u4 + u1u4(η1u1 − η3u3) = 0,

DE1.3: u4
[
u2(η1u1 − η3u3 + ξ11 − ξ22) + η2 − β−1ξ23 − ξ21u

1
]

+ η4u2 = 0,

DE1.4: η4 + u4(η1u1 − η3u3 + ξ11 − ξ33) = 0,

DE2.1: η32 + g(η4 + u4(ξ22 − η3u3)) = 0,

DE3.1: η11 + η22 − η2u3gu4 = 0,

DE3.2: η1u1 − η2u2 − ξ11 + ξ22 = 0,

DE3.3: η2u1 − ξ21 = 0,

DE4.1: η41u1 + η42u
2 + η43 = 0,

DE4.2: η1 − ξ13 + u1(ξ33 − ξ11) = 0,

DE4.3: η2 − ξ23 − u1ξ21 + u2(ξ33 − ξ22) = 0.

3. Operators allowed by the system of equations

Considering differential and algebraic consequences from the defining equations, one can
obtain coordinates of the tangent vector field of the infinitesimal operator

ξ1 = C2x
1 + C3,

ξ2 = (2C2 − 2C4)x2 + C6,

ξ3 = C4x
3 + C5,

η1 = (C2 − C4)u1,

η2 = (2C2 − 3C4)u2,

η3 = (C1 + 2C2 − 2C4)u3 +A(x3),

η4 = C1u
4.

(4)

Solution (4) of the defining equations depends on six arbitrary constants C1 . . . C6 and ar-
bitrary function A(x3). Since there are infinitely many options for choosing function A(x3)

the solution space L is infinite-dimensional. The space L can be represented as a direct sum
L = L6

⊕
L∞, where L6 is a six-dimensional space of solutions for which A(x3) = 0. Subspace

L∞ is infinite-dimensional and consists of solutions such that C1 = · · · = C6 = 0, A(x3) ̸= 0 with

the operator XA = A(x3)
∂

∂u3
.
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Let us alternately set one of the constants Ci=1...6 equal to one and the rest equal to zero

ζ1 = (0, 0, 0, 0, u3, u4),

ζ2 = (x1, 2x2, 0, u1, 2u2, 2u3, 0),

ζ3 = (1, 0, 0, 0, 0, 0),

ζ4 = (0,−2x2, x3,−u1,−3u2,−2u3, 0),

ζ5 = (0, 0, 1, 0, 0, 0),

ζ6 = (0, 1, 0, 0, 0, 0).

Multiplying scalarly the resulting vectors by ∂ = (∂x1 , ∂x2 , ∂x3 , ∂u1 , ∂u2 , ∂u3 , ∂u4), the follow-
ing operators are obtained

X1 = ζ1 · ∂ = u3∂u3 + u4∂u4 ,

X2 = ζ2 · ∂ = x1∂x1 + 2x2∂x2 + u1∂u1 + 2u2∂u2 + 2u3∂u3 ,

X3 = ζ3 · ∂ = ∂x1 ,

X4 = ζ4 · ∂ = −2x2∂x2 + x3∂x3 − u1∂u1 − 3u2∂u2 − 2u3∂u3 ,

X5 = ζ5 · ∂ = ∂x3 ,

X6 = ζ6 · ∂ = ∂x2 .

Operators X3, X6 correspond to shifts along spatial coordinates, and X5 is time shift. Oper-
ator X1 sets uniform stretching, and operators X2, X4 are heterogeneous stretches.

4. Сlassification equation

The equation (−C1 + C4)µ + C1u
4µu4 = 0 is a classification equation with solution

µ = C
(
u4
)C1 − C4

C1 , C = const.

This equation does not include constants C2, C3, C5, C6. Therefore, the transformations cor-
responding to operators X2, X3, X5, X6 retain the form of equations for any type of relationship
between liquid viscosity on density.

Let us consider various types of µ(u4).

1) µ — arbitrary function. This means that classification equation is satisfied when −C1 +

C4 = 0 and C1u
4 = 0. From here, C1 = C4 = 0. The kernel of transformations contains

operators {X2, X3, X5, X6, XA}.

2) µ = 0. In the case of a non-viscous liquid, µ = 0, µu4 = 0 are substituted into classifying
equation and identity is obtained. In this case C1, C4 can be chosen in an arbitrary way, and the
basis of operators is {X1, X2, X3, X4, X5, X6, XA}.

3) µ = C ̸= 0. In this case µu4 = 0 and C1 = C4. Then coordinates of the vector tangent
field are ξ1 = C2x

1 + C3, ξ2 = (2C2 − 2C1)x2 + C6, ξ3 = C1x3 + C5, η1 = (C2 − C1)u1,
η2 = (2C2 − 3C1)u2, η3 = (2C2 − C1)u3 + A(x3), η4 = C1u

4. The basis of operators is
{X1 +X4, X2, X3, X5, X6, XA}.
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4) µ = C · (u4)k. Let us substitute µ and µu4 = Ck(u4)k−1 into classifying equation and obtain
C4 = C1(1 − k). The basis of operators is {X1 + (1 − k)X4, X2, X3, X5, X6, XA}.

5. Operator invariants

Operator invariants are found from invariance criterion XiJ = 0 [2]. They are

JX1 =

{
x1, x2, x3, u1, u2,

u3

u4

}
=

{
x, y, t, u, v,

p

ρ

}
,

JX2
=

{
x3, u4,

x2

(x1)2
,
u1

x1
,
u2

(x1)2
,
u3

(x1)2

}
=
{ y

x2
, t,

u

x
,
v

x2
,
p

x2
, ρ
}
,

JX3
=
{
x2, x3, u1, u2, u3, u4

}
= {y, t, u, v, p, ρ} ,

JX4 =

{
x1, x2(x3)2,

(u1)2

x2
,

(u2)2

(x2)3
,
u3

x2
, u4
}

=

{
x, yt2,

u2

y
,
v2

y3
,
p

y
, ρ

}
,

JX5
=
{
x1, x2, u1, u2, u3, u4

}
= {x, y, u, v, p, ρ} ,

JX6 =
{
x1, x3, u1, u2, u3, u4

}
= {x, t, u, v, p, ρ} .

6. Invariant solutions for operator ⟨X2, X5⟩
Let us take two operators from the core of the main group of transformations and create a

two-parameter group H = ⟨X2, X5⟩. Let us transform the basis of invariants of operator X5

JX5
= {x, y, u, v, p, ρ} →

{
x,

y

x2
,
u

x
,
v

x2
,
p

x2
, ρ
}
.

Then, the basis of invariants for group H is JX2
∩ JX5

=
{ y

x2
,
u

x
,
v

x2
,
p

x2
, ρ
}
.

Let us take the invariant λ =
y

x2
as an independent variable. Its partial derivatives are

λt = 0, λx = −2y

x3
= −2λ

x
, λy =

1

x2
=
λ

y
. Remaining four invariants are treated as new required

functions
U(λ) =

u

x
=⇒ u = Ux, V (λ) =

v

x2
=⇒ v = V x2,

P (λ) =
p

x2
=⇒ p = Px2, R(λ) = ρ.

(5)

After transforming the original system of equations to new variables and required functions,
a factor system E|H is obtained. It contains ordinary differential equations for λ

βR (UV ′ + V U ′) + 2P − 2λP ′ = −µU,
P ′ = −Rg,
U − 2λU ′ + V ′ = 0,

R′ (V − 2λU) = 0.

There are two cases from the last equation of the factor system.
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Case 1. V = 2λU. Substitute V ′ = 2U + 2λU ′ in the third equation of E|H and obtain U=0.
Then what remains from the first equation is an equation with separable variables 2P −2λP ′ = 0

and P = C1λ, P
′ = C1 = const. One can obtain V ′ = 0, V = C2 = const from the third equation

and R = −C1

g
from the second equation.

Let us turn to "physical" variables and write down the invariant solution

u = Ux = 0, v = V x2 = C2x
2, p = Px2 = C1y, ρ = R = −C1

g
.

Case 2. R′ = 0, R = C1 = const. It follows from the second equation that P ′ = −C1g end

P = −C1gλ + C2. Note that µ(ρ) = µ(R) = µ(C1) = const in this case. Let k = −βC1

µ
. Then

the first equation of E|H takes the form

k(V U ′ − UV ′) + 2C2 = U.

Let us consider the case C2 = 0 and express V from the first equation E|H

V =
U

kU ′ + 2λU − U2

U ′ . (6)

V ′ =
1

k

U ′U ′ − UU ′′

U ′U ′ + 2U + 2λU ′ − 2UU ′U ′ − U2U ′′

U ′U ′ .

On the other hand, V ′ = 2λU ′˘U from the third equation, and an ordinary differential equation
with respect to U is obtained

U ′U ′(1 + kU) = UU ′′(1 − kU).

This equation does not include an independent variable λ. Therefore, one can lower the
order of the equation. Taking U as independent variable and setting the unknown function as
U ′ = f(U), one can obtain

U ′′ =
dU ′

dλ
=
df(U)

dλ
=

df

dU

dU

dλ
= f ′f.

Then
f [f [1 + kU ] − Uf ′[1 − kU ]] = 0.

Case 2.1. If f = 0, U ′ = 0, U = C3 = const then V =
U

U ′

(
1

k
+ 2λU ′ − U

)
= ∞, P =

−C1gλ, R = C1.

Case 2.2. Solving differential equation
df

f
=

1 + kU

U(1 −KU)
dU , relation λ(U) =

=
1

A

[
lnBU − 2kU +

k2U2

2

]
, A = const, B = const is obtained.

Function λ(U) is continuous and increases strictly monotonically by (0; +∞). Therefore it is
a bijection λ : (0; +∞) � R. This means that there is an inverse function U(λ).

To find U(λ) it is needed to solve the equation for U

f(U) =
1

A

[
lnBU − 2kU +

k2U2

2

]
− λ = 0.
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Fig. 2. Function U(λ) for a) water, µ = 8.9410−4 Pa·s, b) glycerin, µ = 1.49 Pa·s

The following iterative scheme is used

Uk+1 = Uk − f(Uk)f ′(Uk)

(f ′(Uk))2 − 0.5f ′′(Uk)f(Uk)
,

f ′ =
1

A

[
B

U
− 2k + k2U

]
, f ′′ =

1

A

[
− B

U2
+ k2

]
.

The derivative U ′ is approximated to the second order of accuracy by the difference relation

U ′(λ) =
U(λ+ h) − U(λ− h)

2h
+ o(h2).

Now using (6), one can calculate V (λ). Let us consider relations (5) and obtain numerical
solution in original differential variables for a fixed λ =

y

x2
. The resulting solution is stationary.

Rectangular grid with space steps (∆x,∆y) is used in the Hele-Shaw cell, and the vector field
of the fluid flow velocity is calculated (Fig. 3).

Fig. 3. Vector field of current velocities for а) water at A = 10, б) glycerin at A = 103
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Исследование уравнений вязкой неоднородной жидкости
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Аннотация. В работе построена основная группа преобразований, допускаемых системой диф-
ференциальных уравнений течения вязкой неоднородной жидкости в ячейке Хеле–Шоу, получено
классифицирующее уравнение относительно функции вязкости, построен базис операторов, сохра-
няющих вид исходных уравнений. Описан базис пространства решений определяющих уравнений.
Найдены инварианты операторов и получены инвариантные решения уравнений.

Ключевые слова: групповой анализ, уравнения жидкости, инфинитезимальный оператор, инва-
риант, инвариантное решение, ячейка Хеле–Шоу.
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Abstract. It is shown that the moving basis of a curve in polar coordinates can always be considered as
a right-handed reference frame moving with acceleration. A system of differential equations is obtained
that describes the trajectory of a freely falling body in a non-inertial reference frame coinciding with
the standard basis of the curve. Finally, they were solved numerically using the Archimedean spiral, the
three-petal rose and the cardioid as examples.
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Introduction

In this paper we will consider one of the aspects of using the plane curve’s moving basis [1–3]
and, with its help, we will provide solutions to a number of curvilinear motion problems. The
effectiveness of the moving basis method has been sufficiently demonstrated in a series of original
papers [4–6]. However, attention should be paid to the disadvantage of the standard basis of the
τ −n curve, where the unit tangent vector τ and the unit normal vector n are related by simple
linear relationships: 

dτ

ds
= Kn,

dn

ds
= −Kτ ,

(1)

where curvature K =
|y′′|(

1 + y′2
)3/2 =

|ÿẋ− ẍẏ|
(ẋ2 + ẏ2)

3/2
> 0 (see [1–3]). As shown in Fig. 1, the

moving basis with this definition changes its orientation from "right" to "left", moving from the
concave region to the convex region.

It should be noted that it was possible to avoid the influence of this circumstance on the
re-sults obtained in papers [4–6]. Although it is clear that a reference frame that constantly
changes its orientation is extremely inconvenient.
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Fig. 1. In the concave section AB, the τ − n basis is right-handed, and in the convex section
BC, it al-ready has a left orientation

1. Physical moving basis
Here we will consider two fundamentally different cases.

1. Let the curve be a graph of the function y = y(x). Then the situation can be improved
by transforming the standard basis to the T−N basis (Fig. 2). Its unit vectors are quite

Fig. 2. The moving T−N basis is right-handed on any section of the curve

similarly related (1): 
dT

ds
= K ·N,

dN

ds
= −K ·T,

(2)

Here the curvature of the curve is defined as

K =
y′′(

1 + y′2
)3/2 =

ÿẋ− ẍẏ

(ẋ2 + ẏ2)
3/2

. (3)

As a result of transformations (2)–(3), the T−N basis can be considered as a convenient
physical reference frame.

2. Let the curve be given in polar coordinates as a function R0(φ) = i·r(φ) cosφ+j·r(φ) sinφ
where the polar angle increases in counterclock-wise direction. A careful examination of
all curves known in polar coordinates [7] shows that the moving basis of such curves never
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changes its orientation (and always remains "right-handed"), which happens due to the
specific direction of change in the parameter φ (see Fig. 3) Thus, the invariance of the

Fig. 3. The moving basis on the Archimedean spiral is always right-handed

moving basis of curves in polar coordinates with respect to changes in the convex and
concave sections allows it to be used as a physical reference frame for solving curvilinear
motion problems.

2. Trajectory of a freely falling body in a moving basis
Any curvilinear motion is accelerated, and therefore a moving basis moving along its trajec-

tory can be considered as a non-inertial reference frame [8–10]. As we know [8–10], the trajectories
of moving bodies are different in different reference frames. For example, from the perspective
of a stationary observer, a freely falling body moves along a vertical straight line, but the same
trajectory from the center of a moving basis of a curve moving at a given speed will differ
significantly from a straight vertical fall. Thus, the task is to de-scribe the trajectory of a body
freely falling from point from the perspective of an observer lo-cated in the center of the moving
basis of the curve R0 (φ) (see Fig. 4). The binormal vector b is determined by the well-known
rule b = τ × n (see [1]). For a plane curve it is constant, i.e., ḃ = 0. According to [4] we have

r̈(φ) = R̈(φ) − R̈0(φ), (4)

where 
R̈0(φ) = v̇ · τ + v2K · n,

R̈(φ) = −g · b,

r̈(φ) =
d

dφ
(X(φ) · τ + Y (φ) · n + Z(φ) · b) ,

(5)

where g is the acceleration of gravity. Below, we will use uppercase letters X(φ), Y (φ), Z(φ) to
denote the coordinates of the falling body in the non-inertial τ − n − b frame, and lowercase
letters x(φ), y(φ), z(φ) to denote its coordi-nates in the stationary basis i− j− k. As a result of
double differentiation of the radius vector r(φ), taking into account relations (1), we get:

r̈(t) = Ẍ · τ + Ÿ · n + Z̈ · b +

+ τ ·
(
−2Ẏ vK −Xv2K2 − Y v̇K − Y vK̇

)
+

+ n ·
(

2ẊvK +Xv̇K +XvK̇ − Y v2K2
)
.

(6)

– 539 –



Sophie B. Bogdanova, Sergey O. Gladkov An Application of the Plane Curve’s Standard Basis . . .

Fig. 4. Problem geometry. The moving basis τ − n − b moves along the curve R0 (φ) in the
direction of in-creasing parameter φ

Substituting further (5) and (6) into equality (4) and equating the projections onto the corre-
sponding moving unit vectors, we obtain the following system of differential equations:

Ẍ = 2Ẏ vK +Xv2K2 + Y v̇K + Y vK̇ − v̇,

Ÿ = Y v2K2 − v2K2 − 2ẊvK −Xv̇K −XvK̇,

Z̈ = −g.

(7)

Their solution determines the trajectory of a freely falling body in the moving basis.

3. Analysis of the results obtained
The results of numerical simulation of system (5) are analyzed in three specific cases.

1. Archimedean spiral r = aφ. Its curvature according to [7] is as follows

K =
1

a
· φ2 + 2

(φ2 + 1)
3/2

.

2. Three-petal rose r = a sin 3φ with curvature [7].

K =
2

a
· 9cos23φ+ 4sin23φ(

9cos23φ+ sin23φ
)3/2 , 0 < φ < 2π.

3. A cardioid represented by the equation r = a (1 − cosφ), whose curvature according to [7]
is as follows

K =
3

4a
√

2 sin
φ

2

, 0 < φ < 2π

The solution results are illustrated in Fig. 5–7.
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Fig. 5. The trajectory of a freely falling body from the center of the moving basis of the
Archimedean spiral r = φ, moving with the following speed v = φ2 for 0 6 φ 6 3π. Initial
conditions X(0) = Y (0) = 5, Z(0) = 10, X ′(0) = Y ′(0) = Z ′(0) = 0

Fig. 6. The trajectory of a freely falling body from the center of the moving basis of the three-
petal rose r = 2 sin 3φ, moving with the following speed v = φ2 for 0 6 φ 6 2π. Initial conditions
X(0) = Y (0) = 5, Z(0) = 10, X ′(0) = Y ′(0) = Z ′(0) = 0

Conclusion

1. The fundamental possibility of using a moving basis chosen along a given curve in solving
a number of physical problems in polar coordinates is shown.
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Fig. 7. The trajectory of a freely falling body from the center of the moving basis of the cardioid
r = 2 (1 − cosφ), moving with the following speed v = φ3 for 0 6 φ 6 2π. Initial conditions
X(0) = Y (0) = 5, Z(0) = 10, X ′(0) = Y ′(0) = Z ′(0) = 0

2. A system of differential equations is presented that describes the free fall of a body in the
non-inertial reference frame moving along a plane curve specified in polar coordinates.

3. The results of the numerical solution of the resulting system of equations are graphically
illustrated using the Archimedean spiral, the rose and the cardioid as examples.
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Об одном применении естественного базиса плоской
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Аннотация. Показано, что подвижный базис кривой в полярной системе координат можно рас-
сматривать как правую систему отсчета, движущуюся с ускорением. Построена система диффе-
ренциальных уравнений, описывающая траекторию движения свободно падающего тела в неинер-
циальной системе координат, совпадающей с естественным базисом кривой. Приведены результаты
моделирования этой системы на примере спирали Архимеда, трехлепестковой розы и кардиоиды.

Ключевые слова: относительное движение, кривизна линии, механика криволинейного движе-
ния, компьютерное моделирование.
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Abstract. According to X-ray powder phase analysis, Bi2MgxMn1−xTa2O9.5−∆ (x=0.3;0.5;0.7) samples
synthesized using ceramic technology contain the main phase of cubic pyrochlore (space group Fd-3m)
and the impurity phase BiTaO4 of the triclinic modification (sp. Gr. P-1), the content of which is
proportional to the degree of doping with manganese. The unit cell parameter of the pyrochlore phase
increases uniformly with increasing index x(Mg) from 10.4970(8) at x=0.3 to 10.5248(8) Å (x=0.7),
obeying the Vegard rule. The electronic state of all ions included in Bi2MgxMn1−xTa2O9.5−∆ was
studied using X-ray spectroscopy. According to NEXAFS and XPS data, it was established that doping
with magnesium does not change the oxidation state of bismuth and tantalum in pyrochlore. Meanwhile,
in the Ta4f−, Bi4f7/2 and Bi4f5/2 spectra of the samples, an energy shift of the absorption bands towards
lower energies is observed, which is typical for bismuth and tantalum ions with an effective charge of
(+3-δ) and (+5-δ), caused by the distribution of manganese(II) and magnesium(II) ions in the position
of bismuth and tantalum. According to NEXAFS and XPS spectroscopy, manganese ions in the samples
have oxidation states predominantly +2 and +3, the proportion of which increases with increasing
manganese content in the samples.
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Due to their excellent dielectric properties, the ability to regulate dielectric properties by
an electric field, low sintering temperature and chemical compatibility with low-melting Ag,
Cu conductors, oxide pyrochlores are promising as dielectrics for multilayer ceramic capacitors,
tunable microwave dielectric components, resonators, devices for microwave applications [1–4].
Materials based on pyrochlores are used in solid-state devices as thin-film resistors, thermistors
and communication elements, photocatalysts, and are used as components of ceramic molds for
radioactive waste. The formula of oxide pyrochlores A2B2O7 describes a large family of com-
pounds isostructural with the mineral pyrochlore. In the crystal structure of pyrochlore, two
cationic sublattices with the anticristobalite structure A2O’ and the octahedral B2O6 are dis-
tinguished [5]. The positions of cations A with octaoxygen coordination are occupied by large
ions (Ca2+, Bi3+). The three-dimensional framework of B2O6 is formed by [BO6] octahedra con-
nected at the vertices, in the positions of which cations with a smaller ionic radius (Ti4+, Ta5+)
are located. There are known cases of mixed pyrochlores with three or more types of cations
located at two nonequivalent cation positions A and B. These include pyrochlores based on bis-
muth tantalate, doped with ions of 3d elements [6,7]. Such doping options lead to the formation
of a pyrochlore structure deficient in cations A, as is typical for bismuth-containing pyrochlores
and is the reason for the relaxation properties of oxide ceramics. Currently, almost all py-
rochlores based on bismuth tentalate containing 3d ions (Cr,Fe,Co,Ni,Cu,Zn) are known and
studied. Due to their excellent dielectric properties, such pyrochlores are promising as multilayer
ceramic capacitors, resistors, resonators, sensors and microwave filters [3, 4]. As shown in [8],
iron-containing pyrochlores Bi3.36Fe2.08+xTa2.56−xO14.56−x (−0.32 6 x 6 0.48) exhibit moderate
values of dielectric constant ε ∼ 78−92 and dielectric loss tangent δ ∼ 10−1 at 30 ◦C and 1MHz.
Magnesium-containing pyrochlores Bi3+5/2xMg2−xTa3−3/2xO14−x (0.12 6 x 6 0.22) are charac-
terized by comparable values of ε ∼ 70−85 and low dielectric loss tangent δ ∼ 10−3 at 1 MHz and
30 ◦C [9]. For pyrochlore Bi1.5ZnTa1.5O7, the dielectric constant is close to 58 [10]. We have not
found any information on manganese-containing pyrochlores based on bismuth tantalate. There
is one known work devoted to the study of analog pyrochlores in the Bi2O3-Mn2O3-Nb2O5

system [7]. The authors of the article found that a significant concentration region of bismuth-
deficient manganese-containing pyrochlores is formed in the system, in which 14 – 30% of the
A-positions are occupied by Mn2+ ions. As the authors of [7] showed, X-ray powder diffraction
data confirmed that all Bi-Mn-Nb-O pyrochlores form with structural displacements, as found
for the analogous pyrochlores with Mn replaced by Zn, Fe, or Co. According to [7], the displacive
disorder is crystallographically analogous to that reported for Bi1.5Zn0.92Nb1.5O6.92, which has a
similar concentration of small B-type ions on the A-sites. EELS spectra of manganese-containing
pyrochlores showed the presence of Mn2+ and Mn3+ ions. Manganese in high-temperature ce-
ramics can have a complex ionic composition, affecting the physicochemical properties of the
ceramics. The ionic state of manganese is influenced by many variable factors, among which the
symmetry and strength of the crystal field, the nature of the ligands, distortions and the size
of the coordination polyhedron are particularly prominent. Studies have shown that the com-
bined use of X-ray spectroscopy methods (XPS, NEXAFS) makes it possible to most accurately
determine the ionic composition of complex oxides [11]. As part of our work, we studied the
electronic state of manganese ions in Mg and Mn codoped bismuth tantalate pyrochlores using
NEXAFS and XPS spectroscopy. The influence of the degree of substitution of Ta(V) ions on
the proportion of oxidized manganese ions in pyrochlores has been established.
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1. Materials and methods

Bi2MgxMn1−xTa2O9.5−∆ (x=0.3,0.5,0.7) samples were synthesized using the solid-phase re-
action method from the oxides MgO, Bi2O3, Mn2O3, Ta2O5. A finely ground and homogeneous
stoichiometric mixture of oxides was pressed into disc-shaped compacts (diameter 10 mm, thick-
ness 3 – 4 mm) using a hand press. High-temperature treatment of the samples was carried out
in stages, at temperatures of 650, 850, 950, 1050 ◦C for 15 hours at each calcination stage. The
phase composition was determined by X-ray phase analysis using a Shimadzu 6000 X-ray diffrac-
tometer (CuKα radiation). The microstructure and local elemental composition of the samples
were studied using scanning electron microscopy and energy-dispersive X-ray spectroscopy (elec-
tron scanning microscope Tescan VEGA 3LMN, energy dispersion spectrometer INCA Energy
450). XPS studies were carried out using the equipment of the resource center of the Science
Park of St. Petersburg State University "Physical methods of surface research." XPS analysis
was performed on a Thermo Scientific ESCALAB 250Xi X-ray spectrometer. An X-ray tube with
AlKα radiation (1486.6 eV) was used as a source of ionizing radiation. To neutralize the sample
charge in the experiments, an ion-electronic charge compensation system was used. All peaks
were calibrated relative to the C1s peak at 284.6 eV. Processing of experimental data was carried
out using the software of the ESCALAB 250Xi spectrometer. The samples were studied using
NEXAFS spectroscopy at the NanoPES station of the KISS synchrotron source at the Kurchatov
Institute (Moscow) [11]. NEXAFS spectra were obtained by recording the total electron yield
(TEY) with an energy resolution of 0.5 eV.

2. Results and discussion

2.1. Phase composition of the Bi2MgxMn1−xTa2O9.5−∆

Based on X-ray powder phase analysis, it was established that samples of the composition
Bi2MgxMn1−xTa2O9.5−∆ (x = 0.3-0.7) are two-phase (Fig. 1). In addition to the main cubic
phase, they contain bismuth orthotantalate BiTaO4 of the triclinic modification (space group
P-1) as an impurity [12]. Analysis of the reflection extinctions of the cubic phase established
that the symmetry of the crystal structure is cubic with space group Fd-3m [5] and corresponds
to the structure of cubic pyrochlore. The amount of bismuth orthotantalate is proportional
to the content of manganese ions and varies from 7.9 (x(Mn)=0.3) to 23.8 wt.% (x(Mn)=0.7).
The proportionality of the amount of impurity to the manganese content in the samples can
mean the distribution of some manganese ions in the bismuth position, and magnesium ions in
the octahedral positions of tantalum(V), as shown earlier using the example of solid solutions
Bi2MgxM1−xTa2O9.5−∆ (M-Ni,Cr, Fe) [13–15]. The appearance of impurities in the samples may
be associated with the placement of Mn(II) ions not only in the octahedral sublattice of tanta-
lum(V), but also in the bismuth(III) sublattice, which is due to the larger sizes of Mn(II) ions
than those of Mg(II), similar behavior was observed for cobalt(II) ions [16]. Apparently, when
doped with large manganese ions, most of them are distributed into the octahedral sublattice of
tantalum(V), creating oxygen vacancies and thereby causing stress in the octahedral framework
as a whole. In order to relieve stress in the crystal structure, some manganese(II) ions are placed
in the bismuth(III) position. The system responds to this placement by creating vacancies in the
bismuth sublattice by releasing a bismuth orthotantalate phase as an impurity. The amount of
bismuth orthotantalate impurity is equivalent to the number of 3d ions located in the bismuth
position [16]. The unit cell parameter of cubic pyrochlore in Bi2MgxMn1−xTa2O9.5−∆ decreases
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uniformly with an increase in the content of manganese ions (and a decrease in magnesium ions) in
the samples from 10.5248(8) (x(Mn)=0.3) to 10.4970(8) Å (x( Mn)=0.7), despite the fact that the
ionic radius of magnesium(II) is smaller than the radius of Mn(II) ions (R(Mg(II))c.n-6=0.72 Å,
R(Mn(II))c.n-6=0.83 Å), but more than tantalum(V) ions (R(Ta(V))c.n-6=0.64 Å) [17]. The
increase in the unit cell parameter with an increase in magnesium ions can be explained by the
fact that with increasing magnesium content the amount of impurity decreases, which means
the pyrochlore cell parameter is higher, and also by the fact that Mn(II) ions can occupy bis-
muth(III) positions, the ionic radius of which less than bismuth(III) ions (R(Bi(III))c.n-8=1.17 Å,
R(Mn(II))c.n-8=0.90 Å) [17], and do not make a significant contribution to the cell parameter.
In this regard, the cell parameter increases due to the distribution of large magnesium(II) ions
into the octahedral positions of tantalum(V).

Fig. 1. X-ray powder diffraction patterns of Bi2MgxMn1−xTa2O9.5−∆ samples with varying
index x(Mn)

2.2. XPS and NEXAFS spectra of the Bi2MgxMn1−xTa2O9.5−∆

The obtained XPS spectra of magnesium bismuth tantalate Bi2MgxMn1−xTa2O9.5−∆ are
presented in Fig. 2. The energy position of the details of the spectra are presented in Tab. 1.
For comparison, the spectra of the original oxides used in the synthesis of the samples are given.
Fig. 2 shows XPS spectra in a wide energy range and spectral dependences in the region of the
Bi5d-, Ta4f-, Ta4d- and Mn2p-ionization thresholds of the studied samples. The figures also show
the results of decomposing the spectral dependences into individual peaks, which were modeled
by Gaussian-Lorentzian curves, and the background lines by the Shirley or smart approximation.
When analyzing the Survey XPS spectrum, one can note the presence of a C1s peak associated
with the presence of contaminants on the surface, which cannot be removed from the surface
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of the sample. In this regard, a contribution to the intensity of the O1s peak from surface
contaminants is possible. Thus, to analyze the surface composition of samples, which manifests
itself in XPS spectra, it is possible only on the basis of analysis of the spectra of bismuth,
tantalum and manganese.

Fig. 2. Survey XPS spectra of Bi2Mg0.5Mn0.5Ta2O9.5−∆ and Bi2MgTa2O9 (a), Bi4f spectra
of bismuth atoms (b), Mg1s spectra (c), XPS spectra of tantalum and bismuth atoms (d),
Ta4d- spectra (e), Mn2p spectra (f). For comparison, the spectra of MnO [18], Mn2O3 [19] and
MnO2 [20] are given

It should be noted that doping with manganese atoms practically does not change the spectral
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characteristics of bismuth, tantalum and magnesium atoms (Fig. 2b-2e). When comparing the
XPS Bi4f spectra of the sample under study and Bi2O3 oxide (Fig. 2b), it can be noted that the
energy position and width of the peaks in the spectrum of the sample correlate with the corre-
sponding spectra of Bi2O3 oxide. It is interesting to note that for the Bi2Mg0.5Mn0.5Ta2O9.5−∆

sample there is a slight shift in the absorption bands of Bi5d3/2, Bi5d5/2, Bi4f7/2 and Bi4f5/2 com-
pared to Bi2MgTa2O9 to lower energies (from 164.12 eV (Bi2Mg0.5Mn0.5Ta2O9.5−∆) to 164.35
eV Bi2MgTa2O9), which means a decrease in the effective charge of bismuth ions. Apparently,
the shift of the peaks is associated with the placement of a certain proportion of divalent ions,
for example, manganese(II), in the bismuth position, as shown by X-ray phase analysis. The
energy positions of the peaks in the XPS Mg1s spectra shown in Fig. 2c is typical for the di-
valent magnesium atom [21]. When considering the spectra of tantalum atoms (Fig. 2d, 2e),
it should be noted that the shape of the peaks clearly indicates that all tantalum atoms are in
the same charge state (there is no splitting or distortion of the peaks), but at the same time
the energy position of the peaks has a characteristic shift in side of lower energies compared
to the binding energy in pentavalent tantalum oxide Ta2O5. A shift towards lower energies is
characteristic of a decrease in the effective positive charge; in particular, for the Ta4f and Ta5p
spectra we presented, this energy shift is ∆E=0.7 eV, and in the region of the Ta4d edge - 1 eV.
This in turn allows us to assume that tantalum atoms have the same effective charge +(5-δ),
which we observed in similar spectra of tantalum in bismuth tantalates doped with Cr, Fe, Co,
Ni, Cu atoms [13–16, 22]. Let’s move on to consider the Mn2p spectra presented in Fig. 1f.
Comparison of the spectra of the composite with the spectra of the oxides MnO [18], Mn2O3 [19]
and MnO2 [20] known from the literature shows that the spectrum of Bi2Mg0.5Mn0.5Ta2O9.5−∆

correlates well with the spectrum of MnO, while the spectra of Mn2O3 and MnO2 has a shift
towards higher energies. All this suggests that magnesium atoms are mainly in the Mn+2 charge
state in this composite.

Fig. 3. NEXAFS Mn2p spectra in Bi2Mg0.5Mn0.5Ta2O9.5−∆, Bi2Mg0.3Mn0.7Ta2O9.5−∆,
in MnO, Mn2O3 and MnO2 oxides (a); decomposition of the XPS Mn2p spectrum of
Bi2Mg0.5Mn0.5Ta2O9.5−∆ into individual components (b)

Let us move on to consider the NEXAFS Mn2p spectra of the Bi2Mg0.5Mn0.5Ta2O9.5−∆ and
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Bi2Mg0.3Mn0.7Ta2O9.5−∆ composites presented in Fig. 3a. When comparing the spectra of the
composites with the spectra of the oxides we obtained, it can be noted that the shape of the
spectra and the energy position of the main peaks (a-c) in all of the given spectra of the composite
coincide well with the spectra of MnO. This suggests that the manganese atoms in the studied
samples mainly have a charge state of +2. It should be noted that the c band, which can be
identified as a separate peak in the spectrum of MnO, is visible in the spectra of the composites
as an influx. In addition, in the spectra of composites, compared to the spectrum of MnO, the
relative intensity of the b bands also increases. Beam c coincides in energy position with a broad
band in the spectrum of MnO2, and bands a and b correlate well with the corresponding features
in the spectra of Mn2O3, but with different intensities. This suggests that the manganese atoms
in the composites are both in the charge state +2 and partially +3/+4.

To clarify this conclusion, we attempted to decompose the XPS Mn2p spectra of the
Bi2Mg0.5Mn0.5Ta2O9.5−∆ sample into individual components, using the spectra of the oxides
presented in Fig. 3b. The decomposition was carried out according to the following procedure:
(1) background lines obtained using the Shirley approximation were subtracted from the spectra,
(2) “background-free” XPS spectra obtained in this way were normalized by area by one value (in
this case, 1 was taken), (3) a model spectrum was constructed as the sum of the XPS spectra of
MnO, Mn2O3 and MnO2 with the corresponding coefficients α, β and γ (α+β+γ = 1), the value
of which was varied to achieve maximum agreement with the spectrum of the composite. The
Fisher F-criterion was taken as a criterion for optimal agreement for the considered intensities
of the XPS spectra of the composite and the model spectrum. The results of optimal modeling
are presented in Fig. 3, for which α = 0.77, β = 0.23 and γ = 0 (Fisher’s F test is 0.9998).
The data obtained in this way suggests that in the structure of the Bi2Mg0.5Mn0.5Ta2O9.5−∆

composite there are two nonequivalent states of manganese atoms: about 77% of manganese
atoms are in the +2 charge state, and the remaining 23% are in +3. Turning again to the
NEXAFS spectra (Fig. 3a), we can assume that the presence of an intense b band indicates
the presence of Mn3+ ions in the composite. Moreover, with increasing manganese content in
Bi2MgxMn1−xTa2O9.5−∆, (x=0.5 and 0.3), the intensity of this peak increases, which is an in-
dication of an increase in the proportion of Mn3+ ions in the samples and is consistent with the
quantitative assessment of the proportion of manganese ions according to XPS analysis.

Table 1. Energy positions of the components of the XPS spectra of Bi2Mg0.5Mn0.5Ta2O9.5−∆

(1) and Bi2MgTa2O9 (2)

Peak Energy (eV)
1 2

Bi4f7/2 158.80 159.03
Bi4f5/2 164.12 164.35
Bi5d5/2 25.82 26.11
Bi5d3/2 28.72 29.08
Ta4f7/2 25.31 25.66
Ta4f5/2 27.21 27.56
Ta4d5/2 229.49 229.78
Ta4d3/2 240.32 241.44
Mg1s 1302.49 1303.19
Mn2p3/2 640.83
Mn2p1/2 652.39
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Conclusions

The Bi2MgxMn1−xTa2O9.5−∆ composites were synthesized by the solid-phase method and,
according to X-ray diffraction data, contain BiTaO4 impurity, the content of which in the samples
increases with increasing index x(Mn). The unit cell parameter of the pyrochlore phase increases
with increasing magnesium content in the samples. The appearance of bismuth orthotantalate
impurities is associated with the distribution of some manganese ions into the bismuth cation
sublattice. This assumption is confirmed by the energy shift to lower energies of the bismuth
absorption bands (Bi4f7/2 and Bi4f5/2). According to NEXAFS and XPS data, it was estab-
lished that bismuth and magnesium ions are in the charge states Bi(+3-δ), Zn(+2). Based on
the characteristic shift of the absorption band in the Ta4f spectrum to lower energies, it was es-
tablished that tantalum ions have an oxidation state of Ta(+5-δ). It has been shown that doping
pyrochlores with manganese and magnesium ions leads to the oxidation of some manganese ions
to Mn(III), the proportion of which increases with increasing manganese content in the samples.
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NEXAFS и XPS спектры марганецсодержащих
пирохлоров на основе танталата висмута-магния
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Аннотация. По данным рентгенофазового анализа, синтезированные по керамической технологии
образцы Bi2MgxMn1−xTa2O9.5−∆ (х=0.3;0.5;0.7) содержат основную фазу кубического пирохлора
(пр.гр. Fd-3m) и примесную фазу BiTaO4 триклинной модификации (пр.гр. P-1), содержание кото-
рой пропорционально степени допирования марганцем. Параметр элементарной ячейки фазы пи-
рохлора равномерно увеличивается с ростом индекса x(Mg) от 10.4970(8) при х=0.3 до 10.5248(8)
Å (х=0.7), подчиняясь правилу Вегарда. Методом рентгеновской спектроскопии исследовано элек-
тронное состояние всех ионов, входящих в состав Bi2MgxMn1−xTa2O9.5−∆. По данным NEXAFS и
XPS установлено, что допирование магнием не изменяет степени окисления висмута и тантала в
пирохлоре. Между тем, в Ta4f−, Bi4f7/2 и Bi4f5/2 спектрах образцов наблюдается энергетический
сдвиг полос поглощения в сторону меньших энергий, что характерно для ионов висмута и танта-
ла с эффективным зарядом (+3-δ) и (+5-δ), обусловленных распределением ионов марганца(II) и
магния(II) в позиции висмута и тантала. По данным NEXAFS и XPS спектроскопии, ионы мар-
ганца в образцах имеют степени окисления преимущественно +2 и +3, доля которых возрастает с
увеличением содержания марганца в образцах.

Ключевые слова: пирохлор, Mg допирование BiTaO4, XPS и NEXAFS спектроскопия.
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