
Журнал Сибирского 
федерального университета

Математика и физика

Journal of Siberian
Federal University

Mathematics & Physics

2024 17 (2)

issn 1997-1397 (Print)
issn 2313-6022 (Online)



ISSN 1997-1397
(Print)

ISSN 2313-6022
(Online)

2024 17 (2)

Издание индексируется Scopus
(Elsevier), Emerging Sources Citation
Index (WoS, Clarivate Analytics), Рос-
сийским индексом научного цитиро-
вания (НЭБ), представлено в меж-
дународных и российских информа-
ционных базах: Ulrich’s periodicals
directiory, ProQuest, EBSCO (США),
Google Scholar, MathNet.ru, КиберЛе-
нинке.

Включено в список Высшей атте-
стационной комиссии «Рецензируемые
научные издания, входящие в между-
народные реферативные базы данных
и системы цитирования».

Все статьи представлены в от-
крытом доступе http://journal.sfu-
kras.ru/en/series/mathematics_physics.

ЖУРНАЛ
СИБИРСКОГО
ФЕДЕРАЛЬНОГО
УНИВЕРСИТЕТА
Математика и Физика

JOURNAL
OF SIBERIAN
FEDERAL
UNIVERSITY
Mathematics & Physics

Журнал Сибирского федерального университета.
Математика и физика.

Journal of Siberian Federal University. Mathematics & Physics.

Учредитель: Федеральное государственное автономное образовательное
учреждение высшего образования "Сибирский федеральный

университет"(СФУ)
Главный редактор: А.М.Кытманов. Редакторы: В.Е. Зализняк, А.В.Щуплев.

Компьютерная верстка: Г.В.Хрусталева
№ 2. 29.04.2024. Индекс: 42327. Тираж: 1000 экз. Свободная цена
Адрес редакции и издателя: 660041 г. Красноярск, пр. Свободный, 79,

оф. 32-03.
Отпечатано в типографии Издательства БИК СФУ

660041 г. Красноярск, пр. Свободный, 82а.
Свидетельство о регистрации СМИ ПИ № ФС 77-28724 от 29.06.2007 г.,

выданное Федеральной службой по надзору в сфере массовых
коммуникаций, связи и охраны культурного наследия

http://journal.sfu-kras.ru
Подписано в печать 15.04.24. Формат 84×108/16. Усл.печ. л. 12,0.

Уч.-изд. л. 11,8. Бумага тип. Печать офсетная.
Тираж 1000 экз. Заказ 20398

Возрастная маркировка в соответствии с Федеральным законом № 436-ФЗ:16+



Editorial Board:
Editor-in-Chief : Prof. Alexander M. Kytmanov
(Siberian Federal University, Krasnoyarsk, Russia)

Consulting Editors Mathematics & Physics:

Prof. Viktor K. Andreev (Institute Computing Modelling SB RUS, Krasnoyarsk, Russia)
Prof. Dmitry A. Balaev (Institute of Physics SB RUS, Krasnoyarsk, Russia)
Prof. Silvio Ghilardi (University of Milano, Milano, Italy)
Prof. Sergey S. Goncharov, Academician,
(Institute of Mathematics SB RUS, Novosibirsk, Russia)
Prof. Ari Laptev (KTH Royal Institute of Technology, Stockholm, Sweden)
Prof. Yury Yu. Loginov
(Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russia)
Prof. Mikhail V. Noskov (Siberian Federal University, Krasnoyarsk, Russia)
Prof. Sergey G. Ovchinnikov (Institute of Physics SB RUS, Krasnoyarsk, Russia)
Prof. Gennady S. Patrin (Institute of Physics SB RUS, Krasnoyarsk, Russia)
Prof. Vladimir M. Sadovsky (Institute Computing Modelling SB RUS, Krasnoyarsk, Russia)
Prof. Azimbay Sadullaev, Academician
(Nathional University of Uzbekistan, Tashkent, Uzbekistan)
Prof. Vasily F. Shabanov, Academician, (Siberian Federal University, Krasnoyarsk, Russia)
Prof. Vladimir V. Shaidurov (Institute Computing Modelling SB RUS, Krasnoyarsk, Russia)
Prof. Avgust K. Tsikh (Siberian Federal University, Krasnoyarsk, Russia)
Prof. Eugene A.Vaganov, Academician, (Siberian Federal University, Krasnoyarsk, Russia)
Prof. Valery V. Val’kov (Institute of Physics SB RUS, Krasnoyarsk, Russia)
Prof. Alecos Vidras (Cyprus University, Nicosia, Cyprus)

148



CONTENTS

A.Benraouda
Optimal Control for an Elastic Frictional Contact Problem

151

A.O. Afonin, A. A. Alexandrovsky, I. V. Govorun, A.A. Leksikov,
A.V. Ugryumov, D. K.Ogorodnikov
Dual Band HTSC Power Limiter

162

E.D. Leinartas, E. K. Leinartas
Difference Equations and Hadamard Composition of Power Series

169

V.K. Beloshapka
On Hypergeometric Functions of Two Variables of Complexity One

175

A.V. Eikhler, V. V.Prudnikov, P.V.Prudnikov
Hysteresis Effects in the Critical Behavior of Heisenberg Thin Films in an External
Oscillating Field

189

V.K. Andreev
Thermocapillary Convection of Immiscible Liquid in a Three-dimensional Layer at Low
Marangoni Numbers

195

V.B. Bekezhanova, O. N. Goncharova
On One Exact Solution of an Evaporative Convection Problem with the Dirichlet
Boundary Conditions

207

A.A. Imomov, S. B. Iskandarov
Further Remarks on the Explicit Generating Function Expression of the Invariant
Measure of Critical Galton-Watson Branching Systems

220

A.V. Shmidt
Approximate Solution to a Model of the far Momentumless Axisymmetric Turbulent
Wake

229

A.A. Chubarova, M. V. Mamonova, P.V. Prudnikov
A Study of the Scaling Behavior of the Two-dimensional Ising Model by Methods of
Machine Learning

238

A.A. Levitskiy, P. S. Marinushkin, V. A.Bakhtina
Analysis of the Electric Current Distribution in a Three-Layer Conductive Structure

246

M.Krishna, S. B. Kappala, R. Santhikumar
Cylindrically Symmetric Generalized Ghost Pilgrim Dark Energy Cosmological Univers

257

A.Kilicman, S. K. Kumari, A. K.Rathie
On a New Class of Integrals Involving Generalized Hypergeometric Functions

266

I.V. Smolekho
Analysis of the Unstable State of a Nematic Liquid Crystal Based on a Simplified
Dynamic Model

272

T.Hamaizia, S. Radenović, A. H. Ansari
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Abstract. We consider a mathematical model which describes a frictional contact between an elastic
body and a foundation. We prove the existence of a unique weak solution to the problem. Then, we
study the continuous dependence of the solution with respect to the data. Finally, we address an optimal
control problem for which we prove the existence of at least one solution.
Keywords: weak solution, Coulomb’s friction, continuous dependence, lower semicontinuity, optimal
control.
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Introduction

Contact problems abound in industry and everyday life. For this reason, the modelling,
numerical analysis and computer simulations of such problems has been extensively studied in
engineering and mathematical literature. See for instance [6, 9, 12–14].

Variational inequalities are a powerful mathematical tool to represent various nonlinear
boundary value problems and mathematical models arising in Contact Mechanics. Their theory
was developed based on arguments of monotonicity and convexity, including properties of the
subdifferential of a convex function. References in the field are [1, 3, 4, 7, 8, 10], for instance.

The optimal control theory in the study of mathematical models of contact is quite limited.
The difficulties are generated by the strong nonlinearities which arise in the boundary condi-
tions included in such models, also by some features like non-convexity and non-differentiability.
Results on optimal control for various contact problems could be found in [2, 5, 11,16].

In this paper, we consider a mathematical model which describes the contact between an
elastic body and a foundation. We assume that the foundation is made of a rigid-plastic material
of yield limit ξ. The body is acted upon by body forces of density φ0 and by tractions of density
φ2, which act on a part of its boundary. The variational formulation of the model is in a form
of an elliptic variational inequality in which the unknown is the displacement field and the data
are the densities of applied forces (φ0,φ2), the yield limit ξ and the friction bound Fb.

The paper is structured as follows. In Section 1 we introduce some notation and preliminaries.
In Section 2 we state the contact model, then we list the assumptions on the data and derive
its variational formulation. Also, we state and prove the unique weak solvability of the problem,
Theorem 2.1. Section 3 is dedicated to a convergence result, Theorem 3.1, which establishes the
continuous dependence of the solution with respect to the densities of applied forces, the yield
limit of the foundation and the friction bound. In Section 4 we state an optimal control problem
and we prove its solvability, Theorem 4.2.

∗abenraouda@usthb.dz
c⃝ Siberian Federal University. All rights reserved
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1. Preliminaries
In this section, we introduce the notation and some preliminaries materials we shall use. We

use the notation R+ for the set of non-negative real numbers, Sd for the space of second order
symmetric tensors on Rd (d = 1, 2, 3) and the zero element of the spaces Rd and Sd will be
denoted by 0. The inner products and the corresponding norms on these spaces are defined by

u · v = uivi , ∥v∥ = (v · v) 1
2 ∀u,v ∈ Rd,

σ · τ = σijτij , ∥τ∥ = (τ · τ ) 1
2 ∀σ, τ ∈ Sd,

where the indices i and j run between 1 and d and, unless stated otherwise, the summation
convention over repeated indices is adopted.

Let Ω ⊂ Rd be a bounded domain with a smooth boundary ∂Ω = Γ and let Γ1, Γ2 and Γ3

be a partition of Γ into three measurable disjoints parts such that meas(Γ1) > 0. We use the
notation x = (xi) for the generic point in Ω∪Γ and note that, in order to simplify the notation,
we usually do not indicate explicitly the dependence of various functions on the spatial variable x.
Moreover, an index that follows a comma represents the partial derivative with respect to the
corresponding component of the spatial variable x. Also, we denote by ν = (νi) the outward
unit normal at Γ.

Everywhere in this paper, we use the standard notation for Sobolev and Lebesgue spaces of
real-valued functions defined on Ω and Γ. In particular, we use the spaces

H = L2(Ω)d, H2 = L2(Γ2)
d, L2(Γ3)

d, L2(Γ)d and H1(Ω)d,

endowed with their canonical inner products and associated norms. Moreover, we recall that for
a function v ∈ H1(Ω)d we still write v for the trace γv ∈ L2(Γ)d of v on the boundary Γ. Let

V = {v ∈ H1(Ω)d : v = 0 a.e. on Γ1 },
Q = {σ = (σij) : σij = σji ∈ L2(Ω), 1 6 i, j 6 d},

which are real Hilbert spaces endowed with the canonical inner products given by

(u,v)V =

∫
Ω

ε(u) · ε(v) dx, (σ, τ )Q =

∫
Ω

σ · τ dx.

The associated norms on these spaces are denoted by ∥ · ∥V and ∥ · ∥Q, respectively. Here and
below, ε and Div will represent the deformation and the divergence operators, respectively, i.e.,

ε(u) = (εij(u)), εij(v) =
1

2
(ui,j + uj,i), Divσ = (σij,j),

where the quantity ε(u) represents the linearised strain tensor associated with the displace-
ment u.

Let 0H2
denote the zero element of H2 and 0V the zero element of V . For any element v ∈ V

we denote by vν and vτ its normal and tangential components on Γ given by vν = v · ν and
vτ = v − vνν. Moreover, for a regular function σ : Ω → Sd we denote by σν and στ its normal
and tangential components on Γ, that is σν = (σν) · ν and στ = σν − σνν and, we recall that
the following Green’s formula holds:∫

Ω

σ · ε(v) dx+

∫
Ω

Divσ · v dx =

∫
Γ

σν · v da ∀ v ∈ H1(Ω)d. (1.1)

Also, recall that there exists a positive constant ctr, depending on Ω and Γ1, such that

∥v∥L2(Γ)d 6 ctr∥v∥V ∀ v ∈ V. (1.2)

Inequality (1.2) represents a consequence of the Sobolev trace theorem.

We end this section with the following result.
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Theorem 1.1. Let X be a real Hilbert space and assume that K is a nonempty closed convex
subset of X, A : X → X is a strongly monotone Lipschitz continuous operator and j : X → R is
a convex lower semicontinuous function. Then, for each f ∈ X there exists a unique solution to
the variational inequality

u ∈ K, (Au, v − u)X + j(v)− j(u) > (f, v − u)X ∀ v ∈ K. (1.3)

Theorem 1.1 will be used in Section 2 to prove the unique weak solvability of our mathematical
model of contact. Its proof could be found in [14].

2. Problem statement and variational formulation
The physical setting of the problem is the following. We consider a body made of an elastic

material which occupies a bounded domain Ω ⊂ Rd with a smooth boundary ∂Ω = Γ, divided
into three measurable disjoint parts Γ1, Γ2 and Γ3 such that meas (Γ1) > 0. The body is fixed
on Γ1, it is acted by given body forces of density φ0. Also, we assume that surface tractions of
density φ2 act on Γ2, and the body is in contact with an obstacle on Γ3.

The classical formulation of the contact problem is as follows.

Problem P. Find a displacement field u : Ω → Rd and a stress field σ : Ω → Sd such that

σ = Eε(u) in Ω, (2.1)

Divσ +φ0 = 0 in Ω, (2.2)

u = 0 on Γ1, (2.3)

σν = φ2 on Γ2, (2.4)

−ξ 6 σν 6 0, −σν =

 0 if uν < 0

ξ if uν > 0
on Γ3, (2.5)

∥στ∥ 6 Fb, −στ = Fb
uτ

∥uτ∥
if uτ ̸= 0 on Γ3. (2.6)

We now provide a description of the equations and boundary conditions in Problem P. First,
equation (2.1) represents the elastic constitutive law of the material. We assume that the non-
linear elasticity operator E satisfies the following conditions

(a) E : Ω× Sd → Sd.
(b) There exists LE > 0 such that

∥E(x, ε1)− E(x, ε2)∥ 6 LE∥ε1 − ε2∥
∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) There exists mE > 0 such that
(E(x, ε1)− E(x, ε2)) · (ε1 − ε2) > mE ∥ε1 − ε2∥2
∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(d) The mapping x 7→ E(x, ε) is measurable on Ω,
for any ε ∈ Sd.

(e) The mapping x 7→ E(x,0) belongs to Q.

(2.7)

Concrete examples of operators E which satisfy condition (2.7) can be found, for example,
in [14,17].
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Equation (2.2) is the equation of equilibrium. Conditions (2.3), (2.4) represent the displace-
ment and traction boundary conditions, respectively. We assume that the densities of body forces
and tractions are such that

φ0 ∈ H, (2.8)
φ2 ∈ H2. (2.9)

Next, (2.5) represent the contact condition in which σν denotes the normal stress and uν is
the normal displacement. Moreover, the function ξ satisfies

ξ ∈ L2(Γ3), ξ(x) > 0 a.e. x ∈ Γ3. (2.10)

We now provide some comments on this condition. It is described by the multivalued relation
between the normal displacement and the opposite of the normal stress. This condition was
already used in [15], where a detailed description was provided, together with some mechanical
interpretation. It models the contact with a foundation made of a rigid-plastic material. Indeed,
this condition shows that the foundation behaves like a rigid body as far as the inequality |σν | < ξ
holds, where the function ξ could be interpreted as the yield limit of the the foundation. It could
allow penetration only when the equality |σν | = ξ holds. In this case, the yield limit ξ is reached
and the foundation offers no additional resistance to penetration.

Finally, (2.6) represents the contact with Coulomb’s friction law where Fb is a given friction
bound. We assume that

Fb ∈ L2(Γ3), Fb(x) > 0 a.e. x ∈ Γ3. (2.11)

In this section, we derive the variational formulation of Problem P and, to this end, we
assume in what follows that (u,σ) are sufficiently regular functions which satisfy (2.1)–(2.6).
Let v ∈ V . We use Green’s formula (1.1), then we split the surface integral over Γ1, Γ2 and Γ3

and use equalities (2.2), (2.4) to obtain that

(σ, ε(v)− ε(u))Q = (φ0,v − u)H + (φ2,v − u)H2 +

∫
Γ1

σν · (v − u) da+

∫
Γ3

σν · (v − u) da.

Moreover, using this equality

σν · (v − u) = σν(vν − uν) + στ · (vτ − uτ ) a.e. on Γ,

and the condition (2.3), we obtain that

(σ, ε(v)− ε(u))Q = (φ0,v − u)H + (φ2,v − u)H2 +

+

∫
Γ3

σν(vν − uν) da+

∫
Γ3

στ (vτ − uτ ) da. (2.12)

We use standard arguments and the hypothesis (2.10) to see that the contact condition (2.5)
implies that ∫

Γ3

σν(vν − uν) da >
∫
Γ3

ξ(u+ν − v+ν ) da, (2.13)

where r+ denotes the positive part of r, i.e., r+ = max{r, 0}. In addition, it is easy to see that
the condition (2.6) yields∫

Γ3

στ (vτ − uτ ) da >
∫
Γ3

Fb(∥uτ∥ − ∥vτ∥) da. (2.14)
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Next, we combine (2.12)–(2.14), then we use the constitutive law (2.1) to see that

(Eε(u), ε(v)− ε(u))Q +

∫
Γ3

ξ(v+ν − u+ν ) da+

∫
Γ3

Fb(∥vτ∥ − ∥uτ∥) da >

> (φ0,v − u)H + (φ2,v − u)H2
. (2.15)

Now, we introduce the operator A : V → V and the function j : V → R defined by

(Au,v)V =

∫
Ω

Eε(u) · ε(v) dx ∀ u, v ∈ V, (2.16)

j(v) =

∫
Γ3

ξv+ν da+

∫
Γ3

Fb∥vτ∥ da ∀ v ∈ V. (2.17)

Using these definitions and inequality (2.15), we find the following variational formulation of
Problem P.

Problem PV . Find a displacement field u ∈ V such that

(Au,v − u)V + j(v)− j(u) >
> (φ0,v − u)H + (φ2,v − u)H2

∀v ∈ V. (2.18)

We have the following existence and uniqueness result.

Theorem 2.1. Assume that (2.7)–(2.11) hold. Then, Problem PV has a unique solution u ∈ V .

Proof. We apply Theorem 1.1 with K = X = V . To this end, we use the definition (2.16) and
assumption (2.7)(c) to see that

(Au−Av,u− v)V > mE ∥u− v∥2V ∀u, v ∈ V. (2.19)

On the other hand, using assumption (2.7)(b), we obtain that

∥Au−Av∥V 6 LE ∥u− v∥V ∀u, v ∈ V. (2.20)

We conclude from (2.19) and (2.20) that A is a strongly monotone Lipschitz continuous operator
on the space V .

Moreover, using (2.10)–(2.11) and (1.2), we see that the functional j defined by (2.17) is a
seminorm on V and, in addition, it satisfies

j(v) 6 ctr(∥ξ∥L2(Γ3) + ∥Fb∥L2(Γ3))∥v∥V ∀v ∈ V.

It follows that j is a continuous seminorm and, therefore, it is a convex and lower semicontinuous
function on V . Finally, using the Riesz representation theorem, we define f ∈ V as follows

(f ,v)V = (φ0,v)H + (φ2,v)H2
∀v ∈ V.

Theorem 2.1 now is a direct consequence of Theorem 1.1. �

3. A continuous dependence result

In this section, we study the dependence of the solution u of Problem PV with respect to
the data φ0, φ2, ξ and Fb. To this end, we assume in what follows that (2.7)–(2.11) hold, and
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we consider a perturbation φ0η, φ2η, ξη and Fbη of φ0, φ2, ξ and Fb, respectively, which satisfy
(2.8)–(2.11). For each η > 0, we introduce the functional jη : V → R defined by

jη(v) =

∫
Γ3

ξηv
+
ν da+

∫
Γ3

Fbη∥vτ∥ da ∀ v ∈ V, (3.1)

and, we consider the following variational problem.

Problem Pη
V . Find a displacement field uη ∈ V such that

(Auη,v − uη)V + jη(v)− jη(uη) > (φ0η,v − uη)H + (φ2η,v − uη)H2
∀ v ∈ V. (3.2)

It follows from Theorem 2.1 that, for each η > 0, Problem Pη
V has a unique solution uη ∈ V .

The behaviour of the solution uη as η → 0 is given in the following result.

Theorem 3.1. Assume that (2.7)–(2.11) hold and, moreover, assume

φ0η ⇀ φ0 in H as η → 0, (3.3)

φ2η ⇀ φ2 in H2 as η → 0, (3.4)

ξη → ξ in L2(Γ3) as η → 0. (3.5)

Fbη → Fb in L2(Γ3) as η → 0. (3.6)

Then, the following convergence holds

uη → u in V as η → 0. (3.7)

The proof of Theorem 3.1 will be carried out in two steps. First, we provide the following
weak convergence result.

Lemma 3.2. The sequence {uη} converges weakly in V to u, i.e.,

uη ⇀ u in V as η → 0. (3.8)

Proof. Let η > 0. We take v = 0V in (3.2) to obtain

(Auη −A0V ,uη)V + jη(uη) 6 (φ0η,uη)H + (φ2η,uη)H2
− (A0V ,uη)V .

Next, using assumption (2.19), the positivity of the functional j and the inequality (1.2), we
deduce that

∥uη∥V 6 1

mE
(∥φ0η∥H + ctr∥φ2η∥H2

+ ∥A0V ∥V ) 6

6 max(1, ctr)

mE
(∥φ0η∥H + ∥φ2η∥H2

+ ∥A0V ∥V ).

The convergences (3.3) and (3.4) imply that the sequences {φ0η} and {φ2η} are bounded in H
and H2, respectively. Therefore, we deduce that there exists M > 0, which does not depend on
η, such that

∥uη∥V 6M. (3.9)

Now, we combine (3.9) with a standard compactness argument to see that there exists ũ ∈ V
such that, passing to a subsequence, still denoted {uη}, we have

uη ⇀ ũ in V as η → 0. (3.10)
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We establish the equality
ũ = u. (3.11)

Let η > 0. We take v = ũ ∈ V in (3.2) to obtain that

(Auη,uη − ũ)V 6 (φ0η,uη − ũ)H + (φ2η,uη − ũ)H2 + jη(ũ)− jη(uη).

Next, we pass to the upper limit as η → 0 in this inequality and taking into account the
convergences (3.3)–(3.6), (3.10) and the compactness of the trace operator, we deduce that

lim sup
η→0

(Auη,uη − ũ)V 6 0.

Therefore, assumptions (2.19)–(2.20) and the convergence (3.10) yield

lim inf
η→0

(Auη,uη − v)V > (Aũ, ũ− v)V ∀v ∈ V. (3.12)

On the other hand, we pass to the upper limit in (3.2) and we use again the convergences
(3.3)–(3.6), (3.10) and the compactness of the trace operator to obtain that

lim sup
η→0

(Auη,uη − v)V 6 (φ0, ũ− v)H + (φ2, ũ− v)H2
+ j(v)− j(ũ) ∀v ∈ V.

We combine now this inequality and (3.12) to see that

(Aũ,v − ũ)V + j(v)− j(ũ) > (φ0,v − ũ)H + (φ2,v − ũ)H2
∀v ∈ V. (3.13)

Next, we take v = u in (3.13) and v = ũ in (2.18), then, adding the resulting inequalities and
using assumption (2.19), we obtain that the equality (3.11) holds.

A carefully examination of the proof of Lemma 3.2 shows that any weakly convergent subse-
quence of the sequence {uη} ⊂ V converges weakly to u ∈ V , where, u is the unique solution of
(2.18). Moreover, the bound (3.9) shows that the sequence {uη} is bounded in V and, therefore,
Lemma 3.2 is a consequence of a standard compactness argument. �

We proceed with the following strong convergence result.

Lemma 3.3. The sequence {uη} converges strongly in V to u, i.e.,

uη → u in V as η → 0. (3.14)

Proof. Let η > 0. We take v = u in (3.2) to obtain that

(Auη,uη − u)V 6 (φ0η,uη − u)H + (φ2η,uη − u)H2
+ jη(u)− jη(uη).

Next, we use this inequality and assumption (2.19) to see that

mE ∥uη − u∥2V 6 (Auη −Au,uη − u)V =

= (Auη,uη − u)V − (Au,uη − u)V 6

6 (φ0η,uη − u)H + (φ2η,uη − u)H2
+ jη(u)− jη(uη)− (Au,uη − u)V .

We now pass to the limit as η → 0 and we use (3.3)–(3.6), (3.8) and the compactness of the trace
operator. As a result we deduce that

∥uη − u∥V → 0 as η → 0,

which concludes the proof. �
We are now in position to present the proof of Theorem 3.1.

Proof. The convergence (3.7) is a consequence of Lemma 3.2. �
The convergence result (3.7) is important from mechanical point of view, since it shows that

the weak solution of the elastic contact problem (2.1)–(2.6) depends continuously on the densities
of applied forces, the yield limit and the friction bound.
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4. The optimal control problem

In this section, we formulate an optimal control problem associate to Problem PV . To this
end, we assume that conditions (2.7)–(2.11) hold and, in order to control the solution of Problem
PV by the density of surface tractions φ2, we assume that φ0, ξ and Fb are given and satisfy
(2.8), (2.10), (2.11), respectively. Let ϕ ∈ V and δ, γ > 0 be two positive constants and let us
define the cost functional L : H2 × V → R by

L(φ2,u) = δ ∥u− ϕ∥V + γ ∥φ2∥H2
∀ (φ2,u) ∈ H2 × V. (4.1)

Using standard arguments it is easy to see that L is a convex lower semicontinuous functional on
H2×V and, therefore, it is weakly lower semicontinuous. Also, we define the following admissible
set

Vad = { (φ2,u) ∈ H2 × V, such that (2.18) holds }. (4.2)

We formulate now the following optimal control problem.

Problem O. Find (φ∗
2,u

∗) ∈ Vad such that

L(φ∗
2,u

∗) = min
(φ2,u)∈Vad

L(φ2,u).

An element (φ∗
2,u

∗) is called an optimal pair and the corresponding surface traction force φ∗
2

is called an optimal control. The mechanical interpretation of Problem O is the following : we
are looking for a given surface traction force φ2 ∈ H2 such that the displacement u ∈ V given
by (2.18) is as close as possible to the “desired displacement" ϕ. Furthermore, this choice has to
fulfil a minimum expenditure condition which is taken into account by the second term in the
definition (4.1).

Our result in this section is the following.

Theorem 4.1. Assume that (2.7)–(2.8) and (2.10)–(2.11) hold. Then, there exists at least one
solution (φ∗

2,u
∗) ∈ Vad of Problem O.

The proof of Theorem 4.1 will be carried out in two steps, that we present in what follows.
We start by considering the following functional J : H2 → R defined by

J(φ2) = δ ∥u(φ2)− ϕ∥V + γ ∥φ2∥H2
∀φ2 ∈ H2, (4.3)

where u = u(φ2) is the solution of (2.18). Next, we consider the following optimization problem.

Problem O1. Find φ∗
2 ∈ H2 such that

J(φ∗
2) = min

φ2∈H2

J(φ2). (4.4)

We have the following existence result.

Lemma 4.2. There exists at least one solution φ∗
2 ∈ H2 of Problem O1.

Proof. Let
θ = inf

φ2∈H2

J(φ2) ∈ R, (4.5)

and let {φ2n} ⊂ H2 such that
lim
n→∞

J(φ2n) = θ. (4.6)
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We prove that the sequence {φ2n} is bounded in H2. Arguing by contradiction, assume that
{φ2n} is not bounded in H2. Then, we pass to a subsequence, still denoted {φ2n}, to see that

∥φ2n∥H2
→ +∞ in H2 as n→ +∞. (4.7)

Using the definition (4.3) and the positivity of the parameters δ and γ to see that

J(φ2n) = δ ∥u(φ2n)− ϕ∥V + γ ∥φ2n∥H2 > γ ∥φ2n∥H2 ,

then, passing to the limit as n→ +∞ and using (4.7) we deduce that

lim
n→+∞

J(φ2n) = +∞.

We combine this equality with (4.6) to see that θ = +∞ which is a contradiction with (4.5) and,
therefore, we conclude that the sequence {φ2n} is bounded in H2. Thus, a standard compactness
argument implies that there exists φ∗

2 ∈ H2 such that, passing to a subsequence, still denoted
{φ2n}, we have

φ2n ⇀ φ∗
2 in H2 as n→ +∞. (4.8)

In addition, using the convergence (4.8) and the continuous dependence result given by The-
ore 3.1, we have that

u(φ2n) → u(φ∗
2) in V as n→ +∞. (4.9)

We now use (4.8) and (4.9) to see that

lim
n→+∞

∥u(φ2n)− ϕ∥V = ∥u(φ∗
2)− ϕ∥V ,

lim inf
n→+∞

∥φ2n∥H2
> ∥φ∗

2∥H2
,

which imply that
lim inf
n→+∞

J(φ2n) > J(φ∗
2). (4.10)

It follows from (4.6) and (4.10) that
θ > J(φ∗

2). (4.11)

On the other hand, (4.5) implies that
θ 6 J(φ∗

2). (4.12)

Finally, we combine (4.11) and (4.12) to see that (4.4) holds, which concludes the proof. �
We proceed with the following existence result.

Lemma 4.3. There exists at least one solution (φ∗
2,u

∗) ∈ Vad of Problem O.

Proof. We note that

(φ2,u) ∈ Vad ⇐⇒ φ2 ∈ H2 and u = u(φ2) is the solution of (2.18). (4.13)

The definitions (4.1) and (4.3) imply that

J(φ2) = L(φ2,u(φ2)) ∀φ2 ∈ H2.

Let φ∗
2 ∈ H2 be a solution of Problem O1 and u∗ = u(φ∗

2) be the solution of (2.18) with the
data φ2 = φ∗

2. Then, by using (4.13) we deduce that

(φ∗
2,u

∗) ∈ Vad. (4.14)
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Moreover, we have that

L(φ∗
2,u

∗) = J(φ∗
2) 6 J(φ2) = L(φ2,u)

for all (φ2,u) ∈ Vad. Combining this inequality with (4.14), we deduce that (φ∗
2,u

∗) is a solution
of Problem O, which concludes the proof. �

We are now in position to present the proof of Theorem 4.1.

Proof. Theorem 4.1 is a direct consequence of Lemma 4.3. �
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[7] I.Hlaváček, J Haslinger, J.Nečas, J.Lov́ǐsek, Solution of Variational Inequalities in Mechan-
ics, Springer-Verlag, New York, 1988.

[8] N.Kikuchi, J.T.Oden, Theory of variational inequalities with applications to problems of
flow through porous media, Int. J. Engng. Sci., 18(1980), 1173–1284.

[9] T.A.Laursen, Computational Contact and Impact Mechanics, Springer, Berlin, 2002.
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[15] M.Sofonea, S.Migórski, Variational Hemivariational Inequalities with Applications, Chap-
man and Hall/CRC, New York, 2017.

[16] A.Touzaline, Optimal control of a frictional contact problem, Acta Mathematicae Applicatae
Sinica, English Series 31(2015), 991–1000. DOI: 10.1007/s10255-015-0519-8

[17] E.Zeidler, Nonlinear Functional Analysis and its Applications. IV: Applications to Mathe-
matical Physics, New York, Springer-Verlag,

Оптимальное управление для задачи упругого
фрикционного контакта

Ахлем Бенрауда
Университет науки и технологий Хуари Бумедьена

Баб-Эззуар, Алжир

Аннотация. Рассматривается математическая модель, описывающая фрикционный контакт упру-
гого тела с фундаментом. Доказано существование единственного слабого решения задачи. Изуча-
еся непрерывная зависимость решения от данных. Наконец, мы рассматриваем задачу оптималь-
ного управления, для которой доказываем существование хотя бы одного решения.

Ключевые слова: слабое решение, кулоновское трение, непрерывная зависимость, полунепре-
рывность снизу, оптимальное управление.
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Abstract. A new construction of dual band HTSC power limiter is proposed. The device consists of
two microstrip bandpass filters. Each filter consists of two quarter-wave resonators which couple through
a composite half-wave resonator with HTSC-element. The prototype of the device in the open mode
has operation passband of about 10% and 11% with central frequency being equal to 1.48 GHz and 2.03
GHz, the minimum loss in the passband is equal 1.9 dB and 1.7 dB for LF-channel and HF-channel
correspondingly. The transfer characteristics of the device were investigated in the case of microwave
power level up to 3.15 W.
Keywords: power limiter, microwave, HTSC, microstrip structure.
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Each receiving radio system must contain a device to protect against powerful radio pulses
(power limiter). This device protects the active element of the radio receiver (transistor or
amplifier) from an external radio pulse, whose power is critical for the active element. Power
limiter has two operating modes. When the input signal has low power device works in open
mode. In this mode, the device has low loss and a signal passes through it with small loss.
The second mode is the closed one. In this mode, the high-power signal is limited to a safe
level. Semiconductor protection devices are the most widespread [1]. However, they have some
disadvantages. For example, their switching speed is not high enough. Devices based on cyclotron
resonance have excellent characteristics [2]. But they require a magnetic field to operate, resulting
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in significant dimensions and weight. In a scientific literature there are described protection
devices based on an ability of a high-temperature superconductor (HTSC) to transit from a
superconducting state to a normal state when microwave current passes through HTSC. The
time of this transition does not exceed (< 10−12 s) [3]. Usually HTSC power limiter contains
transmission line matched to the tract [3,4]. The operating principle of this type of limiter is to
absorb input power in close mode. This can lead to evaporation of a thin layer of HTSC material.
In [5–8] the new class of power limiters based on HTSC, in which power limitation occurs due
to reflection is presented. Such a device contains three microstrip resonators. The configuration
of the outer resonators and the distance between them are chosen in such a way that there is
no electromagnetic coupling between the resonators. It occurs due to mutual compensation of
inductive and capacitive interactions between outer resonators at the resonant frequencies. The
center resonator provides coupling between the outer resonators. This resonator is composite.
It contains an insert made of a HTSC-element. In the open mode, the device is a three pole
bandpass filter that has low insertion loss. In the closed state, the HTSC-element switches to
the normal state and the quality factor of the center resonator drops. As a result, limitation of
input power is observed due to strong reflection.

Currently, receivers operating in two operating frequency bands are widespread. They are
included in navigation satellite systems, for example, GLONASS, GPS, BeiDou and others. It
is obvious that the use of broadband (non-selective) power limiter located at the input of such
two-band receiving systems leads to their incorrect operation. When a powerful radio signal
falls to an input of such a system at the frequency of one of the operating bands, the power
limiter switches to closed mode in both frequency ranges. Of course, for a correct operation such
two-band systems, the power limiter must be selective and operates in two working frequency
bands that coincide with the operating bands of the entire receiving system.

The two-band HTSC power limiters are known [9]. Such a device consists of two bandpass
microstrip filters and two circulators. The resonators in the filters are entirely made from HTSC
material. These types of devices are complex because of they consist of two different devices.
Circulators lead to an increase in size of the total device. In addition, as studies have shown,
the threshold of power limitation (the input power level at which the device switches to limiting
mode) is very high.

Our paper presents a design of dual-band HTSC power limiter. The device has two op-
erating frequency bands: a low-frequency channel (LF-channel) and a high-frequency channel
(HF-channel). I.e., in open mode the device operates as a dual-band filter and each channel
filter has three resonators. The outer resonators are quarter-wave, and the center resonator is
composite. A HTSC-element is located in the middle part of the center resonator.

The device under consideration (Fig. 1) consists of two feeding microstrip line 3, between
which there are two bandpass filters (LF-channel filter and a HF-channel filter). Constructions
of each channel are identical. The resonators forming the LF-channel have the larger sizes, than
the resonators forming the HF-channel. Each channel filter consists of three resonators. The
resonators forming the channel filter have the same resonant frequencies. The outer resonators
4 are quarter-wave and short-circuited to the ground. Conductors of these resonators are made
of copper. The center resonator is half-wave, it consists of microstrip conductors 5, 6, 7 and
HTSC-element 8, which is placed in middle part of the center resonator. The HTSC-element has
the dumbbell form. The copper foils 9 are used to provide galvanic contact between conductors
7 and wide parts of HTSC-element on which a thin silver layers (0.15 µm) were deposited.
HTSC-element is fulfilled on a separate substrate 10.

The overall dimensions of the additional strip conductor 11 and gap between them and the
outer resonators, are chosen in such a way, that in the absence of the HTSC-element the outer
resonators are tuned so that the inductive and capacitive couplings are mutually compensated.
As a result, total coupling coefficient is equal to zero and the outer resonators do not interact
with each other, and damping pole is observed at passband frequencies. In this case, the incident
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Fig. 1. Left: design of the dual band HTSC power limiter. Right: conductor’s pattern and
structure parameters of the designed and fabricated device

power is reflected from the input of device. As is known, for a pair of such resonators at any gaps,
the inductive interaction always prevails the capacitive one. At the same time these interactions
have the opposite sign. Moreover, with increase the spacing between such resonators, capacitive
interaction decreases faster than inductive one. In order to the damping pole appears at passband
frequencies, it is necessary that the capacitive and inductive interactions are equal modulo. This
requires to increase the capacitive interaction of the outer resonators, therefore an element 11 is
inset. This additional capacitive interaction is very weak and does not affect the characteristics
of the power limiter in the open mode. In the case, when the device is in the closed mode, and
the HTSC-element has low conductivity, an additional capacitive interaction compensates the
inductive one provided by the middle resonator. As a result, the device limits microwave power.

Using the topology of the dual band HTSC power limiter shown in Fig. 1, a prototype device
was manufactured. The following design parameters for LF-channel were obtained: l1 = 5.8 mm,
S1 = 0.21 mm, S2 = 0.28 mm, S3 = 0.45 mm, ld1 = 8.6 mm, ld2 = 1.7 mm the conductor 5 have
next sizes 6.8×1.6 2, the conductor 6 — 2.2×0.4 mm2, the conductor 7 — 3.9×0.4 mm2, the
dimension of outer resonators is 17.6×1.0 mm2. The following design parameters for HF-channel
were obtained: l1 = 4.91 mm, S1 = 0.21 mm, S2 = 0.32 mm, S3 = 0.31 mm, ld1 = 2.1 mm,
ld2 = 8.52 mm the conductor 5 have next sizes 4.0×1.6 mm2, the conductor 6 — 0.7×0.4 mm2,
the conductor 7 — 4.0×0.4 mm2, the conductor 7 — 3.9×0.4 mm2, the dimension of outer
resonators is 12.8×1.0 mm2. The sizes of the feeding microstrip line 3 were lc1 = 1.7 mm,
lc2 = 28 mm, wc = 0.5 mm. Wide and narrow parts of the HTSC-element were 1.0×0.6 mm2

and 0.9×0.2 mm2, respectively. The YBaCuO HTSC film having thickness 150 nm was deposited
on the NdGaO3 0.5 mm substrate. The surface resistance of the film in the normal state was
10 Ω/�. The HTSC films were produced by technology described elsewhere [10]. The device was
cooled with liquid nitrogen. The alumina substrate with a thickness of 0.5 mm (ε = 10.8).
Note that the inner dimensions of the device housing are 16.7×32.0×6.0 mm3.

Bandwidth passband of each channels of the power limiter is defined by electromagnetic
coupling between central and outer resonators. This coupling depends on the gap S3 between
the outer resonators, and the inner composite resonator. To increase bandwidth of device the
gap S3 must be reduced. Value of gap S1 were chosen from the condition of the maximum return
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losses in the passband to be 15 dB.
In Fig. 2 left the frequency response of the simulated and developed prototype of the de-

vice are shown for both cases: superconducting state of the HTSC-element at liquid nitrogen
temperature – 1 ; and normal state of the HTSC-element at room temperature – 2. The blue
curves are the results of 3D electromagnetic simulation, and the red curves show the measured
results. The experimental data were obtained with vector network analyzer R&S ZVA 40.

Fig. 2. Left: frequency response of the dual band HTSC power limiter in cases when the
HTSC-element is in the superconducting (1) and normal state (2). The blue curves present
for results of electromagnetic simulation; the red curves are experimental data. Right: fre-
quency response of the electromagnetic simulation dual band HTSC power limiter for a case
when HTSC-element is absent in the LP-channel. The solid curve is insertion loss; the dashed
curve is return loss

It can be seen (Fig. 2) that when the HTSC-element is in the superconducting state, power
limiter’s fractional width of passbands is about 10% and 11% with central frequency being equal
to 1.48 GHz and 2.03 GHz, the minimum loss in the passbands is equal 1.9 dB and 1.7 dB
for LF-channel and HF-channel correspondingly. The return loss inside the pass band in this
case is less than –15 dB. In the close mode when HTSC-elements pass into the normal state the
transmission coefficient decreases by about 28 dB and 26 dB at the operating frequencies, return
loss is equal |S11| = 1 dB in this case. It means that power of a signal in working bands will
be attenuated approximately in four hundred times. At the same time this power limiting is
caused by reflection of power. Comparison of the frequency responses obtained by means of 3D
electromagnetic simulation and the measured results shows quite good agreement.

Fig. 2 right shows the frequency response of the 3D electromagnetic simulation of dual
band HTSC power limiter for a case when HTSC-element is absent in the LP-channel and the
HF-channel is in open mode. As we can see damping pole is located at working frequency band
of LP-channel. Meanwhile at frequencies HF-channel the passband exists. This means that in
the operating frequency band of the LF-channel, the input power is limited, and a significant
part of this power is reflected from the input of the device. At the operating frequencies of the
HF-channel, the signal passes through device with minimal attenuation.

In Fig. 3 a distribution of microwave current in HTSC power limiter at a central frequency
of the HF-channel (2.03 GHz) is shown for two cases: HTSC-element is in superconducting state
(left) and in is normal state (right). As we can see, the antinode of microwave current and
therefore H-field is located in central part of HTSC-element for open mode. When device is in
the closed mode microwave current in an element is practically absent and as a result signal
doesn’t pass through the device. This is due to the conductivity of HTSC-element in this state is
too small and quality factor of the central resonator is very small. As a result, coupling between
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Fig. 3. Distribution of microwave current in HTSC power limiter at a central frequency of the
HF-channel (2.03 GHz) for two cases: device in open mode (left) and device in close mode (right)

outer resonators through the center resonator is broken. In this situation the microwave power
limitation occurs. The similar situation is observed for LF-channel too.

To determine the value of microwave power switching limiter into the closed mode, it is neces-
sary to carry out measurements its transfer characteristic (Fig. 4). For this purpose, microwave
generator R&S SMA100B, power amplifier R&S BBA150 and spectrum analyzer R&S FSW were
used. The measurements were carried out at the temperature of liquid nitrogen, at the central
frequency of LH-channel (1.48 GHz) and HF-channel (2.03 GHz). In the linear regime the device
demonstrates around 1.8 dB insertion loss in both channel. When the input power reaches a
critical level Pin=13.5 dBm (22.4 mW) drop in Pout occurs. The leakage power found to be
7.15 dBm (5.18 mW) and 9.4 dBm (8.7 mW) at the input power about 35 dBm (3.16 W) for
LF-channel and HF-channel correspondingly. It means that limitation equals 26 dB in this case.
These data are in good agreement with results of the measured device frequency response (see
Fig. 2 left).

Fig. 4. Left — transfer characteristics of the fabricated device. Right — loss of power limiter
versus input power. Blue curves are the results of LF-channel, red curves are the results of
HF-channel
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A new structure of microwave dual-band HTSC power limiter is presented. The device
consists of two microstrip bandpass filters which have two quarter-wave resonators and the third
composite one with HTSC-element. The prototype of the device has operation passbands being
about 10% and 11% with central frequency being equal to 1.48 GHz and 2.03 GHz, the minimum
loss in the passband is equal 1.9 dB and 1.7 dB for LF-channel and HF-channel correspondingly.
The transfer characteristics of the device were investigated with microwave power level up to
3.15 W at the central frequencies of LF-channel and HF-channel.
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ВТСП ограничитель мощности с двумя рабочими
полосами
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Аннотация. Предложена новая конструкция ВТСП ограничителя мощности с двумя рабочими
полосами. Ограничитель содержит два микрополосковых полосно-пропускающих фильтра. Каж-
дый фильтр состоит из двух четвертьволновых резонаторов, которые связаны между собой через
составной полуволновый резонатор, содержащий пленку из высокотемпературного сверхпроводни-
ка. Макет устройства в открытом режиме имеет ширины рабочих полос пропускания 10% и 11%
с центральными частотами 1.48 ГГц и 2.03 ГГц. Минимальные вносимые потери составили 1.9 дБ
и 1.7 дБ для НЧ- и ВЧ-каналов соответственно. Передаточные характеристики устройства были
исследованы до уровня СВЧ-мощности 3.15 Вт.

Ключевые слова: ограничитель мощности, СВЧ, ВТСП, микрополосковая структура.
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Introduction
Let Zn

>0 denote the set of vectors with integer non-negative coordinates, and let φ(x), ψ(x) :
Zn
>0 → C be functions with integer arguments, where C is the set of complex numbers. For

power series,

Φ(z) =
∑

x∈Zn
>0

φ(x)zx and Ψ(z) =
∑

x∈Zn
>0

ψ(x)zx

the Hadamard composition of these power series is defined as

H(z) =
∑

x∈Zn
>0

φ(x)ψ(x)zx. (1)

For n = 1, the Hadamard theorem on multiplication of singularities states that the singular
points of the composition H(z) are given by the products of the singular points of the functions
Φ and Ψ (see [1]), and the main tool for investigation is the integral representation, in which the
composition is expressed in terms of Φ and Ψ. Note that if Φ(z) and Ψ(z) are rational functions,
direct calculation of the integral shows that the composition is also a rational function. However,
for n > 1, this is no longer the case.

Example 1. Φ(z1z2)=
1

1− z1 − z2
=

∑
(k1,k2)∈Z2

>0

(k1 + k2)!

k1!k2!
zk1
1 zk2

2 , Ψ(z1z2)=
1

1− z1z2
=

∞∑
k=0

zk1z
k
2 ,

then H(z1z2) =
∞∑
k=0

(2k)!

(k!)2
(z1z2)

k =
1√

1− 4z1z2
.
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We are interested in the question of the classes of rational functions whose Hadamard com-
position is a rational function (see, for example, [2]).

This paper considers the case when the coefficients of the series Φ(z) and Ψ(z) satisfy systems
of polynomial difference equations with constant coefficients. The main role here is played by
the multidimensional analogue of the fundamental theorem of difference equations with constant
coefficients [3].

Moreover, from the point of view of enumerative combinatorial analysis, the question of
the system of difference equations satisfied by the product of the coefficients φ(x)ψ(x) of the
Hadamard composition of the series Φ(x) and Ψ(x) is of interest.

We provide the necessary definitions and notations and formulate the main results.
Let δj be the shift operator with respect to the variable xj

δjf(x) = δjf(x1, . . . , xn) = f(x1, . . . , xj+1, . . . , xn),

δ = (δ1, . . . , δn), δ
α = δα1

1 · · · δαn
n , α ∈ Zn

>0.

Consider a polynomial difference operator with constant coefficients of the form

Q(δ) =
∑

06α6d

cαδ
d−α, (2)

where cα ∈ C are some constants, and the notation α > β for multi-indices α = (α1, . . . , αn),
β = (β1, . . . , βn) means that αj > βj , j = 1, 2, . . . , n.

The characteristic polynomial for the difference equation

Q(δ)f(x) = 0, x ∈ Zn
>0 (3)

is defined as the polynomial ∑
06α6d

cαδ
d−α = Q(z), (4)

where z = (z1, . . . , zn) ∈ Cn, zα = zα1
1 · · · · · zαn

n , C0 = 1, Cd ̸= 0.
The zeros of the polynomial Q are called characteristic roots, and the set

V = {z ∈ Cn : Q(z) = 0}

of all these zeros of Q is called the characteristic set of the equation (3).
Let us consider a set of polynomials Q = (Q1, . . . , Qn) of the form

Qi(z) =
∑

06α6di

ciαz
di−α, i = 1, 2, . . . , n, (5)

where di are vectors from Zn
>0. We assume that ci0 = 1, cidi ̸= 0.

We denote by VQ the set of zeros of the system of equations:

Q1(z) = Q2(z) = . . . = Qn(z) = 0, (6)

which we will call the characteristic system.
In this paper, we will consider systems of difference equations of the form (3), which satisfy

the following conditions:

(*) the characteristic set VQ is discrete and the characteristic roots do not lie on coordinate
planes;
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(**) the roots a ∈ VQ of the characteristic system (6) satisfy the following properties: there
exists dα = (d1,α, . . . , dn,α) ∈ Zn

> such that:

∂αQi

∂zα
(a) = 0 for 0 6 α 6 da − I, i = 1, . . . , n, (7)

∆da
(z) = det

∥∥∥∥∥∂dl,aQi(z)

∂z
dl,a

l

∥∥∥∥∥
z=a

̸= 0. (8)

In formula (8), the indices l and i take values 1, 2, . . . , n.
For da = I = (1, . . . , 1), these conditions are equivalent to the point z = a being a simple

root of the characteristic system of equations (6).
We state the main result of this paper.

Theorem. Let A(z) = (A1(z), . . . , An(z)) and B(z) = (B1(z), . . . , Bn(z)) be two sets of polyno-
mials and

A(δ)φ(x) = 0 and B(δ)ψ(x) = 0, x ∈ Zn
> (9)

be the corresponding systems of polynomial difference equations. If the roots of the character-
istic systems VA and VB are discrete, do not lie on coordinate planes, and the characteristic
polynomials A(z) and B(z) satisfy conditions (7) and (8), then:

1) The generating function of the product φ(x)ψ(x) of solutions to the system (9) of difference
equations is rational.

2) If the characteristic roots of the systems of difference equations (9) are simple, then there
exists a set of polynomial difference operators R(δ) = (R1(δ), . . . , Rn(δ)) such that the
product φ(x)ψ(x) satisfies the system of recurrence equations

Rj(δ)[φ(x)ψ(x)] = 0, j = 1, 2, . . . , n.

The proof and an example
The main role in proving part 1) of the theorem is played by the multidimensional version

of the fundamental theorem of difference equations with constant coefficients. We state this
theorem (cf. [3]).

Theorem. Let the polynomial vector Q(z) = (Q1(z), . . . , Qn(z)) have the form Qj(z) =

=
∑

06α6di

ciαz
di−α and satisfy the conditions (*), (**), (7), and (8).

For a function f(x) = f(x1, . . . , xn) → C, the following conditions are equivalent:

(i) The generating series for f(x) is a rational function of the form

F (z) =
∑
x>0

f(x)zx =

m∑
j=1

bj(z)

(I − γ(j)z)
d(j)

,

where

(I − γ(j)z)
d(j) = (1− γ(j),1z1)

d(j),1(1− γ(j),2z2)
d(j),2 · · · (1− γ(j),nzn)

d(j),n ,

bj(z) are some polynomials of the form
∑

06α<d(j)

bjαz
α, and γ(j) are the roots of the charac-

teristic system (6).
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(ii) For any x ∈ Zn
>, the function f(x) satisfies the system of recurrence equations∑

06α6di

ciαδ
di−αf(x) = 0, i = 1, 2, . . . , n, (10)

whose characteristic roots satisfy the conditions (7) and (8).

(iii) The function f(x) has the form of an exponential polynomial

f(x) =

m∑
j=1

Pj(x)γ
x
(j), (11)

where γx(j) = γx1

(j),1 · . . . · γ
xn

(j),n and Pj(x) are polynomials of the form
∑

06k<d(j)

P
(j)
k xk.

The proof of part 2 of the theorem is based on an algorithm for constructing a system of
polynomial equations given the roots (see [4]), in the case where these roots are simple. The
main element of the algorithm in [4] is the following proposition.

Proposition 1. Let E = {a(i)}Ni=1, where a(i) = (a
(i)
1 , . . . , a

(i)
n ) ∈ Cn and Ei, i = 1, 2, is the set

of zeros of the system of polynomial equations

P
(i)
j (z) = 0, j = 1, 2, . . . , n,

where P (1)
l = P

(2)
l for 1 6 l < r < n, and the polynomials P (1)

l and P (2)
l have no common zeros.

Let

qj(z) =


P

(1)
j (z), 1 6 j < r,

P
(1)
j (z)P

(2)
j (z), j = r,

P
(1)
r (z)P

(2)
j (z) + P

(1)
j (z)P

(2)
r (z), r < j 6 n,

then the set of zeros of the system

qj(z) = 0, j = 1, 2, . . . , n

coincides with the set E1 ∪ E2.

Proof of Theorem. γ(j) = (γ(j),1, . . . , γ(j),n) ∈ VA and γ(j) = (γ(j),1, . . . , γ(j),n) ∈ VB are the roots
of the characteristic systems A1(z) = · · · = An(z) and B1(z) = · · · = Bn(z), respectively. Condi-
tions (*) and (**) of the theorem are satisfied, therefore we can use the implication (ii) ⇒ (iii)
of the multivariate version of the fundamental theorem of the theory of difference equations. For
solutions φ(x) and ψ(x) of the difference equations systems, we obtain

φ(x) =
∑
j

pj(x)γ
x
(j), (12)

ψ(x) =
∑
i

qi(x)ν
x
(i), (13)

where γx(j) = γx1

(j),1 · · · · · γ
xn

(j),n, ν
x
(i) = νx1

(i),1 · · · · · ν
xn

(i),n.
The polynomials pj(x) and qi(x) have the form

pj(x) =
∑

06α6d

aαx
α, qi(x) =

∑
06α6s

bαx
α,
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while the vectors d(j) and s(i) are determined by conditions (7) and (8).
Multiplying the exponential representations (12) and (13) for φ(x) and ψ(x), we obtain

h(x) = φ(x)ψ(x) =
∑
j

pj(x)γ
x
(j)

∑
i

qi(x)ν
x
(i) =

∑
j, i

pj(x)qi(x)(γ
x
(j) · ν

x
(i)),

where (γx(j) · ν
x
(i)) = (γ(j),1 · ν(i),1, . . . , γ(j),n · ν(i),n).

Thus h(x) has an exponential representation, and due to the implication (iii) ⇒ (i), we
obtain that the generating function H(z) for the product φ(x) · ψ(x) has the form

H(z) =
∑
j, i

bij(z)

(I − γ(j)ν(i))
d(ij)

,

where (I − γ(j)ν(i))
d(ij) = (1− γ(j),1ν(i),1)

d(ij)1 · · · · · (1− γ(j),nν(i),n)
d(ij)n , bij(z) are some poly-

nomials of the form
∑

06α6d(j) ̸=s(i)
bijα z

α.

To prove the second part of the theorem, we will use the fact that the roots of the characteristic
systems for the difference equations A(δ)φ(x) = 0 and B(δ)ψ(x) = 0 are simple. In this case,
the exponential representations for φ(x) and ψ(x) have the form

φ(x) =
∑
j

pjγ
x
(j) and ψ(x) =

∑
i

qiν
x
(i),

where pj , qi are constants, and the exponential representation for the product φ(x) · ψ(x) has
the form φ(x) · ψ(x) =

∑
j, i

pjqi(γ(j) · ν(i))x.

This means that the difference equations system for the product φ(x) · ψ(x) (if it exists) has
simple roots.

Using method from [4], we construct a system of polynomial equations

Rk(z) = 0, k = 1, 2, . . . , n,

whose roots are the numbers {γ(j)ν(i)}. For polynomial difference operators Rk(δ), we have the
formula:

Rk(δ)((γ(j) · ν(i))x) = (γ(j)ν(i))
xRk(γ(j)ν(i)) = 0

for x ∈ Zn
>. From the multivariate version of the fundamental theorem of the theory of difference

equations, by the equivalence of (ii) ≈ (iii), it follows that h(x) = φ(x)ψ(x) is a solution of the
difference equations system

Rk(z) = 0, k = 1, 2, . . . , n.

Example 2. Let us consider two difference equations systems{
φ(x1 + 1, x2)− φ(x1, x2) = 0

φ(x1, x2 + 1)− φ(x1, x2) = 0{
ψ(x1 + 2, x2)− a2ψ(x1, x2) = 0

ψ(x1, x2 + 1)− a2ψ(x1, x2) = 0

(1, 1) is the root,

(a, a2), (−a, a2) are roots.

The difference equations system for the product h(x1, x2) = φ(x1, x2) ·ψ(x1, x2) has the form{
h(x1 + 2, x2)− a2h(x1, x2) = 0

h(x1, x2 + 1)− a2h(x1, x2) = 0
(a, a2), (−a, a2).
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This is a very simple example, it can be complicated.{
φ(x1 + 1, x2)− λ1φ(x1, x2) = 0

φ(x1, x2 + 1)− λ2φ(x1, x2) = 0{
ψ(x1 + 2, x2)− a2ψ(x1, x2) = 0

ψ(x1, x2 + 1)− bψ(x1, x2) = 0

(λ1, λ2) is the root,

(a, b), (−a, b) are roots.

As a result, the system of difference equations for the product h(x1, x2) = φ(x1, x2) ·ψ(x1, x2)
has the form {

h(x1 + 2, x2)− h(x1, x2 + 1)− (λ21a
2 − λ2b)h(x1, x2) = 0

h(x1, x2 + 1)− λ2bh(x1, x2) = 0
.

Another example:{
h(x1 + 2, x2)−Ah(x1, x2 + 1)− (λ21a

2 −Aλ2b)h(x1, x2) = 0

h(x1, x2 + 1)− λ2bh(x1, x2) = 0
,

where A is an arbitrary constant, characteristic roots for the system of difference equations
(λ1a, λ2b), (−λ1a, b).

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation (Agreement No. 075-02-2023-936).
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Аннотация. Приведены достаточные условия на коэффициенты двух кратных степенных рядов,
которые обеспечивают рациональность композиции Адамара этих рядов, и при некоторых допол-
нительных ограничениях доказывается существование системы полиномиальных разностных урав-
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Introduction

The class of hypergeometric functions (HG-functions) of several variables is of considerable
interest. It continues to be a subject of great attention [1]. On the other hand, there is the
theory of analytical complexity, which is oriented to the study of questions about representability
of functions of several variables with the help of superpositions of functions of lesser number of
variables. In particular, the questions of representability of functions of two variables with the
help of functions of one variable [2]. In the context of this theory, the simplest functions of two
variables are the functions of complexity one (the functions of one variable have complexity zero).
These are analytic functions of variables (x, y), which can be locally represented as z(x, y) =

c(a(x) + b(y)) (a, b, c are nonconstant analytic functions of one variable). These functions are
of special interest. First, they are the functions, which have the stabilizer of the maximal
dimension in the gauge group (the dimension is equal to three) [3]. Second, if we consider z(x, y)
as a function of a 3-web on the plane, then such web is equivalent to the hexagonal web if and
only if z has the specified form [4].

The set of all such functions is, except for the functions of one variable, the set of analytic
functions, which is the set of the solutions of a differential polynomial of order three. This
polynomial is exactly the numerator of the following differential fraction:

(
ln(z′x/z

′
y)
)′′
xy

, i.e., the
defining condition for the functions of complexity one has the form:

d1(z) = z′xz
′
y(z

′′′
xxyz

′′
y − z′′′xyyz

′
x) + z′′xy((z

′
x)

2z′′yy − (z′y)
2z′′xx) = 0, z′x z

′
y ̸= 0. (1)

Note that the class of functions of complexity one includes all four arithmetic operations. If we
remove the inequality, which excludes the functions of one variable, we obtain Cl1 = {d1(z) = 0},
which is the class of the functions of complexity not greater than one.

∗vkb@strogino.ru https://orcid.org/0000-0001-8253-0758
c⃝ Siberian Federal University. All rights reserved
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We think that the theory of hypergeometric functions of several (in particular, of two) vari-
ables differs qualitatively from the theory of hypergeometric functions of one variable by the
fact that the class of hypergeometric functions of several variables is in a sense too large and
the problem of the choice of a narrower class of the most interesting HG-functions arise. Which
HG-functions are the most interesting? No doubt it is possible to give different answers to this
question. For the functions of two variables we offer the following answer:

Good HG -functions are the HG -functions of complexity one.

We interpret a HG-function of two variables (Examples 1-7) as, following [1], a solution of a Horn
system. To define the Horn system for functions of the variables (x, y), we need four polynomials
P,Q,R, S in two variables. Let X = x ∂

∂x , Y = y ∂
∂y be the homogeneous partial differential

operators. Then the Horn system corresponding to the given four polynomials is the system of
two linear differential equations with nonconstant coefficients with respect to the function z(x, y)
of the form

Gx z = (xP (X,Y )−Q(X,Y )) z = 0,

Gy z = (y R(X,Y )− S(X,Y )) z = 0. (2)

What is the set of all solutions of complexity one of this system? The aim of this paper
is to give the explicit description of the solutions of complexity one for a series of examples of
systems of the form (2). Almost all examples are from [1]. With the growth of degrees of the
defining equations and the number of free parameters the problem of the explicit description of
the space of solutions quickly becomes computationally difficult even for polynomials of degree
not greater than two. However, one can hope that the consideration of these examples will allow
to formulate questions for the further study (some of them are given at the end of the paper).

In the theory of HG-functions there is an established approach, which suggests that an im-
portant characteristic of the Horn system is its holonomicity. The holonomicity of the system, in
particular, guarantees the finite-dimensionality of the space of solutions. In our considerations
we do not require holonomicity.

Since the Horn system is a system of linear differential equations, the set of its solutions
is a linear space. Equation (1) is not linear. From the geometric point of view, the set of its
solutions is an infinite-dimensional cone. In fact, the transformation (z(x, y) → λ z(x, y)) maps
the solutions to solutions. Hence, we can understand our question as the question about the
construction of the intersection of the cone and a linear subspace.

Further we will need the following simple observation. Let two nonconstant functions a(x)
and b(y) are given. For the existence of a function c(t) for the function w(x, y), such that in a
neighbourhood of a generic point there is a local representation of the form w = c(a(x) + b(y)),
it is necessary and sufficient that

V (w) =

(
1

a′(x)

∂

∂x
− 1

b′(y)

∂

∂y

)
(w) = 0. (3)

The concrete computations were performed using Maple.

1. A set of examples

Example 1. Let

P = x2, Q = q1 x+ q2 y, R = y2, S = s1 x+ s2 y, q1q2s1s2 ̸= 0.
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Then the system (2) for z = c(a(x)+b(y)) takes the form (low indexes are orders of derivatives)

Gx z = x3a1
2c2 + x3a2c1 + x2a1c1 − q1xc1a1 − q2yc1b1 = 0,

Gy z = y3b1
2c2 + y3b2c1 − s1xc1a1 + y2b1c1 − s2yc1b1 = 0.

We can express the ratio c2/c1 from first equation and from second equation. We get two
relations: the first is the equality of the both expressions, the second is the result of action of
operator V on each of them. Thus,

e1 = x3y3a1
2b2 − x3y3a2b1

2 − x4a1
3s1 + x3y2a1

2b1 − x3ya1
2b1s2 −

−x2y3a1b12 + xy3a1b1
2q1 + y4b1

3q2 = 0,

e2 = −a3a1b1x4 + 2 a2
2b1x

4 + a2a1b1x
3 − a2a1b1x

2q1 − a1
2b2xyq2 −

−2 a2b1
2xyq2 + a1

2b1x
2 − 2 a1

2b1xq1 − a1
2b1xq2 − 3 a1b1

2yq2 = 0.

The expressions e1 and e2 are linear wrt b2. The coefficients of b2 are not idenitcally zero. It is
possible to express b2 from e1 = 0 and from e2 = 0. We get two relations: the first is the equality
of the both expressions, the second is the result of the action of operator ∂/∂x on each of them.
Thus,

e3 = x6y2a1a3b1 − 2x6y2a2
2b1 − x5y2a1a2b1 + x4y2a1a2b1q1 +

+3x3y3a2b1
2q2 −−x4y2a12b1 + x4a1

3q2s1 + 2x3y2a1
2b1q1 +

x3ya1
2b1q2s2 + 4x2y3a1b1

2q2 − xy3a1b1
2q1q2 − y4b1

3q2
2 = 0,

e4 = a3a1b1
2x4y3 − 2 a2

2b1
2x4y3 + a2a1

3x5s1 − a2a1b1
2x3y3 + a2a1b1

2x2y3q1 +

+2 a2b1
3xy4q2 + a1

4x4s1 − a1
2b1

2x2y3 + 2 a1
2b1

2xy3q1 + 3 a1b1
3y4q2 = 0.

The expressions e3 and e4 are quadratic wrt b2. The necessary condition for solvability is the
equality to zero of the resultant of e3 and e4 with respect to b1. This resultant has the form

x11y11a1
4q2

2s1 r(x, y, a1, a2, a3),

hence, r = 0. And r is the polynomial of degree four with respect to y. The coefficient in r of
y4 is equal to

−x2a15q23s23 (xa2 + a1) (2xa2 + 3 a1)
2
.

Thus, it is enough to consider two cases:
the first is (2xa2 + 3 a1) = 0, and second is (xa2 + a1) = 0. We can solve these differential
equations. In the first case we get a1 = k/x3/2 and in the second case we get a1 = k/x. If
we substitute the first solution in r, we can see that the equation r = 0 is impossible. If we
substitute the second solution in r, we have

r = −k
8q2

3s1 (q1s2 − q2s1)

x7
y.

And we see that r = 0 iff (q1, q2) = λ (s1, s2), λ ̸= 0. We can substitute a1 = k/x in e3 = 0 and
we have yb1q2 + kq1 = 0. In such case we have a(x) + b(y) = k ln(x) − k

q1
q2

ln(y) + const and

z = c(y/xα), where α = q2/q1 = s2/s1. Then we can substitute such z in Gx z = Gy z = 0 and
we get:
c′′(t) t+ c′(t) = 0, hence c(t) = λ ln(t) + µ. Thus, we have
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Proposition 1 The solutions of the Horn system of complexity one (i.e. of the kind z = c(a(x)+
b(y)), a, b, c are nonconstant) for Example 1 exist iff q2/q1 = s2/s1 = α. In this case the
solutions have the form

z = λ ln
( y

xα

)
+ µ, α ̸= 0, λ ̸= 0.

Example 2. Let
P = x+ 1, Q = 1, R = y + 1, S = 1.

Then the system (2) for z = c(a(x) + b(y)) takes the form

Gx z = x2a1c1 + xc0 − c0 = 0, Gy z = y2b1c1 + yc0 − c0 = 0.

Then we have
c1
c0

= −x− 1

x2a1
= −y − 1

y2b1
=

1

λ
.

Thus,

a1 = − (x− 1)λ

x2
, b1 = − (y − 1)λ

y2
.

If we substitute this expressions in Gx = 0 and Gy = 0, we get

− (x− 1) (λ c1 − c0) = − (y − 1) (λ c1 − c0) = 0.

Hence c(t) = exp(−t/λ) and z = µ (x y exp(1/x+ 1/y))−1.

Proposition 2. The solutions of the Horn system of complexity one for Example 2 have the
form z = µ (x y exp(1/x+ 1/y))−1.

Example 3. Let
P = 1, Q = (x− 1) R = 1, S = (y − 1).

If z = c(a(x) + b(y)) we have

Gx z = −xc1a1 + xc0 + c0 = 0, Gy z = −yc1b1 + yc0 + c0 = 0.

After elimination of c we obtain

−xa1y + yb1x− xa1 + yb1 = 0, a2x
2 + a2x+ a1 = 0

Hence
a(x) =

λ

x
+ λ ln (x) + ln (α) , b(y) = λ ln (y) +

λ

y
+ ln (β) , λ ̸= 0.

Then we get the equation for the function c. When we solve this equation, we obtain the following
proposition.

Proposition 3. The solutions of the Horn system of complexity one for Example 3 have the
form

z = µxy e(x+y), µ ̸= 0.

Example 4. Let
P = x2 y + 1, Q = 1 R = y + 1, S = 1.

For z = c(a(x) + b(y)) we have

Gx z = x3ya1
2b1c3 + x3ya2b1c2 + x2ya1b1c2 + xc0 − c0 = 0,

Gy z = y2b1c1 + yc0 − c0 = 0.
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From the second equation we get c1 = (−b2y2 − yb1 + b2y + 2 b1) c0. After differentiation of this
equation with respect to x we obtain such expressions for c2 and c3. After the substitution of
these expressions in Gxz = 0 we get:

l = x3y4a2b1 − x3y3a1
2 − 2x3y3a2b1 + x2y4a1b1 + xy5b1

2 + 3x3y2a1
2 +

+x3a2y
2b1 − 2x2y3a1b1 − y5b1

2 − 3x3ya1
2 + x2a1y

2b1 + x3a1
2 = 0.

From V (c1/c0) = 0 we get e = −b2y2−yb1+b2y+2 b1 = 0. After differentiation of l with respect
to y we obtain:

(l)′y = x3y4a2b2 + 4x3y3a2b1 − 2x3y3a2b2 + x2y4a1b2 + 2xy5b1b2 − 3x3y2a1
2 −

−6x3a2y
2b1 + x3a2y

2b2 + 4x2y3a1b1 − 2x2y3a1b2 + 5xy4b1
2 − 2 y5b1b2 +

+6x3ya1
2 + 2x3a2yb1 − 6x2a1y

2b1 + x2a1y
2b2 − 5 y4b1

2 − 3x3a1
2 + 2x2a1yb1 = 0.

The resultant of (l)′y and e with respect to b2 equals

r1 = 3x3y4a2b1 − 3x3y3a1
2 − 6x3y3a2b1 + 3x2y4a1b1 + 3xy5b1

2 + 9x3y2a1
2 +

+3x3a2y
2b1 − 6x2y3a1b1 − xy4b1

2 − 3 y5b1
2 − 9x3ya1

2 + 3x2a1y
2b1 +

+y4b1
2 + 3x3a1

2 = 0.

The resultant of r1 and l with respect to b1 equals

r2 = x6y8a1
4 (y − 1)

6
(x− 1)

2
= 0.

But r2 is not equal to zero identically. Thus, we have:

Proposition 4. The solutions of the Horn system of complexity one for Example 4 do not exist.

Example 5. Let

P = x+ y − p, Q = x+ q, R = x+ y − p, S = y + s.

Case p = 0.

Gx z = x2a1c1 + xyb1c1 − xa1c1 − qc0 = 0,

Gy z = xya1c1 + y2b1c1 − yb1c1 − sc0 = 0.

From c1 ̸= 0 we get q ̸= 0 and s ̸= 0. After elimination of c we obtain

e1 = qxya1 + qy2b1 − sx2a1 − sxyb1 − qyb1 + sxa1 = 0,

e2 = −x2a2b1 + xya1b2 − xa1b1 + xa2b1 − yb1
2 + a1b1 = 0.

From e1 = 0 we get b1. b1 does not depend on x, hence

e3 = −a2q2xy2 + 2 a2qsx
2y − a2s

2x3 + a2q
2xy − a1q

2y2 − a2qsx
2 + 2 a1qsxy −

a2qsxy − a1s
2x2 + a2s

2x2 + a1q
2y − 2 a1qsx+ a2qsx− a1qsy + a1qs = 0.

This expression is quadratic in y. Write that the coefficient of y2 is equal to zero, we get
q2 (xa2 + a1) = 0. Hence a(x) = λ ln(x) + α and s = −q, b(y) = −λ ln(y) + β. As a result we
get z = µ (y/x)q.
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Case p ̸= 0.
We have

Gx z = x2a1c1 + xyb1c1 − pxc0 − xc1a1 − qc0 = 0,

Gy z = xya1c1 + y2b1c1 − pyc0 − yc1b1 − sc0 = 0.

By elimination of c we get

e1 = pxya1 − pxyb1 + qxya1 + qy2b1 − sx2a1 − sxyb1 − qyb1 + sxa1 = 0,

e2 = −a2b1px3 + a1b2px
2y + a2b1px

2 − a2b1qx
2 + a1b2qxy − a1b1qx+ a2b1qx−

−b12qy + a1b1q = 0.

Let us express b2 from e2 = 0 and b1 from e1 = 0. We have two conditions. The first: (b1)
′
x = 0

and the second: (b1)′y = b2. After elimination the nonzero factors we can see that both conditions
coincide and have the form

e3 = a2p
2x2y + a2pqx

2y − a2pqxy
2 − a2psx

3 + a2psx
2y − a2q

2xy2 + 2 a2qsx
2y −

−a2s2x3 + a2pqxy − a1pqy
2 − a1psx

2 + a2psx
2 + a2q

2xy − a1q
2y2 − a2qsx

2 +

+2 a1qsxy − a2qsxy − a1s
2x2 + a2s

2x2 + a1pqy + a1q
2y − 2 a1qsx+

+a2qsx− a1qsy + a1qs = 0.

This expression is quadratic in y. Write that the coefficient of y2 is equal zero, we get:

q (xa2 + a1) (p+ q) = 0.

Case p ̸= 0, q = 0.
Then e3 has the form x2 (p+ s) (pya2 − sxa2 − sa1 + sa2). We have two opportunities for

this expression to be equal to zero: either s = −p or a2 = s = 0. The first case is impossible,
because in this case e1 = pxa1 (x+ y − 1). In the second case a(x) = λx + α, b(y) = λ y + β.
Thus, we get:

z = µ (1− (x+ y))p, q = s = 0, p ̸= 0.

Case p ̸= 0, q = −p, q ̸= 0. Then e3 is divisible by s. But s = 0 is impossible, if e1 = 0. Thus,
we have s = −p and:

z = µ

(
(x− 1)(y − 1)

xy
− 1

)
, s = q = −p.

Case p ̸= 0, q ̸= 0, (p + q) ̸= 0 (xa2 + a1) = 0. Then a(x) = λ ln(x) + α. From e2 = 0 we get
s = −(p + q) and from e1 = 0 we get b1 = −λ(p + q)/qy, b(y) = −λ(p + q)/q ln(y) + β. We
have:

z = µ
yp+q

xq
, s = −(p+ q), q ̸= 0, (p+ q) ̸= 0.

Proposition 5. The solutions of the Horn system of complexity one for Example 5 exist in three
cases only:

(a) q ̸= 0, p+ q ̸= 0, s = −(p+ q), z =
µ

xq ys
,

(b) p ̸= 0, s = q = 0, z = µ (1− (x+ y))
p
,

(c) s = q = −p ̸= 0, z = µ

(
(x− 1)(y − 1)

x y
− 1

)
.
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Example 6. Let
P = x(x+ y), Q = x2, R = y(x+ y), S = y2.

For z = c(a(x) + b(y)) we have:

Gx z = x2a1
2c2 + xya1b1c2 + x2a2c1 − xc2a1

2 + xa1c1 − xc1a2 − c1a1 = 0,

Gy z = xya1b1c2 + y2b1
2c2 + y2b2c1 − yc2b1

2 + yb1c1 − yc1b2 − c1b1 = 0.

After elimination of c we get

e1 = −x3ya1a2b1 + x2y2a1
2b2 − x2y2a2b1

2 + xy3a1b1b2 − x2ya1
2b2 +

+x2ya1a2b1 + x2ya2b1
2 − xy2a1

2b2 − xy2a1b1b2 + xy2a2b1
2 − x2a1

2b1 +

+xya1
2b2 − xya2b1

2 + y2a1b1
2 + xa1

2b1 − ya1b1
2 = 0,

e2 = −a3a12b1x4 + 2 a2
2a1b1x

4 − a2a1
2b2x

3y − a3a1b1
2x3y + a2

2b1
2x3y +

+2 a3a1
2b1x

3 − 4 a2
2a1b1x

3 − a1
3b2x

2y + a2a1
2b2x

2y − a2a1b1
2x2y + a3a1b1

2x2y −
−a22b12x2y − a2a1

2b1x
2 − a3a1

2b1x
2 + 2 a2

2a1b1x
2 + a1

3b2xy −
−a13b1x+ a2a1

2b1x− a1
2b1

2y + a1
3b1 = 0.

And we obtain two expression for b2. Then we have two conditions: equality of both expressions
and their independence of x. We obtain e3(a1, a2, a3, b1) = e4(a1, a2, a3, b1) = 0 (e3 contains 43
monomials, e4 contains 45 monomials). If r is the resultant of e3 and e4 with respect to b1, we
have:

r = y2a1
4 (y − 1) (x− 1)

2
(x+ y − 1)

2
r21 r2 r3, where

r1 = (xa2 + a1) , r2 = x3a1a3 − x3a2
2 + x2a1a2 − x2a1a3 + x2a2

2 + a1
2, r3 = r30 + y r31,

where
r30 = x7a1

2a3
2 − 4x7a1a2

2a3 + 4x7a2
4 − 2x6a1

2a2a3 − 3x6a1
2a3

2 + 4x6a1a2
3 +

+12x6a1a2
2a3 − 12x6a2

4 − 2x5a1
3a3 + 5x5a1

2a2
2 + 6x5a1

2a2a3 + 3x5a1
2a3

2 −
−12x5a1a2

3 − 12x5a1a2
2a3 + 12x5a2

4 + 2x4a1
3a2 + 6x4a1

3a3 − 15x4a1
2a2

2 −
−6x4a1

2a2a3 − x4a1
2a3

2 + 12x4a1a2
3 + 4x4a1a2

2a3 − 4x4a2
4 + x3a1

4 − 6x3a1
3a2 −

−6x3a1
3a3 + 15x3a1

2a2
2 + 2x3a1

2a2a3 − 4x3a1a2
3 − 3x2a1

4 + 6x2a1
3a2 +

+2x2a1
3a3 − 5x2a1

2a2
2 + 3xa1

4 − 2xa1
3a2 − a1

4,

r31 = 4x7a1a2
2a3 − 4x7a2

4 + 8x6a1
2a2a3 + x6a1

2a3
2 − 4x6a1a2

3 − 12x6a1a2
2a3 +

+12x6a2
4 + 4x5a1

3a3 + 4x5a1
2a2

2 − 16x5a1
2a2a3 − 2x5a1

2a3
2 + 12x5a1a2

3 +

+12x5a1a2
2a3 − 12x5a2

4 + 4x4a1
3a2 − 8x4a1

3a3 + 3x4a1
2a2

2 + 10x4a1
2a2a3 +

+x4a1
2a3

2 − 12x4a1a2
3 − 4x4a1a2

2a3 + 4x4a2
4 + 2x3a1

3a2 + 6x3a1
3a3 −

−11x3a1
2a2

2 − 2x3a1
2a2a3 + 4x3a1a2

3 + 3x2a1
4 − 6x2a1

3a2 − 2x2a1
3a3 +

+5x2a1
2a2

2 − 3xa1
4 + 2xa1

3a2 + a1
4.

Thus, we need to consider three cases:
Case r1 = 0. In this case a(x) = λ ln (x) + α. After the substitution of this expression in e1, we
obtain

e1 = λ (y − 1) (yb2 + b1) (xyb1 + λx− λ) = 0,

hence (yb2 + b1) = 0 and b(y) = µ ln(y) + β. Then we have c2 = 0 and

z = λ ln (x) + µ ln (y) + ν, λ µ ̸= 0.
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Case r2 = 0, r1 ̸= 0. If we solve r2 = 0 with respect to a3 and substitute this expression in
e2 = 0, we obtain:

b2
b1
y =

a2
a1

(x− 1) = λ = const.

We solve these differential equations with respect to a and b, then we substitute these expressions
in e1 = 0. And we obtain a contradiction.

Case r3 = 0, r1 ̸= 0, r2 ̸= 0. If r3 = 0, then r30 = r31 = 0. Thus, the resultant of r30 and r31
with respect to a3 is equal to zero and we have:

(x− 1)
6
(xa2 + a1)

4
x10a1

4
(
2x2a2 + 2 a1x− 2xa2 − a1

)8
= 0.

From the equation
(
2x2a2 + 2 a1x− 2xa2 − a1

)
= 0 we get

a2 = −1/2
a1 (2x− 1)

x (x− 1)
, a3 = 1/4

a1
(
8x2 − 8x+ 3

)
x2 (x− 1)

2 .

After substitution of these expressions into e2 = 0 we obtain 2xya1b2 − 2 yb1
2 + a1b1 = 0. Then

we have a1 = 2
yb1

2

2xyb2 + b1
.

Let us substitute expressions for a1, a2, a3 into e1 = 0, then we extract the term without
x and equate it to zero. We obtain b1

2 (y − 1) = 0. The contradiction. We do not have such
solutions. Thus, we have

Proposition 6. The solutions of the Horn system of complexity one for Example 6 have the
form:

z = λ ln (x) + µ ln (y) + ν, λ µ ̸= 0.

This example is from [1] (n. 8.1.9., p. 304). In this book there is the basis of 4-dimensional
space of solutions. It is possible to get our result from this description. Also we can note that in
this case the solutions of complexity one is the linear subspace of codimension one in the general
solutions space of this Horn system.

Example 7. Let

P = (x+ 2y + p), Q = (x+ y − q),

R = (x+ 2y + p)(x+ y + p+ 1), S = (x+ y − q)(y − s).

For z = c(a(x) + b(y)) we have:

Gx z = x2a1c1 + 2xyb1c1 + pxc0 + xc1a1 + yc1b1 − qc0 = 0,

Gy z = x2ya1
2c2 + xy2a1b1c2 + pxya1c1 + x2ya2c1 + xya1b1c2 + y2b1

2c2 +

+pxa1c1 + 3 pyb1c1 + qyb1c1 + sxa1c1 + syb1c1 + 2xya1c1 +

+y2b2c1 + p2c0 − qsc0 + 3 yc1b1 + pc0 = 0.

Let f (n) be (f1, . . . , fn). After the elimination of c we obtain

e1(a
(2), b(2)) = a2b1px

3 − 2 a1b2px
2y − a1b1px

2 + a2b1px
2 − a1b2pxy − a2b1qx

2 +

+2 a1b2qxy − b1a1px− b1
2py − a2b1qx+ a1b2qy − 2 b1

2qy = 0,

e2(a
(2), b(2)) = 0 is the sum of 79 monomials.
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Thus, we obtain two expressions for b2: the first b2 = B21(a
(2), b1) and the second b2 =

= B22(a
(2), b1). Then we have two new conditions: equality of both expressions and their inde-

pendence of x. We obtain e3(a
(3), b1) = 0 (41 monomials) and e4(a

(3), b1) = 0 (98 monomials).
Here e3 is linear with respect to b1, and e4 is quadratic with respect to b1. If we express b1 from
e3 = 0, then we get b1 = B1(a

(3)). The condition (B1)
′
x = 0 has the form (p x − q) e5(a

(4)) = 0

(e5 is the sum of 55 monomials).
Our calculation is the tree of cases.

Case 1: (px− q) ̸= 0, e5 = 0.
If we substitute b1 = B1(a

(3)) into e4(a
(3), b1) = 0 we obtain ee4(a

(3)) = ee40(a
(3)) +

y ee41(a
(3)) = 0. Thus, we have ee40(a(3)) = ee41(a

(3)) = 0, where ee40 consists of 489 mono-
mials and ee41 consists of 215 monomials. Substitution of b1 = B1(a

(3)) in B21(a
(2), b1) yields

BB21(a
(3)). We can write (B1)

′
y = BB2 and we get e6 = e61 e62 = 0, where

e61 = x2a3 + 4 a2x+ xa3 + 2 a1 + 2 a2,

e62 = 2 p2x5a1a3 − 2 p2x5a2
2 + 2 p2x4a1a2 + 3 p2x4a1a3 − 3 p2x4a2

2 − 4 pqx4a1a3 +

+4 pqx4a2
2 + 2 p2x3a1a2 + p2x3a1a3 − p2x3a2

2 − 4 pqx3a1a2 − 6 pqx3a1a3 +

+6 pqx3a2
2 + 2 q2x3a1a3 − 2 q2x3a2

2 + a1
2p2x2 + p2x2a1a2 + 2 a1

2pqx2 −
−4 pqx2a1a2 − 2 pqx2a1a3 + 2 pqx2a2

2 + 2 q2x2a1a2 + 3 q2x2a1a3 − 3 q2x2a2
2 +

+2 pqxa1
2 − 2 pqxa1a2 + 2 q2xa1a2 + q2xa1a3 − q2xa2

2 + pqa1
2 + q2a1a2.

Case 1.1: e61 = 0, then a(x) = λ ln (x+ 1) + µ (ln (x)− ln (x+ 1)) + ν. Substitution of this a
in e3 = 0 yields(

2x4pλ+ 4x3pλ+ x2pλ− λx2q + x2pµ+ 2µx2q + 2µxq + µ q
)
×

× (pyb1 + 2 qyb1 + λ q + pµ) = 0.

The set of coefficients of the first factor has the form:

{µ q, 2λ p, 4λ p, 2µ q, λ p− λ q + pµ+ 2µ q} .

All of them can not vanish. Hence the second factor is zero.

Case 1.1.1: p+ 2q ̸= 0. From (pyb1 + 2 qyb1 + λ q + pµ) = 0 we get

b(y) = −
(
λ q + µp

p+ 2 q

)
ln (y) + β.

Substitution of this a and b in e2 = 0 yields ee2 = 0, where ee2 is the polynomial of
degree 2 in (x, y), the coefficients of which depend on (p, q, s, λ, µ). One of them equals
λ (p+ q + 1) (λ− 2µ).

Case 1.1.1.1.: (λ− 2µ) = 0. The analysis of coefficients of ee2 shows us that ee2 = 0 is
impossible in this case.

Case 1.1.1.2.: p+ q + 1 = 0.

Case 1.1.1.2.1.: λ = µ. We have ee2 = 0. Then we have p = −1, q = 0. The solution has the
form z = ν (y/x).

Case 1.1.1.2.2.: λ = −µ p ̸= 0. We have p = s = λ = 0, q = −1, µ ̸= 0. The solution has the
form z = ν(y/x2).
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Case 1.1.2: p = 2q ̸= 0. From e4 = 0 we obtain b1 = B1(a
(2)). After substitution of this

expression in B21 we get BB21. From (B1)
′
y = BB21 we get g0(a(2))+y g1(a(2))+y2 g2(a(2)) = 0

and hence g0(a(2)) = g1(a
(2)) = g2(a

(2)) = 0. The resultant of g1(a(2)) and g2(a(2)) with respect
to a2 is some polynomial in x of degree 11. The value of this polynomial for x = 0 is (q − 1)6

and hence q = 1. Then we have

∀s r = −2
(
2 sx2 + sx− 2x2

)2 (−2x2 − 2x
)3
x ̸= 0.

A contradiction. Solutions are absent.
Case 1.2: e62 = 0. Let us express a3 from this equation and substitute the result in e2 = 0. We
obtain ee2 = ee20(a

(3)) + y ee21(a
(3)) = 0, then

g1 =
(
−psx− qsx+ p2 + qp+ xp+ p

)
g3 = 0,

g2 =
(
xp2 + pqx+ x2p− qp+ 2xp− q2 − q

)
g3 = 0,

where g =
(
2 px2a2 + 4 pxa1 + pxa2 − 2 qxa2 + pa1 − 2 qa1 − qa2

)
.

Case 1.2.1.: g ̸= 0. In this case all coefficients of both factors must vanish. The set of these
coefficients is:

{p (p+ q + 1) ,−ps− qs+ p, p, p (p+ q + 2) ,−q (p+ q + 1)} .

We see that p = 0, then s = 0 (q ̸= 0) and q = −1. We have the solution z = ν(y/x2) (this
solution coincides with the solution of the case 1.1.1.2.2.).

Case 1.2.2.: g = 0. Let us express a2 from this equation and substitute the result in e62 = 0.
We obtain

2 p2x3 + 4 pqx3 + 6 pqx2 + 6 pqx+ pq − q2 = 0.

The set of coefficients of this polynomial is:

{q (p− q) , 6 pq, 2 p (p+ 2 q)} .

The vanishing of all of them is impossible (px− q ̸= 0).

Case 2: p = q = 0. The equation Gx(z) = 0 takes the form:

Gx z = x2a1 + 2xyb1 + xa1 + yb1 = 0.

Hence
a1

(x+ 1)

(2x+ 1)
= λ = b1 y, λ ̸= 0 is constant.

And then we get
a(x) = λ(2x− ln(x)) + α, b(y) = λ ln(y) + β.

After elimination of c from

Gy z = x2ya1
2c2 + xy2a1b1c2 + x2ya2c1 + xya1b1c2 + y2b1

2c2 +

+sxa1c1 + syb1c1 + 2xya1c1 + y2b2c1 + 3 yc1b1 = 0

for our a and b we get:

8 sx3y − 12 sx2y − 8x2y2 + 2 sxy + 4xy2 − 10xy − y2 + 4 y − 2 = 0.
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for all (x, y). This is impossible for all s. A contradiction. Thus, we have:

Proposition 7. The solutions of the Horn system of complexity one for Example 7 exist in two
cases only:

(a) p = −1, q = 0, z = ν
y

x
,

(b) p = s = 0, q = −1, z = ν
y

x2
.

Example 8. The Lauricella’s functions are the subclass of the class of hypergeometric functions
[5], [6]. They are the solutions of the Lauricella system (some generalization of the hypergeometric
Gauss equation). If the number of the independent variables is two, this system is the system of
two equations for the funсtion z(x, y) of the form

Lx(z) = x (1− x)
∂2

∂x2
z (x, y) + (1− x) y

∂2

∂y∂x
z (x, y) +

+ (q − (1 + p1 + ρ)x)
∂

∂x
z (x, y)− p1y

∂

∂y
z (x, y)− p1ρ z (x, y) = 0,

Ly(z) = y (1− y)
∂2

∂y2
z (x, y) + (1− y)x

∂2

∂y∂x
z (x, y) +

+ (q − (1 + p2 + ρ) y)
∂

∂y
z (x, y)− p2x

∂

∂x
z (x, y)− p2ρ z (x, y) = 0.

The parameters (p1, p2, ρ) are any complex numbers and q ∈ C \ {0,−1,−2, . . . }. Our goal is
to describe the solutions of the Lauricella system of complexity one (of kind z = c(a(x) + b(y)),
where (a, b, c) are not constant). In order to simplify our calculation we will assume that ρ = 0.
Thus, we have three complex parameters only (p1, p2, q). The Lauricella system for ρ = 0, z =

c(a(x) + b(y)) has the form:

Lx(z) = −x2a12c2 − yc2a1b1x− x2a2c1 + xa1
2c2 − xa1c1p1 +

+yc2a1b1 − p1yc1b1 + qa1c1 − xa1c1 + xa2c1 = 0,

Ly(z) = −yc2a1b1x− y2b1
2c2 + xc2a1b1 − p2xc1a1 − y2b2c1 +

+yb1
2c2 − yb1c1p2 + qb1c1 − yb1c1 + yb2c1 = 0.

Case 1. xa1 + yb1 = 0. We have

a(x) = −λ ln(x) + α, b(y) = λ ln(y) + β, λ ̸= 0

and our equations have the form

−λ c1 (q − 1)

x
=
λ c1 (q − 1)

y
= 0.

The condition of solvability is q = 1 and we obtain z = c(y/x), where c(t) is any analytical
function.

Case 2. xa1 + yb1 ̸= 0. We can express c2/c1 from both equations. We have

c2/c1 = LC21(a
(2), b1) = LC22(a1, b

(2)) = 0.

The solvability conditions are: LC21 = LC22 and V (LC21) = 0. This conditions are
e1(a

(2), b(2)) = 0 (20 monomials) and e2(a(3), b(2)) = 0 (39 monomials).
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Case 2.1. −x2a2 + qa1 − xa1 + xa2 = 0. Thus,

a1 =
(x− 1)q−1

xq
, b1 y = −

(
x− 1

x

)q−1

.

Hence q = 1, a1 = 1/x and b1 = −1/y, and further xa1 + yb1 = 0. In this case it is impossible.

Case 2.2. −x2a2+ qa1−xa1+xa2 ̸= 0. The equations e1 = 0 and e2 = 0 are linear with respect
to b2. We have two expressions for b2: b2 = B21(a

(2), b1) and b2 = B22(a
(3), b1). We get two

conditions: B21 = B22 yields e3(a(3), b1) = 0 (79 monomials), (B21)
′
x = 0 yields e4(a(3), b1) = 0

(36 monomials). e3 is cubic with respect to b1, e4 is quadratic with respect to b1. We can divide
e3 by e2 with the remainder (as polynomials with respect to b1). We obtain that the reminder
is zero. Thus, we have:

−yb1 −
(
x2a2 + qa1 + xa1 − xa2 − a1

)
a1

xa2 + a1 − a2
= 0.

Hence

yb1 = λ = −
(
x2a2 + qa1 + xa1 − xa2 − a1

)
a1

xa2 + a1 − a2
.

And further we get

b(y) = λ ln(y) + β, a2 = −a1 (qa1 + xa1 + λ− a1)

x2a1 + λx− xa1 − λ
, λ ̸= 0.

After substitution of these expressions in e1 = e2 = e3 = e4 = 0 we get ee1(a1) = ee2(a1) =

ee3(a1) = ee4(a1) = 0. The resultant of ee1 and ee2 with respect to a1 is a polynomial with
respect to (x, y). The coefficient of x6y in this polynomial is (q − 1)4, hence q = 1. For such q

we have xa1 + yb1 = 0. In this case it’s impossible. Thus, we have the following proposition.

Proposition 8. The solutions of the Lauricella system of complexity one for ρ = 0 exist in the
case q = 1 only. These solutions have the form:

z = c
(y
x

)
, where c(t) is any nonconstant analytical function.

It is possible that the additional computational efforts would allow us to free ourselves from
the constraint ρ = 0.

Conclusion

Both (2) and (1) are equalities to zero of differential polynomials, which are the elements of the
differential ring R, the ring of differential polynomials with complex coefficients and generators
(x, y, z, ∂x, ∂y) (and with obvious relations) [7], to which the field of fractions F corresponds.
The ring R is a classical object of differential algebra. We can look at the common zeros of a
system of differential-polynomial equations, i.e., at the solutions of these equations, from two
different points of view. From a quite abstract algebraical point of view they are the elements
of the differential-algebraic closure of the field F . From the analytical point of view they are
analytic functions, which gives solutions to the system of differential equations. In R there is
the subring C[x, y], which is the commutative ring of the polynomials in (x, y). The set of the
common zeros of a system of polynomials is an affine algebraic subvariety of two-dimensional
space. This is the area of responsibility of algebraic geometry. If we move from C[x, y] to R, then
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the object arise, which is quite analogous to an algebraic variety: the set of the common zeros of
a differential-polynomial system, which is a differential-algebraic manifold (DA-manifold). The
term is not stable, there are variants, e.g., diffiety [8]. From this point of view the discussed above
examples are examples of DA-manifolds, which are defined by three differential polynomials (two
of them are the Horn system, and the third is the defining equation of the first class). The Horn
systems from this point of view are not very interesting, the corresponding DA-manifold is a
linear space. By adding the defining equation of the first class, we provide opportunities for a
larger diversity. Studying an algebraic variety, one usually pays attention to a series of natural
characteristics, namely: irreducible components, stratification of the points on the variety with
respect to the dimension of the tangent space and so on. In the study of DA-manifolds these
characteristics are also of interest. Nevertheless, there is a certain specifics.

For example, the dimension of the linear space of the solutions of system (2) can be either
finite or infinite. In the case when it is infinite the question arise:

Question 9: (a) Under which condition the dimension of the intersection is finite? (b) If
the dimension is finite, how to estimate it? (c) How to estimate the number of irreducible
components?

DA-manifold defined by the equation d1(z) = 0 is a cone, and DA-manifold defined by a
Horn system is a linear space. However, when we speak about conic sections, we mean that the
cutting plane does not necessary go through the vertex of the cone, as it is in our examples. We
can easily avoid this limitation. Let z0(x, y) be an analytic function of complexity one, which
is a solution of the Horn system, i.e., Gx(z0) = Gy(z0) = 0. Then we can consider the affine
subspace, which consists of the functions of the form {z = z0 + δz}, where δz is a solution of the
Horn system, i.e., Gx(δz) = Gy(δz) = 0, and construct its intersection with the cone Cl1, which
is certainly nonempty (there z0 lies).

Some of the discussed examples of Horn systems are systems with parameters. This feature
can be easily interpreted with the help of differential algebra. In the definition of the differential
ring R we should include these parameters in the field of constants.

Next, note that all our considerations can be adapted to functions of larger number of
variables. The functions of complexity one in n variables are analytic functions of the form
z(x1, . . . , xn) = c(a1(x1) + · · · + an(xn)), where (a1, . . . , an, c) are functions of one variable.
The class of such functions, as in the case of two variables, is defined by a set of differential
polynomials.

The consideration of examples with parameters allows us to note that in all discussed situ-
ations for the existence of solutions of complexity one there are necessarily restrictions on the
parameters. I.e., solutions exist only for a proper algebraic subset of the space of parameters.

Question 10: Do there exist holonomic Horn systems with parameters, such that there are
solutions of complexity one for all values of parameters?

Let a Horn system with parameters be given. And let solutions of complexity not greater than
a fixed n of this system exist only under some nontrivial analytic conditions (for all natural n).
Then it is easy to show that all solutions for generic values of parameters (outside solutions of
some enumerable system of analytic equations) have infinite complexity. On the other hand, if
we assume that for a Horn system with parameters all solutions are of finite complexity, then
there exists a number N , such that all solutions for all values of parameters have complexity not
greater than N .
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О гипергеометрических функциях двух переменных
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Аннотация. Для серии примеров систем Горна и системы Лауричеллы для функций двух пере-
менных дано описание решений, имеющих аналитическую сложность один. Ставится ряд вопросов.

Ключевые слова: аналитическая сложность, гипергеометрические функции, система Горна, си-
стема Лауричеллы, дифференциальное кольцо.
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Abstract. In this work, we simulated hysteresis effects in thin Heisenberg films subjected to an external
oscillating field by Monte Carlo methods. It was observed that the system exhibits different types of
phase transitions below the Curie temperature, depending on the rate of field influence. Relaxation
features of the system have been identified, which may also impact the nature of the dynamic phase
transition.
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The phenomenon of dynamic phase transition is widespread across all fields of human activity.
It has been observed that dynamic phase transitions can be used to describe biological [1, 2]
and chemical systems [3], as well as processes associated with human social behavior [4]. The
exploration of dynamic phase transitions in promising materials such as nanographene [5] or
LiMn0.5Fe0.5PO4 [6] opens new opportunities in energy engineering and design.

A dynamic phase transition in magnetic systems occurs when the speed of influence of an
external oscillating field changes. At a high half-period of the external field, magnetization follows
the cyclic changes in the field and remains in a dynamically disordered state. However, at a
low half-period value, magnetization cannot qualitatively follow the oscillations and transitions
into a dynamically ordered state. The transition between a dynamically ordered state and a
dynamically disordered state is referred to as a dynamic phase transition.

The classic model for studying dynamic phase transitions is the Ising kinetic model. Work
[7] was the first to prove the existence of a dynamic phase transition in magnetic structures.

In early experimental works [8, 9], a dynamic phase transition was observed in the hysteresis
response with a change in the amplitude of the external field H0. Recent experimental studies
on the magnetization reversal of thin films [10–14] have indicated that the system can undergo
a qualitative transition from one ordered state to another by introducing an additional field in
conjunction with an external oscillating field. As demonstrated in previous works [13, 14], this
additional field in dynamic phase transitions is comparable to the influence of the field H(t) in
thermodynamic phase transitions.
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Hysteresis effects in dynamic phase transitions are being actively studied numerically mod-
eling and experimentally. However, many questions remain open and require additional study.
The studies were carried out using the Heisenberg model, which is a more complex system com-
pared to the Ising model [15], including the influence of anisotropy and three-dimensional spin.
Considering the dynamic phase transition within a more complex model can provide additional
insight into this phenomenon.

1. Model and methods

In this work, a thin magnetic film in an external oscillating field H(t) with an amplitude
H0 below the Curie temperature was studied by Monte Carlo methods, in particular by the
Metropolis algorithm using the anisotropic Heisenberg model.

The Hameltonian of the anisotropic Heisenberg model was chosen as:

H = −J
∑
i,j

[(1−∆(N))(Sx
i S

x
j + Sy

i S
y
j ) + Sz

iS
z
j ]−H(t)

∑
i

Sz
i , (1)

where Si = (Sx
i , S

y
i , S

z
i ) is the three-dimensional spin at the i-th node of all the systems; N

is number of monolayers; L × L × N— total number of spins of the system; J is the exchange
integral of the interaction between nearest spins Si.

∆(N) is an anisotropy parameter depending on the number of monolayers, the value of which
was chosen based on the article [16], the anisotropy value ∆(N = 5) = 0.75. In this work, "easy
axis" anisotropy was studied. The external magnetic field was directed perpendicular to the
plane of the ferromagnetic film.

The dynamic order parameter Q is defined as:

Q =
1

2t1/2

∫ 2t1/2

0

mz(t)dt. (2)

In the dynamically disordered phase, the order parameter Q is close to zero, and in the ordered
phase it is nonzero. The parameter that acts as an analogue of temperature in the transition is
Θ = t1/2/⟨τ⟩, where t1/2 is the half-period of the external field, ⟨τ⟩ is the time of the metastable
state, defined as the time at which the magnetization first crosses zero during the relaxation
process. The magnetization of the z component was calculated using the formula:

mz(t) =
1

L2

L2∑
i=1

szi . (3)

The field bias value was introduced as a low additional field to the oscillating external field.
As a result, uncompensation leads to asymmetrical oscillation of the field relative to zero:

Hb = ⟨H(t)⟩ = 1

2t1/2

∫ 2t1/2

0

H(t)dt. (4)

Simulation of the magnetic film was carried out for linear size L = 128 with external field
amplitude H0 = 0.2 and temperature T = 0.6Tc(N), where Tc(N = 5) = 1.31J [17]. The field
bias Hb changed in steps of 0.001 and at time relaxation (the number of cycles) P = 1000. During
the simulation, the number of monolayers N = 5 was considered. The spin system represents a
cubic structure, based on the type of substrate anisotropy in experiments [12, 13].
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2. Results and discussion
In this work, a thorough investigation of the various consequences of hysteresis in the critical

region was carried out. The behavior of the order parameter Q(Hb) is considered as the half-
period t1/2 increases to detect a dynamic phase transition. Figures 1 shows the change in the
order parameter Q as a function of the field bias Hb at low field frequencies t1/2 = 20 MCS/s
(Fig. 1(a)) with a clear existence of the first-order phase transition. With the appearance of
the half-period t1/2 (Fig. 1(b,c)), a sharp jump in the parameter was observed for a long time.
A continuous phase transition occurs only at a critical half-period definition (Fig. 1(d)), when
magnetization can follow a change in the oscillating field. In this case, collapse of the hysteresis
loops is observed.

Fig. 1. Hysteresis loops for different values of half-period t1/2. For case (a), a wide loop is
formed, where the half-period is equal to t1/2 = 20 MCS/s, (b) an increase in the half-period
t1/2= 30 MCS/s contributes to the narrowing of the loop, as well as for case (c) t1/2= 40 MCS/s,
(d) t1/2 = 46 MCS/s the hysteresis loop collapses

The type of phase transition when considering hysteresis effects can also depend on the
relaxation features of the model. Fig. 2 shows the relaxation dependence of the parameter Q on
Hb on the oscillation cycles P of the system. A gradual increase in observation time leads to the
fact that the hysteresis loops begin to collapse. In the region of dynamic phase transition, taking
into account relaxation effects can play an important role. The simulation data qualitatively
correlate with the experimental results of [11].

To consider the peculiarities of the behavior of the system after a dynamic phase transition
(Fig. 3), a sufficiently large half-period t1/2 = 100 MCS/s for H0 = 0.2 was chosen. We changed
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Fig. 2. Hysteresis effect depending on bias field Hb with increasing oscillation cycles P of the
influence of the external field H(t) at half-period t1/2 = 40 MCS/s

the value of the field amplitude from H0 = 0.16 ÷ 0.22 in steps of 0.02 to more clearly show
changes in the behavior of magnetization with distance from the multicritical point. Thus,
at H0 = 0.16 a collapsed hysteresis loop is represented, but fluctuations appear as the field
increases. The magnitude of the field amplitude significantly affects the area of fluctuations and
their magnitude.

Fig. 3. Dependence of the hysteresis effect on changes in the field bias Hb for different field
amplitudes H0 = 0.16− 0.22. Linear size of the system L = 128, half-period t1/2 = 100 MCS/s.
At H0 = 0.16 the hysteresis loop collapses (blue dots); at H0 = 0.20 the loop bends (black dots)
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Conclusion
We have carried out numerical modeling of hysteresis effects in a dynamic phase transition

using the Heisenberg model in an external oscillating field by Monte Carlo methods. The de-
pendence of the hysteresis loops on the t1/2 was studied. As a result of which the existence of a
first-order phase transition was revealed at less than values of the half-period t1/2 = 46 MCS/s,
when the magnetization changes its state in an abrupt manner. A second-order phase transition
occurs at higher values of t1/2 = 46 MCS/s. An increase in the half-period of the field leads to
the fact that the magnetization of the system can follow the oscillations of the external field and
consistently changes its values.

The collapse of the hysteresis loop occurs at a field amplitude H0 > Hc
0(t1/2) = 0.16 and

t1/2 = 100 MCS/s. Curvature of the loops is observed with increasing H0 [18]. This type
indicates fluctuations that arise due to the stronger influence of H(t) far from the critical region.
The destruction of the phase transition with the formation of a metastable phase with a change
in H(t) is also observed, which also leads to a shift in the critical point.

Relaxation processes for hysteresis effects have been identified. The type of phase transition
can be strongly influenced by the time of observation of the system. The results show a narrowing
of the hysteresis loops with increasing oscillation cycles.

The reported study was supported by the Russian Science Foundation through project no.
23-22-00093. Pavel V. Prudnikov acknowldged for the supporting by the Ministry of Science and
Higher Education of the Russian Federation within the governmental order for Boreskov Institute
of Catalysis (project FWUR-2024-0039).
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Эффекты гистерезиса в критическом поведении тонких
гейзенберговских пленок во внешнем
осциллирующем поле

Алексей В. Ейхлер
Владимир В. Прудников

Омский государственный университет имени Достоевского
Омск, Российская Федерация
Павел В. Прудников

Центр новых химических технологий ИК СО РАН
Институт катализа имени Г. К. Борескова СО РАН

Омск, Российская Федерация

Аннотация. В данной работе методами Монте-Карло моделировались эффекты гистерезиса в тон-
ких пленках Гейзенберга во внешнем осциллирующем поле. Было обнаружено, что в системе ниже
температуры Кюри наблюдаются различные типы фазовых переходов в зависимости от скоро-
сти воздействия осциллирующего поля. Выявлены релаксационные особенности системы, которые
влияют на характер динамического фазового перехода.

Ключевые слова: Модель Гейзенберга, динамический фазовый переход, методы Монте-Карло,
эффекты гистерезиса.
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Abstract. The joint convection of two viscous heat-conducting liquids in a three-dimensional layer
bounded by solid flat walls is studied. The upper wall is thermally insulated, and a non-stationary
temperature field is set on the lower wall. Liquids are assumed to be immiscible and complex conjugation
conditions are set at the flat interface between them. The evolution of this system is described by the
Oberbeck-Boussinesq equations in each fluid. The solution of this problem is sought in the class of velocity
fields linear in two coordinates, and temperature fields are quadratic functions of the same coordinates.
In this case, the problem is reduced to a system of 10 nonlinear integro-differential equations. It is
conjugate and inverse with respect to 4 functions of time. To find them, integral redefinition conditions
are set. The physical meaning of these conditions is the closeness of the flow. The inverse initial-
boundary value problem describes convection in a two-layer system that occurs near the temperature
extremum point on the lower solid wall. For small Marangoni numbers, the problem is approximated
by a linear one (the Marangoni number plays the role of the Reynolds number for the Navier-Stokes
equations). A stationary solution to this problem has been found. The linear nonstationary problem is
solved by the Laplace transform method, and the temperature can have discontinuities of the 1st kind
(change by a jump). In Laplace images, the solution is obtained in quadratures. It is proved that with
increasing time, it tends to stationary mode if the temperature on the lower wall stabilizes over time.
The evolution of the behavior of the velocity field in the transformer oil-water system has been studied
using the numerical inversion of the Laplace transform.

Keywords: Oberbeck-Boussinesq equations, interface, Marangoni number, thermocapillarity, inverse
problem, Laplace transform.

Citation: Viktor K. Andreev, Thermocapillary Convection of Immiscible Liquid in a
Three-dimensional Layer at Low Marangoni Numbers, J. Sib. Fed. Univ. Math. Phys.,
2024, 17(2), 195–206. EDN: FVESDY.

We consider the solution of the Oberbeck–Boussinesq equations of the form

u = ((f(z, t) + h(z, t))x, (f(z, t)− h(z, t))y,−2

∫ z

0

f(ξ, t) dξ), p̄ = p̄(x, y, z, t),

θ = a(z, t)x2 + b(z, t)y2 + q(z, t)

(1)

where p̄ is modified pressure.
The initial idea to search for exact solutions of the Navier-Stokes equations with a linear

dependence of the velocity components on two spatial variables, apparently, was first proposed
in [1]. It was shown that the general three-dimensional system of viscous magnetic hydrodynam-
ics equations is reduced to a closed system of one-dimensional equations. A similar result for the

∗andr@icm.krasn.ru
c⃝ Siberian Federal University. All rights reserved
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gas dynamics equations was obtained in [2]. A more special case of the velocity field represen-
tation (1) for the motion of a single fluid is considered in [3, 4], and the pressure depended only
on the vertical coordinate and time. The temperature is distributed according to the quadratic
law (1) only at the free boundaries of the layer z = ±Z(t) and caused a thermocapillary effect.
The numerical solution of the latter problem taking into account the general temperature dis-
tribution θ(x, y, z, t) in the layer −Z(t) < z < Z(t) is carried out in the article [5]. A thorough
review of the exact solutions of the Navier-Stokes system with a linear dependence of the ve-
locity components on x and y is given in [6]. In [7], solution (1) was used to describe the slow
convection of a single liquid in a layer with a free boundary. The paper [8] is devoted to the
influence of interphase surface energy on stationary convection within the framework of solution
(1). Unsteady creeping convection in the case of an isothermal interface for solution (1) was
studied in the articles [9,10]. The nonlinear stationary problem of two liquid media convection is
numerically investigated in [11]. Note that similar two-dimensional problems (solution (1) can be
called a three-dimensional analogue of the well-known Himentz solution) in various formulations
are studied in the monograph [12].

In this paper, the quadratic dependence of x and y temperatures in (1) is an additional
assumption and it agrees well with the conditions on the interface.

1. Statement of problem

Substituting the solution (1) into the system of convection equations and further compatibility
analysis leads to the conclusion that the modified pressure in the layers is also a quadratic function
of the coordinates x and y. Further, this solution is used to describe two-layer thermocapillary
convection in the layer −l1 < z < l2, |x| < ∞, |y| < ∞. The boundaries of the layer z = l1,
z = l2 are solid fixed walls, and z = 0 is a fixed interface between the layer −l1 < z < 0, and
the layer 0 < z < l2 of liquids ”1”, ”2”. These heat-conducting viscous liquids have constants:
densities ρj , kinematic viscosities νj , thermal conductivity χj , thermal expansion coefficients
βj , j = 1, 2. At the interface z = 0, the surface tension depends linearly on temperature
σ(θ1) = σ0 − æθ1(x, y, 0, t) with constants σ0 and æ > 0.

Remark 1. In order for the interface to be flat, it is enough to assume the smallness of the
Bond Bo = g(ρ1 − ρ2)l

2
1/σ0 and the capillary Ca = µ1χ1/σ0l1 numbers, see [13].

The unknowns, according to (1), are the functions fj(z, t), hj(z, t), aj(z, t), bj(z, t), qj(z, t),
and −l1 6 z 6 0 for j = 1, and j = 2 for 0 6 z 6 l2. Suppose that the temperature is set on the
substrate z = −l1

θ1(x, y,−l1, t) = α1(t)x
2 + α2(t)y

2 + α3(t) (2)

with known functions αi(t), i = 1, 2, 3, and the upper wall z = l2 is thermally insulated:
θ2z(x, y, l2, t) = 0. For α1(t) < 0, α2(t) < 0, solution (1), (2) describes convection near the
critical point x = 0, y = 0, when the temperature on the wall at this point has a maximum and
with inverse values α1(t), α2(t) the temperature has a minimum.

Let a∗ = max
t>0

(|α1(t)|, |α2(t)|), θ∗ = max
t>0

|α3(t)| is a characteristic temperature, so that a∗l1

is a characteristic temperature gradient, τ = χ1l
−2
1 t is a characteristic thermal convection time.
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For the first layer at j = 1 we put

ξ =
z

l1
, −1 < ξ < 0, f1 =

χ1

l21
MF1(ξ, τ), h1 =

χ1

l21
MH1(ξ, τ),

a1 = a∗A1(ξ, τ), b1 = a∗B1(ξ, τ), q1 = θ∗Q1(ξ, τ), sj =
χ2
1

l41
MSj(τ),

M =
æ1a

∗l31
µ1χ1

, P1 =
ν1
χ1
, L1 =

ρ1β1gl
2
1

æ1
, d =

a∗l21
θ∗

,

(3)

and for the second layer j = 2 we put

ξ =
z

l2
, 0 < ξ < 1, f2 =

χ1

l21
MF2(ξ, τ), h2 =

χ1

l21
MH2(ξ, τ),

a2 = a∗A2(ξ, τ), b2 = a∗B2(ξ, τ), q2 = θ∗Q2(ξ, τ), si =
χ2
1

l41
MSk(τ), i = 3, 4,

P2 =
ν2
χ2
, L2 =

ρ1β2gl1l2
æ1

, χ =
χ1

χ2
, l =

l1
l2
, µ =

µ1

µ2
,

(4)

where M is a Marangoni number, P1 , P2 are the Prandtl numbers.
Suppose that |M| ≪ 1 and we will look for a solution in the form

Fj = F
(0)
j + MF

(1)
j + . . . , Hj = H

(0)
j + MH

(1)
j + . . . ,

Aj = A
(0)
j + MA

(1)
j + . . . , Bj = B

(0)
j + MB

(1)
j + . . . , Qj = Q

(0)
j + MQ

(1)
j + . . . ,

Si = S
(0)
i + MS

(1)
i + . . . , j = 1, 2, i = 1, 4, n = 1, 3.

Assuming that Lj = O(1) with M → 0, we get a linear inverse problem in the zero approximation
(index "0" is omitted)

F1τ = P1F1ξξ − P1L1

∫ ξ

0

(A1(ξ, τ) +B1(ξ, τ)) dξ − S1(τ),

H1τ = P1H1ξξ − P1L1

∫ ξ

0

(A1(ξ, τ)−B1(ξ, τ)) dξ − S2(τ),

A1τ = A1ξξ, B1τ = B1ξξ, Q1τ = Q1ξξ + 2d(A1 +B1), −1 < ξ < 0, τ ∈ [0, τ0],

(5)

F2τ =
P2l

2

χ
F2ξξ − P1L2

∫ ξ

0

(A2(ξ, τ) +B2(ξ, τ)) dξ − S3(τ),

H2τ =
P2l

2

χ
H2ξξ − P1L2

∫ ξ

0

(A2(ξ, τ)−B2(ξ, τ)) dξ − S4(τ),

A2τ =
l2

χ
A2ξξ, B2τ =

l2

χ
B2ξξ, Q2τ =

l2

χ
Q2ξξ +

2d

χ
(A2 +B2), 0 <ξ< 1, τ ∈ [0, τ0].

(6)

The boundary conditions on solid walls ξ = −1, ξ = 1 are (τ ∈ [0, τ0])

F1(−1, τ) = H1(−1, τ) = 0, A1(−1, τ) = α1(τ),

B1(−1, τ) = α2(τ), Q1(−1, τ) = α3(τ),
(7)

F2(1, τ) = H2(1, τ) = 0, A2ξ(1, τ) = B2ξ(1, τ) = Q2ξ(1, τ) = 0. (8)

The conditions on interface are

F1(0, τ) = F2(0, τ), H1(0, τ) = H2(0, τ), A1(0, τ) = A2(0, τ),

B1(0, τ) = B2(0, τ), Q1(0, τ) = Q2(0, τ),

lF2ξ(0, τ)− µF1ξ(0, τ) = µ(A1(0, τ) +B1(0, τ)),

lH2ξ(0, τ)− µH1ξ(0, τ) = µ(A1(0, τ)−B1(0, τ)),

lA2ξ(0, τ)− kA1ξ(0, τ) = 0, lB2ξ(0, τ)− kB1ξ(0, τ) = 0, lQ2ξ(0, τ)− kQ1ξ(0, τ) = 0.

(9)
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In addition, the initial data are

Fj(ξ, 0) = F0j(ξ), Hj(ξ, 0) = H0j(ξ),

Aj(ξ, 0) = A0j(ξ), Bj(ξ, 0) = B0j(ξ), Qj(ξ, 0) = Q0j(ξ),
(10)

where for j = 1 the variable ξ ∈ (−1, 0), for j = 2 we have ξ ∈ (0, 1); and the redefinition
conditions∫ 0

−1

F1(ξ, τ) dξ =

∫ 0

−1

H1(ξ, τ) dξ = 0,

∫ 1

0

F2(ξ, τ) dξ =

∫ 1

0

H2(ξ, τ) dξ = 0, τ ∈ [0, τ0]. (11)

The equalities (11), meaning the closure of the flow, allow us to determine the unknown functions
Si(τ), i = 1, 4.

Functions α1(τ) = α1(t)/a
∗, α2(τ) = α2(t)/a

∗, α3(τ)α3(t)/θ
∗, F0j(ξ), H0j(ξ), A0j(ξ), B0j(ξ),

Q0j(ξ) are defined on their definition domains. For a smooth solution, they must satisfy the
compatibility conditions, for example,

F01(−1) = H01(−1) = 0, F02(1) = H02(1) = 0, F01(0) = F02(0), H01(0) = H02(0) and so on.

The modified pressures in the layers are determined by the formulas

p̄1 =
ρ1ν1χ1

l21
MΠ1(ξ, τ),

Π1(ξ, τ) =

[
2L1

∫ ξ

0

A1(ζ, τ) dζ +
1

P1
(S1(τ) + S2(τ))

]
x̄2

2
+

[
2L1

∫ ξ

0

B1(ζ, τ) dζ+

+
1

P1
(S1(τ)− S2(τ))

]
ȳ2

2
− 2F1

P1
+

1

P1

∫ ξ

0

(ξ − ζ)F1τ dζ +
L1

d

∫ ξ

0

Q1 dζ +Π1(τ),

p̄2 =
ρ2ν2χ2

l22
MΠ2(ξ, τ),

Π2(ξ, τ) =

[
2χνL2

l2

∫ ξ

0

A2 dζ +
χ2

l2P2
(S3(τ) + S4(τ))

]
x̄2

2
+

[
2χνL2

l2

∫ ξ

0

B2 dζ+

+
χ2

l2P2
(S3(τ)− S4(τ))

]
ȳ2

2
− 2χF2

l2
+

2χ2

l4P2

∫ ξ

0

(ξ − ζ)F2τ dζ +
χνL2

dl2

∫ ξ

0

Q2 dζ +Π2(τ),

where Π1(τ),Π2(τ) are arbitrary functions.

2. Stationary flow in layers

Let’s find a stationary solution to the last problem F c
j (ξ), Hc

j (ξ), Ac
j(ξ), Bc

j (ξ), Qc
j(ξ), F c

j (ξ),
Sc
i (j = 1, 2; i = 1, 4). After some calculations , we get explicit expressions

Ac
1(ξ) = αc

1, Bc
1(ξ) = αc

2, Qc
1(ξ) = αc

3 + d(αc
1 + αc

2)

[
−ξ2 + 2ξ

kl
+

1

3

(
1 +

2

kl

)]
,

F c
1 (ξ) = (αc

1 + αc
2)

[(
3ξ2

4
+ ξ +

1

4

)
γ + L1

(
ξ3

6
+

3ξ2

16
− 1

48

)]
,

Hc
1(ξ) = (αc

1 − αc
2)

[(
3ξ2

4
+ ξ +

1

4

)
γ + L1

(
ξ3

6
+

3ξ2

16
− 1

48

)]
,

γ =
1

µ+ l

(
−µ+

lL1

12
+

ν

12l
L2

)
, −1 6 ξ 6 0;

(12)
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Ac
2(ξ) = αc

1, Bc
2(ξ) = αc

2, Qc
2(ξ) = αc

3 + d(αc
1 + αc

2)

[
2ξ − ξ2

l2
+

1

3

(
1 +

2

kl

)]
,

F c
2 (ξ) = (αc

1 + αc
2)

[(
3ξ2

4
− ξ +

1

4

)
γ +

(
ξ3

6
− ξ2

4
+

ξ

12

)
νL2

l2
−
(
ξ2

16
− ξ

12
+

1

48

)
L1

]
,

Hc
2(ξ) = (αc

1 − αc
2)

[(
3ξ2

4
− ξ +

1

4

)
γ +

(
ξ3

6
− ξ2

4
+

ξ

12

)
νL2

l2
−
(
ξ2

16
− ξ

12
+

1

48

)
L1

]
,

0 6 ξ 6 1;

(13)

Sc
1 =

3P1(α
c
1 + αc

2)

2(µ+ l)

(
−µ+ (4l + 3µ)L1 +

ν

12l
L2

)
,

Sc
2 =

3P1(α
c
1 − αc

2)

2(µ+ l)

(
−µ+ (4l + 3µ)L1 +

ν

12l
L2

)
,

Sc
3 = −3P1l

2(αc
1 + αc

2)

2(µ+ l)

(
ρ+

ρ

12
L1 +

(4µ+ 3l)

12l2
L2

)
,

Sc
4 = −3P1l

2(αc
1 − αc

2)

2(µ+ l)

(
ρ+

ρ

12
L1 +

(4µ+ 3l)

12l2
L2

)
.

(14)

The vertical velocities (dimensionless) are as follows

W c
1(ξ) = −2

∫ ξ

0

F c
1 (ζ) dζ = −2(αc

1 + αc
2)

[(
ξ3

4
+
ξ2

2
+
ξ

4

)
γ +

(
ξ4

24
+
ξ3

16
− ξ

48

)
L1

]
,

−1 6 ξ 6 0,

W c
2 (ξ) = −2

∫ ξ

0

F c
2 (ζ) dζ = −2(αc

1 + αc
2)
[(ξ3

4
− ξ2

2
+
ξ

4

)
γ +

(
ξ4

24
− ξ3

12
+
ξ2

24

)
νL2

l2
−

−
(
ξ3

48
− ξ2

24
+

ξ

48

)
L1

]
, 0 6 ξ 6 1,

(15)

Radial heating (αc
1 = αc

2). When Hc
1(ξ) = Hc

2(ξ) = 0, Sc
2 = Sc

4 = 0 and the flow becomes
axisymmetric. It is convenient to consider it in cylindrical coordinates (dimensionless) r, φ, ξ:

uc
j = (F c

j (ξ)r, 0,W
c
j (ξ)). Current functions Ψj(r, ξ) : F

c
j (ξ)r =

1

r
Ψjξ(r, ξ), W c

j (ξ) = −1

r
Ψjr(r, ξ)

and the mass conservation equation is fulfilled, so Ψj(r, ξ) = r2W c
j (ξ).

Remark 2. For α1 = −α2 we have F c
1 (ξ) = 0, F c

2 (ξ) = 0, W c
1 (ξ) = 0, W c

2 (ξ) = 0 and the
current will be plane parallel.

Figs. 1–3 show the results of calculations of velocity fields for the transformer oil (j = 1)-
water (j = 2) [15] system. Moreover, with l1 = l2 = 5mm, g = 9.8m/c2 we have L1 = 0.6,
L2 = 2.3 and M = 0.065a∗. Fig. 1 shows the profile of the dimensionless vertical velocity
component W c(ξ) (a) and velocity field in layers (b) at αc

1 = αc
2 = 1◦C/m2, l1 = l2 = 5mm,

g = 9.8m/c2. It can be seen that in the first layer the flow is directed in the opposite direction of
the z axis (ξ), and in the second layer the flow is directed in the direction of the z axis, as shown
in Fig. 1b. A similar situation will occur for any case. Therefore, the results of calculations will
be given below only for the vertical velocity component, since it gives an idea of the formed flows
in the layers.

In Fig. 2 and the profiles of the dimensionless vertical velocity component W c(ξ)aregiven

depending on αc
2. If αc

1 + αc
2 > 0, then a return flow occurs in the first layer (the liquid moves

– 199 –



Viktor K. Andreev Thermocapillary Convection of Immiscible Liquid . . .

Fig. 1. Dimensionless vertical velocity component W c(ξ) (a) and the velocity field (b) at
αc
1 = αc

2 = 1, l1 = l2 = 5мм, g = 9.8м/c2, a∗ = 1 ◦C/м2

in the opposite direction of the z axis), and in the second layer the flow is directed along the z
axis. If αc

1 + αc
2 < 0, then the direction of currents in the layers changes to the opposite.

In Fig. 2b shows the profiles of the dimensionless vertical component of the velocity W c(ξ)

depending on the acceleration of gravity g. It can be seen that gravity affects only the intensity
of the flow. Moreover, in the first layer, the intensity increases with the growth of g, and in
the second it decreases. So max

ξ∈[−1,0]
|W c(ξ, g = 0)| = 0.007, max

ξ∈[−1,0]
|W c(ξ, g = 9.8)| = 0.012 и

max
ξ∈[0,1]

|W c(ξ, g = 0)| = 0.007, max
ξ∈[0,1]

|W c(ξ, g = 9.8)| = 0.005.

Fig. 2. Dimensionless vertical velocity component W c(ξ) depending on αc
2(a) (αc

1 = 1, g =
9.8m/c2) and gravity acceleration g (b) (αc

1 = αc
2 = 1) at l1 = l2 = 5мм
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Fig. 3a shows the profiles of the dimensionless vertical velocity component W c(ξ) depending
on the thickness of the first layer l1. It can be seen that with a decrease in l1, the flow in the first
layer remains recurrent (only the intensity changes), and in the second layer, at l1 < 0.1mm, the
flow becomes two-vortex (a return flow occurs near a solid wall). At l1 < 10−6 mm, the flow in
the second layer becomes completely reversible.

Fig. 3b shows the profiles of the dimensionless vertical velocity component W c(ξ) depending
on the thickness of the second layer l2. It can be seen that with a decrease in l2, the inten-
sity of flows in the layers decreases. So max

ξ∈[−1,0]
|W c(ξ, l2 = 5)| − max

ξ∈[−1,0]
|W c(ξ, l2 = 0.03)| =

max
ξ∈[0,1]

|W c(ξ, l2 = 5)| − max
ξ∈[0,1]

|W c(ξ, l2 = 0.03)| ≈ 0.006.

Fig. 3. Dimensionless vertical velocity component W c(ξ) depending on l1 (l2 = 5мм)(a) and l2
(l1 = 5мм) (b) at α1 = α2 = 0.1, g = 9.8м/c2

Fig. 4 shows a dimensionless temperature field in layers at α1 = α2 (radial heating). In this
case, the temperature at the point x = 0, y = 0 is minimal. The surface tension decreases in the
direction of the axes x, y and the flow on the interface is directed in the direction opposite to
the direction of the axes x, y (Fig. 4b).

2. Unsteady convection in layers

The inverse problem (6)–(11) in Laplace images is solved in quadratures, which allows us
to obtain quantitative information about the solution. Let U(ξ, τ) be the original, τ ∈ [0,∞),
ξ ∈ [−1, 0] (or ξ ∈ [0, 1]), its Laplace transform (image) is integral

Û(ξ, s) =∈∞
0 U(ξ, τ)e−sτ dτ.

The definition and properties of the Laplace transform are described in many manuals, see for
example [14]. It is applicable to a wide class of functions, in particular, having a finite number
of discontinuity points of the first kind with respect to the variable τ .
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a) b)

Fig. 4. The dimensionless temperature field θ in coordinates r, z in layers (a) and the temperature
distribution on the interface z = 0 (b) at αc

1 = αc
2 = 1, g = 9.8м/c2

The problem for Aj(ξ, τ) in Laplace images will be written like this

Â1ξξ − sÂ1 = −A01(ξ), ξ ∈ [−1, 0],

Â2ξξ −
χ

l2
sÂ2 = − χ

l2
A02(ξ), ξ ∈ [0, 1],

Â1(0, s) = Â2(0, s), lÂ2ξ(0, s)− kÂ1ξ(0, s) = 0,

Â1(−1, s) = α̂1(s), Â2ξ(1, s) = 0.

The solution of this boundary value problem is written out without difficulty

Â1(ξ, s) =
1

∆

[(
α̂1(s) +

1√
s

∫ 0

−1

A01(ξ) sh
√
s(1 + ξ) dξ

)(
ch

√
sχ

l2
ch

√
sξ−

−
√
χ

k
sh

√
sχ

l2
sh

√
sξ
)
− χ

kl
√
s
sh[

√
s(1 + ξ)]

∫ 1

0

A02(ξ) ch

√
sχ

l2
(1− ξ) dξ

]
−

− 1√
s

∫ ξ

0

A01(ζ) sh
√
s(ξ − ζ) dζ,

Â2(ξ, s) =
1

∆

[(
α̂1(s) +

1√
s

∫ 0

−1

A01(ξ) sh
√
s(1 + ξ) dξ

)
ch

√
sχ

l2
(ξ − 1)+

+

√
χ

l2s

(
sh

√
sχ

l2
ξ ch

√
s+

√
χ

k
sh

√
s ch

√
sχ

l2
ξ
)∫ 1

0

A02(ξ) ch

√
sχ

l2
(1− ξ) dξ

]
−

−
√

χ

l2s

∫ ξ

0

A02(ζ) sh

√
sχ

l2
(ξ − ζ) dζ,

∆ = ch

√
sχ

l2
ch

√
s+

√
χ

k
sh

√
sχ

l2
sh

√
s.

(16)

The Laplace transform B̂1(ξ, s), B̂2(ξ, s) is defined by the formulas (16) with the replacement of
α̂1(s) and A0j(ξ) by α̂2(s) and B0j(ξ), j = 1, 2 respectively. As for the functions Q̂j(ξ, s), they
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are from (16) with the replacement of A01(ξ) and A02(ξ) by Q01(ξ)− 2d(Â1(ξ, s)+ B̂1(ξ, s)) and[
χQ20(ξ)− 2d(Â2(ξ, s) + B̂2(ξ, s))

]
/l2 respectively.

Inverse problem for functions F̂j(ξ, s), Ŝ1(s), Ŝ2(s) has the form

F̂1ξξ −
s

P1
F̂1 =

1

P1
Ŝ1(s) + L1Ψ̂1(ξ, s)−

1

P1
F01(ξ), ξ ∈ [−1, 0],

F̂2ξξ −
sχ

P2l2
F̂2 =

χ

P2l2
Ŝ3(s) +

ν

l2
L2Ψ̂2(ξ, s)−

χ

P2l2
F02(ξ), ξ ∈ [0, 1],

F̂1(−1, s) = 0, F̂2(1, s) = 0, F̂1(0, s) = F̂2(0, s),

µF̂1ξ(0, s)− lF̂2ξ(0, s) = −µΨ̂1ξ(0, s),∫ 0

−1

F̂1(ξ, s) dξ = 0,

∫ 1

0

F̂2(ξ, s) dξ = 0,

(17)

where the functions Ψ̂j are given by formulas Ψ̂j =
ξ∫
0

(Âj(ξ, s)+ B̂j(ξ, s)) dξ with already known

Âj , B̂j , j = 1, 2. After some transformations, we find a solution to the problem (17):

F̂1(ξ, s) = − Ŝ1

s
+D1 sh

√
s

P1
ξ +D2 ch

√
s

P1
ξ+

+

√
P1

s

∫ ξ

0

[
L1Ψ̂1(ζ, s)−

1

P1
F01(ζ)

]
sh

√
s

P1
(ξ − ζ) dζ, ξ ∈ [−1, 0],

F̂2(ξ, s)= − Ŝ3

s
+D3 shβξ +D4 chβξ +

1

β

∫ ξ

0

[ ν
l2
L2Ψ̂2(ζ, s)−

χ

P2l2
F02(ζ)

]
shβ(ξ − ζ) dζ,

ξ ∈ [−1, 0], β =

√
χs

P2l2
,

(18)

Ŝ1=−sD1 sh

√
s

P1
+sD2 ch

√
s

P1
+
√

P1s

∫ 0

−1

[
L1Ψ̂1(ξ, s)−

1

P1
F01(ξ)

]
sh

√
s

P1
(1 + ξ) dξ,

Ŝ3 = sD3 shβ + sD4 chβ +
s

β

∫ 1

0

[ ν
l2
L2Ψ̂2(ξ, s)−

χ

P2l2
F02(ξ)

]
shβ(1− ξ) dξ.

(19)

The values Di(s), i = 1, 4 are determined from the boundary conditions (7)–(9), (11), they have
a bulky appearance and are not listed here.

The solution of the inverse problem for Ĥ1, Ĥ2, Ŝ2, Ŝ4 is determined by the formulas (18),
(19) with obvious substitutions of F01(ξ), F02(ξ) and Ψ̂1, Ψ̂2 by H01(ξ), H02(ξ) and Ψ̂3 =

=
ξ∫
0

(Â1(ξ, s)− B̂1(ξ, s)) dξ, Ψ̂4 =
ξ∫
0

(Â2(ξ, s)− B̂2(ξ, s)) dξ respectively.

Let there be limits lim
τ→∞

ᾱj(τ) = αc
j , j = 1, 2, 3. Then [9] lim

s→0
s ˆ̄αj(s) = αc

j . Using the

asymptotic equalities shx = x+x3/3+O(x5), chx = 1+x2/2+O(x4), x→ 0 and the obtained
formulas (16), (18), (19), it can be proved that

lim
τ→∞

Aj(ξ, τ) = lim
s→0

sÂj(ξ, s) = αc
1, lim

τ→∞
Bj(ξ, τ) = lim

s→0
sB̂j(ξ, s) = αc

2,

lim
τ→∞

Fj(ξ, τ) = lim
s→0

sF̂j(ξ, s) = F c
j (ξ), lim

τ→∞
Hj(ξ, τ) = lim

s→0
sĤj(ξ, s) = Hc

j (ξ),

lim
τ→∞

Qj(ξ, τ) = lim
s→0

sQ̂j(ξ, s) = Qc
j(ξ), lim

τ→∞
Si(τ) = lim

s→0
sŜi(s) = Sc

i , j = 1, 2, i = 1, 4,

which confirms the theoretical conclusions.
Fig. 5 shows, for example, dimensionless velocity profiles W (ξ, τ) (Fig. 5a) for the case when
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ᾱ1(τ) = ᾱ2(τ) =

{
ε1 sin ε2τ при 0 6 τ 6 τ1;

αc
1 + e−ε3τ при τ > τ1

and ε1 = 1.5, ε2 = 0.1, ε3 = 0.02, τ1 = 68. At 0 < τ 6 68, the temperature gradients on the
lower wall change their sign, and at τ > 68 they reach a constant value of αc

1 = αc
2 = 1 (Fig. 5 b).

With τ = 20, the real time is t ≈ 3500with.

a) b)

Fig. 5. Vertical component of the velocity vector W (ξ, τ) (a) and temperature gradients ᾱj(τ) (b)

Conclusion

A linear model describing slow two-layer convection in a 3D layer is constructed. It takes into
account both the influence of thermocapillary forces and the change in buoyancy forces in the
layers. From a mathematical point of view, the resulting initial-boundary value problem is the
inverse. It’s stationary solution has been found, which makes it possible to trace the influence of
dimensionless parameters on the structure of flows in layers. The solution of the non-stationary
problem is obtained in Laplace images in the form of quadratures. It is proved that if the set
temperature on the lower wall stabilizes with time, then the non-stationary solution goes to a
stationary mode with increasing time. Which means it’s stability.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation in the framework of the establishment
and development of regional Centers for Mathematics Research and Education (Agreement No.
075–02–2023–912).
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Термокапиллярная конвекция несмешивающихся
жидкостей в трехмерном слое при малых числах
Марангони

Виктор К. Андреев
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация

Аннотация. Изучается совместная конвекция двух вязких теплопроводных жидкостей в трёх-
мерном слое, ограниченном твердыми плоскими стенками. Верхняя стенка теплоизолирована, а
на нижней стенке задано нестационарное поле температур. Жидкости предполагаются несмеши-
вающимися, и на плоской границе раздела между ними заданы сложные условия сопряжения.
Эволюция этой системы описывается уравнениями Обербека-Буссинеска в каждой жидкости. Ре-
шение указанной задачи ищется в классе полей скоростей, линейных по двум координатам, а поля
температур — квадратичные функции тех же координат. В этом случае задача редуцируется к
системе 10-ти нелинейных интегродифференциальных уравнений. Она является сопряженной и
обратной относительно 4-х функций времени. Для их нахождения ставятся интегральные условия
переопределения, имеющие ясный физический смысл — замкнутость потока. Поставленная обрат-
ная начально-краевая задача описывает конвекцию в двухслойной системе, возникающую вблизи
точки экстремума температуры на нижней твердой стенке. При малых числах Марангони зада-
ча аппроксимируется линейной (число Марангони играет роль числа Рейнольдса для уравнений
Навье-Стокса). Найдено стационарное решение этой задачи. Линейная нестационарная задача ре-
шена методом преобразования Лапласа, причем температура может иметь разрывы 1-го рода —
изменяться скачком. В образах по Лапласу решение получено в квадратурах. Доказано, что с
ростом времени оно выходит на стационарный режим, если температура на нижней стенке ста-
билизируется со временем. С помощью численного обращения преобразования Лапласа изучена
эволюция поведения поля скоростей в системе трансформаторное масло – вода.

Ключевые слова: уравнения Обербека-Буссинеска, поверхность раздела, число Марангони, тер-
мокапиллярность, обратная задача, преобразование Лапласа.
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Abstract. Characteristics of steady-state convective flows of a liquid and a co-current gas flux under
the conditions of inhomogeneous evaporation of the diffusive type in a flat horizontal channel are studied.
A partially-invariant exact solution of equations of the thermosolutal convection is used to describe the
flows within the framework of the Oberbeck – Boussinesq approximation. It is derived as the solution
of the evaporative convection problem with the Dirichlet boundary conditions on the outer channel
walls. The influence of the external thermal load on the structure of the velocity and temperature fields,
evaporation mass flow rate and vapor content in the gas layer was investigated in the HFE-7100 – nitrogen
system.
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Introduction

Traditional approach to describe the evaporative convection in two-phase systems is based
on the use of the Navier–Stokes equations (or their approximations) supplemented by the heat
transfer and molecular transport equations [1]. The set of governing relations for determining
kinematic, temperature and concentration characteristics presents the thermosolutal convection
equations. Due to the group properties the system of equation admits a partially invariant so-
lution belonging to the Birikh class [2, 3]. Such type of solutions can be used for describing
the evaporative convection in a bilayer liquid – gas system with a sharp interface in plane chan-
nels with solid impermeable walls in the frame of the two-sided approach [1]. Various well-posed
statements of the boundary value problems for the thermosolutal convection equations were anal-
ysed [4, 5]. It was shown that the use of the Dirichlet boundary conditions for all the required
functions on the external boundaries of the flow domain allows one to derive the informative
Birikh type exact solution. It correctly takes into account the impact of the thermocapillary
and thermodiffusion effects, non-uniform character of diffusion-limited evaporation on the phase
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boundary as well as the influence of the thermal load applied on the channel walls. It should be
noted that non-constant evaporation rate along the liquid surface was fixed in physical experi-
ments [6]. In the present paper, the mentioned above solution of the Dirichlet problem is used to
study characteristics of gas sheared liquid flows in a horizontal channel under various intensity of
the external thermal load. Applicability conditions of the exact solution to model steady-state
convective flows of a liquid and a co-current gas flux are specified.

1. Statement of the problem and anzatz of solution

Let us consider the combined convection in a system of two viscous heat-conducting in-
compressible fluids (liquid and gas-vapour mixture) in a flat horizontal mini-channel with solid
impermeable walls y = −l and y = h (Fig. 1). The two-phase system is in the terrestrial con-
ditions with the vector of the gravity force acceleration g = (0, −g), g = 9.81 m/s2. Basic
characteristics of this system are the velocity vi, temperature Ti, pressure pi of both media, and
vapour concentration C in the gas. Here and below, the subscript or superscript i = 1 and i = 2

corresponds to the characteristics of the fluids in the lower and upper layers, respectively.

Fig. 1. The sketch of a two-phase system in the Cartesian coordinates

When posing the problem, the following assumptions are supposed to be satisfied.
(i) Surface between the liquid and gas phases is the thermocapillary interface Γ enabling

the mass transfer due to evaporation/condensation. Only diffusive type evaporation occurs, and
convective mass transfer through Γ is not considered. Here, the surface remains in the non-
deformed state y = 0. The tangential forces, induced by the thermocapillary effect and shear
stresses due to the gas pumping, act on Γ. The surface tension of the phase boundary is specified
by the function σ = σ0 − σT (T − T0), where σ0, T0 are the characteristic values of the surface
tension and liquid temperature, respectively, σT is the temperature coefficient of surface tension.

(ii) The liquid volatilizes across the interface at a rate M so that the mixture of the carrier
gas and liquid vapour fills the upper layer. Vapour is considered as a passive admixture. The
Soret and Dufour effects appear in the gas phase due to presence of the volatile component.

(iii) The reference values T0, p0, C0 characterize the thermodynamic equilibrium state of the
two-phase system. The ground state of the system described by the above-mentioned basic func-
tions is close to the thermodynamic equilibrium state or slightly deviates from it, i.e., convection
under the Boussinesq conditions is considered.

(iv) Thermal load distributed according to the linear law with respect to the longitudinal
coordinate is applied on channel walls.
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Basic factors governing regimes of convective flows in the strip confined by fixed walls are the
buoyancy force, the Marangoni effect, gas pumping and linear heating of the outer boundaries.
To describe the stationary flows of each medium the Navier – Stokes equations in the Oberbeck –
Boussinesq approximation are used:
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The vapour transfer in the background gas is governed by the convection-diffusion equation
[7]:

u
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. (1.2)

Terms γC and δ∆C in the momentum and energy transport equations, respectively, as well as
equation (1.2) are taken into account to model the flow in the upper gas layer only. The following
notations are used: u, v are the projections of the velocity vector v on the Ox and Oy axes, p is
the modified pressure, ρ0 is the average fluid density, ν is the coefficient of kinematic viscosity,
β is the thermal expansion coefficient, γ is the coefficient of concentration expansion, χ is the
coefficient of heat diffusivity, D is the coefficient of vapour diffusion in the gas, and the coefficients
δ and α characterize the diffusive thermal effect and the thermodiffusion effect in the gas-vapour
layer, correspondingly. It is worth noting that within the frame of the Oberbeck –Boussinesq
approximation function p describes deviation of the physical (true) fluid pressure P from the
hydrostatic one. Taking into account the hydrostatic component and equilibrium characteristics
of each fluid, one can obtain pi = Pi− ρ̃ig ·x. Here, ρ̃1 = ρ01(1+β1T0), ρ2 = ρ02(1+β2T0+γC0).

System of equations (1.1), (1.2) admits a stationary exact solution of the form

ui = ui(y), vi = 0, Ti = Ti(x, y) = (ai1 + ai2y)x+ ϑi(y),

C = C(x, y) = (b1 + b2y)x+ ϕ(y), pi = pi(x, y).
(1.3)

Here, aij , bj (j = 1, 2) are parameters of the solution. They satisfy some compatibility relations
dictated by the boundary conditions. Solution (1.3) as the solution of an evaporative convection
problem was first proposed in [8]. Its treatment as the partially invariant exact solution of rank
1 and defect 3 was given in [2]. Below, conditions on the outer boundaries y = −l and y = h

and on the internal interface y = 0 are formulated with regard to the solution form.
The Dirichlet boundary conditions are set on the channel walls for all required functions:

y = −l, u1 = 0, T1 = A1x+ ϑ1,

y = h : u2 = 0, T2 = A2x+ ϑ2, C = 0.
(1.4)

Here, Ai are given constant longitudinal temperature gradients that determines intensity and
type (heating or cooling) of the thermal load applied on the walls, ϑ1, ϑ2 are constants setting
an average temperature of the wall. In the general case when ϑ1 ̸= ϑ2, the transverse temperature
drop is formed in the channel. Then, temperature field in the entire flow domain is characterized
by resulting non-uniform gradient with respect to y. Relations for velocity functions present the
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no-slip conditions. If vapour concentration is equal to zero then it is interpreted as the condition
of full vapour absorption on the upper wall. For the first time this condition was considered in [8].
Later, it was tested in analogical problem within the frame of three-dimensional statement [9].
The comparison of modelling results with experimental data showed that the use of such type of
condition allowed one to describe the influence of edge effects. The effects presents as significant
growth of evaporation rate near the three-phase contact line [10]. Condition C = 0 can be
realized in experiments by the vapour freezing.

The following conditions are to be satisfied on the common internal boundary Γ

y = 0 : ρ1ν1
du1
dy

= ρ2ν2
du2
dy

− σT
∂T1
∂x

, p1 = p2,

κ1
∂T1
∂y

− κ2
∂T2
∂y

− δκ2
∂C

∂y
= −LM,

u1 = u2 = uΓ, T1 = T2 = TΓ, C = C0[1 + ε(T2 − T0)].

(1.5)

The first two expressions present projections of the dynamic condition on the unit tangential
and normal vectors to Γ. The third condition is the heat balance relation when transfer through
the interface takes place. The fourth and fifth equalities set the continuity conditions for the
velocity and temperature. The last relation gives the concentration of saturated vapour. Taking
into account the solution form and assumption on the diffusive character of evaporation, the
kinematic condition is satisfied identically. The following notations are used in (1.5): κ is the
heat conductivity coefficient, L is the latent heat of vaporization, uΓ and TΓ are common values
of velocity and temperature on the interface, respectively, ε = Lµ/(RT 2

0 ), µ is the molar mass
of evaporating liquid, and R is the universal gas constant. The mass balance condition is used
to evaluate evaporation rate M . In the present paper, the case when M is not constant is
considered. It varies along the channel according to the linear law

M = −Dρ2
(∂C
∂y

+ α
∂T2
∂y

)
, M =M(x) =M0 +Mxx. (1.6)

Positive values of M refer to evaporation of the liquid into the gas flux, and negative ones
correspond to vapour condensation.

Additional condition that defines the gas flow rate in the upper layer closes the problem
statement:

Q =

∫ h

0

ρ2u2(y) dy. (1.7)

Explicit expressions for all required functions derived in the frame of the problem statement
under consideration are presented in [4]. Therein, the physical interpretation of exact solution
(1.3) is given, and the domain of its applicability for describing two-phase flows in real physical
systems is discussed. Complete analysis of the applicability conditions of this solution for all
possible problem statement was carried out [5].

It should be noted that solution (1.3) can be derived without using any assumption about
shape of the interface. The second equality in (1.5) can be considered as the first term of the
expansion of the dynamical condition for the normal stresses with respect to small capillary num-
ber Ca. The structure of the exact solution dictates the rectilinear shape of the interface within
the framework of the problem statement under study when the leading term of the expansion
leads to zero mean curvature of the interface (for details see [9]). Experimental possibility to
maintain the plane form of the phase boundary of an evaporating liquid layer blown by a gas
flux was described in [11].
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2. Calculation of the solution parameters characterizing
temperature, evaporation rate and vapour content

Substituting required functions (1.3) in governing equations (1.1), (1.2), functional repre-
sentations for velocity uj , temperature Tj , pressure pj and concentration C can be we found
(see [4]). Constants M0 and Mx that determine evaporation rate as well as solution parameters
aij , bj satisfy relations based on the boundary conditions.

First of all parameters a11 and a21 are equal to each other, ai1 = A as it follows from the con-
tinuity condition for the temperature on the phase boundary. Therefore, temperature functions
in the layers take the form Ti = (A + ai2y)x + ϑi(y). Here, A is the longitudinal temperature
gradient on Γ that determines the intensity of the thermocapillary convection and evaporation
process.

Conditions of linear temperature distribution on the rigid channel walls y = −l and y = h

result in the following relations for ai2: a12 = (A−A1)l
−1, a22 = (A2 −A)h−1.

Taking into account the condition of zero vapour concentration on the upper wall y = h, one
can obtain the following equality that relates parameter b1 to parameter b2: b1 + b2h = 0. The
Clapeyron – Clausius equation in the linearised form gives the saturated vapour concentration on
Γ (the last condition in (1.5)). The consequence of this equation entails relationship b1 = C0εA.
Then, b2 = C0εA/h.

Further, the gradient of evaporative mass flow rate Mx can be directly calculated with the
help of mass balance condition (1.6):

Mx = −Dρ2
(
b2 + αa22

)
= −Dρ2h−1

(
−A(C0ε− α) + αA2

)
, (2.1)

whereas the relation forM0 that defines the average value of evaporation rate contains integration
constants included in expressions for temperature and concentration functions.

Using the heat transfer condition at the interface and expression (2.1), the following relation-
ship between a12 and a22 is obtained

a22 = Ka12 + K̄Mx, K =
κ1

κ2(1− αδ)
, K̄ =

Dρ2λ+ δκ2
Dρ2κ2(1− αδ)

.

Since a12, a22 and Mx depend on A, A1, A2, condition on constraint is

A2

(
1 + αDρ2K̄

)
= A

(
1 + hl−1K + (C0ε+ α)Dρ2K̄

)
−A1hl

−1K. (2.2)

Expression (2.2) establishes relation between longitudinal temperature gradients A, A1 and
A2 on system boundaries. Two coefficients defining temperature gradients are prescribed arbi-
trarily; the third one is found according to (2.2). One should note that in a real physical system
evaporation results in cooling of the liquid surface and formation of longitudinal temperature
gradient at the interface. Thus, this gradient can be evaluated on the basis of the exact solu-
tion. According to (2.2), interfacial temperature gradient A depends on boundary gradients Ai,
geometric parameters of the system and physical parameters of the fluids.

In view of the form of the exact solution, the vapour concentration function increases with
x. Since function C is treated as mass fraction of the volatile component in the gas phase, it
has a physical meaning only if its values belong to the interval [0; 1]. The extent of the flow
domain Lh where C takes on feasible values can be determined in the terms of input data of
the problem. According to the last condition in (1.5), changes in vapour content along the
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longitudinal coordinate x can be evaluated as follows: C ∼ C0(1 + εAx). Then, the length Lh

can be evaluated as follows Lh 6 (1− C0)/εAC0.
Below, the obtained solution of the Dirichlet problem is used to study the influence of the

applied thermal load on the characteristics of flow regimes in two-phase systems.

3. Characteristics of convective regimes with
non-uniform evaporation

********************************************************************* Let us con-
sider the bilayer system with HFE-7100 liquid and nitrogen gas as working media. Physical
parameters of fluids are given in the order {HFE-7100, nitrogen} or only for one of the media:
ρ = {1.5 · 103, 1.2} kg/m3; ν = {0.38 · 10−6, 0.15 · 10−4} m2/s; β = {1.8 · 10−3, 3.67 · 10−3}
K−1; χ = {0.4 · 10−7, 0.3 · 10−4} m2/s; κ = {0.07, 0.027} W/(m·K), σT = 1.14 · 10−4 N/(m·K),
γ = −0.5, D = 0.7 · 10−5 m2/s, α = 5 · 10−3 K−1, δ = 10−5 K, L = 1.11 · 105 W·s/kg. The
equilibrium characteristics of the bilayer system are C0 = 0.45, T0 = 293.15 K; here, ε = 0.04

K−1, µ = 0.25 kg/mol.
Velocity and temperature fields in the system, vapour content in the gas layer and evaporation

rate that depend on the character and intensity of the thermal load applied on the external
boundaries of the flow domain are analysed. Parameters defining the external thermal action are
the longitudinal temperature gradients A1, A2 and ϑ1, ϑ2 (see (1.4)). Relation (2.2) is used to
evaluate the interface gradient A at various boundary gradients Ai. Values of Ai vary from −10

to 10 K/m, and ϑ1, ϑ2 are equal to 293.15 K unless otherwise specified. If Ai < 0 (Ai > 0) then
the channel wall is cooled (heated) in the direction of the longitudinal axes. For the working
media used and heating conditions under consideration, the length Lh should be within 0.4 m.
The thickness of the liquid layer l = 0.0025 m, the thickness of the gas layer h = 0.005 m and
gas flow rate Q = 9.6 · 10−6 kg/(m2·s) are fixed for all cases under consideration.

Influence of the longitudinal temperature gradient. One of the important factors that defines
the pattern of the arising convective regime is the interface temperature gradient A. It is this
parameter which governs the intensity of the surface tension-driven convection. Considering
data listed in Tabs. 1, 2, one can conclude that interfacial gradient A and other parameters of
the system are more sensitive to variations of boundary gradient A1 then variations of A2. In
the tables, △T denotes the temperature drop in the whole system, Tmax and |u|max are the
maximum values of the temperature and the absolut value of velocity in the system, respectively,
Cmax is the maximum value of the vapour concentration in the gas layer. In all considered cases
the solution predicts relative variations of the temperature and deviations of maximum values of
the vapour concentration from the equilibrium values T0, C0 retained within 15% which can be
considered to be moderate ones.

Significant alterations in flow topology and thermal field occur with the change in Ai. When
analysing basic characteristics of convective regimes, the Napolitano classification of flow types
is used in the two-layer systems on the basis of the flow topology [12]. Three basic classes are
distinguished: mixed type flows (MF), Poiseuille-type regimes (PF) and pure thermocapillary
flows (TKF). Additionally, subclasses of MF and PF that are specific to two-phase systems with
evaporation are considered. Detailed description of specific features and mechanisms causing
all possible flow regimes as well as examples of velocity, temperature and vapour concentration
fields for each mode can be found in [5]. The first form of mixed type flows (MF-1) is defined
by the specific “negative lamination” of the velocity contour near the liquid – gas boundary and
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Table 1. Parameters of the two-phase system at fixed A2 = 5 K/m for different values of A1

A1, A, △T , Tmax, Cmax |u|max×, M0 · 104, Mx · 104,
K/m K/m K K ×10−3, m/s kg/(m2·s) kg/(m·s)
−10 −6.596 1.628 293.15 0.4216 2.423 6.9407 −2.909
−5 −2.875 2.097 293.15 0.4134 2.171 6.7669 −1.5049
0 0.846 2.23 293.15 0.4111 2.428 6.7193 −0.1008
5 4.567 2.024 293.15 0.4147 2.78 6.798 1.3034
10 8.289 1.482 293.15 0.4241 3.164 7.0028 2.7075

Table 2. Parameters of the two-phase system at fixed A1 = 5 K/m for different values of A2

A2, A, △T , Tmax, Cmax |u|max×, M0 · 104, Mx · 104,
K/m K/m K K ×10−3, m/s kg/(m2·s) kg/(m·s)
−10 2.029 2.204 293.15 0.4115 2.51 6.7295 1.6056
−5 2.875 2.158 293.15 0.4123 2.598 6.7468 1.5049
0 3.721 2.098 293.15 0.4134 2.688 6.7697 1.4041
5 4.567 2.024 293.15 0.4147 2.78 6.798 1.3034
10 5.413 1.935 293.15 0.4162 2.873 6.8317 1.2026

formation of near-surface reverse flow (Fig. 2(a–c)). The second type mixed flow (MF-2) is
characterized by the "positive stratification" of the velocity profile along the interface. Here,
the longitudinal velocity component is positive in both fluids (Fig. 2(d–f)). Mixed flows of the
third type (MF-3) have the velocity field similar to the Couette structure in one of the layers
(Fig. 2(g–i)) or concurrently in both layers. It was found that all three classes of mixed type
flows could be realized in the system under considered conditions.

In the general case, three subclasses of flows among the Poiseuille-type regimes were identified
[5]. However, in the considered range of boundary gradients Ai, one can observe only flows with
the velocity distribution close to the parabolic one through the whole height of the channel or
simultaneously in both phases, where the longitudinal velocity component is positive everywhere.
Such a flow regime presents the PF-1 regime (Fig. 3(a–c)). Finally, pure thermocapillary flows
(TKF, Fig. 3(d–f)) which are characterized by global liquid counterflow can be also realized
in the two-phase system under conditions of temperature pumping with gradients Ai from the
specified range. Several consecutive transitions from one type of flows to another can occur with
an increase in Ai from −10 to 10 K/m. Topological regimes arising in the bilayer system under
study are specified on the map of flow regimes in Fig. 4(a) according to the given classification.
Along with the topology of the flow, the intensity of the motion also varies. It is characterized
by maximum values of the modulus of velocity |u| (see Tabs. 1, 2) and it can be varied by more
than 40%. As previously mentioned, the system is less sensitive to variations in A2. When A2 is
changed from −10 K/m to 10 K/m, a smaller number of successive transitions between regimes
is observed in comparison with corresponding variations in A1. The intensity of the flow slightly
responds to changes in the thermal load caused by variations in A2 (compare values of |u|max in
Tabs. 1 and 2). One should note that all three basic types of flows are observed in real systems
with evaporating liquid driven by the co-current gas flux [13].

The change of intensity of temperature driving forces leads not only to transformation of the
velocity field but also to alteration of the thermal picture. The solution predicts formation of the
non-uniform temperature gradient in the vertical direction for all observed convective regimes.
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Fig. 2. Velocity (a, d, g), temperature (b, e, h) and vapour concentration (c, f, i) fields for mixed
type flows: MF-1, A1 = 5 K/m, A2 = −10 K/m (a–c); MF-2, A1 = −10 K/m, A2 = 10 K/m
(d–f); MF-3, A1 = 0 K/m, A2 = −10 K/m (g–i)

Two typical thermal patterns with a substantial "cold" zone on both sides of the phase boundary
(CNsZ) and with a cold thermocline along the interface (CThI) can emerge. The regimes with
the cool near-surface zone (CNsZ) are characterized by unstable temperature stratification of
the entire liquid layer. In this case, the gas layer is steadily stratified (Figs. 2(b, e, h), 3(b)). The
evaporation effect prevails over the thermocapillary effect in these modes. Formation of the dis-
tinctive cold thermocline on the interface (CThI) is caused by the competition of the Marangoni
effect which gives rise to the thermocapillary motion of the liquid from the region with higher
temperature into the cool domain along the interface with the evaporation process resulting in
cooling of the liquid surface (Fig. 3(e)). The possibility of formation of convective modes with
the cool boundary layer near the liquid surface in the two-layer systems with evaporation was
confirmed in experiments [14]. Figure 4(b) presents a "map" of thermal regimes that depend on
the longitudinal temperature gradients Ai.

The pattern of the vapour concentration field in the gas layer remains the same for all con-
sidered cases (see distributions of the vapour concentration functions in Figs. 2, 3). The vapour
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Fig. 3. Velocity (a, d), temperature (b, e) and vapour concentration (c, f) fields: PF-1,
A1 = −5 K/m, A2 = 0 K/m (a–c); TKF, A1 = A2 = 10 K/m (d–f)

Fig. 4. Maps of flow regimes (a) and temperature patterns (b) in the HFE-7100–nitrogen system
subjected to external thermal load: (a) — ◦ – MF-1, • – MF-2, ⊗ – MF-3, � – PF-1, ♢ – TKF;
(b) — ⋆ – regime with CNsZ, ∗ –regime with CThI

content is close to the concentration of saturated vapour C0 near the interface, and it varies
here depending on changes in the interfacial temperature gradient A whereas near the upper
wall the values of C drop to zero. The behaviour of the vapour concentration function is caused
by changes in the evaporation mass flow rate M which significantly depends on temperature
characteristics of the interface. Since temperature gradient A is more sensitive to variations of
the thermal load applied to the substrate then similar behaviour is inherent to M (compare the
variation range for M0, Mx in Tabs. 1, 2 and the character of their relation with changes in A
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related to changes in boundary temperature gradients Ai presented in Fig. 5). If Mx is negative
then the evaporation rate M decreases along the channel and the vapour concentration in the gas
diminishes (Tab. 1). The higher is the temperature, the higher is the saturation pressure on the
gas side of the phase interface. Therefore, more liquid evaporates at the same gas pressure. If the
surface tension-driven motion is co-directional with the gas flow then evaporation is induced by
both the thermal load and the effect associated with the shear stress. The gas flux encourages the
vapour motion in the gas. It results in higher concentration gradient at the liquid – gas interface
and ensures higher evaporation rate.

Fig. 5. Relationship between parameters M0 (dashed lines) and Mx (solid curves) and interface
temperature gradient with changes in A1 (a) and A2 (b): A2 = 20 K/m; A1 = 20 K/m

Thus, one can exert control over the evaporation rate and flow regimes with the intensity of
thermal pumping defined by boundary gradients Ai. If it is necessary to retain the given tem-
perature head on one of the walls then one can maintain acceptable variations of the evaporation
rate by means of the thermal regime on other wall and forecast potential changes in the vapour
content.

Influence of the vertical temperature gradient. The structure of the thermal field can be
considerably transformed with conditions of thermal load with non-zero gradients Ai and various
ϑ1 and ϑ2. It depends on the value and orientation of the resulting temperature gradient. Since
the system behaviour is more responsive to variations of the thermal load applied on the substrate
the influence of the vertical temperature drop on the bilayer flow characteristics is investigated
when parameter ϑ1 varies from 288.15 to 298.15 K. Formation of regimes with stable (Fig. 6(b))
and unstable (Fig. 6(e)) temperature stratification is studied in the transverse direction of the
whole system. One should note that solution predicts only reconstruction of the thermal field
whereas the velocity profile is not transformed with the changes in ϑ1. According to (2.2) and
(1.6), both interface temperature gradient A and gradient Mx defining the variation rate of M
along the longitudinal axes do not depend on ϑ1. It remains the same for corresponding fixed
values of Ai for all vertical temperature drops (quantitative characteristics for configurations
under consideration are exemplified in Tab. 3). It is regarded as a imperfection of solution
(1.3) as in this case the exact solution does not reflect the impact of the Marangoni effect.
One can conclude that the presence of non-zero transverse temperature drop does not lead to
the formation of topologically new classes of flows that differ from those described earlier and
presented in Figs. 2, 3.
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Table 3. Parameters of the two-phase system at A1 = −5 K/m, A2 = 5 K/m with changes in ϑ1

ϑ1, △T , Tmax, Cmax |u|max×, M0 · 104, Mx · 104,
K K K ×10−3, m/s kg/(m2·s) kg/(m·s)
288.15 5.818 293.15 0.3484 2.171 5.3628 −1.5049
293.15 2.097 293.15 0.4134 2.171 6.7669 −1.5049
298.15 5 298.15 0.4784 2.171 8.171 −1.5049

Fig. 6. Velocity (a, d), temperature (b, e) and vapour concentration (c, f) fields in the bilayer
system at A1 = 5 K/m, A2 = 10 K/m for ϑ1 = 288.15 K (a–c) and ϑ1 = 298.15 K (d–f)

Despite the mentioned above defect this solution feasibly describes the qualitative interrela-
tion of the variations of the evaporative mass flow rate and the vapour content in the gas with
changes in the vertical temperature drop. The growth of deviation of the liquid temperature from
the equilibrium value T0 and significant deviation of vapour concentration in the gas phase from
C0 with an increase in the transverse temperature drop is observed. If ϑ1 < T0 then the vapour
content in the gas drops. The lower is the temperature of the liquid the lower is the average
kinetic energy of the liquid volume and, therefore, the smaller is the quantity of the volatilizing
fluid. Along with this, the lower is the vapour concentration in the background gas, the faster is
the volatilization from the liquid phase [15]. With the rising temperature the average kinetic en-
ergy of the liquid volume increases. Therefore, vapour concentration C also grows accompanied
by the inhibition of growth of the vaporization rate M . If ϑ1 > T0 then the maximum vapour
concentration is above the equilibrium concentration C0. The solution precisely specifies this
relationship between evaporation rate and characteristics of the vapour content in the gas phase
and temperature drop in the whole system. Thus, the qualitative behaviour of evaporation char-
acteristics that depends on the transverse temperature drop in the bilayer system is adequately
described by the exact solution under study.

The applicability of solution (1.3) that describes characteristics of the bilayer system with the
transverse temperature drop is limited by values of ϑ1 and ϑ2 providing moderate deviations of
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Cmax from C0, namely, no more than 20–25%. For the considered two-layer system the transverse
temperature drop should be within 10 degrees, where the average temperature of duct walls ϑ1
and ϑ2 have to be close to the temperature of the local thermodynamic equilibrium T0.

The work of O.N.Goncharova was carried out in accordance with the State Assignment of the
Russian Ministry of Science and Higher Education entitled "Modern methods of hydrodynamics
for environmental management, industrial systems and polar mechanics" (Government contract
code FZMW-2020-0008).
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Об одном точном решении задачи испарительной
конвекции с граничными условиями Дирихле

Виктория Б. Бекежанова
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация
Ольга Н. Гончарова

Алтайский государственный университет
Барнаул, Российская Федерация

Аннотация. Изучаются характеристики стационарных конвективных течений жидкости и спут-
ного потока газа в плоском горизонтальном канале в условиях неоднородного испарения диффу-
зионного типа. Для описания течений в рамках приближения Обербека – Буссинеска используется
частично-инвариантное точное решение уравнений термоконцентрационной конвекции, получен-
ное как решение задачи испарительной конвекции с граничными условиями Дирихле на внешних
стенках канала. На примере системы сред HFE-7100 – азот исследовано влияние внешней тепловой
нагрузки на структуру полей скорости и температуры, массовый расход испарения и паросодер-
жание в газе.

Ключевые слова: математическая модель, краевая задача, точное решение, испарительная кон-
векция.
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Abstract. Consider the critical Galton-Watson branching system with infinite variance of the offspring
law. We provide an alternative arguments against what Slack [9] did when it seeked for a local expression
in the neighborhood of point 1 of the generating function for invariant measures of the branching system.
So, we obtain the global expression for all s ∈ [0, 1) of this generating function. A fundamentally
improved version of the differential analogue of the basic Lemma of the theory of critical branching
systems is established. This assertion plays a key role in the formulation of the local limit theorem with
explicit terms in the asymptotic expansion of local probabilities. We also determine the decay rate of
the remainder term in this expansion.

Keywords: Galton–Watson branching system, generating functions, slow variation, basic lemma, tran-
sition probabilities, invariant measures, limit theorems, convergence rate.
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1. Background, assumptions and purpose

Let Zn be the population size in the Galton–Watson Branching (GWB) System at time
n ∈ N0, where N0 = {0} ∪ N and N = {1, 2, . . .}. An evolution of the system will occur by
the following scheme. Each individual lives a unit lifespan and at the end of his life produces
j progeny with probability pj , j ∈ N0, independently of each other at that p0 > 0. Newborn
individuals subsequently undergo reproduction obeying the offspring law {pj}. The population
sizes sequence can be represented by the following recurrent random sum of random variables:

Zn+1 = ξn1 + ξn2 + · · ·+ ξnZn (1.1)

for any n ∈ N, where ξnk are independent random variables with the common distribution
P {ξnk = j} = pj for all k ∈ N. These variables are interpreted as the number of descendants
of the kth individual in the nth generation. The GWB system defined above forms a reducible,
homogeneous-discrete-time Markov chain with a state space consisting of two classes: S0 =
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c⃝ Siberian Federal University. All rights reserved
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{0} ∪ S, where S ⊂ N, therein the state {0} is absorbing, and S is the class of possible essential
communicating states. Its n-step transition probabilities

Pij(n) := P
{
Zn+k = j

∣∣ Zk = i
}

for any k ∈ N

are completely given by the offspring law {pj}. In fact, denoting pj(n) := P1j(n), we observe that
a probability Generating Function (GF)

∑
j∈S0

Pij(n)s
j =

[
fn(s)

]i for any i ∈ S and s ∈ [0, 1),

where fn(s) =
∑

j∈S0

pj(n)sj . At that the GF fn(s) is the n-fold iteration of the GF f(s) :=∑
j∈S0

pjs
j .

The classification of S depends on the value of the parameterm :=
∑
j∈S

jpj = f ′(1−), the mean

per-capita offspring number. The chain {Zn} is classified as sub-critical, critical and supercritical
if m < 1, m = 1 and m > 1 respectively. Needless to say that fn(0) = p0(n) is a vanishing
probability of the system initiated by one individual, which is monotone and limn→∞ p0(n) = q,
where q is called an extinction probability of the system and it is smallest nonnegative root of
the fixed-point equation f(s) = s on the domain of {s : s ∈ [0, 1]}. Furthermore fn(s) → q as
n→ ∞ uniformly in s ∈ [0, 1); see [1, Ch.I, §§1–5].

In the paper we focus on the critical case in which q = 1. We assume that the offspring GF
f(s) for s ∈ [0, 1) has the following form:

f(s) = s+ (1− s)1+νL
(

1

1− s

)
, [fν ]

where 0 < ν < 1 and L(∗) is slowly varying (SV) function at infinity. By the criticality of the
system, the assumption [fν ] implies that 2b := f ′′(1−) = ∞. If 0 < b < ∞ then ν = 1 and
L(t) → b as t→ ∞.

Further, putting into practice the function

Λ(y) :=
f(1− y)− (1− y)

y
= yνL

(
1

y

)
for y ∈ (0, 1], we rewrite and will use the condition [fν ] in the following form:

f(s)− s = (1− s)Λ(1− s). [fΛ]

Slack [9] has shown (see, also [8]) that

Ûn(s) :=
fn(s)− fn(0)

fn(0)− fn−1(0)
−→ U(s) as n→ ∞ (1.2)

for s ∈ [0, 1], where the limit function U(s) is the GF of the invariant measure for the system
{Zn}, and it satisfies the Abel equation

U
(
f(s)

)
= U(s) + 1. (1.3)

Moreover, in the case when [fν ] attends SV-function L(∗) at zero instead of L(∗), Slack [9] found
that U(s) admits a local expression

U(s) ∼ 1

ν(1− s)νL(1− s)
as s ↑ 1.
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The mean value theorem implies that fn+1(0)−fn(0) ∼ fn(0)−fn−1(0) as n→ ∞ and hence
altering Slack’s definition of Ûn(s) to

Un(s) :=
fn(s)− fn(0)

fn+1(0)− fn(0)
, [SU ]

we see that limn→∞ Un(s) = U(s). Then Slack’s [9] arguments, in contrast to the method
in [5], made it easy to prove the following statement, called the Basic Lemma of the theory of
critical GWB systems, which clearly shows an explicit asymptotic expression for the function
Rn(s) := 1− fn(s).

Lemma 1 (Basic Lemma [6]). If the condition [fΛ] holds then

Rn(s) =
N (n)

(νn)
1/ν

·
[
1− Un(s)

νn

]
, (1.4)

where the function N (x) is SV at infinity and

N (n) · L1/ν

(
(νn)1/ν

N (n)

)
−→ 1 as n→ ∞, (1.5)

and the function Un(s) has the following properties:

• Un(s) → U(s) as n→ ∞ so that the equation (1.3) holds;

• lims↑1 Un(s) = νn for each fixed n ∈ N;

• Un(0) = 0 for each fixed n ∈ N.

First direct result of the statement of the Basic Lemma 1 is certainly an expression of survival
probability of the family of one individual in a form of

Qn := P {Zn > 0} = Rn(0) =
N (n)

(νn)
1/ν

.

In our discussions an important role plays the following assertion, which we call the differential
analogue of the Basic Lemma 1.

Lemma 2 ( [6]). Let the condition [fΛ] holds. Then the following relation is true:

R′
n(s) = −ψn(s)

Rn(s)Λ
(
Rn(s)

)
(1− s)Λ(1− s)

, (1.6)

where the function ψn(s) has following properties:

• ψn(s) is continuous in s ∈ [0, 1), for all n ∈ N and

f ′(s)

f ′
(
fn(s)

) 6 ψn(s) 6 1;

• ψ(s) := limn→∞ ψn(s) exists for s ∈ [0, 1) and

f ′(s) 6 ψ(s) 6 1 and ψ(1−) = 1.
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By definition L (λx)
/
L(x) → 1 as x→ ∞ for each λ > 0. Then it is natural that

αλ(x) :=
L (λx)

L(x)
− 1

decreases to zero with a certain speed rate at infinity. With a known rate of decrease of αλ(x),
the function L(∗) is called SV at infinity with remainder; see [2, p. 185].

The following statement is also known, which is an improved analogue of the Basic Lemma 1.

Lemma 3 ( [4]). Let the condition [fΛ] holds and αλ(x) = o
(
L (x)

/
xν
)
. Then

1

Λ
(
Rn(s)

) − 1

Λ(1− s)
= νn+

1 + ν

2
· ln
[
Λ(1− s)νn+ 1

]
+ ρn(s), (1.7)

where ρn(s) = o
(
lnn

)
+ σn(s) and, σn(s) is bounded uniformly for s ∈ [0, 1) and converges to

the limit σ(s) as n→ ∞ which is a bounded function for all s ∈ [0, 1).

The peculiarity of the Lemma 2 is that it perfectly generalizes an analogous statement estab-
lished in [7, Theorem 1], in which the offspring law variance was assumed to be finite and later
refined under a third finite moment assumption in [3, p. 20]. In both papers just mentioned,
ν = 1 and Λ(y) ≡ y, and thereat f ′′(1−)n

/
2 appeared instead of the first term νn and moreover,

the subsequent tail terms are found on the right-hand side of (1.7).
In accordance with our purpose, we now recall the following theorem, which shows the explicit-

integral form of the invariant measure GF U(s).

Theorem 1.1 ( [6]). If condition [fΛ] holds and αλ(x) = o
(
L (x)

/
xν
)
, then

(1) the GF U(s) is

U(s) =

∫ s

0

ψ(y)

(1− y)Λ(1− y)
dy, (1.8)

where ψ(s) is continuous in s ∈ [0, 1], and f ′(s) 6 ψ(s) 6 1;

(2) the derivative U ′(s) has the following representation:

U ′(s) =
ψ(s)

(1− s)Λ(1− s)
, (1.9)

where ψ(s) = 1 +O
(
Λ(1− s)

)
as s ↑ 1.

In the last statements inequality estimations for the functions ψn(s) and ψ(s) were announced,
but explicit expressions were not obtained for them.

In this paper, in addition to the assumption [fΛ], we adopt the remainder term rate of the
SV-function L(∗) to be

αλ(x) = O
(
L (x)

xν

)
as x→ ∞, [RL]

that is more exact decreasing speed rate condition, than it was assumed in contents of the
Lemma 3 and in the Theorem 1.1.

Our purpose is as follows. First, we improve the result of Theorem 1.1 by finding an explicit
expression for the function U(s) that is more exactly than in (1.8) and an explicit expression
for the “undesirable” function ψ(s) in the equality (1.9) depending on GF f(s) and f ′(s). This
contributes to the refinement of the formula (1.6), pointing to the explicit form of the function
ψn(s). In this issue we propose another proof of the Lemma 2 that improves its content. Next,
using condition [RL], we find the main part term in the asymptotic expansion of the right-hand
side of (1.6) with an estimate for the remainder term. All these results facilitate to refine some
limit theorems.

The rest of this paper is organized as follows. Section 2. contains main results. Section 3.
provides the proof of main results.

– 223 –



Azam A. Imomov, Sarvar B. Iskandarov Further Remarks on the Explicit Generating Function . . .

2. Main results
In this section we present our main results. Let

V(s) := 1

νΛ(1− s)
and J(s) :=

1− f ′(s)

Λ(1− s)
− 1.

Theorem 2.1. If condition [fΛ] holds, then

(1) the GF U(s) has the following form:

U(s) = V(s)− V(0); (2.1)

(2) the derivative U ′(s) has the following expression:

U ′(s) = J(s)
V(s)
1− s

. (2.2)

Remark 1. Undoubtedly, the function U(s), as the limit of the generating function, admits the
form of a power series expansion U(s) =

∑
j∈S

ujs
j , where uj =

∑
k∈S

ukPkj(1) and
∑

k∈S ukp
k
0 = 1;

see [9, Lemma 4]. Then relation (2.2) immediately implies that

u1 = U ′(0) =
J(0)

νp0
=

1− p0 − p1
νp20

. (2.3)

Next, differentiating the Slack’s altered definition [SU ] we have

U ′
n(s) = − R′

n(s)

QnΛ
(
Qn

) .
Thus, we can interpret the statement of the Lemma 2 in terms of the convergence U ′

n(s) → U ′(s)
as n→ ∞. So we provide its refinement in the following theorem.

Theorem 2.2. If conditions [fΛ] and [RL] hold, then

U ′
n(s) = U ′(s)

(
1 +O

(
1

n

))
as n→ ∞, (2.4)

where U ′(s) has the form of (2.2).

The assertion of Theorem 2.2 provides the following important limit result. Let

Nν(n) := L−1/ν

(
1

Qn

)
and P{j}

ν (n) := (νn)(1+ν)/νpj(n).

Theorem 2.3. If conditions [fΛ] and [RL] hold, then the sequence
{
Pν(n) := P{1}

ν (n)
}

is SV
at infinity such that

Pν(n)

Nν(n)
= u1 ·

(
1− (1 + ν)2

2ν2
lnn

n
+ o

(
lnn

n

))
as n→ ∞, (2.5)

where u1 is given in (2.3). Moreover

Nν(n) · L1/ν

(
(νn)1/ν

Nν(n)

)
−→ 1 as n→ ∞

and
Nν(n) = CN +O

(
n−ν

)
as n→ ∞,

where CN = C
−1/ν
L and CL := L(∞−) <∞.
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The statement of this theorem can be generalized for all j ∈ S as follows.

Proposition. If conditions [fΛ] and [RL] hold, then

P{j}
ν (n)

Nν(n)
= uj ·

(
1 + 0n

)
,

where

0n = − (1 + ν)2

2ν2
lnn

n
+ o

(
lnn

n

)
as n→ ∞.

We leave the proof of Proposition until our next works.

3. Proof of results
We will need the following auxiliary statement.

Lemma 4. Let condition [fΛ] holds.

1. Then
ρ(s) :=

∣∣∣ν − J(s)
∣∣∣ −→ 0 as s ↑ 1. (3.1)

2. If, in addition [RL] holds, then

ρ(s) = O
((
1− s

)ν) as s ↑ 1. (3.2)

Proof. From representation [fΛ] we have

1− f ′(s) = Λ(1− s) + (1− s)Λ′(1− s). (3.3)

On the other hand, it was proved in the book [2, p. 401] that

yΛ′(y)

Λ(y)
−→ ν as y ↓ 0.

Then it follows

J(s) =
1− f ′(s)

Λ(1− s)
− 1 =

(1− s)Λ′(1− s)

Λ(1− s)
−→ ν as s ↑ 1

which implies (3.1).
To prove the second part we first write

yΛ′(y)

νΛ(y)
= 1 + δ(y), (3.4)

with some continuous δ(y) being that δ(y) → 0 as y ↓ 0. And then we follow the corresponding
arguments in [6, p.126], relying, in contrast to them, on the condition [RL]. Then we obtain in
this issue that

δ(y) = O
(
Λ(y)

)
as y ↓ 0.

Continuing discussions in accordance with [6, p.126], we see that CL := L(∞−) <∞ and

[RL] ⇐⇒ L(x) = CL +O
(
x−ν

)
as x→ ∞. (3.5)

Therefore it follows δ(y) = O (y−ν) as y ↓ 0. Then using this conclusion, combining relations
(3.3) and (3.4), we get to the estimation (3.2).

The lemma is proved.
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Proof of Theorem 2.1. Put

Mn(s) := 1−
Λ
(
Rn(s)

)
Λ
(
Qn

) . (3.6)

Using relations (1.2) and (1.4), in [6, p.131] proved that

nMn(s) −→ U(s) as n→ ∞.

Moreover, it was shown there [6, p.130] that

lim
n→∞

1

νn

[
1

Λ
(
Rn(s)

) − 1

Λ
(
1− s

)] = 1. (3.7)

Combining (3.6) and (3.7), we obtain

U(s) = lim
n→∞

nMn(s)

= lim
n→∞

n

[
1−

Λ
(
1− s

)
p0

p0νn+ 1

Λ
(
1− s

)
νn+ 1

]
= V(s)− V(0).

We accounted for Λ(1) = L(1) = p0 in the last step. The relation (2.1) is proved.
The proof content of second part is short due to (3.3). Write

U ′(s) = V ′(s) =
Λ′ (1− s)

νΛ2 (1− s)
=

1− f ′(s)− Λ (1− s)

ν (1− s) Λ2 (1− s)
.

The right-hand side is easily transformed to the form of those part of (2.2).
The theorem is proved completely.

Remark 2. Repeatedly use of Abel equation (1.3), with considering of relation (2.1), yields

1

Λ
(
Rn(s)

) − 1

Λ(1− s)
= νn.

It more exact refines the well-known statement mentioned in (3.7), indicating the absence of the
limit operation as n→ ∞ on the left-hand side. Then under the condition [fΛ] it follows that

Qn =
Nν(n)

(νn)
1/ν

(
1− 1

p0νn

(
1 + o(1)

))
as n→ ∞,

where Nν(n) = L−1/ν
(
1
/
Qn

)
.

Proof of Theorem 2.2. Repeatedly using (1.3) entails U
(
fn(s)

)
= U(s) + n and hence

f ′n(s) =
U ′(s)

U ′
(
fn(s)

) .
Using relation (2.2) in last equality, in our notation we have

R′
n(s) = − J(s)

J
(
Rn(s)

) Rn(s)Λ
(
Rn(s)

)
(1− s)Λ(1− s)

. (3.8)
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We recall now to relation (2.2) and the Lemma 4. Then

J
(
Rn(s)

)
= ν +O

(
Rν

n(s)
)
= ν +O

(
1

n

)
as n→ ∞

and

J(s)

ν(1− s)Λ(1− s)
= U ′(s).


(3.9)

Formulas (3.8) and (3.9) complete the proof of the theorem.

Proof of Theorem 2.3. First, in our assumptions, we rewrite (2.4) as follows:

R′
n(s) = −U ′(s)Rn(s)Λ

(
Rn(s)

)(
1 +O

(
1

n

))
as n→ ∞.

Then, since R′
n(0) = −p1(n), letting s = 0 implies

p1(n) = U ′(0)QnΛ
(
Qn

)(
1 +O

(
1

n

))
as n→ ∞. (3.10)

Using Lemma 3 we obtain

Λ
(
Qn

)
=

1

νn

(
1− 1 + ν

2ν

lnn

n
+ o

(
lnn

n

))
as n→ ∞ (3.11)

and

Qn =
L−1/ν

(
1
/
Qn

)
(νn)1/ν

(
1− 1 + ν

2ν2
lnn

n
+ o

(
lnn

n

))
as n→ ∞. (3.12)

Further, combining (3.10)–(3.12) produces

p1(n) = u1
Nν(n)

(νn)(1+ν)/ν

(
1− (1 + ν)2

2ν2
lnn

n
+ o

(
lnn

n

))
as n→ ∞, (3.13)

where Nν(n) = L−1/ν
(
1
/
Qn

)
and u1 is defined in (2.3). It is known that Qn = N (n)

/
(νn)1/ν

which is a result of Lemma 1, where N (∗) is SV at infinity with the asymptotic property (1.5).
In accordance with this property we write that

1 = Nν(n) · L1/ν

(
1

Qn

)
= Nν(n) · L1/ν

(
(νn)1/ν

N (n)

)
∼ Nν(n)

N (n)
as n→ ∞.

Then it follows

Nν(n) · L1/ν

(
(νn)1/ν

Nν(n)

)
−→ 1 as n→ ∞.

But by virtue of (3.5)
Nν(n) = CN +O

(
n−ν

)
as n→ ∞,

where CN = C
−1/ν
L . Recalling now denotation Pν(n) := (νn)(1+ν)/νp1(n), we transform the

asymptotic relation (3.13) to the form of (2.5).
The proof is completed.
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Дальнейшие замечания о явном выражении
производящей функции инвариантной меры
критических ветвящихся систем Гальтона-Ватсона

Азам А. Имомов
Каршинский государственный университет

Карши, Узбекистан
Сарвар Б. Искандаров

Ургенчский государственный университет
Ургенч, Узбекистан

Аннотация. Рассмотрим критическую ветвящуюся систему Гальтона-Ватсона с бесконечной дис-
персией закона превращения одной частицы. Предлагаем аргументы, альтернативные аргументам
Слейка [9], который нашел локальное выражение в окрестности точки 1 производящей функции
для инвариантных мер ветвящейся системы. Мы получаем глобальное выражение для всех s ∈ [0, 1)
этой производящей функции. Устанавливаем улучшенный вариант дифференциального аналога ос-
новной леммы теории критических ветвящихся систем. Это утверждение играет ключевую роль
в формулировке локальной предельной теоремы с явными членами в асимптотическом разложе-
нии локальных вероятностей. Мы также определяем скорость убывания остаточного члена в этом
разложении.

Ключевые слова: ветвящиеся системы Гальтона–Ватсона, производящие функции, медленное
изменение, основная лемма, переходные вероятности, инвариантные меры, предельные теоремы,
скорость сходимости.
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Abstract. The flow in the far axisymmetric momentumless turbulent wake is described with the use of
a mathematical model based on k − ε semi-empirical model of turbulence. A group-theoretical analysis
of the mathematical model of the wake is performed. The similarity reduction of the model to a system
of ordinary differential equations is obtained. Asymptotic expansion of the solution in the vicinity of a
singular point is used to construct approximate solution of corresponding boundary value problem.

Keywords: far momentumless axisymmetric turbulent wake, approximate solution, asymptotic expan-
sion.

Citation: A. V. Shmidt, Approximate Solution to a Model of the far Momentumless
Axisymmetric Turbulent Wake, J. Sib. Fed. Univ. Math. Phys., 2024, 17(2), 229–237.
EDN: LOHSKC.

Introduction
Turbulent momentumless wake behind body of revolution was considered in many publica-

tions (see, e.g., [1–17] and references therein). The turbulent axisymmetric wake has been studied
experimentally [1–6]. These experiments showed that wake asymptotically tends to self-similarity
at a relatively small distance from the body.

Theoretical analysis of the self-similarity of the wake was performed in [7–12]. In these works
asymptotic behaviour of the far wake was investigated. The non-linear eigenvalue problem for
turbulent energy, its dissipation rate and velocity deficit was solved numerically Hassid [10]. Ex-
ponents in the power law were also obtained. The asymptotic behaviour of the wake was analysed
[12] using the theory of self-similar solutions of the second kind [18]. The similarity solution of
the second-order turbulence model was obtained analytically and the process of transition to
self-similarity was studied numerically. It was found that a single-point spectrum of solutions of
corresponding eigenvalue problem for turbulent energy and dissipation rate exists. Moreover, it
was shown that wake parameters is weakly dependent on empirical constant Cε2.

Numerical modelling of the axisymmetric momentumless turbulent wake was carried out using
different semi-empirical turbulence models [13–17].

Mathematical model based on k−ε semi-empirical model of axisymmetric momentumless wake
was used to tackle the problem of degeneration of the far turbulent wake behind a self-propelled
body in a passively stratified medium [19–22]. The model was reduced [20–22] to a system of
ordinary differential equations using group-theoretical analysis [23] and the B–determining equa-
tions method [24]. The boundary-value problem for the reduced system was solved numerically

∗schmidt@icm.krasn.ru
c⃝ Siberian Federal University. All rights reserved

– 229 –



Alexey V. Shmidt Approximate Solution to a Model of the far Momentumless . . .

using shooting method. Self-similarity index was determined during calculation process. An
approach to determine self-similarity index has been suggested [25] where approximate solution
to a model of the far plane momentumless turbulent wake was constructed using asymptotic
expansion of the solution in a vicinity of the singular point.

This work is a continuation of studies presented in [20–22, 25]. In this paper an approximate
solution was constructed to describe flow in the far axisymmetric momentumless turbulent wake.

1. Similarity reduction

The following semi–empirical model of turbulence is used to describe flow in the far axisym-
metric momentumless turbulent wake

U0
∂U1

∂x
=

1

r

∂

∂r

(
Cµr

e2

ε

∂U1

∂r

)
, (1)

U0
∂e

∂x
=

1

r

∂

∂r

(
Cµr

e2

ε

∂e

∂r

)
− ε, (2)

U0
∂ε

∂x
=

1

r

∂

∂r

(
Cµ

σ
r
e2

ε

∂ε

∂r

)
− Cε2

ε2

e
. (3)

Here U1 = U − U0 is the deficit of the mean longitudinal velocity component, k is the kinetic
energy of turbulence, and ε is the kinetic energy dissipation rate. It is assumed that fluid is
incompressible and the flow is steady. Moreover, in what follows the undisturbed flow velocity
U0 is taken to be unity.

The empirical constants are as follows

Cµ = 0.136, σ = 1.3, Cε2 = 1.92.

The empirical constant Cµ has a modified value of 0.136 because model (1)–(3) was constructed
as a simplification of more complicated algebraic model of Reynolds stresses [26–29].

The consequences of equation (1) is the following law of conservation of total excess momen-
tum

J =

∫ ∞

0

rU1dr = 0. (4)

A theoretical-group analysis [23] is used to construct self-similar solution. The Lie algebra
basis of equations (1)–(3) consists of the following infinitesimal generators

X1 =
∂

∂x
, X2 =

∂

∂U1
, X3 = U1

∂

∂U1
, X4 = x

∂

∂x
− 2e

∂

∂e
− 3ε

∂

∂ε
, X5 = r

∂

∂r
+ 2e

∂

∂e
+ 2ε

∂

∂ε
.

Using linear combination of operators X3, X4 and X5 it is not difficult to obtain the following
representation for solution of (1)–(3)

U1 = xβU2(t), e = x2α−2K(t), ε = x2α−3E(t), t = r/xα, (5)

here t is the self-similar variable, α and β are arbitrary constants appearing in the linear combi-
nation of operators X3, X4 and X5.

Using representation (5) the initial mathematical model (1)–(3) can be reduced to the fol-
lowing system of ordinary differential equations

Cµ
K2U ′′

2

E
+

(
Cµ

K

E

(
2K ′ − KE′

E
+
K

t

)
+ αt

)
U ′
2 − βU2 = 0, (6)
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Cµ
K2K ′′

E
+ 2Cµ

KK ′2

E
−
(
Cµ

K2

E

(
E′

E
− 1

t

)
+ αt

)
K ′ − 2(α− 1)K − E = 0, (7)

Cµ

σ

K2E′′

E
− Cµ

σ

K2E′2

E2
+

(
Cµ

σ

K

E

(
2K ′ +

K

t

)
+ αt

)
E′ − Cε2

E2

K
− (2α− 3)E = 0. (8)

Solution of reduced system (6)–(8) has to satisfy the following conditions

U ′
2(0) = K ′(0) = E′(0) = 0, (9)

U2(a) = K(a) = E(a) = 0. (10)

The first group of conditions take into account that flow is symmetric with respect to the Ox
axis. The second group of conditions follow from the requirement that flow is undisturbed outside
the turbulent wake domain. The value of a is related to the turbulent wake semi-width and it
can be set equal to unity in the following calculations by virtue of the invariance of equations of
reduced system (6)–(8) with respect to the scaling transformation. It should also be noted that
coefficients of system (6)–(8) have singularities in the boundary conditions.

2. Approximate solution

According to the results presented in [25] to construct approximate solution of boundary-
value problem (6)–(10) asymptotic expansion of a solution of equations (6)–(8) near the singular
point t = 1

U2 = u1(1− t)10/7 + u2(1− t)17/7 + u3(1− t)20/7 + u4(1− t)24/7 + u5(1− t)27/7+

+u6(1− t)30/7 + u7(1− t)31/7 + o(|1− t|31/7),
(11)

K = k1(1− t)10/7 + k2(1− t)17/7 + k3(1− t)20/7 + k4(1− t)24/7 + k5(1− t)27/7+

+k6(1− t)30/7 + k7(1− t)31/7 + o(|1− t|31/7),
(12)

E = e1(1− t)13/7 + e2(1− t)20/7 + e3(1− t)23/7 + e4(1− t)27/7 + e5(1− t)30/7+

+e6(1− t)33/7 + e7(1− t)34/7 + o(|1− t|34/7)
(13)

is patched at the point t = 0 with an expansion of the solution near t = 0

U2 = U0 + α2t
2 + α4t

4 + α6t
6 + α8t

8 + o(t8), (14)

K = K0 + β2t
2 + β4t

4 + β6t
6 + β8t

8 + o(t8), (15)

E = E0 + γ2t
2 + γ4t

4 + γ6t
6 + γ8t

8 + o(t8), (16)

where

α2 =
125βU0E0

68K2
0

, α4 =
125βU0E

2
0

18496K4
0

(
124E0

K0
− 600α+ 125β + 25

)
,

α6 =− 125βU0E
3
0

45278208K6
0

(
469488

E2
0

K2
0

+
100E0(30062α− 2480β − 20481)

K0
−

− 4185000α2 + 1075000αβ − 62500β2 − 868750α− 50000β + 1344375

)
,
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α8 =− 125βU0E
4
0

49262690304K8
0

(
149379072

E3
0

K3
0

− 400E02(15958860α− 911685β − 5144117)

K2
0

−

− 2500E0(10062956α2 − 1156330αβ + 31000β2 − 12644966α+ 724275β + 3240202)

K0
+

+ 13444250000α3 − 3935625000α2β + 312500000αβ2 − 7812500β3 + 15625187500α2−

− 707656250αβ − 15625000β2 − 23595718750α+ 1174453125β + 5909437500

)
,

β2 =
125E0

68K2
0

(2K0(α− 1) + E0),

β4 =
125E2

0

36992K3
0

(
872E2

0

K2
0

+
E0

K0
(446α− 1921)− 100(14α+ 9)(α− 1)

)
,

β6 =
125E3

0

22639104K5
0

(
386136E3

0

K3
0

− 2
E2

0

K2
0

(1091094α+ 44131)− 25
E0

K0
(97608α2 − 262642α+

+ 61109) + 625(α− 1)(3656α2 + 4190α− 1911)

)
,

β8 =
125E4

0

24631345152K7
0

(
113548800E4

0

K4
0

− 4
E3

0

K3
0

(464953518α− 134090393)+

+ 25
E2

0

K2
0

(582220340α2− 282803792α+ 15406827) + 625
E0

K0
(31897184α3− 87603958α2

+ 49562507α− 7217483)− 31250(α− 1)(216336α3 + 630596α2 − 596608α+ 113937)

)
,

γ2 =
13E2

0

136K2
0

(
48E0

K0
+ 50α− 75

)
,

γ4 =
13E3

0

73984K4
0

(
59808E2

0

K2
0

+
200E0

K0
(86α− 663)− 625(28α+ 37)(2α− 3)

)
,

γ6 =
13E4

0

45278208K6
0

(
52068864E3

0

K3
0

− 600E2
0

K2
0

(176050α+ 179049)− 1250E0

K0
(56324α2−

− 234744α− 26877) + 15625(2α− 3)(1912α2 + 3460α− 471)

)
,

γ8 =
13E4

0

45278208K6
0

(
52068864E4

0

K4
0

− 19200E3
0

K3
0

(13948348α+ 4637301) +
2500E2

0

K2
0

(226322592α2+

+ 144240370α+ 705225) +
15625E0

K0
(35006416α3− 122923916α2+ 29552956α− 1486725)−

− (390625(2α− 3))(236544α3 + 833020α2 − 455825α+ 49755)

)
.

Representing (11)–(13) as a power series at t = 0

U2 = ᾱ0 + ᾱ1t+ ᾱ2t
2 + ᾱ3t

3 + ᾱ4t
4 + ᾱ5t

5 + ᾱ6t
6 + ᾱ7t

7 + ᾱ8t
8 + o(t8), (17)

K = β̄0 + β̄1t+ β̄2t
2 + β̄3t

3 + β̄4t
4 + β̄5t

5 + β̄6t
6 + β̄7t

7 + β̄8t
8 + o(t8), (18)

E = γ̄0 + γ̄1t+ γ̄2t
2 + γ̄3t

3 + γ̄4t
4 + γ̄5t

5 + γ̄6t
6 + γ̄7t

7 + γ̄8t
8 + o(t8), (19)

where

ᾱ0=u1+ u2+ u3+ u4+ u5+ u6 + u7, ᾱ1=−1

7
(10u1+ 17u2+ 20u3+ 24u4+ 27u5+ 30u6+ 31u7),

ᾱ2 =
1

49
(15u+85u2 + 130u3 + 204u4 + 270u5 + 345u6 + 372u7),
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ᾱ3 =
1

343
(20u1 − 85u2 − 260u3 − 680u4 − 1170u5 − 1840u6 − 2108u7),

ᾱ4 =
1

2401
(55u1 − 85u2 − 65u3 + 510u4 + 1755u5 + 4140u6 + 5270u7),

ᾱ5 =
1

16807
(198u1 − 187u2 − 104u3 + 408u4 + 351u5 − 1656u6 − 3162u7),

ᾱ6 =
1

117649
(825u1 − 561u2 − 260u3 + 748u4 + 468u5 − 1380u6 − 2108u7),

ᾱ7 =
1

5764801
(26400u1 − 14025u2 − 5720u3 + 13464u4 + 7020u5 − 16560u6 − 23188u7),

ᾱ8 =
1

40353607
(128700u1 − 6100u2 − 20735u3 + 42075u4 + 19305u5 − 39330u6 − 52173u7),

β̄0 =k1+ k2+ k3+ k4+ k5+ k6+7, β̄1 = −1

7
(10k1+ 17k2+ 20k3+ 24k4+ 27k5+ 30k6+ 31k7),

β̄2 =
1

49
(15k1 + 85k2 + 130k3 + 204k4 + 270k5 + 345k6 + 372k7),

β̄3 =
1

343
(20k1 − 85k2 − 260k3 − 680k4 − 1170k5 − 1840k6 − 2108k7),

β̄4 =
1

2401
(55k1 − 85k2 − 65k3 + 510k4 + 1755k5 + 1840k6 − 2108k7),

β̄5 =
1

16807
(198k1 − 187k2 − 104k3 + 408k4 + 351k5 − 1656k6 − 3162k7),

β̄6 =
1

117649
(825k1 − 561k2 − 260k3 + 748k4 + 468k5 − 1380k6 − 2108k7),

β̄7 =
1

5764801
(26400k1 − 14025k2 − 5720k3 + 13464k4 + 7020k5 − 16560k6 − 23188k7),

β̄8 =
1

40353607
(128700k1 − 56100k2 − 20735k3 + 42075k4 + 19305k5 − 39330k6 − 52173k7),

γ̄0 =e1 + e2 + e3 + e4 + e5 + e6 + e7, γ̄1 = −1

7
(13e1+ 20e2+ 23e3+ 27e4+ 30e5+ 33e6+ 34e7),

γ̄2 =
1

49
(39e1 + 130e2 + 184e3 + 270e4 + 345e5 + 429e6 + 459e7),

γ̄3 =
1

343
(13e1 − 260e2 − 552e3 − 1170e4 − 1840e5 − 2717e6 + 3060e7),

γ̄4 =
1

2401
(26e1 − 65e2 + 276e3 + 1755e4 + 4140e5 + 8151e6 + 9945e7),

γ̄5 =
1

16807
(78e1 − 104e2 + 276e3 + 351e4 − 1656e5 − 8151e6 − 11934e7),

γ̄6 =
1

117649
(286e1 − 260e2 + 552e3 + 468e4 − 1380e5 − 2717e6 − 1989e7),

γ̄7 =
1

5764801
(8294e1 − 5720e2 + 10488e3 + 7020e4 − 16560e5 − 24453e6 − 15912e7),

γ̄8 =
1

40353607
(37323e1 − 20735e2 + 34086e3 + 19305e4 − 39330e5 − 48906e6 − 29835e7),

and equating like powers of t in (14)–(16) and (17)–(19), the system of 27 algebraic equations
with 20 unknowns α, β, U0, K0, E0, ui, ki, ei, i = 1, . . . , 7 is obtained. The equation for E at t8

is omitted. This system of algebraic equations is solved numerically. The solution of this system
is facilitated because (6) is split off from (7) and (8). The described procedure is initially applied
to equations (7) and (8) to find

α = 0.2208287460, K0 = 0.7998977201, E0 = 0.9205281496, k1 = 4.111142059,
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k2 = −22.05686118, k3 = 40.76497218, k4 = −49.00284702, k5 = 43.42154950,

k6 = −31.82206053, k7 = 15.38400271, e1 = 10.09175704, e2 = −85.15426605,

e3 = 173.9330323, e4 = −224.1225187, e5 = 205.3920322, e6 = −154.4430672,

e7 = 75.22355867.

Fig. 1. Profiles of approximate and numerical solutions: a — the kinetic energy of turbulence;
b — the kinetic energy dissipation rate; c — the deficit of the longitudinal averaged velocity
component; solid lines — numerical solution, dotted lines — approximate solution

Obtained values are unique, taking into account (9), (10) and conditions

α,K0, E0 > 0; K ′(t), E′(t) < 0, t ∈ (0, 1).

Further, equation (6) is considered in a similar way and the following values are determined:

U0 = 1, β = −1.698508059, u1 = −10.17461628, u2 = 101.0215753, u3 = −191.1549873,

u4 = 238.1557643, u5 = −197.6563167, u6 = 79.67680195, u7 = −18.86822130.
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In order to increase accuracy one of the algebraic equations for determining coefficients of asymp-
totic expansion (11) is replaced by integral relation (4).

The obtained values α,K0, and E0 are used to solve boundary value problem (6)–(10) by the
shooting method. As a result of numerical calculations the following values were found: K0 =

0.79617, E0 = 0.92053, and β = −1.822. The difference between approximate and numerical
solutions does not exceed 5% (see Fig. 1).

Thus, at large distance behind the body the flow in an axisymmetric momentumless turbu-
lent wake is characterized by the following laws of similarity degeneration: U1(x, 0) ∼ x−1.822,
e(x, 0) ∼ x−1.558, ε(x, 0) ∼ x−2.558, l ∼ x0.221 (l is the width of the wake). The established laws
are consistent with those presented in [12,17,21,22,].
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Аннотация. Для описания течения в дальнем осесимметричном безымпульсном турбулентном
следе привлекается модель, основанная на k − ε модели турбулентности. Выполнен теоретико-
групповой анализ модели. Получена автомодельная редукция уравнений модели к системе обыкно-
венных дифференциальных уравнений. Для построения приближенного решения соответствующей
краевой задачи используется асимптотическое разложение решения в окрестности особой точки.

Ключевые слова: дальний безымпульсный осесимметричный турбулентный след, приближенное
решение, асимптотическое разложение.
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Abstract. In the field of condensed matter physics, machine learning methods have become an increas-
ingly important instrument for researching phase transitions. Here we present a method for calculating
the universal characteristics of spin models using an Ising model that is exactly solvable in two dimen-
sions. The method is based on a convolutional neural network (CNN) with controlled learning. The
scaling functions prove the continuing type of phase transition for the 2D Ising model. As a result of the
proposed technique, it has been possible to calculate correlation length directly.
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ing, correlation length, magnetic susceptibility.

Citation: A.A. Chubarova, M.V. Mamonova, P.V.Prudnikov, A Study of the Scaling
Behavior of the Two-dimensional Ising Model by Methods of Machine Learning, J. Sib.
Fed. Univ. Math. Phys., 2024, 17(2), 238–245. EDN: MDLPVA.

Machine learning methods over the last few years have proved as a good tool for analysing
multicomponent complex systems [1–3]. Different machine learning methods have been developed
for study such systems [4–6]. Convolutional neural networks (CNN) [7] are traditionally used to
investigate phase transition classification problems where no prior knowledge is assumed. This
method is well applicable to any spin models [8, 9] also.

Machine learning methods look like a "black box" and the typical problem is "how to prove
CNN classification without traditional methods". Machine learning can test a fundamental
features of critical phenomena [10,11], such as the long-range ordering and scaling.

Using the two-dimensional Ising model [12] as a basis for analysing the critical behavior of a
spin system, we propose an alternative methodology for studying the critical behaviour of spin
systems through the use of machine learning techniques [12].
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1. Model and methods

We calculate the system using the classical representation. Ising model Hamiltonian with
spin states S = ±1 on a square lattice.

H = −J
2

N∑
⟨i,j⟩

SiSj , (1)

where J = 1 is the exchange interaction constant, J > 0 for the ferromagnetic model. A linear
lattice size of L determines the number of spins in the system, and N = L× L.

We used a CNN model with controlled learning to study the universal characteristics of spin
systems. This CNN model is divided into two sets of convolutional layers by a pooling layer
— followed by a dense layer with a softmax activation function. The neural network output
layer contains two nodes whose values are real numbers in the interval [0;1] and correspond to
the probability of detecting the system state in the high-temperature (HT, T > TC) or low-
temperature (LT, T < TC) phases.

M∞ =

{
1, T < Tc − low-temperature phase, (LT)

0, T > Tc − high-temperature phase, (HT)
. (2)

A supervised type of training is used, for which a large number of configurations are generated.
The neural network training process was performed on the data set of correlation matrices, the
values of which were determined for each spin configuration. The correlation matrices were
obtained using the next equation (3).

Ci =
1

2

(
Sx,ySx+L/2,y + Sx,ySx,y+L/2

)
, (3)

where the correlation function takes into account the interaction of spins at a distance equal to
half of the lattice.

Fig. 1. Example of correlation matrices for training a neural network at different temperatures
for linear size L = 64

The Binder cumulant of 4-th order (4), which is commonly used to find the critical temper-
ature, was taken to construct the scaling relationship by Monte Carlo methods.

U4(T ) =
1

2

[
3− ⟨m4⟩

⟨m2⟩2

]
. (4)

The methodology proposed for the calculation of universal characteristics using CNNs allows
us to calculate the correlation length functio [10] describing the stepped recession near the critical
point of the phase transition.
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The results obtained with CNN were compared with the results of classical Monte Carlo cal-
culations to confirm the correctness of the results obtained with the help of CNN. The correlation
length function is presented in the equation (5).

ξ
/
L =

1

2 sin π
2

√
⟨M2⟩
⟨Φ⟩

, (5)

where

Φ =
1

2

2∑
n=1

∣∣∣∣∣∑
i

Sie
iqnxnj

∣∣∣∣∣
2

. (6)

The method proposed by us also allowed us to calculate the temperature dependence of the
magnetic susceptibility

χ(T ) =
1

N

⟨m2⟩ − ⟨m⟩2

T
(7)

a comparison with the classical calculations (eq. 7) was also carried out to check the correctness
of the CNN results [10].

The calculation of two cases was carried out to verify the successful applicability of the
proposed methodology and to identify the distinctive features of machine learning techniques:

• A low number of temperature steps (150) and a large number of Monte Carlo steps for
relaxation (30 000 MCS/s) and averaging (50 000 MCS/s).

• A large number of temperature steps (2 000) and a small number of Monte Carlo steps for
relaxation (3 000 MCS/s) and averaging (5 000 MCS/s).

The training dataset consisted of 200 statistical configurations, of which training was performed
on 100 configurations.

2. Result of machine learning technique

Using the predicted values from the low-temperature phase, the scaling function, correla-
tion lengths, and magnetic susceptibility calculations have been developed based on the low-
temperature phase. We carried out the calculations using classical Monte Carlo methods,
including the Metropolis algorithm, simultaneously with the derivation of the correlation matri-
ces [13].

Fig. 2 and Fig. 3 show the scaling functions for different modeling cases. It can be clearly
seen that for the two cases, the constructed scaling dependencies reflect the universal behavior
of the model at different linear dimensions. It is worth noting that the smoothest function is
observed in the case of a large number of temperature steps and small Monte Carlo times.

As a result of the calculations of scaling dependency, we have been able to demonstrate that
machine learning methods are able to demonstrate universality in the same way that Monte
Carlo calculations can demonstrate universality. The convolutional neural network on the other
hand requires more temperature steps for smooth dependence as well as a small number of time
steps, which results in a significant reduction in the calculation time of the model.

Using machine learning methods, we studied universal features of the spin model, and were
able to find dependences between correlation length and magnetic susceptibility. These thermo-
dynamic quantities provide a detailed description of the behavior of the system near the phase
transition.
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Fig. 2. The scaling relationships of the two-dimensional Ising model for 150 temperature steps
constructed: a) by machine learning methods; b) by Monte Carlo methods

Fig. 3. The scaling relationships of the two-dimensional Ising model for 2000 temperature steps,
constructed: a) by machine learning methods; b) by Monte Carlo methods

Figs. 4 and 5 show the correlation length calculations for each linear dimension for the two
cases considered. It is worth noting that in both cases considered, the machine learning method
performs well, although it is subject to fluctuation effects. The influence of fluctuations is much
smaller in the case of a large number of temperature steps.
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Fig. 4. The temperature relationships of the functions ξnet/L and ξ/L for 150 temperature steps,
plotted using: a) machine learning methods; b) Monte Carlo methods

Fig. 5. The temperature relationships of the functions ξnet/L and ξ/L for 2000 temperature
steps, plotted using: a) machine learning methods; b) Monte Carlo methods

In constructing the temperature dependence of magnetic susceptibility (Fig. 6 and Fig. 7), it
was noticed that CNNs show rather high peaks in the critical temperature region compared to
the Monte Carlo results. It is worth noting that the machine learning results weakly demonstrate
a property of the two-dimensional Ising model — as the linear size increases, there is a noticeable
shift on the temperature scale to the exact value.
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Fig. 6. The temperature relationships of the susceptibility χnet(T ) and χ(T ) near the critical
temperature for 150 temperature steps, constructed a) by machine learning methods; b) by
Monte Carlo methods

Fig. 7. The temperature relationships of the susceptibility χnet(T ) and χ(T ) near the critical
temperature for 2000 temperature steps, constructed a) by machine learning methods; b) by
Monte Carlo methods

Conclusion

A universal technique for calculating the universal characteristics of spin systems is presented
in the paper by using the method of convolutional neural networks on the example of a two-
dimensional Ising model to calculate the universal characteristics of spin systems. A study that
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was carried out on spin systems uncovered that machine learning methods were an excellent
tool for studying those systems. It was found that when classical calculations were compared
to machine learning methods, it took significantly less time for the machine learning methods
to make the universal characteristics calculations compared to classical calculations. Using the
proposed method, in order to reflect the continuity of the phase transition, a scaling dependence
was developed in order to reflect the continuity of the phase transition. This study was carried out
using the CNN method in order to calculate the thermodynamic dependence of the correlation
length and magnetic susceptibility.

The reported study was supported by the Russian Science Foundation through project no. 23-
22-00093. Pavel V. Prudnikov acknowldged for the supporting by the Ministry of Science and
Higher Education of the Russian Federation within the governmental order for Boreskov Institute
of Catalysis (project FWUR-2024-0039).
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Аннотация. Методы машинного обучения стали новым быстро набирающим инструментом для
исследования фазовых переходов в физике конденсированного состояния. В данной работе пред-
ставлен метод расчета универсальных характеристик спиновых моделей на основе двумерной моде-
ли Изинга. Метод основан на использовании сверточной нейронной сети (CNN) с контролируемым
обучением. Функции скейлинга доказывают непрерывный тип фазового перехода для двумерной
модели Изинга. В результате применения предложенной методики стало возможным вычисление
корреляционной длины.

Ключевые слова: машинное обучение, сверточные нейронные сети, методы Монте–Карло, модель
Изинга, скейлинг, корреляционная длина, магнитная восприимчивость.
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Abstract. The paper presents an analytical model allowing to investigate the electric current distribu-
tion in a three-layer conductive structure. The proposed model takes into account the characteristics of
the three conductive layers and the transient resistances between them. Expressions for the current dis-
tribution and electric potential variation along the structure, as well as its total resistance are obtained.
In addition, quantitative estimates showing the features of the electric current redistribution between
the layers with alteration of the layers parameters are presented.

Keywords: three-layer conductive structure, current distribution, resistance, specific contact resistivity,
transmission line method.
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The study of the current flow processes in multilayer conductive structures is of great interest
in a number of areas, both in scientific and applied terms. The papers [1–10] present an analysis
of the electric current distribution in two-layer conductive structures as applied to semiconductor
devices based on analytical one-dimensional models using the so-called transmission line method
(TLM). In most of these works, the main objects of analysis are planar metal-semiconductor
contacts and the static current distribution, and the dependence of the contact resistance on
the geometric and electrical parameters of the structure are studied. One of the layers of the
model is a metal, which is usually considered as an ideal conductor having zero resistance. The
second layer is a semiconductor, which conductive properties are described by the specific volume
resistance. These models also take into account the specific contact resistance between metal
and semiconductor layers.

In [2] an attempt is made to take into account in the TLM model the contribution of capaci-
tance between a metal and a semiconductor separated by an interface layer. In [3] a sufficiently
detailed description of TLM models of semiconductor structures is given both in the region of
planar metal-semiconductor contacts and a two-layer silicide-semiconductor structure in the in-
terelectrode region. Model for integrated circuit contacts in [4] is built taking into account the
resistance of the metal layer. In [5–10] a planar contact model taking into account the lon-
gitudinal resistance of the metal-semiconductor transition layer is presented. Accordingly, the
resistance of the metal-transition layer and the transition layer-semiconductor are taken into
account separately.
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Similar problems of constructing models of the electric current flow are also of interest in
the study of processes in the human skin and muscle tissues in relation to electromyography
and electrical stimulation [11–14]. In this case, the human skin is considered as a multilayer
conductive structure. An attempt to build an analytical model of current flow for the skin,
similar to the TLM models described above, is presented in [12, 13]. However, the results of the
distribution of electric current in the human skin in [11–14] were obtained only on the basis of a
numerical model.

In this paper, an analytical model is proposed that describes the flow of electric current in a
three-layer conducting structure. Such analytical formulation has not been discussed previously
and is suitable for solving research problems associated with any of the mentioned applied fields.

1. Problem Formulation

Consider the model of a three-layer structure shown in Fig. 1. Three conductive layers are
highlighted in the figure. The indexes of the variables in the figure are assigned in accordance
with the conditional numbers of the conductive layers: 1 is the top layer; 2 — the second (middle)
layer; 3 — the third (the lowest) layer.

Fig. 1. Three-layer conductive structure

The layers of the structure are characterized by specific volume resistances ρ1, ρ2, ρ3 and
thicknesses h1, h2 and h3 for the first, second and third layers, respectively. Layer parameters do
not alter along the longitudinal coordinate z. The length of the structure is L. In the direction
perpendicular to the plane of the figure, the three-layer structure is also homogeneous and its
width is equal to W .

When considering the structure mentioned above, the following assumptions are used.
a) The length of the three-layer structure L much greater than the thicknesses of the layers

h1, h2 and h3. Taking into account the conditions h1 << L, h2 << L, h3 << L the transverse
current distribution in each of the layers can be assumed to be uniform. Therefore, we will use
a one-dimensional model, where all variables in each of the layers may vary along z axis only.

b) The interfaces between the layers are characterized by specific contact resistivities ρc12
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between the first and second layers, and ρc23 between the second and third layers. In practice,
this assumption corresponds to the case when the thickness of the transition region between the
resistive layers is much less than the values h1, h2 and h3.

Without loss of generality, we assume that a constant voltage U0 is applied to the upper layer
of the structure. At the same time, on the left boundary (at z = 0) the electric potential is equal
to zero, and on the right boundary (at z = L) the potential is positive and equal to U0.

The boundary conditions for the considered model have the form:

I1(z = 0) = I0, I1(z = L) = I0,

I2(z = 0) = 0, I2(z = L) = 0,

I3(z = 0) = 0, I3(z = L) = 0,

(1)

where I1, I2, I3 are the currents in the first, second and third layers, respectively. The total
current I0 flowing through a three-layer structure depends on the parameters of this structure
and the applied voltage U0. Obviously, I0 = I1 + I2 + I3.

2. Mathematical model
Equations for the currents flowing in the layers can be expressed as follows:

I1(z) =
Wh1
ρ1

dU1(z)

dz
, (2.1)

I2(z) =
Wh2
ρ2

dU2(z)

dz
, (2.2)

I3(z) =
Wh3
ρ3

dU3(z)

dz
, (2.3)

where dU1, dU2 and dU3 are the voltage drops in the elementary sections dz in the first, second
and third layers, respectively.

Part of the current I1(z) flowing in the upper layer of the structure branches off into the
adjacent (second) layer, so that the current I1(z) in the section dz decreases by dIc12(z), where
dIc12(z) is the current flowing through the interface between the layers. In this case, the cur-
rent I2(z) in the second layer increases correspondingly by dIc12(z). Similarly, the current is
redistributed between the second and third layers.

Therefore, it is correct to write the current balance ratios in the form:

I1(z + dz)− I1(z) = −dIc12(z), (3.1)

I2(z + dz)− I2(z) = dIc12(z)− dIc23(z), (3.2)

I3(z + dz)− I3(z) = dIc23(z). (3.3)

On the other hand, the currents dIc12(z) and dIc23(z) flowing through the interface between
the layers depend on the difference in electric potentials in adjacent layers

Uc12(z) = U2(z)− U1(z), (4.1)
Uc23(z) = U3(z)− U2(z), (4.2)

so

dIc12(z) =
W

ρc12
Uc12(z)dz or

dIc12(z)

dz
=

W

ρc12
Uc12(z), (5.1)

dIc23(z) =
W

ρc23
Uc23(z)dz or

dIc23(z)

dz
=

W

ρc23
Uc23(z). (5.2)
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To find the currents flowing in the layers in the cross section (z + dz), we write down the
equations obtained by expanding expressions (2.1), (2.2) and (2.3) in a Taylor series, keeping the
first two terms of the series:

I1(z + dz) ≈ Wh1
ρ1

[
dU1(z)

dz
+
d2U1(z)

dz2
dz

]
, (6.1)

I2(z + dz) ≈ Wh2
ρ2

[
dU2(z)

dz
+
d2U2(z)

dz2
dz

]
, (6.2)

I3(z + dz) ≈ Wh3
ρ3

[
dU3(z)

dz
+
d2U3(z)

dz2
dz

]
. (6.3)

Let’s get the equation for distribution U1(z) in the first layer. To do this we substitute the
right side of (6.1) in (3.1) instead of the first term I1(z + dz), and replace the second term I1(z)
by (2.1), and the right side — dIc12(z) by (5.1) :

Wh1
ρ1

[
dU1(z)

dz
+
d2U1(z)

dz2
dz

]
− Wh1

ρ1

dU1(z)

dz
= − W

ρc12
Uc12(z)dz or

d2U1(z)

dz2
= −ρ1

h1

Uc12(z)

ρc12
.

Similarly, we obtain expressions for the second and third layers. Then the system of equations
for all three layers has the form:

d2U1(z)

dz2
= −ρ1

h1

Uc12(z)

ρc12
, (7.1)

d2U2(z)

dz2
=
ρ2
h2

[
Uc12(z)

ρc12
− Uc23(z)

ρc23

]
, (7.2)

d2U13z)

dz2
=
ρ3
h3

Uc23(z)

ρc23
. (7.3)

Let us take into account that Uc12(z) = U1(z) − U2(z), whence, using (7.1) and (7.2), we
obtain

d2Uc12(z)

dz2
=
d2U2(z)

dz2
− d2U1(z)

dz2
=
ρ2
h2

[
Uc12(z)

ρc12
− Uc23(z)

ρc23

]
+
ρ1
h1

Uc12(z)

ρc12
.

Combining this relation with a similar expression for Uc23(z), we write down the general
system of equations

d2Uc12(z)

dz2
=

1

ρc12

[
ρ1
h1

+
ρ2
h2

]
Uc12(z)−

1

ρc23

ρ2
h2
Uc23(z),

d2Uc23(z)

dz2
= − 1

ρc12

ρ2
h2
Uc12(z) +

1

ρc23

[
ρ2
h2

+
ρ3
h3

]
Uc23(z).

(8)

The solution of this system of equations makes it possible to determine the distribution of
electric currents in a three-layer structure.

3. Analytical solution
To simplify the notations, we represent the system (8) in the following form:

d2Uc12(z)

dz2
= AUc12 +BUc23,

d2Uc23(z)

dz2
= CUc12 +DUc23.

(9)

– 249 –



Alexey A. Levitskiy . . . Analysis of the Electric Current Distribution . . .

whereA=[(ρ1/h1)+(ρ2/h2)]/ρc12, B=−ρ2/(ρc23h2), C=−ρ2/(ρc12h2), D=[(ρ2/h2)+(ρ3/h3)]/ρc23.
For the resulting system, the characteristic equation with respect to the parameterλ describing

its particular solutions, has the form

λ4 − (A+D)λ2 + (AD −BC) = 0. (10)

This biquadratic equation has four roots λ1, λ2, λ3, λ4. Since the characteristic equation has
two pairs of roots λ that differ in sign, and they are real simple, the solution of the system for
Uc12 can be written in the following form:

Uc12 = C1 exp(λ1z) + C2 exp(λ2z) + C3 exp(λ3z) + C4 exp(λ4z), (11)

where C1, C2, C3, C4 are constants, which values are determined by the boundary conditions (1).
It is obvious that the terms containing λ > 0 make an increasing contribution to (11) along the
z axis, while the terms with λ < 0 make a decreasing one.

Accordingly, the solution for Uc23 (including B = −ρ2/(ρc23h2) ̸= 0) will also contain four
constants of integration:

Uc23 =
1

B

(
d2Uc23(z)

dz2
−AUc12

)
=

1

B

4∑
i=1

Ciλ
2
i exp(λiz)−

A

B

4∑
i=1

Ci exp(λiz). (12)

To determine the constants C1, C2, C3 and C4 we use the boundary conditions. Using (1)
and expressions (2.1), (2.2) and (2.3), we relate I1(z), I2(z), I3(z) and Uc12(z), Uc23(z) on the
boundaries of the structure z = 0 and z = L through U1(z), U2(z), U3(z) using the formulas

dUc12

dz
=
dU2

dz
− dU1

dz
, (13.1)

dUc23

dz
=
dU3

dz
− dU2

dz
. (13.2)

The derivatives of U1, U2, and U3 on the right-hand sides of (13.1) and (13.2) are expressed
using the boundary conditions (1).

On the left boundary of the structure at z = 0, taking into account (2.1), (2.2), and (2.3), we
have the relations

I1(z = 0) =
Wh1
ρ1

dU1(z = 0)

dz
= I0 or

dU1(z = 0)

dz
= I0

ρ1
Wh1

, (14.1)

I2(z = 0) =
Wh2
ρ2

dU2(z = 0)

dz
= 0 or

dU2(z = 0)

dz
= 0, (14.2)

I3(z = 0) =
Wh3
ρ3

dU3(z = 0)

dz
= I0 or

dU3(z = 0)

dz
= 0. (14.3)

Similarly, for the right boundary at z = L we get :

I1(z = L) =
Wh1
ρ1

dU1(z = L)

dz
= I0 or

dU1(z = L)

dz
= I0

ρ1
Wh1

, (15.1)

I2(z = L) =
Wh2
ρ2

dU2(z = L)

dz
= 0 or

dU2(z = L)

dz
= 0, (15.2)

I3(z = L) =
Wh3
ρ3

dU3(z = L)

dz
= I0 or

dU3(z = L)

dz
= 0. (15.3)

Using the obtained relations (14.1)–(14.3) and (15.1)–(15.3), we form a system of equations
allowing us to find the constants Ci included in the solutions (11) and (12) for Uc12(z) and
Uc23(z).
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First equation of the system for Uc12 at z = 0 (and, accordingly, taking into account eλ,0 ≡ 0)
we obtain by substituting (14.1), (14.2) and dUc12/dz, obtained by differentiation of (11), into
(13.1). Similarly, we obtain the second equaton for Uc23 at z = 0 by substituting (14.2), (14.3)
and dUc12/dz, obtained by differentiation of (12), into (13.2). Following the same logic, we get the
third equation for Uc12 at z = L by substituting (15.1), (15.2) and dUc12/dz into (13.1). Finally,
the forth equation for Uc23 at z = L we obtain by substituting (15.2), (15.3) and dUc12/dz
into (13.2). Resulting four relations allow us to form a system of equations for the unknowns
C1, C2, C3, C4:

C1λ1 + C2λ2 + C3λ3 + C4λ4 = − I0ρ1
Wh1

,

C1

(
λ31 −Aλ1

)
+ C2

(
λ32 −Aλ2

)
+ C3

(
λ33 −Aλ3

)
+ C4

(
λ34 −Aλ4

)
= 0,

C1λ1 exp(λ1z) + C2λ2 exp(λ2z) + C3λ3 exp(λ3z) + C4λ4 exp(λ4z) = − I0ρ1
Wh1

,

C1λ1
(
λ31 −Aλ1

)
+ C2λ2

(
λ32 −Aλ2

)
+ C3λ3

(
λ33 −Aλ3

)
+ C4λ4

(
λ34 −Aλ4

)
= 0.

(16)

Solving this system, one can find the constants C1, C2, C3, C4. Such a solution can be imple-
mented analytically by any of the direct methods or numerically using built-in computational
procedures of mathematical software systems.

So, from (10) and (16) one can find all λi and all Ci. This allows, using (11) and (12), to
determine the dependences Uc12(z) and Uc23(z), and on their basis it is possible to calculate the
distributions I1(z), I2(z), I3(z).

To determine the dependence I1(z), we use (2.1)–(2.3) and (7.1), (7.2), (7.3), pairwise con-
necting I1 and U1, I2 and U2, and also I3 and U3.

For the current I1 on the basis of (2.1) we write d2U1(z)/dz
2 = (ρ1/Wh1)/[dI1(z)/dz]. By

replacing the U1(z) in this relation with the right side of (7.1), we obtain an expression relating
Uc12(z) and the first derivative I1(z):

ρ1
Wh1

dI1(z)

dz
= −ρ1

h1

Uc12(z)

ρc12
or

dI1(z)

dz
= − W

ρc12
Uc12(z).

Integrating the last relation and taking into account I1(0) = I0, we determine the current
variation in the first layer I1(z):

I1(z) = I0 −
W

ρc12

∫ z

0

Uc12(z)dz = I0 −
W

ρc12

4∑
i=1

Ci

λi

[
exp(λiz)− 1

]
. (17)

For current I3 on the basis of (2.3) we write d2U3(z)/dz
2 = (ρ3/Wh3)/[dI3(z)/dz]. Based on

equation (7.3), which expresses the second derivative of U3(z) in terms of Uc23(z), we can write

ρ3
Wh3

dI3(z)

dz
=
ρ3
h3

Uc23(z)

ρc23
or

dI3(z)

dz
=

W

ρc23
Uc23(z).

Integrating the last relation, taking into account I3(0) = 0, we determine the current variation
in the third layer I3(z):

I3(z) =
W

ρc23

∫ z

0

Uc23(z)dz =
1

B

W

ρc23

4∑
i=1

Ci

[
exp(λiz)− 1

](
λi −

A

λi

)
. (18)

Using (2.2) for the current I2 we obtain d2U2(z)/dz
2 = (ρ2/Wh2)/[dI2(z)/dz]. On the other

hand, according to (7.2) d2U2(z)/dz
2 = (ρ2/h2)/[(Uc12/ρc12)− (Uc23/ρc23)]. Then
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ρ2
Wh2

dI2(z)

dz
=
ρ2
h2

[
Uc12(z)

ρc12
− Uc23(z)

ρc23

]
or

dI2(z)

dz
=W

[
Uc12(z)

ρc12
− Uc23(z)

ρc23

]
.

Integrating the last relation, one can find I2(z) and, taking into account (17) and (18), obtain:

I2(z) =
W

ρc12

∫ z

0

Uc12(z)dz −
W

ρc23

∫ z

0

Uc23(z)dz = I0 − I1(z)− I3(z). (19)

Relation (19) shows that in any section of the three-layer structure the equality I0 = I1+I2+I3
and the dependence of the current I2(z) for the middle layer can be found if the distributions of
I1(z) and I3(z) are known.

Integration (2.1) allows us to find the distribution U1(z) in the upper layer of the structure:

U1(z)− U1(0) =
ρ1
Wh1

∫ z

0

I1(z)dz. (20)

By substituting in (20) the dependence of I1(z) from (17) and taking into account U1(0) = 0,
we obtain

U1(z) =
ρ1
Wh1

∫ z

0

I1(z)dx− U1(0) =
ρ1I0
Wh1

z − ρ1
ρc12h1

4∑
i=1

Ci

λi

[
exp(λiz)

λi
− z

]
−

4∑
i=1

Ci

λ2i
. (21)

The total voltage drop over the entire length of the three-layer structure is determined from
(21) as U0 = U1(L). Accordingly, the total resistance of the structure is equal to

R =
[
U1(L)− U1(0)

]
/I0 = U1(L)/I0. (22)

4. Simulation results
The distributions of voltages and currents along the three-layer structure obtained as a result

of the calculations are shown in Fig. 2. Taking into account the fact that the value of I0, as
well as the width of the structure W , does not affect the nature of the distribution of currents
and voltages (this can be seen from the calculated relations (17)–(19), (21)), graphs are given
in a normalized form: for voltages Ũc12 = Uc12/U0, Ũc23 = Uc23/U0, Ũ1 = U1/U0, Ũ2 = U2/U0,
Ũ3 = U3/U0 and currents Ĩ1 = I1/I0, Ĩ2 = I2/I0, Ĩ3 = I3/I0 relative to the reduced coordinate
z̃ = z/L.

Dependences Uc12(z) and Uc23(z) are calculated on the basis of (11) and (12). The dis-
tributions U1(z), U2(z), U3(z) are obtained using (21) and using (4.1) and (4.2): U2(z) =
= U1(z) +Uc12(z); U3(z) = U2(z) +Uc23(z). Dependences I1(z), I2(z) and I3(z) are constructed
in accordance with (17), (18) and (19).

Calculations were made for the following parameters: L = 0.01 m; W = 0.01 m; ρ1 = 2 ·10−6

Ohm·m; ρ2 = 1 · 10−6 Ohm·m; ρ3 = 4 · 10−6 Ohm·m. Specific contact resistivities ρc12 and ρc23
were chosen from the condition: ρc12 = min(ρ1, ρ2)×1 m; ρc23 = min(ρ2, ρ3)×1 m, so that for the
specified layer parameters ρc12 = ρc23 = 1 · 10−6 Ohm·m2 . The layer thicknesses were set equal:
h1 = h2 = h3/2 = L × 10−3 = 10−5 m (Fig. 2, a) and h1 = h2 = h3/2 = L × 10−4 = 10−6 m
(Fig. 2, b). Such thicknesses are typical in works on thin-film microelectronics [1–10].

The intensity of redistribution of the total current I0 between the layers of the structure can
be judged from the gradients of I1(z), I2(z) and I3(z). As can be seen from Fig. 2, this process
is most active in areas near the left and right boundaries. As a result, for z = 0 and z = L
(in Fig. 2 z̃ = 0 and z̃ = 1) voltages Uc12 and Uc23 have maximum absolute values, which is
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(a) (b)

Fig. 2. Voltage and current distributions along a three-layer structure: a) h1 = h2 = h3/2 =
= L× 10−3 = 10µm; b) h1 = h2 = h3/2 = L× 10−4 = 1µm

consistent with (5.1) and (5.2), from which it follows that Uc12 ∼ dIc12 and Uc23 ∼ dIc23. The
slope of the curves U1(z), U2(z) and U3(z) also changes along the coordinate z, and near the left
and right boundaries of the structure, the gradient U1(z) is maximum, and the gradients U2(z)
and U3(z) are minimal as Uc12 and Uc23 increase .

Dependencies in Fig. 2, a, corresponding to the ratio hi/L ∼ 10−3, show that the redistri-
bution of the current and the variation in voltages are observed over the entire length of the
structure. In the middle part of the structure, the current I1 has a minimum value, while the
currents I2 and I3, on the contrary, reach maximum values due to the branching of a part of
the total current I0 into the lower layers. In this case, in any section, z̃ the relation is fulfilled
Ĩ1 + Ĩ2 + Ĩ3 = 1, which is similar to the condition I1 + I2 + I3 = I0.

Current and voltage distributions presented in Fig. 2, b are obtained for thinner conductive
layers (hi/L ∼ 10−4), while keeping other initial calculated parameters unchanged. It can bee
seen that the length of the segments in which the redistribution of currents I1, I2, and I3 mainly
occurs does not exceed half the length of the structure. It is also worth noting that a similar
result can be obtained not only by decreasing the layer thickness, but also by increasing the
length L.

The difference in the character of dependences in Fig. 2, a and Fig. 2, b can be attributed to the
fact that the variation in currents I1, I2 and I3, according to (17), (19) and (18), is determined
by the roots λi of equation (10), depending on the specific contact resistances ρc12, ρc23 and
parameters that, for a given structure width W characterize the longitudinal conductivity of the
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layers – ρ1/h1, ρ2/h2, ρ3/h3. Therefore, an increase or decrease in ρ1/h1, ρ2/h2, ρ3/h3 leads to
a change in the parameters λi and, accordingly, to a reduction or increase in the length of the
regions in which the redistribution of currents I1, I2 mainly occurs and I3.

Due to the fact that in Fig. 2, b, the regions of growth and decay of currents in the layers
make up a relatively small part of the total length L , in the middle part of the structure, the
dependences I1(z), I2(z) and I3(z) have flat sections, within which dI1(z)/dz ≈ dI2(z)/dz ≈
dI3(z)/dz ≈ 0 and, respectively, Ic12(z) ≈ 0, Ic23(z) ≈ 0, Uc12(z) ≈ 0, Uc23(z) ≈ 0, U1(z) ≈
U2(z) ≈ U3(z). For the given design parameters, these sections are located in the range approx-
imately from z̃ ≈ 0.4 to z̃ ≈ 0.6. Obviously, with an increase in the length of the structure, the
extent of these flat sections will increase.

It should be noted that the contribution of each of the currents I1, I2 and I3 in the total
current I0 at (that is, at z = L/2) is inversely proportional to the ratio ρ1/h1, ρ2/h2 and ρ3/h3
respectively for each of the layers. From the dependencies in Fig. 2, b, for example, it can be
seen that the currents in the first and third layers are equal, since ρ1/h1 = ρ3/h3.

An analysis of the influence of geometric factors on the nature of the distribution of currents
and voltages shows that for the considered three-layer structure, a nonlinear dependence of its
total resistance R on the length L can be observed. Fig. 3 shows the dependences R(L) calculated
in the range of L from 10−4 m to 10−2 m for three options corresponding to the layer thicknesses:
h1 = h2 = h3/2 = 10−6 m; h1 = h2 = h3/2 = 3 · 10−6 m; h1 = h2 = h3/2 = 10−5 m. The values
of the other parameters of the structure were set the same as in the previous calculations.
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Fig. 3. Length dependence of the three-layer structure resistance R(L) for different layers thick-
nesses

On the entire length of the upper curve, the condition of smallness of the layer thickness
hi/L 6 0.02 is satisfied, and on the second curve located below it, – hi/L 6 0.02. For the lower
dependence in the range of L from 0.001 m to 0.01 m, this condition corresponds to hi/L 6 0.02.
At L < 0.001m, the ratio h3/L can reach 0.2, so this section can be considered as an extrapolation
of the dependence based on the proposed model.

Plots in Fig. 3 show that for the given design parameters, the dependence R(L) in its initial
section is non-linear, approximately up to L ∼ (2 . . . 3) · 103 × h1. The non-linear nature of the
curves at small values of the structure length is due to the fact that in this range of L variation,
the redistribution of the current between the layers occurs over its entire length.

It can be shown that for a structure length not exceeding approximately L ∼ 1/λi (see (10),
(17)), the current flowing through the structure is mainly concentrated in the upper layer, while
the fraction of the current in the two lower layers is very small. As L increases , the part of the
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current branched into the second and third layers of the structure increases, which leads to a
decrease in the rate of increase in the resistance of the structure dR(L)/dL with an increase in
its length.

With an increase in the length of the structure, approximately from L ∼ (2 . . . 3) · 103 × h1,
the resistance R begins to increase linearly. At large values of L, the most significant influence
on the nature of the R(L) dependence is exerted by the middle part of the structure, within
which the distributions of I1(z), I2(z), and I3(z) have flat areas. In this case, an increment in the
length L leads to a corresponding increase in the length of these flat sections, which determines
the linear nature of the dependence R(L).

Conclusion

The analysis of the current flow mechanism in a three-layer conductive structure made it
possible to obtain a model that describes the regularities in the distribution of electric current
and voltage in the structure. The analysis of the obtained relations describing the three-layer
structure, as well as the calculations performed on their basis, allow us to draw the following
conclusions.

1. The length of the sections of current redistribution between the layers of the structure
within the framework of the proposed model is determined by the specific contact resistances
ρc12, ρc23 at the interfaces of the conductive layers and the ratios of the volume resistivity of the
layers to their thicknesses — ρ1/h1, ρ2/h2, ρ3/h3.

2. For "short" three-layer structures, in which the redistribution of current between the layers
occurs over their entire length L, the dependence of the total resistance R on L is non-linear.

3. For "long" three-layer structures, in which the regions of growth and decay of currents
in the layers make up a relatively small part of the total length L, in the middle part of the
structure, the dependences I1(z), I2(z) and I3(z) have low slope graphs. For such structures, a
linear dependence of the resistance R on the length L is observed .

The approach used in this work can be applied to the construction of similar models of
multilayer structures, for example, for other boundary conditions that determine their connection
to an external circuit.

The study was carried out within the framework of the state task of the Federal State Au-
tonomous Educational Institution of Higher Education Siberian Federal University (no. FSRZ-
2023-0008).

References

[1] H.Murrmann, D.Widmann, Current Crowding on Metal Contacts to Planar Devices, IEEE
Transactions on Electron Devices, 16(1969), no. 12, 1022–1024.

[2] H.H.Berger, Models for Contacts to Planar Devices, Solid-State Electronics, 15()1972,
145–158.

[3] D.B.Scott, W.R.Hunter, H.Shichijo, A Transmission Line Model for Silicided Diffusions:
Impact on the Performance of VLSI Circuits, IEEE Transactions on Electron Devices, ED-
29(1982), no. 4, 651–661.

[4] G.Reeves, B.Harrison, Determination of Contact Parameters of Interconnecting Layers in
VLSI Circuits, IEEE Transactions on Electron Devices, ED-33(1986), no. 3, 328–334.

– 255 –



Alexey A. Levitskiy . . . Analysis of the Electric Current Distribution . . .

[5] G.K.Reeves, P.W.Leech, H.B.Harrison, A new Electrical Model for Calculation the Sheet
Resistance Parameter in Alloyed Ohmic Contacts, MRS Mat. Res. Symp. Proc., 337(1994),
275–280.

[6] G.K.Reeves, P W.Leech, H.B.Harrison,Understanding the Sheet Resistance Parameter of Al-
loyed Ohmic Contacts Using a Transmission Line Model, Solid-State Electronics, 38(1995),
no. 4, 745–751.

[7] G.K.Reeves, H.B.Harrison, An Analytical Model for Alloyed Ohmic Contacts Using a Tri-
layer Transmission Line Mode, IEEE Transactions on Electron Devices, 42(1995), no. 8,
1536–1547.

[8] G.K.Reeves, H.B.Harrison, P.W.Leech, Modeling Geometrical Effects of Parasitic and Con-
tact Resistance of FET Devices, MRS Mat. Res. Symp. Proc., 427(1996), 147–152.

[9] G.K.Reeves, H.B.Harrison, Using TLM Principles to Determine MOSFET Contact and
Parasitic Resistance, Solid-State Electronics, 41(1997), no. 8, 1067–1074.

[10] N.Shrestha, G.K.Reeves, P.W.Leech, Y.Pan, A.S.Holland, Analytical test structure model
for determining lateral effects of tri-layer ohmic contact beyond the contact edge, Facta
Universitatis, Series: Electronics and Energetics, 30(2017), no. 2, 257–265.

[11] N.Sha, L.P.J.Kenney, B.Heller, M.Moatamedi, A Finite Element Model to Identify Electrode
Influence on Current Distribution in the Skin, Artificial Organs, 32(2008), no. 8, 639–643.

[12] T.Keller, A.Kuhn, Electrodes for transcutaneous (surface) electrical stimulation, Journal of
Automatic Control, University of Belgrade, 18(2008), no. 2, 35–45.

[13] T.Keller, A.Kuhn, Skin properties and the influence on electrode design for transcutaneous
(surface) electrical stimulation, Chapter in IFMBE proceedings, 25(2010), no. 9, 492–495.
DOI:10.1007/978-3-642-03889-1_131

[14] M.Prodanovic, J.Malesevic, M.Filipovic, T.Jevtic, G.Bijelic, N.Malesevic, Numerical Simu-
lation of the Energy Distribution in Biological Tissues During Electrical Stimulation, Serbian
Journal of Electrical Engineering, 10(2013), no. 1, 165–173. DOI: 10.2298/SJEE1301165P

Анализ распределения электрического тока в трехслойной
проводящей структуре

Алексей А. Левицкий
Павел С. Маринушкин
Валентина А. Бахтина

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. В работе представлена аналитическая модель, позволяющая исследовать характер
распределения электрического тока в трехслойной проводящей структуре. Предложенная модель
учитывает характеристики трех проводящих слоев и переходных сопротивлений между ними. Так-
же получены выражения для распределения тока и изменения электрического потенциала вдоль
структуры, а также её общего сопротивления. Кроме того, представлены количественные оценки,
показывающие особенности перераспределения электрического тока между слоями при изменении
параметров слоев.

Ключевые слова: трехслойная проводящая структура, распределение тока, сопротивление,
удельное контактное сопротивление, TLM-метод.
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Abstract. The solution of the cylindrically symmetric Einstein Rosen universe is investigated and
occupied with generalized ghost pilgrim dark energy and matter. To obtain the exact solutions of
Einstein’s field equations, we discussed the GGPDE model and determined the EoS parameter, Regions
of the model to be identified by the ωd−ω̇d plane analysis , Phantom and quintessence phases to be
discussed by state finder, and Stability of the model to be discussed by squared speed of sound. The
physical properties of the model are discussed. The results obtained are to be useful with the current
observations.
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Introduction
The present challenging problem shows that the universe is expanding rapidly. It is big

mystic problem today. Through supernova Ia, the expansion phenomenon of the universe was
explained by authors (Riess et al. [1]; Permutter et al [2]; Copeland et al. [3]).The Negative
pressure of the universe causes e accelerating expansion of the universes caused Dark Energy The
galactic curved and structure formation of the universe was explained by the absence of pressure,
the dark matter. Several dark energy models have been proposed by many authors which can
be characterized by the equation of parameter ω. For fine-tuning there are many cosmological
constants are considered for dark energy like holographic (Cohen et al.[4]; Hooft [5]), Pilgrim
(Wei [6]), k-essence (Armendariz [7]), h-essence (Wei [8]), phantom (Caldwell [9]), quintom (Guo
et al.[10]), quitessence (Ratra e.al., [11]), tachyon (Sen [12]), dilation (Gasperini et al. [13]), and
DBIessence (Gumjudpai et al. [14]; Martin et al. [15]) etc.

It is observed the ordinary ghost Dark energy model only the leading term (i.e., H) has been
deliberated and sub leading term (i.e, H2) is introduced by "Cai et al.[16]" in the ordinary ghost
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dark energy it helps to describing early-stage evolution of the universe and the energy density is
called generalized ghost dark energy density defined as ρ∧ = a1H + b1H

2. The vacuum energy
from the Veneziano ghost field in QCD is obtained as H+O(H2) (Zhitnitsky [17]), it shows
the accelerated expansion of the universe. Several authors (Karami [18]; Malekjani [19];) has
been developed different cosmological parameters like Eos parameter, deceleration, investigated
different, state finder and squared speed of sound, etc. The stability of this type of model has
been investigated by authors ‘Ebrahimi and Sheykhi [20]’. Therefore, the Generalized Ghost
Pilgrim Dark Energy(GGPDE) is defined as (Sharif and Nazir [21]) ρ∧ =

(
α1H + α2H

2
)β .

Vijayashanti et al. [22] studied bianchi type GGPDE and Anisotropic GGPDED respectively.
Tazmin[23] studied GGPDE with Sign-Changeable Integration. Sharif et at[24] developed GG-
PDE in f(R,T) gravity. Prianka et al. [25] studied GGPDE in Saez-Ballester theory. Wajihajavad
et al. [26] studied Interacting GGDE anisotropic scalar field models. Bharali et al. [27] studied
dynamics of GGPDE. By the motivation of all the above study of researchers, we studied in
this reach article ‘cylindrically symmetric GGPDE’. The physical and general properties are also
discussed.

1. Metric and field equations
The Einstein Rosen metric is in the form

ds2=e(2A−2B)
[
dt2−dr2

]
−r2e−2Bdψ2−e2Bdz2 (1)

where A and B are time dependent only and x1 = r, x2 = φ, x3 = z and x4 = t.
The field equation is

Rij −
1

2
Rgij = −8π

(
Tij + T ij

)
. (2)

Since the momentum of energy is conservative(
Tij + T ij

)
;j
= 0 (3)

Here, Rij is the Ricci tensor, gij is metric tensor, R is Ricci scalar.
Take 8πG = c = 1.
The EMT for DE and DM are given by

T j
i = diag [1, 0, 0, 0] ρm (4)

T
j

i = diag [ρd, −pd,−pd,−pd] = diag [1, −ωd,−ωd,−ωd] ρd (5)

where ρm, ρd are ED of DM and DE , pd is pressure of DM,
The EoS parameter of DE is defined by

ωd =
pd
ρd

(6)

The ED for dark energy T
j

i can be reduced to

T
j

i = diag [1, −ωd,− (ωd + δ) ,− (ωd + δ)] ρd (7)

Here, δ is skewness parameter deviated from ωd on y and z axes.
By eqs. (1), (4) and (7) The field eq. (2) can reduced to the following equations(

Ḃ
)2

= (−ωdρd) e
(2A−2B) (8)
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Ä+
(
Ḃ
)2

= (− (ωd + δy) ρd) e
(2A−2B) (9)

Ä+
(
Ḃ
)2

− 2
(
B̈
)
= (− (ωd + δz) ρd) e

(2A−2B) (10)(
Ḃ
)2

= −(ρm + ρd) e
(2A−2B) (11)

1

e(2A−2B)

(
˙̇A

r

)
= 0 (12)

By the law of conservation for DM and DE can be reduced as

˙ρm +
(
Ȧ− Ḃ

) [
2 + e

(−2A+2B)]
ρ
m
−

˙
ρ̇d +

{(
Ȧ− Ḃ

) (
2 + (1 + ωd) e

(−2A+2B)
)
+

+(ωd + δy) r
−2e2B + (ωd + δz) e

−2B
}
ρd = 0

(13)

Here, overhead dot stands for ODE w.r.t t

2. Solution of the filed equations

The filed equations (8)–(12) form is a system of five independent equations with six unknowns
A,B , ρd, ρm, ωd and δ . The system is initially undetermined. So, we can require extra physical
conditions to solve the above equations.
The DM and DE components are

˙ρm +
(
Ȧ− Ḃ

) [
2 + e

(−2A+2B)]
ρ
m

= 0 (14)

˙
ρ̇d =

{(
Ȧ− Ḃ

)(
2 + (1 + ωd) e

(−2A+2B)
)
+ (ωd + δy) r

−2e2B + (ωd + δz) e
−2B

}
ρd (15)

By eq. (12)
A = constant = ϑ(say) (16)

By Berman (1983) applying the law of variation for the Hubbles parameter with constant decel-
erating parameter.
The average scale factor for Einstein–Rosen metric is

a =
(
re2A−2B

) 1
3 (17)

The special Volume V is
V =

√
(−g) = re2A−2B (18)

The mean Hubble’s parameter H is

H =
1

3

(
V̇

V

)
=

(
ȧ

a

)
=

2

3

(
Ȧ− Ḃ

)
=

2

3

(
−Ḃ

)
(19)

We considered the relation
H =

k1
(a)

n (20)

where k1 and n are non-negative constants.
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The decelerating parameter is q is

q = − a ä

(ȧ)
2 (21)

By Eq. (19) and (20)
(
ȧ

a

)
= H =

k1
(a)

n , we have

ȧ = k1a
(1−n) (22)

ä = k21(1− n)a(1−2n) (23)

Using Eqs. (21)–(23), the "q" is reduced to

q = n− 1 for n ̸= 0, q = −1 for n = 0. (24)

Using eq. (22), the average scale factor for two conditions obtained as

a = (c1t+ c2)
1
n for n ̸= 0 (25)

a = c3e
k1t for n = 0 (26)

Where c1, c3 are constants and c2 is integration constants
The ED of GGDE in terms of pilgrim dark energy is defined by (sharif et al. [28])

ρd =
(
α1H + α2H

2
)β (27)

Where β pilgrim dark energy parameter
The state finder pair {r, s}are defined as (Sahni et al. [39])

r =
1

H3

( ...
a

a

)
(28)

s =
r − 1

3
(
q − 1

2

) (29)

The state finders represent the distance between CDM to DE model. If (r,s)=(1,0) indicate
CDM limit and (r,s)=(1,1) indicate CDM . Also, if r<1 and s>0 represents the region of
quintessence and phantom.
Square speed sound is obtained for this model is

v2 =
ṗd
ρ̇d

(30)

The stability of background evolution of the model is analyzed based on the sign of Squared
speed sound. The (-)ve and (+)ve sign indicates the model is unstable and stable respectively..
ωd − ω̇d Plane analysis :
By Caldwell and Linder(2005) to estimate the nature of the quintessence scalar field DE model.
The model splits into two regions i.e., If ωd <0, ω̇d >0 the region of the model is the throwing
region, where as ωd <0, ω̇d <0 the region is the freezing region.
Case (i) : Model for n ̸= 0 or q ̸= −1
By Eqs(12), (16), (19) and (25)

B = log
(
c4(c1t+ c2)

(−3
2n )
)

(31)

Where c4 are constants
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The metric (1) can be reduced to

ds2=c4(c1t+ c2)
( 3

n )
[
e(2υ)

[
dt2−dr2

]
−r2dψ2

]
− dz2

c4(c1t+ c2)
( 3

n )
(32)

By Eq. (20) and (25)
The Hubble’s parameter,

H =
k1
(a)

n =
k1

(c1t+ c2)
(33)

By eqs. (27) and (33) The ED is

ρd =

(
α1

k1
(c1t+ c2)

+ α2

(
k1

(c1t+ c2)

)2
)β

(34)

By Eq. (11) The MD is

ρm =
c5

(c1t+ c2)
(2+ 3

n )
−

(
α1

k1
(c1t+ c2)

+ α2

(
k1

(c1t+ c2)

)2
)β

(35)

Where c5 =
3c1

2ne2ϑc24
By Eq. (8) and (31) the pressure is

pd =
c5

(c1t+ c2)
(2+ 3

n )
(36)

The EoS parameter is

ωd =
pd
ρd

=
c5

(c1t+ c2)
(2+ 3

n )
(
α1

k1

(c1t+c2)
+ α2

(
k1

(c1t+c2)

)2)β
(37)

ω̇d =
−c1c5

(
2 + 3

n

)
(c1t+ c2)

(3+ 3
n )
(
α1

k1

(c1t+c2)
+ α2

(
k1

(c1t+c2)

)2)β
+

+
c1c5β

(
α1k1

(c1t+c2)
2 − 2α2k1

2

(c1t+c2)
3

)
(c1t+ c2)

(2+ 3
n )
(
α1

k1

(c1t+c2)
+ α2

(
k1

(c1t+c2)

)2)−β−1

(38)

The state finder pair { r, s}are defined as

r =
1

H3

( ...
a

a

)
=

(1− 2n) (1− n) c31
n3k1

(39)

s =
r − 1

3
(
q − 1

2

) =

[
(1− 2n) (1− n) c31 − n3k1

n3k13
(
n− 3

2

) ]
(40)

Square speed sound is obtained for this model is

v2 =
ṗd
ρ̇d

=
−c1c5

(
2 + 3

n

)
(c1t+ c2)

(3+ 3
n )
(
α1

k1

(c1t+c2)
+ α2

(
k1

(c1t+c2)

)2)β−1 (
−c1α1k1

(c1t+c2)
2 − 2c1α2k1

2

(c1t+c2)
3

) (41)
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By Eq. (8)–(10) and (31) we have the Skewness parameter is

δy = 0 (42)

and

δz =
3c21c4

ne2ϑ(c1t+ c2)
(2+ 3

n )
(
α1

k1

(c1t+c2)
+ α2

(
k1

(c1t+c2)

)2)β
(43)

Case (ii) : Model for n = 0 or q = −1
By Eqs. (12), (16), (19) and (25)
A = constant = ϑ and

B = c6t + c7 (44)

Where c6 = −3k1

2 and c7 is integral constants
The metric (1) can be reduced to

ds2=e−2(c6t+c7)
[
e(2υ)

[
dt2−dr2

]
−r2dψ2

]
− dz2

e2υ−2(c6t+c7)
(45)

By Eqs.(20) and (25)
The Hubble’s parameter

H = k1 (46)

By Eqs. (27) and (46) The ED is

ρd =
(
α1k1 + α2(k1)

2
)β

(47)

By Eq.(11) The MD is

ρm = −c26e2(c6t+c7−υ) −
(
α1k1 + α2(k1)

2
)β

(48)

By Eq.(8) and (44) the pressure is

pd = −c26e2(c6t+c7−υ) (49)

The EoS parameter is

ωd =
pd
ρd

=
−c26e2(c6t+c7−υ)(
α1k1 + α2(k1)

2
)β (50)

ω̇d =
−2c36e

2(c6t+c7−υ)(
α1k1 + α2(k1)

2
)β (51)

Since ωd<0, ω̇d<0, so the region of the model is freezing region
The state finder pair {r, s} is

r =
1

H3

( ...
a

a

)
= 1 (52)

s =
r − 1

3
(
q − 1

2

) = 0 (53)

Clearly (r,s)=(1,0) indicate CDM limit so that the state finders represents the distance from
CDM to dark energy model.
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Square speed sound is obtained for this model is

v2 =
ṗd
ρ̇d

= does not exist (54)

By Eq.(8)–(10) and (44) we have the skewness parameter are
δy = 0 and δz = 0 (55)

Conclusions
We obtained the solution of cylindrically symmetric Einstein Rosen universe with GGPDE

& DM. The aim of PDE shows interest as it indicates one of the opinions about the universe
due to phantom energy in the late time. The volume of the model does not vanish throughout
the evolution of the universe has no singularity. We identified with clearly evidence "q" is time
dependent, we also discussed

∧
with ωd = −1. The ωd−ω̇d plane analyzed the throwing and

freezing regions. The state finder splits the model into Phantom and Quintessence regions. The
squared speed of sound indicates the stability of the universe . Since here ωd is consistent it
represents that the universe is accelerating. The model developed r-s plane possesses the region
of Chaplayin gas models. At the end of conclusion, this model favors the PDE phenomenon.
The results obtained are to be compatible with the present-day observations.
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Цилиндрически-симметричный обобщенный призрачный
странник, темная энергия космологических вселенных
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Аннотация. Решение цилиндрически-симметричной вселенной Эйнштейна Розена исследовано и
связано с обобщенной темной энергией и материей призрачного странника. Чтобы получить точные
решения уравнений поля Эйнштейна, мы обсудили модель GGPDE и определили параметр EoS.
Области модели, которые необходимо идентифицировать с помощью анализа плоскости ωd−dotωd,
Phantom и фазы квинтэссенции, которые будут обсуждаться с помощью средства поиска состо-
яний, и стабильность модели, которая будет обсуждаться посредством квадрата скорости звука.
Обсуждаются физические свойства модели. Полученные результаты будут полезны при текущих
наблюдениях.

Ключевые слова: фантом, квинтэссенция, cтабильность, цилиндрический, симметричный.
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Abstract. In the theory of hypergeometric and generalized hypergeometric series, classical summation
theorems such as those of Gauss, Gauss second, Bailey and Kummer for the series 2F1; Watson, Dixon,
Whipple and Saalshüz play a key role. Applications of the above mentioned summation theorems are
well known. In our present investigation, we aim to evaluate twenty five new class of integrals involving
generalized hypergeometric function in the form of a single integral of the form:∫ 1

0

xc−1(1− x)c−1
3F2

[
a, b, c+ 1

2
1
2
(a+ b+ i+ 1), 2c+ j

; 4x(1− x)

]
dx

for i, j = 0,±1,±2.
The results are established with the help of the generalizations of the classical Watson’s summation

theorem obtained earlier by Lavoie et al. [2]. Fifty interesting integrals in the form of two integrals
(twenty five each) have also been given as special cases of our main findings.
Keywords: generalized hypergeometric function, Watsons theorem, definite integral, beta integral.
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1. Introduction and preliminaries
The natural generalization of the Gauss’s hypergeometric function 2F1 is called the generalized

hypergeometric function pFq, where p, q ∈ N0 defined by [1, 5]

pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
=

∞∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

zn

n!
(1)
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where (a)n is the well known Pochhammer symbol (or the raised factorial or the shifted factorial
since (1)n = n!) defined for any complex a ∈ C by

(a)n =
Γ(a+ n)

Γ(a)
,
(
a ∈ C\Z−

0

)
=

=

{
a(a+ 1) . . . (a+ n− 1), (n ∈ N)
1, (n = 0)

(2)

where Γ is the well known Gamma function.
For a detailed study about hypergeometric and generalized hypergeometric functions, we refer

the standard texts [1, 5].
In the theory of hypergeometric and generalized hypergeometric functions, classical summa-

tion theorems such as those of Gauss, Gauss second, Kummer and Bailey for the series 2F1;
Watson, Dixon, Whipple and Saalschütz for the series 3F2 play a key role.

Later, the above mentioned classical summation theorems have been generalized by Lavoie
et al. [2–4].

However, in our present investigation, we are interested in the following classical Watson’s
summation theorem [1].

3F2

[
a, b, c

1
2 (a+ b+ 1), 2c

; 1

]
=

Γ
(
1
2

)
Γ
(
c+ 1

2

)
Γ
(
1
2a+

1
2b+

1
2

)
Γ
(
c− 1

2a−
1
2b+

1
2

)
Γ
(
1
2a+

1
2

)
Γ
(
1
2b+

1
2

)
Γ
(
c− 1

2a+
1
2

)
Γ
(
c− 1

2b+
1
2

) (3)

provided ℜ(2c− a− b) > −1, and its following generalization due to Lavoie et al. [2].

3F2

[
a, b, c

1
2 (a+ b+ i+ 1), 2c+ j

; 1

]
=

= Ai,j

2a+b+i−2 Γ
(
1
2a+

1
2b+

1
2 i+

1
2

)
Γ
(
c+

[
j
2

]
+ 1

2

)
Γ
(
c− 1

2 (a+ b+ |i+ j| − j − 1)
)

Γ
(
1
2

)
Γ (a) Γ (b)

×

×

{
Bi,j

Γ
(
1
2a+

1
4

(
1− (−1)i

))
Γ
(
1
2b
)

Γ
(
c− 1

2a+
1
2 +

[
j
2

]
− 1

4 (−1)j (1− (−1)i)
)
Γ
(
c− 1

2b+
1
2 +

[
j
2

]) +

+ Ci,j
Γ
(
1
2a+

1
4

(
1 + (−1)i

))
Γ
(
1
2b+

1
2

)
Γ
(
c− 1

2a+
[
j+1
2

]
+ 1

4 (−1)j (1− (−1)i)
)
Γ
(
c− 1

2b+
[
j+1
2

])} =

= Ω (let) (4)

for i, j = 0, ±1, ±2.
For i = j = 0, the result (4) reduces to clasical Watson’s summation theorem (3).
Here, [x] denotes the greatest integer less than or equal to x and the modulus is denoted by |x|.
For the expressions of the coefficients Ai,j , Bi,j and Ci,j , one can refer [2].

The aim of this paper is to evaluate twenty five integrals involving generalized hypergeometric
function in the form of a single integral of the form∫ 1

0

xc−1(1− x)c−1
3F2

[
a, b, c+ 1

2
1
2 (a+ b+ i+ 1), 2c+ j

; 4x(1− x)

]
dx

for i, j = 0,±1,±2.
The results are derived with the help of generalized Watson’s summation theorem on the sum
of a 3F2 given by (4). Fifty interesting integrals in the form of two integrals (twenty five each)
have also been given as special cases of our main findings.
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2. Main integrals
The twenty five integrals in the form of a single integral to be evaluated in this paper is given in
the following theorem.

Theorem 2.1. For ℜ(c) > 0, ℜ(2c− a− b+ i+ 2j + 1) > 0, for i, j = 0,±1,±2, the following
integral formula holds.∫ 1

0

xc−1(1− x)c−1
3F2

[
a, b, c+ 1

2
1
2 (a+ b+ i+ 1), 2c+ j

; 4x(1− x)

]
dx =

Γ(c) Γ(c)

Γ(2c)
Ω (5)

where Ω is the same as given in (4).

Proof: The proof of our theorem is quite straight forward. For this, we proceed as follows.
Denoting the left hand side of (5) by I, we have

I =

∫ 1

0

xc−1(1− x)c−1
3F2

[
a, b, c+ 1

2
1
2 (a+ b+ i+ 1), 2c+ j

; 4x(1− x)

]
dx (6)

Now expressing 3F2 as a series, changing the order of integration and summation, which is easily
seen to be justified due to the uniform convergence of the series in the interval (0, 1), we have

I =

∞∑
n=0

(a)n (b)n (c)n 22n(
1
2 (a+ b+ i+ 1)

)
n

(2c+ j)n

∫ 1

0

xc+n−1(1− x)c+n−1dx (7)

Evaluating the Beta integral and using the result

(a)n =
Γ(a+ n)

Γ(a)

we have, after some simplification

I =
Γ(c) Γ(c)

Γ(2c)

∞∑
n=0

(a)n (b)n (c)n(
1
2 (a+ b+ 1)

)
n

(2c+ j)n n!
(8)

Now summing up the series, we have

I =
Γ(c) Γ(c)

Γ(2c)
= 3F2

[
a, b, c

1
2 (a+ b+ i+ 1), 2c+ j

; 4x(1− x)

]
(9)

We now observe that the 3F2 appearing can be evaluated with the help of known result (4) and
we easily arrive at the right hand side of (5).

This completes the proof of the theorem. 2

3. Special cases
In this section, we shall mention a large number of very interesting special cases of our main

findings.
For this, we observe here that, if in (5), we let b = −2n and replace a by a + 2n or we let

b = −2n − 1 and replace a by a + 2n + 1. In each case, one of the two terms appearing on the
right-hand side of (5) will vanish and we get fifty interesting special cases(twenty five each) given
below in the form of two corollaries.
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Corollary 3.1. For i, j = 0,±1,±2, the following twenty five results holds.∫ 1

0

xc−1(1− x)c−1
3F2

[
−2n, a+ 2n, c+ 1

2
1
2 (a+ i+ 1), 2c+ j

; 4x(1− x)

]
dx =

= Di,j
Γ(c) Γ(c)

Γ(2c)

(
1
2

)
n

(
1
2a− c+ 3

4 − (−1)i

4 −
[
1
2j +

1
4

(
1 + (−1)i

)])
n(

c+ 1
2 +

[
j
2

])
n

(
1
2a+

1
4 (1 + (−1)i)

)
n

(10)

where the coefficients Di,j are as in Tables (1) and (2) given below.

Table 1. Table for Di,j , i = 0,±1,±2 and j = −2,−1, 0

i�j -2 -1 0

2
(a+1)

[
(c−1)(a−1)+2n(a+2n)

]
(c−1)(a+4n−1)(a+4n+1)

(a+1)(a−1)
(a+4n+1)(a+4n−1)

(a+1)[(a−1)(2c−a−1)−4n(a+2n)]
(2c−a−1)(a+4n+1)(a+4n−1)

1 a(c+2n−1)
(c−1)(a+4n)

a
a+4n

a
a+4n

0 1− 2n(a+2n)
(c−1)(2c−a−3) 1 1

-1 1− 2n(2c+a+4n−2)
(c−1)(2c−a−4) 1− 4n

(2c−a−2) 1

-2 D−2,−2 1− 8n(a+2n)
(a−1)(2c−a−3) 1− 4n(a+2n)

(a−1)(2c−a−1)

D−2,−2 = 1− 2an(6c+ a− 7)(2c− a− 3)− 4n2[5a2 − 4a− 21− 4c(3c− a− 8)]− 64n3(a+ n)

(c− 1)(a− 1)(2c− a− 3)(2c− a− 5)

Table 2. Table for Di,j , i = 0,±1,±2 and j = 1, 2

i�j 1 2

2 (a+1)[(a−1)(2c−a−1)−8n(a+2n)]
(2c−a−1)(a+4n+1)(a+4n−1) D2,2

1 a(2c−a−4n)
(2c−a)(a+4n)

a[(c+1)(2c−a)−2n(2c+a+4n+2)]
(c+1)(2c−a)(a+4n)

0 1 1− 2n(a+2n)
(c+1)(2c−a+1)

-1 1 1 + 2n
(c+1)

-2 1 1 + 2n(a+2n)
(c+1)(a−1)

D2,2 =

(a+ 1)

(
(a− 1)(c+ 1)(2c− a+ 1)(2c− a− 1)− 2an(6c+ a+ 5)(2c− a+ 1)

+4n2(5a2 + 4a− 5− 4c(3c− a+ 4)) + 64n3(a+ n)]

)
(c+ 1)(2c− a+ 1)(2c− a− 1)(a+ 4n+ 1)(a+ 4n− 1)

Corollary 3.2. For i, j = 0,±1,±2, the following twenty five results holds.∫ 1

0

xc−1(1− x)c−1
3F2

[
−2n− 1, a+ 2n+ 1, c+ 1

2
1
2 (a+ i+ 1), 2c+ j

; 4x(1− x)

]
dx =

= Ei,j
Γ(c) Γ(c)

Γ(2c)

(
3
2

)
n

(
1
2a− c+ 5

4 + (−1)i

4 −
[
1
2j +

1
4

(
1 + (−1)i

)])
n(

c+ 1
2 +

[
j+1
2

])
n

(
1
2a+

1
4 (3− (−1)i)

)
n

(11)

where the coefficient Ei,j are as in Tables (3) and (4) given below.
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Table 3. Table for Ei,j i = 0,±1,±2 and j = −2,−1, 0

i� j –2 –1 0
2 (a+1)(2c−a−3)

(c−1)(a+4n+1)(a+4n+3)
(a+1)(4c−a−3)

(a+4n+1)(a+4n+3)(2c−1)
2(a+1)

(a+4n+1)(a+4n+3)

1 (c−a−2n−2)
(c−1)(a+4n+2)

2c−a−2
(a+4n+2)(2c−1)

1
a+4n+2

0 −1
(c−1)

−1
(2c−1) 0

–1 E−1,−2
−(2c+a+4n)

a(2c−1)
−1
a

–2 −(2c+a+4n−1)(2c−a−4n−5)
(a−1)(c−1)(2c−a−5) E−2,−1

−2
(a−1)

E−2,−1 = − [(4c+ a− 1)(2c− a− 3)− 8n(a+ 2n+ 2)]

(a− 1)(2c− 1)(2c− a− 3)

E−1,−2 = − [(c+ a)(2c− a− 4)− 2n(3a− 2c+ 4n+ 6)]

a(c− 1)(2c− a− 4)

Table 4. Table for Ei,j i = 0,±1,±2 and j = 1, 2

i�j 1 2

2 E2,1
(a+1)(2c+a+4n+3)(2c−a−4n−1)
(c+1)(2c−a−1)(a+4n+1)(a+4n+3)

1 (2c+a+4n+2)
(2c+1)(a+4n+2)

(c+a+2)(2c−a)−2n(3a−2c+4n+2)
(c+1)(2c−a)(a+4n+2)

0 1
(2c+1)

1
(c+1)

–1 −(2c−a)
a(2c+1)

−(c−a−2n)
a(c+1)

–2 −(4c−a+1)
(a−1)(2c+1)

−(2c−a+1)
(a−1)(c+1)

E2,1 =
(a+ 1)[(4c+ a+ 3)(2c− a− 1)− 8n(a+ 2n+ 2)]

(a+ 4n+ 1)(a+ 4n+ 3)(2c+ 1)(2c− a− 1)

In particular, in (10), if we take i = j = 0, we get the following interesting result.∫ 1

0

xc−1(1− x)c−1
3F2

[
−2n, a+ 2n, c+ 1

2
1
2 (a+ b+ 1), 2c

; 4x(1− x)

]
dx =

=
Γ(c) Γ(c)

Γ(2c)

(
1
2

)
n

(
1
2a− c+ 1

2

)
n(

c+ 1
2

)
n

(
1
2a+

1
2

)
n

(12)

Similarly, in (11), if we take i = j = 0, we get the following elegant result.∫ 1

0

xc−1(1− x)c−1
3F2

[
−2n− 1, a+ 2n+ 1, c+ 1

2
1
2 (a+ b+ 1), 2c

; 4x(1− x)

]
dx = 0 (13)

Similarly, we can obtain other results. We, however, prefer to omit the details.

Conclusions
In this paper, we have evaluated twenty five interesting integrals involving generalized hyper-

geometric function in the form of a single integral.
The results are established with the help of generalization of classical Watson’s summation

theorem obtained earlier by Lavoie et al. [2].
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Fifty interesting integrals in the form of two integrals (twenty five each) have also been
evaluated as special cases of our main findings.

We conclude this paper by remarking that the interesting applications of the integrals ob-
tained in this paper are under investigations and will be published soon.
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Аннотация. В теории гипергеометрических и обобщенных гипергеометрических функций клас-
сические теоремы суммирования, такие как теоремы Гаусса, Бейли и Каммера для серии 2F1; Уот-
сона, Диксона, Уиппла и Саалшуз, играют ключевую роль. Приложения вышеупомянутых теорем
о суммировании хорошо известны. В нашем настоящем исследовании мы стремимся оценить два-
дцать пять новых классов интегралов, включающих обобщенную гипергеометрическую функцию
в форме единого интеграла:∫ 1

0

xc−1(1− x)c−1
3F2

[
a, b, c+ 1

2
1
2
(a+ b+ i+ 1), 2c+ j

; 4x(1− x)

]
dx

for i, j = 0,±1,±2.
Результаты устанавливаются с помощью обобщений теоремы классической суммы Уотсона, по-

лученной ранее Лавойе и др. [2]. Пятьдесят интересных интегралов в форме двух видов интегралов
(двадцать пять каждый) также были даны в качестве особых случаев наших основных результа-
тов.

Ключевые слова: обобщенная гипергеометрическая функция, теорема Ватсона, определенный
интеграл, бета-интеграл.
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Abstract. The Fréedericksz effect consisting in the reorientation of liquid crystal molecules in an
extended layer under the action of inhomogeneous electric field is simulated in the paper. The constitutive
equations for tangential stress, angular velocity, and electric potential are obtained from the equations
of a simplified dynamic model of a 5CB nematic liquid crystal in the acoustic approximation. The
algorithm for numerical solution of the constitutive equations is constructed on the basis of finite-
difference schemes. The algorithm is implemented with the use of CUDA technology for computers with
graphics accelerators.
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Introduction

Liquid crystals (LCs) have in a certain temperature range both fluidity (the property of liq-
uids) and anisotropy (the property of solid crystals). There is an order in the spatial orientation
of liquid crystal molecules which significantly affects their properties. To characterize the order a
unit vector “director” is introduced. It specifies the preferred direction of the molecules. Depend-
ing on the order of orientation of molecules there are three classes of LCs: nematic (molecules
are oriented in the direction of the vector-director and located randomly), smectic (molecules
form layers, and each layer has its own orientation of molecules) and cholesteric (molecules are
form into layers, creating a spiral). Liquid crystals are sensitive to external influences which
make it possible to control their properties by changing their spatial orientation. That is why
the liquid crystal state of matter is of scientific interest to researchers. Liquid crystals are widely
used in creating displays of various digital devices. Due to anisotropy of the permittivity weak
electric field causes the liquid crystal molecules to rotate, and it results in the change of optical
properties. The reorientation of liquid crystal molecules under the action of electric field was first
observed and studied by Fréedericksz and his colleagues [1]. The orientation was changed when
strong enough field was applied to the liquid crystal. This effect was called the Fréedericksz tran-
sition, and it has a threshold character. Theoretically, it was studied using the elastic free energy
of Frank and the energy of interaction with electric field. The Oseen–Frank model [2,3] describes

∗ismol@icm.krasn.ru https://orcid.org/0000-0002-9852-9310
c⃝ Siberian Federal University. All rights reserved
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the static state of liquid crystals. According to the theory, the field causes such deformation
of the liquid crystal that distribution of molecules corresponds to minimum of the free energy
which is equal to the sum of elastic and dielectric components. The elastic energy is a quadratic
form in terms of derivatives of the vector-director with respect to spatial coordinates. However,
this model cannot be generalized for the analysis of dynamic processes. It does not take into
account translational motion because only rotational motion is considered. By now universal
dynamic model has been developed by Eriksen [4] and Leslie [5]. It is based on conservation
laws and takes into account translational and rotational degrees of freedom of molecules. This
theory describes the flow of nematic liquid crystal from the hydrodynamic point of view, and it
is reduced to the Oseen–Frank theory in the static case. The need to create new dynamic models
of liquid crystal is dictated by the complexity of the existing universal Eriksen–Leslie model that
requires construction of state functions using specific experiments. A simplified dynamic model
in the acoustic approximation was proposed [6]. It includes equations of acoustics and heat con-
duction. These equations are based on conservation laws and the Cosserat continuum model, and
they include small independent rotations of particles in addition to translational motion. The
model describes he dynamic behaviour of nematic liquid crystals under the action of mechanical,
thermal and electrical external factors.

Analysis of an unstable state in statics was carried out in [7], where the governing equations of
the model are non-linear variational Euler equations for the electric potential and the orientation
angle of molecules in the problem of minimizing the potential energy functional.

This work is devoted to modelling the reorientation of molecules in an extended liquid crystal
layer located in the electric field of a capacitor with short plates arranged periodically. The
governing equations are obtained from the simplified dynamic model of the liquid crystal in
the acoustic approximation. The developed parallel numerical algorithm is based on an explicit
difference scheme of the second order of approximation. The accuracy of numerical solution
can be improved by choosing a finer grid due to the distribution of computational load. The
computational algorithm is implemented as a software package written in C++ by means of
CUDA technology using video card graphics accelerators.

1. Formulation of the problem

The governing partial differential equations for the angular velocity ω and tangential stress
q are obtained by differentiating the equations of the simplified dynamic model of the nematic
liquid crystal:

∂2q

∂t2
+

2α

η

∂q

∂t
+ 2α

∂ω

∂t
=
α

ρ

(
△q + ∂f2

∂x1
− ∂f1
∂x2

)
,

∂2ω

∂t2
− 2

j

∂q

∂t
=
γ

j
△ω +

1

j

∂m

∂t
.

(1)

Here ρ is the density, j is the moment of inertia, η is the viscosity coefficient, α is the modu-
lus of elastic resistance to rotation, γ is the modulus of elastic resistance to curvature change.
Equations (1) describe moment interactions of liquid crystal molecules under the action of in-
homogeneous electric field in a two-dimensional formulation. This model of the effect of the
Fréedericksz reorientation have a fewer number of equations in comparison with the general
model. The initial data for q and ω are
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q
∣∣∣
t=0

= q0, ω
∣∣∣
t=0

= ω0,
∂q

∂t

∣∣∣∣
t=0

= − 2α
(
ω0 +

q0

η

)
,

∂ω

∂t

∣∣∣∣
t=0

=
2 q0 +m

j
,

where q0, ω0 are the values of the required quantities at the initial moment of time. The initial
linear velocities and moment stresses are assumed to be equal to zero. The boundary conditions
are formulated in terms of q and ω. The symmetry conditions for stress state of the liquid crystal
are given in terms of derivatives qx1

, ωx1
or qx2

, ωx2
(depending on the symmetry line).

During the action of electric field bulk forces f = (P ·∇)E and moment of forces m = P ×E
arise. Here E = −∇φ is the electric field vector, P = ε0 χE is the electric polarization vector,
χ = ε− I is the dielectric susceptibility tensor, and ε is the dielectric susceptibility tensor. In a
2D formulation of the problem bulk forces and moment of forces are defined as follows

f1 = ε0

(
χ11

∂φ

∂x1
+ χ12

∂φ

∂x2

)
∂2φ

∂x21
+ ε0

(
χ12

∂φ

∂x1
+ χ22

∂φ

∂x2

)
∂2φ

∂x1∂x2
,

f2 = ε0

(
χ11

∂φ

∂x1
+ χ12

∂φ

∂x2

)
∂2φ

∂x1∂x2
+ ε0

(
χ12

∂φ

∂x1
+ χ22

∂φ

∂x2

)
∂2φ

∂x22
,

m = ε0
(
χ11 − χ22

) ∂φ
∂x1

∂φ

∂x2
− ε0 χ12

(( ∂φ
∂x1

)2
−
( ∂φ
∂x2

)2)
.

(2)

The permittivity along moleculesε∥ and permittivity across molecules ε⊥ are different. Compo-
nents of ε tensor depend on rotation angle of molecules θ:

ε11 = ε∥ cos
2 θ + ε⊥ sin2 θ, ε22 = ε∥ sin

2 θ + ε⊥ cos2 θ, ε12 = ε21 =
(
ε∥ − ε⊥

)
cos θ sin θ,

Relations for calculating components of the permittivity tensor contain rotation angle that
changes each time step when solving dynamic problem. Thus, it is necessary to add an equation
for the rotation angle to system of equations (1):

∂θ

∂t
= ω. (3)

Bulk forces and moment of forces (2) are taken into account in the right parts of governing
equations (1). In turn, a change in the spatial orientation of molecular domains due to the action
of forces and moment of forces leads to a change in the permittivity tensor. Then, electric field
is changed.

The perturbation by the electric field occurs as follows. A horizontally infinite flat liquid
crystal layer located between short capacitor plates is considered. Potential difference is set
between upper and bottom plates: φ+ = φ0, φ− = −φ0. Conditions for the continuity of the
electric potential (between the dielectric and air) and the continuity of the normal component of
the electric induction vector are set at the interface:

φ+ = φ,
∂φ+

∂x2
= ε12

∂φ

∂x1
+ ε22

∂φ

∂x2
if x2 = h,

φ = φ−, ε12
∂φ

∂x1
+ ε22

∂φ

∂x2
=
∂φ−

∂x2
if x2 = 0.

The initial distribution of orientation angles θ0 relative to the x1 axis is known inside the
layer. It is given, for example, as shown in Fig. 1. Angle θ is calculated in succeeding time steps
using the difference analogue of equation (3).
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Fig. 1. Scheme of perturbation of the liquid crystal layer by an electric field

2. Computational algorithm

The solution of the problem includes several stages. At the first stage, it is necessary to
calculate the values of the electric potential included in (2). The electric potential satisfies the
anisotropic equation ∇ · (ε · ∇φ) = 0 in the LC layer. To solve this equation the finite difference
method is used to implement an iterative process in which the Poisson equation is recursively
solved using fast Fourier transform with respect to new approximation of the potential φn+1:

ε̃△φn+1 = ε̃△φn −∇ · (ε · ∇φn).

Here the right hand side is calculated using approximation from the previous time step φn,
constant ε̃ is chosen in such a way that iterative process converges. The process continues until
the relative error defined as the uniform difference norm becomes sufficiently small. Calculations
showed that no more than 10 iterations are required for the convergence of the iterative process
with a relative error of 10−5 for ε̃ = (ε∥ + ε⊥)/2.

The Laplace equation ∆φ = 0 is satisfied outside the LC layer. It is solved by the method
of straight lines. The segment is uniformly partitioned in the direction x1, and derivatives with
respect to x2 are replaced by finite differences. Thus, function φ is discrete in the direction
x1 and continuous in the direction x2. Further, the solution is constructed using the Fourier
transform. To calculate the solution, the same rectangular grid is considered for both solutions.
The algorithm of calculation of electrical action on the liquid crystal layer is described in detail
in [8]. After finding the values of the electric potential, bulk forces and moment of forces are
calculated using (2) where partial derivatives are replaced with finite differences. At the last
stage, using the explicit second order of accuracy finite-difference scheme “cross” values of q and
ω are determined:

ωn+1
i1,i2

= 2ωn
i1,i2 − ωn−1

i1,i2
+

△t
j

(
qn+1
i1,i2

− qn−1
i1,i2

)
+

+
γ (△t)2

j

(
ωn
i1+1,i2

− 2ωn
i1,i2

+ ωn
i1−1,i2

(△x1)2
+
ωn
i1,i2+1 − 2ωn

i1,i2
+ ωn

i1,i2−1

(△x2)2

)
+

+
△t
2 j

(
mn

i1,i2 −mn−1
i1,i2

)
,

(4)
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(
α

j
+

α

η△t
+

1

(△t)2

)
qn+1
i1,i2

=
2

(△t)2
qni1,i2 +

2α

△t

(
ωn−1
i1,i2

− ωn
i1,i2

)
+

+

(
α

j
+

α

η△t
− 1

(△t)2

)
qn−1
i1,i2

+
α

ρ

(
qni1+1,i2

− 2 qni1,i2 + qni1−1,i2

(△x1)2
+

+
qni1,i2+1 − 2 qni1,i2 + qni1,i2−1

(△x2)2
+
f2

n
i1+1,i2 − f2

n
i1−1,i2

2△x1
−

−
f1

n
i1,i2+1 − f1

n
i1,i2−1

2△x2

)
+

α

2 j

(
mn

i1,i2 −mn−1
i1,i2

)
−

− αγ△t
j

(
ωn
i1+1,i2

− 2ωn
i1,i2

+ ωn
i1−1,i2

(△x1)2
+
ωn
i1,i2+1 − 2ωn

i1,i2
+ ωn

i1,i2−1

(△x2)2

)
.

(5)

Then rotation angle is recalculated as follows

θn+1
i1,i2

= θni1,i2 +
∆t

2

(
ωn+1
i1,i2

+ ωn
i1,i2

)
.

3. Analysis of the unstable state of LC based
on the Oseen–Frank model

When the potential difference is below of some threshold value, an oscillatory motion of
molecules occurs with a small deviation from the initial position. The static Oseen–Frank theory
is used to estimate the instability of the equilibrium of the liquid crystal. In accordance with
the theory, the distribution of orientation angles of molecules in the equilibrium state of the LC
layer under the action of electric field created by charges on the plates satisfies the stationarity
condition for the potential energy functional:

J =

∫
V

(
F − 1

2
D · E

)
dV .

Here V is the rectangular area selected in accordance with the symmetry of the problem, E =

= −
(
0, φx2 , 0

)
, D = ε0 ε⊥E + ε0 ∆ε (n · E)n, ∆ε = ε ∥ − ε⊥. The Frank free energy F in the

one-constant approximation takes the form

F =
1

2
γ
(
|∇ · n|2 + |∇ × n|2

)
. (6)

The vector-director responsible for the predominant direction of liquid crystal molecules depends
in this case only on x2: n =

(
cos θ(x2), sin θ(x2), 0

)
. The equilibrium of liquid crystal molecules

is achieved by minimizing the Oseen–Frank free energy functional:∫
V

(
F − 1

2
D · E

)
dV → min, (7)

where
D · E = ε0 ε⊥E

2 + ε0 ∆ε (n · E)2. (8)

Taking into account that the first term in expression (8) does not depend on n and n in turn
does not depend on x1, this expression takes the form

D · E = ε0 ε⊥

(
dφ

dx2

)2

+ ε0 ∆ε

(
dφ

dx2

)2

sin2 θ.
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After substituting (6) and (8) into (7) and taking into account that sin θ ≈ θ, one can obtain∫ h

0

[
γ

2

(
dθ

dx2

)2

− 1

2
ε0 ε⊥

(
dφ

dx2

)2

− 1

2
ε0 ∆ε

(
dφ

dx2

)2

θ2
]
dx2 → min.

Varying the functional and integrating it by parts, one can obtain that∫ h

0

[
− γ

d2θ

dx22
− ε0 ∆ε

(
dφ

dx2

)2

θ

]
δθ dx2 = 0.

Thus, the Euler equation is obtained:

γ
d2θ

dx22
= − ε0 ∆ε

(
dφ

dx2

)2

θ. (9)

The following chain of transformations is valid

θ = eλx2 , γ λ2 = − ε0 ∆ε

(
dφ

dx2

)2

, λ = ± i

√√√√√ε0 ∆ε

(
dφ

dx2

)2

γ
;

θ = sin

√√√√√ε0 ∆ε

(
dφ

dx2

)2

γ
x2

∣∣∣∣h
0

= 0 ⇒

√√√√√ε0 ∆ε

(
dφ

dx2

)2

γ
h = π.

Minimization of the functional gives an estimate of the instability at which the functional
loses its convexity. Corresponding Euler equation (9) with boundary conditions θ(0) = θ(h) = 0

has non-trivial solutions
φ+ − φ− = π

√
γ

ε0 ∆ε
.

For a 5CB liquid crystal with γ = 6 · 10−12 H, ε ∥ = 16.7, ε⊥ = 7 the threshold value the
potential difference is about 1 V. Above this value, the molecules lose their stability and turn
along the direction of the field, forming swarms of identically oriented molecules.

4. Calculation results

A parallel program implementing the described algorithms is written in C++ using CUDA
technology for computing systems with graphics accelerators. The calculations were carried out
on the high-performance Flagman server of ICM SB RAS.

In all calculations, the coefficients for the 5CB liquid crystal were taken according to experi-
mental data [9]. Earlier, the value of coefficient α = ν2j π2 was based on the resonant frequency
ν∗ = 350MHz obtained experimentally in [10]. In the present work, calculations were carried out
for various values of ν. It was studied how the orientation of molecules changes at different time
steps in this case. The bulk density of the moment of inertia is determined as j = ρ (Nδ0)

2/12,
where δ0 = 1.87 nm, N = 10, ρ = 1022 kg/m3. A finite difference grid is introduced in the space
x1, x2 with the space step ∆x1 in the direction x1 and the space step ∆x2 in the direction x2.
The time step is defined as ∆t. The grid consists of a set of nodes Rn

i1,i2
= R(tn, x1i1 , x2i2).

Loads can be specified on some sections of the boundary.
Figs. 2–4 show the results of calculations for 10× 4µm liquid crystal layer under the action

of electric field for various initial orientations of molecules and various arrangements of plates.
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The horizontal lines show the boundaries of the layer exposed to electric field. The thick lines
show the capacitor plates. The capacitor plates are arranged non-symmetrically in Fig. 2 a, and
they are arranged symmetrically in Fig. 2 b. The length of the upper plate is 1µm, the length of
the lower plate is 2.5µm in both calculations. The finite difference grid in the LC layer contains
640× 256 cells, and in the outer parts of the layer it contains 640× 128 cells.

Fig. 2. Disturbance of the LC layer by electric field: level lines of electric potential φ at 10000th
time step; rotation angle of molecules θ = π/4 (a), 0 (b)

Fig. 3 shows the level lines for the rotation angle of molecules in the LC layer for the problem
in Fig. 2 a for different α and ν at various time steps. The results for ν = 11 MHz and α = 0.36
Pa are shown on the left side, and results for ν = 35 MHz and α = 3.6 Pa are shown on the
right side. The potential difference is 1.5 V that exceeds the threshold value of 1 V. Therefore,
liquid crystal molecules are reoriented in the direction of the electric field. One can also observe
the effect of formation of large domains of identically oriented molecules (so-called swarms), the
size of which changes with time.

Fig. 4 shows level lines with similar parameters but for symmetrical capacitor plates for the
problem in Fig. 2 b.

It is noted that the smaller ν and hence coefficient α the larger swarms are formed which
more slowly break up into smaller ones over time. Swarms disintegrate already at 20000 – 25000
time step for ν = 35 MHz. That is not observed for ν = 11 MHz.

Conclusion

This paper presents mathematical model of the action of electrical field on liquid crystals.
Equations of the model are obtained from the previously developed dynamic model within the
framework of acoustic approximation. The model allows one to significantly speed up the time
of calculations. The algorithm for numerical solution of model equations is implemented as a
parallel program in C++ using CUDA technology.

The developed model can be used to study the behaviour of liquid crystals under the action of
electric field in dynamics and formation of swarms depending on the intensity of electric field, the

– 278 –



Irina V. Smolekho Analysis of the Unstable State of a Nematic Liquid Crystal . . .

Fig. 3. Distribution of orientation angles of LC molecule domains with symmetrical arrangement
of plates: 5000th (a), 10000th (b), 15000th (c), 25000th (d) time steps

initial rotation angle of molecules and location of the capacitor plates. The results showed that
as frequency increases smaller swarms are formed which quickly break up into smaller swarms.
The results of calculations can be applied to the study of the dynamics of liquid crystals in
the problems of propagation of thermoelastic waves caused by weak mechanical and electrical
disturbances.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Centers for Mathematics Research and Education (Agreement
No. 075-02-2023-912).
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Fig. 4. Distribution of orientation angles of LC molecule domains with symmetrical arrangement
of plates: 5000th (a), 10000th (b), 15000th (c), 25000th (d) time steps
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Анализ неустойчивого состояния нематического жидкого
кристалла на основе упрощенной динамической модели

Ирина В. Смолехо
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация

Аннотация. В статье моделируется эффект Фредерикса, состоящий в переориенации молекул
жидкого кристалла в протяженном слое под действием неоднородного электрического поля. Опре-
деляющие уравнения для касательного напряжения, угловой скорости и электрического потенци-
ала получены из уравнений упрощенной динамической модели нематического жидкого кристалла
5ЦБ в акустическом приближении. Построен алгоритм численного решения определяющих урав-
нений с помощью конечно-разностных схем. Программная реализация алгоритма выполнена по
технологии CUDA для компьютеров с графическими ускорителями.

Ключевые слова: жидкий кристалл, динамика, электрический потенциал, эффект Фредерикса,
метод прямых, уравнение Лапласа, параллельное программирование, технология CUDA.
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Abstract. In this paper, we prove common fixed point theorems for two pairs of hybrid mappings in
metric spaces using the concept of C-class function and T -weak commutativity. Our Theorems generalize
some well-know results.
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1. Introduction and preliminaries

Recently, many authors have provided new fixed point results for multivalued mappings in
the literature by taking into account different conditions on metric spaces (see [4, 7, 8, 11,17]).

In the present article, we prove a coincidence and common fixed points of multivalued maps
via C-class functions with a self map are taken into account with ageneralized form of contraction
condition.

Let (X, d) be a metric space. For x ∈ X and A ⊂ X,we denote

D(x,A) = inf{d(x, y), y ∈ A}.

Let CB(X) be the set of all nonempty closed and bounded subsets of X.
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Let H be the Hausdorff-Pompeiu metric with respect to d defined by

H(A,B) = max

{
sup
a∈A

D(a,B), sup
b∈B

D(A, b)

}
,

for every A,B ∈ CB(X).
It is well known that (CB(X),H) is a metric space and if (X, d) is complete, then (CB(X),H)

is also complete
Let f : X → X be a single-valued mapping and T : X → CB(X) be a multi-valued mapping.
(i) A point x ∈ X is a fixed point of f (resp. T ) if fx = x (resp. x ∈ Tx).
(ii) A point x ∈ X is a coincidence point of f and T if fx ∈ Tx.
(iii) A point x ∈ X is a common fixed point of f and T if x = fx ∈ Tx.

Lemma 1 ( [12]). If A,B ∈ CB(X) and k > 1, then for each a ∈ A, there exists b ∈ B such
that

d(a, b) 6 kH(A,B). (1)

Let f : X → X be a single-valued mapping and T : X → CB(X) be a multi-valued mapping

Definition 1 ( [12]). 1) A point x ∈ X is said to be a coincidence point of f and T if fx ∈ Tx.
We denote by C(f, T ) the set of all coincidence points of f and T .

2) A point x ∈ X is a fixed point of T if x ∈ Tx.

Definition 2 ( [5]). f and T are said to be commuting in X if for all x ∈ X,

fTx ∈ Tfx.

Definition 3 ( [15]). f and T are said to be weakly commuting on X if for all x ∈ X, fTx ∈
CB(X) and

H(fTx, Tfx) 6 D(fx, Tx).

Definition 4 ( [13]). f and T are said to be R-weakly commuting at x ∈ X, if

fTx ∈ CB(X)

and there exists an R > 0 such that

H(fTx, Tfx) 6 RD(fx, Tx). (2)

Remark 1.1 ([6]). Commuting implies weakly commuting, but the converce is not true in general.

We defined that f and T are said to be pointwise R-weakly commuting on X if for all x ∈ X,
fTx ∈ CB(X) and (2) holds for some R > 0.

Definition 5 ( [16]). 1) f and T are said to be (IT )-commuting at x ∈ X if

fTx ⊂ Tfx.

2) A pointwise R-weakly commuting hybrid pair is not weakly compatible in general.
3) IT -commutativity of f and T at a coincidence point is more general than their weak

compatibility at the same point.
4) A pointwise R-weak commutativity at a coincidence point is equivalent to (IT ) commuta-

tivity at this point.
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Definition 6 ( [9]). 1) f is T -weakly commuting at x ∈ X if ffx ∈ Tfx.
2) For a hybrid pair (f, T ), (IT) commuting at coincidence points implies that f is T -weakly

commuting at these points.

Lemma 2. a) If f is T -weakly commuting at x ∈ X, then fx ∈ C(f, T ).
b) If f is T -weakly commuting at x ∈ X and fx = ffx, then fx is a common fixed point of

f and T .

In 2014, A. H. Ansari [2] introduced the concept of a C-class functions which covers a large
class of contractive conditions.

Definition 7 ( [2]). A continuous function F : [0,+∞)2 → R is called C-class function if for
any s, t ∈ [0,+∞)2; the following conditions hold

c1 F (s, t) 6 s,
c2 F (s, t) = s implies that either s = 0 or t = 0.
An extra condition on F that F (0, 0) = 0 could be imposed in some cases if required. The

letter C will denote the class of all C-functions.

Example 1. The following examples shows that the class C is nonempty:
1. F (s, t) = s− t.
2. F (s, t) = ms, for some m ∈ (0, 1).
3. F (s, t) =

s

(1 + t)r
, for some r ∈ (0, 1).

4.F (s, t) =
log(t+ as)

(1 + t)
, for some a > 1.

Let Φ denote the class of the functions φ : [0,+∞) → [0,+∞) which satisfy the following
conditions:

a) φ is continuous ;
b) φ(t) > 0, t > 0 and φ(0) > 0.

Definition 8 ( [10]). A function ψ : [0,+∞) → [0,+∞) is called an altering distance function
if the following properties are satisfied:

i) ψ is non-decreasing and continuous;
ii) ψ(t) = 0 if and only if t = 0.

Let us suppose that Ψ denote the class of the altering distance functions.

Definition 9. A tripled (ψ,φ, F ) where ψ ∈ Ψ; φ ∈ Φu and F ∈ C is said to be a monotone if
for any x, y ∈ [0,+∞) ;

x 6 y implies F (ψ(x), φ(x)) 6 F (ψ(y), φ(y)).

Example 2. Let F (s, t) = s− t, φ(x) =
√
x

ψ(x) =

{ √
x if 0 6 x 6 1
x2 if x > 1

,

then (ψ,φ, F ) is monotone.

Lemma 3 ( [14]). Let (X, d) be a metric space and let {yn} be a sequence in X such that
d(yn, yn+1) = 0 is nonincreasing and

lim
n→+∞

d(yn, yn+1) = 0.

If {y2n} is not a Cauchy sequence, then there exist ε > 0 and sequences {mk} and {nk} of
positive integers such that the following sequences tend to ε when k → +∞

d(x2nk
, x2mk

), d(x2nk+1, x2mk
), d(x2nk

, x2mk−1, d(x2nk+1, x2mk−1), d(x2nk+1, x2mk+1), . . . (3)
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2. Main results

In the following theorem we obtain the coincidence and common fixed point for a hybrid pair
of mappings via C-class function

Theorem 2.1. Let (X, d) be a metric space, S, T : X → X and K,G : X → CB(X) satisfying

K(X) ⊂ T (X) and G(X) ⊂ S(X) (4)

ψ (rH(Kx,Gy)) 6 F (ψ (M (x, y)) , φ (M (x, y))) (5)

where r > 1, F : [0,+∞)2 → R is C-class function, ψ : [0,+∞) → [0,+∞) is an altering
distance function, φ : [0,+∞) → [0,+∞) is an ultra altering distance function and

M (x, y) = max

{
d(Sx, Ty), D(Sx,Kx), D(Ty,Gy),

D(Sx,Gy) +D(Kx, Ty)

2

}
for all x, y ∈ X, D(Sx,Gy) + D(Kx, Ty) ̸= 0 and H(Kx,Gy) = 0 whenever D(Sx,Gy) +
D(Kx, Ty) = 0. Suppose that one of S(X) or T (X) is complete. Then

a) there exists p, q ∈ X such that Sp ∈ Kp and Tq ∈ Gq.

Further, if S is K-weakly commuting and T is G-weakly commuting at their coincidence
points, therefore

b) There exists z ∈ X such that Sz ∈ Kz and Tz ∈ Gz.

c) In the case (b), if Sz = Tz, then Sz = Tz ∈ Kz ∩Gz.

d) In the case (c), if Sz = Tz = z, then z is a common fixed point of S, T,K and G.

Proof. First, assume that there exists p, q ∈ X such that

D(Sp,Gq) +D(Kp, Tq) = 0.

So, D(Sp,Gq) = 0 and D(Kp, Tq) = 0 which implies that Sp ∈ Gq and Tq ∈ Kp. Since
H(Kp,Gq) = 0, it follows that

D(Sp,Kp) 6 H(Kp,Gq) = 0.

Hence Sp ∈ Kp.
In a similar manner, we get Tq ∈ Gq.
Now, assume that

D(Sx,Gy) +D(Kx, Ty) ̸= 0 for all x, y ∈ X.

Let x0 ∈ X be an arbitrary point. By (4) and (1), we define a sequence {yn} in X such that

y2n = Sx2n ∈ Gx2n−1, y2n+1 = Tx2n+1 ∈ Kx2n

d(y2n, y2n+1) 6 kH(Kx2n, Gx2n−1),

d(y2n+1, y2n+2) 6 kH(Kx2n, Gx2n+1), for n = 1, 2, . . .
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Using (5) we have

ψ (rH(Kx2n, Gx2n−1)) 6 F
(
ψ (M (x2n, x2n−1)) , φ (M (x2n, x2n−1))

)
6

6 F
(
ψ
(
max

{
d(y2n, y2n−1), D(y2n,Kx2n), D(y2n−1, Gx2n−1)

D(y2n, Gx2n−1) +D(Kx2n, y2n−1)

2

})
,

φ
(
max

{
d(y2n, y2n−1), D(y2n,Kx2n), D(y2n−1, Gx2n−1)

D(y2n, Gx2n−1) +D(Kx2n, y2n−1)

2

}))
6

6 F
(
ψ
(
max

{
d(y2n, y2n−1), D(y2n, y2n+1), D(y2n−1, y2n)

0 +D(y2n+1, y2n−1)

2

})
,

φ
(
max

{
d(y2n, y2n−1), D(y2n, y2n+1), D(y2n−1, y2n)

0 +D(y2n+1, y2n−1)

2

}))
6

6 F
(
ψ

(
max

{
d(y2n, y2n−1), d(y2n, y2n+1),

d(y2n+1, y2n−1)

2

})
,

φ

(
max

{
d(y2n, y2n−1), d(y2n, y2n+1),

d(y2n+1, y2n−1)

2

}))
6

6 F
(
ψ
(
max

{
d(y2n, y2n−1), d(y2n, y2n+1)

d(y2n+1, y2n) + d(y2n, y2n−1)

2

}
,

φ
(
max

{
d(y2n, y2n−1), d(y2n, y2n+1)

d(y2n+1, y2n) + d(y2n, y2n−1)

2

})))
6

6 F
(
ψ (max {d(y2n, y2n−1), d(y2n, y2n+1)}) ,

φ (max {d(y2n, y2n−1), d(y2n, y2n+1)})
)
. (6)

Therefore, we obtain
d(y2n, y2n+1) 6 rH(Kx2n, Gx2n−1).

By the increasing of ψ, we get

ψ (d(y2n, y2n+1)) 6 ψ (rH(Kx2n, Gx2n−1)) . (7)

Appling (7) in (6)and the nondecreasing property of ψ that

ψ (d(y2n, y2n+1)) 6 F
(
ψ (max {d(y2n, y2n−1), d(y2n, y2n+1)}) ,

φ (max {d(y2n, y2n−1), d(y2n, y2n+1)})
)

6
6 ψ (max {d(y2n, y2n−1), d(y2n, y2n+1)}) 6
6 ψ (d(y2n, y2n−1)) .

Analogously, we can show that

ψ (d(yn, yn+1)) 6 F
(
ψ (max {d(yn, yn−1), d(yn, yn+1)}) , φ (max {d(yn, yn−1), d(yn, yn+1)})

)
6

6 ψ (max {d(yn, yn−1), d(yn, yn+1)}) 6
6 ψ (d(yn, yn−1)) . (8)
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Then the sequence [d(yn, yn+1) ↓ 0] is bounded below and non-increasing, hence there exist
r > 0 such that

lim
n→+∞

d(yn, yn+1) = 0.

By taking n→ +∞ in (8) and using continuity of φ and ψ, we deduce that

ψ (r) 6 F (ψ (r) , φ (r)) 6 ψ(r).

So, φ(r) = 0 or ψ(r) = 0. It follows that r = 0.

Now, we prove that the sequence {y2n} is a Cauchy in the metric space (X, d). Suppose that
the sequence {y2n} is not a Cauchy sequence in (X, d), then there exist ε > 0 and two sequences
{m(k)} and {n(k)} as in Lemma 1.10 such that all sequences in (3) are tend to ε > 0, when
k → +∞. Now, for x = x2n(k) and y = x2m(k)+1 in equation (5), we get

ψ
(
rH(Kx2n(k), Gx2m(k)+1)

)
6 F

(
ψ
(
M
(
x2n(k), x2m(k)+1

))
, φM

(
x2n(k), x2m(k)+1

))
6

6 F
(
ψ
(
max

{
d(Sx2n(k), Tx2m(k)+1), D(Sx2n(k),Kx2n(k)),

D(Tx2m(k)+1, Gx2m(k)+1),

D(Sx2n(k), Gx2m(k)+1) +D(Kx2n(k), Tx2m(k)+1)

2

})
φ
(
max

{
d(Sx2n(k), Tx2m(k)+1), D(Sx2n(k),Kx2n(k)),

D(Tx2m(k)+1, Gx2m(k)+1),

D(Sx2n(k), Gx2m(k)+1) +D(Kx2n(k), Tx2m(k)+1)

2

}))
6

6 F
(
ψ
(
max

{
d(y2n(k)−1, y2m(k)), D(y2n(k)−1, y2n(k)),

D(y2m(k), y2m(k)+1),

D(y2n(k)−1, y2m(k)+1) +D(y2n(k), y2m(k))

2

})
φ
({

max d(y2n(k)−1, y2m(k)), D(y2n(k)−1, y2n(k)),

D(y2m(k), y2m(k)+1),

D(y2n(k)−1, y2m(k)+1) +D(y2n(k), y2m(k))

2

}))
(9)

Therefore, taking k → +∞ in inequality (9) and using the properties of F we get

ψ (ε) 6 F (ψ (ε) , φ (ε)) 6 ψ (ε) .

So, ψ(ε) = 0 or φ(ε) = 0, hence we get ε = 0 which contradiction with ε > 0. Thus {y2n} is a
Cauchy sequence in (X, d), hence by (3) we deduce that the sequence {yn} is Cauchy sequence in
X. As S(X) is complete, it converges to z ∈ S(X) and so there exists p ∈ X such that z = Sp.

Using (5)

ψ (H(Kp,Gx2n−1)) 6 F
(
ψ
(
max

{
d(Sp, Tx2n−1), D(Sp,Kp), D(Tx2n−1, Gx2n−1),

D(Sp,Gx2n−1) +D(Kp, Tx2n−1)

2

})
,

φ
(
max

{
d(Sp, Tx2n−1), D(Sp,Kp), D(Tx2n−1, Gx2n−1),

D(Sp,Gx2n−1) +D(Kp, Tx2n−1)

2

}))
.
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So

ψ (D(Kp, y2n)) 6 F
(
ψ
(
max

{
d(Sp, y2n−1), D(Sp,Kp), d(y2n−1, y2n),

d(Sp, y2n) +D(Kp, y2n−1)

2

})
φ
(
max

{
d(Sp, y2n−1), D(Sp,Kp), d(y2n−1, y2n),

d(Sp, y2n) +D(Kp, y2n−1)

2

}))
.

Letting n tend to infinity, we get

ψ (D(Kp, Sp)) 6 F (ψ

(
max

{
0, D(Sp,Kp), 0,

0 +D(Kp, Sp)

2

})
φ

(
max

{
0, D(Sp,Kp), 0,

0 +D(Kp, Sp)

2

})
6

6 F (ψ (D(Sp,Kp);φ (D(Sp,Kp)) 6 ψD(Sp,Kp).

Thus, we hold ψ (D(Sp,Kp)) = 0 or φ (D(Sp,Kp) = 0, then D(Sp,Kp) = 0, with implie
Sp ∈ Kp.

Similarly, as K(X) ⊂ T (X), there exists q ∈ X such that z = Sp = Tq. Applying (5) and
letting n→ +∞, bu the same calculate, we can find Tq ∈ Gq.

Since S is F -weakly commuting at p ∈ C(S, T ) and T is G-weakly commuting at q ∈ C(G,T )

it follows that z = Sp ∈ C(K,T ) and z = Tq ∈ C(G,T ). Hence, Sz ∈ Kz and Tz ∈ Gz. If
Sz = Tz, then Sz = Tz ∈ Kz ∩ Gz and if Sz = Tz = z, thenz is a common fixed point of
S, T,K and G.

Corollary 1. Let (X, d) be a metric space, S, T : X → X and K,G : X → CB(X) satisfying

K(X) ⊂ T (X) and G(X) ⊂ S(X)

rH(Kx,Gy) 6M (x, y)β (M (x, y))

where

M (x, y) = max

{
d(Sx, Ty), D(Sx,Kx), D(Ty,Gy),

D(Sx,Gy) +D(Kx, Ty)

2

}
for all x, y ∈ X, D(Sx,Gy) + D(Kx, Ty) ̸= 0 and H(Kx,Gy) = 0 whenever D(Sx,Gy) +

D(Kx, Ty) = 0. Suppose that one of S(X) or T (X) is complete. Then
a) there exists p, q ∈ X such that Sp ∈ Kp and Tq ∈ Gq.
Further, if S is K-weakly commuting and T is G-weakly commuting at their coincidence

points, therefore
b) There exists z ∈ X such that Sz ∈ Kz and Tz ∈ Gz.
c) In the case (b), if Sz = Tz, then Sz = Tz ∈ Kz ∩Gz.
d) In the case (c), if Sz = Tz = z, then z is a common fixed point of S, T,K and G.

Proof. Set ψ(t) = t, F (s, t) = sβ(s) in Theorem (2.1) , β : [0, 1) → [0,+∞). 2

Corollary 2. Let (X, d) be a metric space, S, T : X → X and K,G : X → CB(X) satisfying

K(X) ⊂ T (X) and G(X) ⊂ S(X)

rH(Kx,Gy) 6 mM (x, y)
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where r > 1 and

M (x, y) = max

{
d(Sx, Ty), D(Sx,Kx), D(Ty,Gy),

D(Sx,Gy) +D(Kx, Ty)

2

}
for all x, y ∈ X, D(Sx,Gy) + D(Kx, Ty) ̸= 0 and H(Kx,Gy) = 0 whenever D(Sx,Gy) +

D(Kx, Ty) = 0. Suppose that one of S(X) or T (X) is complete. Then
a) there exists p, q ∈ X such that Sp ∈ Kp and Tq ∈ Gq.
Further, if S is K-weakly commuting and T is G-weakly commuting at their coincidence

points, therefore
b) There exists z ∈ X such that Sz ∈ Kz and Tz ∈ Gz.
c) In the case (b), if Sz = Tz, then Sz = Tz ∈ Kz ∩Gz.
d) In the case (c), if Sz = Tz = z, then z is a common fixed point of S, T,K and G.

Proof. Set ψ(t) = t, F (s, t) = ms in Theorem (2.1) ,m ∈ (0, 1) . 2

Now we present some examples to support our Theorem

Example 3. Define ψ,φ : [0,+∞) → [0,+∞) by ψ(t) =
t

15
; φ(t) = 2t and F (s, t) = ks for

k ∈ (0, 1).
Let X = [0, 1] be endowed with the Euclidean metric d. Let Gx =

[
0, x2

]
, for all x, y ∈ X,

we have
d(x, y) = |x− y| , D(x,Gx) = inf

(
d (x, b) , b ∈

[
0, x2

])
, D(y,Gy) = inf

(
d (y, c) , c ∈

[
0, y2

])
H(Gx,Gy) = H(

[
0, x2

]
,
[
0, y2

]
) =

=
∣∣x2 − y2

∣∣ = (x+ y) |x− y| 6 kd (x, y) , k ∈ (0, 1) with x, y ∈ [0, 1].

Consequently, these mappings are satisfy all conditions of theorem, then they have a fixed
point in X.
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Аннотация. В данной статье мы доказываем общие теоремы о неподвижной точке для двух пар
гибридных отображений в метрических пространствах, используя концепцию функции C-класса и
T -слабую коммутативность. Наши теоремы обобщают некоторые хорошо известные результаты.
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