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Abstract. In this article, we consider some integral representation of the potential type (Cauchy–
Fantappiè) for a smooth function defined on the boundary of a bounded multidimensional domain.
Derivatives of this integral representation are found and their boundary behavior is studied. An analogue
of the Bochner–Martinelli formula for smooth functions is proved.
Keywords: Bochner–Martinelli integral, bounded domain, boundary behavior.

Citation: A.M. Kytmanov, S.G. Myslivets, On One Integral Representation of the
Potential Type, J. Sib. Fed. Univ. Math. Phys., 2025, 18(3), 293–299. EDN: ISZQFR.

The method of integral representations is one of the main constructive methods in the study of
holomorphic functions of several complex variables (see, for example, [1–4]). One such representa-
tion is the classical Bochner–Martinelli representation. Although it does not have a holomorphic
kernel, its versatility has allowed it to be used in matters of analytical continuation of functions
and other analytic objects. It has been studied in detail in the monograph [5].

The integral representation considered in the paper is close to the Bochner–Martinelli rep-
resentation. The aim of the work is to study the properties of this integral representation for
holomorphic functions (Cauchy–Fantappiè type), the kernel of which consists of derivatives of
the fundamental solution of the Laplace equation.

We consider n-dimensional complex space Cn, n > 1 with variables z = (z1, . . . , zn). Let us
introduce the vector module |z| =

√
z21 + . . .+ z2n and the differential forms dz = dz1 ∧ . . .∧ dzn

and dz̄ = dz̄1 ∧ . . . ∧ dz̄n and also dz[k] = dz1 ∧ . . . ∧ dzk−1 ∧ dzk+1 ∧ . . . ∧ dzn.
We shall consider bounded domains D ⊂ Cn with a smooth boundary ∂D of class C1, that

is D = {z ∈ Cn : ρ(z) < 0}, where ρ is real-valued function of class C1 on some neighborhood
of the closure of domain D, and the differential dρ ̸= 0 on ∂D. Let us denote the "complex"
guiding cosines

ρk =
1

| grad ρ|
∂ρ

∂zk
, ρk̄ =

1

| grad ρ|
∂ρ

∂z̄k
, k = 1, . . . , n.

Consider the Bochner-Martinelli kernel, which is an exterior differential form U(ζ, z) of type
(n, n− 1) (see, for example, [5, Ch. 1]), given by

U(ζ, z) =
(n− 1)!

(2πi)n

n∑
k=1

(−1)k−1 ζ̄k − z̄k
|ζ − z|2n

dζ̄[k] ∧ dζ.

This kernel plays an important role in multidimensional complex analysis (see, for example, [1–6]).
It is a closed differential form of type (n, n−1). For n = 1 this kernel turns into a Cauchy kernel.

∗akytmanov@sfu-kras.ru https://orcid.org/0000-0002-7394-1480
†asmyslivets@sfu-kras.ru

c⃝ Siberian Federal University. All rights reserved
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Let g(ζ, z) be the fundamental solution to the Laplace equation:

g(ζ, z) = − (n− 2)!

(2πi)n
1

|ζ − z|2n−2
, n > 1,

then

U(ζ, z) =

n∑
k=1

(−1)k−1 ∂g

∂ζk
dζ̄[k] ∧ dζ.

For the function f ∈ C1(∂D) we introduce the Bochner-Martinelli integral (integral operator)

M [f ](z) =

∫
∂D

f(ζ)U(ζ, z), z /∈ ∂D,

and also the single-layer potential (integral operator)

Φ[f ](z) = −in2n−1

∫
∂D

f(ζ)g(ζ, z) dσ(ζ) =
(n− 2)!

2πn

∫
∂D

f(ζ)
dσ

|ζ − z|2n−2
, z /∈ ∂D,

where dσ is the Lebesgue surface measure on ∂D.
Let us define the differential form µf for the function f ∈ C1(∂D) as follows [5, Ch. 1]:

µf =

n∑
k=1

(−1)n+k−1 ∂f

∂ζ̄k
dζ[k] ∧ dζ̄.

In the monograph [5], the problem of holomorphicity of the harmonic function f ∈ C1(D̄) satis-
fying condition (23.5) in [5] of the following form is posed

µf
∣∣
∂D

=
∑
k>l

ak,l(z)df ∧ dz̄[k, l] ∧ dz
∣∣
∂D
, (1)

where ak,l are some smooth functions on ∂D. Here, the differential form dz̄[k, l] is obtained from
the differential form dz̄ = dz̄1 ∧ · · · ∧ dz̄n by removing the differentials dz̄k, dz̄l.

This is related to the problem of holomorphicity of functions represented by the Bochner–
Martinelli integral (see [5, Ch. 15]) (in this case, all functions akl = 0). Some special cases of
this problem are considered in [5, Ch. 23]. In [5, Ch. 23], the problem 1 is rewritten in integral
form.

Recall Green’s formula (in complex form) for the function f (corollary 1.2 of [5]).

Theorem 1 (Green’s formula). Let D be a bounded domain with a piecewise smooth boundary,
the function f is harmonic in D and f ∈ C1(D̄), then∫

∂D

f(ζ)U(ζ, z) −
∫
∂D

g(ζ, z)µf =

{
f(z), z ∈ D,

0, z /∈ D̄.
(2)

From the equality of (1) and Green’s formula (2), we obtain that

f(z) =

∫
∂D

f(ζ)U(ζ, z) −
∫
∂D

g(ζ, z)
∑
k>l

ak,l(ζ)df ∧ dζ̄[k, l] ∧ dζ, z ∈ D. (3)

Applying the Stokes and the Green’s formula (2), in [5, Ch. 23] it is shown that the equality (3)
for functions f ∈ C1(D̄) and harmonic in D is equivalent to the condition

f(z) =

∫
∂D

f(ζ)U(ζ, z) +

∫
∂D

f(ζ)
∑
k>l

d(ak,l(ζ)g(ζ, z)) ∧ dζ̄[k, l] ∧ dζ, z ∈ D. (4)
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The first integral is a Bochner–Martinelli integral (integral operator) of the function f , i.e.

M [f ](z) =

∫
∂D

f(ζ)U(ζ, z), z /∈ ∂D,

and the second integral (integral operator) is denoted by

G[f ](z) =

∫
∂D

f(ζ)
∑
k>l

d(ak,l(ζ)g(ζ, z)) ∧ dζ̄[k, l] ∧ dζ, z /∈ ∂D.

For n = 1 this integral disappears.
Let us introduce the kernel of the second integral operator

W (ζ, z) =
∑
k>l

d(ak,l(ζ)g(ζ, z)) ∧ dζ̄[k, l] ∧ dζ,

we obtain that for holomorphic functions f an integral representation of the Cauchy–Fantappiè
type is valid (see, for example, [4, Ch. 26])

f(z) =

∫
∂D

f
(
ζ)(U(ζ, z) +W (ζ, z)

)
, z ∈ D. (5)

Thus, the problem (1) transforms into the problem of holomorphicity of the harmonic function
f satisfying the equality (5) in the domain D (see [5, Ch. 23]).

Let us denote the operator M +G by

Q[f ](z) = M [f ](z) +G[f ](z) =

∫
∂D

f
(
ζ)(U(ζ, z) +W (ζ, z)

)
, z /∈ ∂D. (6)

In this paper, we will study the properties of this integral with the kernel U(ζ, z) +W (ζ, z),
calculate its derivatives and their boundary behavior.

1. Derivatives of the integral operator
Let the domain D have a boundary of the class C2 (i.e., the function ρ is twice smooth in

a neighborhood of the closure of the domain D). The function f ∈ C2(∂D), and the functions
ak,l ∈ C2(∂D), k, l = 1, . . . , n.

We introduce, as in the article [8], the following differential operators

Lm(f) =
∂f

∂ζm
− ρm

n∑
k=1

ρk
∂f

∂ζ̄k
,

Km(f) = in2n−1
n∑

s,k=1

[
ρk

∂

∂ζs

(
ρmρk̄

∂f

∂ζ̄s

)
− ρm

∂

∂ζk

(
ρmρk̄

∂f

∂ζ̄s

)]
,

accordingly,

Lm̄(f) =
∂f

∂ζ̄m
− ρm̄

n∑
k=1

ρk
∂f

∂ζ̄k
,

Km̄(f) = in2n−1
n∑

s,k=1

[
ρk

∂

∂ζs

(
ρm̄ρk̄

∂f

∂ζ̄s

)
− ρm̄

∂

∂ζk

(
ρm̄ρk̄

∂f

∂ζ̄s

)]
.
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Then, according to Corollary 1 of [8], we get

∂M [f ]

∂zm
= M

[
Lm(f)

]
− Φ

[
Km(f)

]
, (7)

∂M [f ]

∂z̄m
= M

[
Lm̄(f)

]
− Φ

[
Km̄(f)

]
. (8)

These formulas are derived from the formulas of the classical potential theory [7] and formulas
from [5, Ch.1].

Similarly, we introduce the operators

L̃m(f) = −fρm,

K̃m(f) = +in2n−1
n∑
k=1

[
ρk

∂

∂ζm

(
fρk̄

)
− ρm

∂

∂ζk

(
fρk̄

)]
,

accordingly,
L̃m̄(f) = −fρm̄,

K̃m̄(f) = in2n−1
n∑
k=1

[
ρk

∂

∂ζm̄

(
fρk̄

)
− ρm̄

∂

∂ζk

(
fρk̄

)]
.

Then, according to Corollary 1 of [8], we get

∂Φ[f ]

∂zm
= M

[
L̃m(f)

]
− Φ

[
K̃m(f)

]
, (9)

∂Φ[f ]

∂z̄m
= M

[
L̃m̄(f)

]
− Φ

[
K̃m̄(f)

]
. (10)

Lemma 1. Let D be a bounded domain with a boundary of the class C2, a function f is harmonic
in D and f ∈ C2(D), and ak,l ∈ C2(∂D), k, l = 1, . . . , n, then G[f ] = −Φ[h], where

h(ζ) =
∑
k>l

(−1)k+lak,l(ζ)

(
∂f

∂ζ̄k
ρl̄ −

∂f

∂ζ̄l
ρk̄

)
.

Proof. It follows from formulas (3) and (4) that∫
∂D

f(ζ)
∑
k>l

d(ak,l(ζ)g(ζ, z)) ∧ dζ̄[k, l] ∧ dζ = −
∫
∂D

g(ζ, z)
∑
k>l

ak,l(ζ)df ∧ dζ̄[k, l] ∧ dζ.

Therefore, transforming the differential form df ∧ dζ̄[k, l] ∧ dζ, we get

df ∧ dζ̄[k, l] ∧ dζ =

(
(−1)l−1 ∂f

∂ζ̄l
dζ̄[k] + (−1)k

∂f

∂ζ̄k
dζ̄[l]

)
∧ dζ =

= (−1)l−1 ∂f

∂ζ̄l
2n−1in(−1)k−1ρk̄dσ + (−1)k

∂f

∂ζ̄k
2n−1in(−1)l−1ρl̄ dσ =

= 2n−1in
(

(−1)l+k
∂f

∂ζ̄l
ρk̄ + (−1)k+l−1 ∂f

∂ζ̄k
ρl̄

)
dσ = 2n−1in(−1)k+l−1

(
∂f

∂ζ̄k
ρl̄ −

∂f

∂ζ̄l
ρk̄

)
dσ,

where dσ is the Lebesgue surface measure on ∂D. Then

G[f ] = 2n−1in
∫
∂D

∑
k>l

(−1)k+lak,l(ζ)

(
∂f

∂ζ̄k
ρl̄ −

∂f

∂ζ̄l
ρk̄

)
g(ζ, z) dσ(ζ).

– 296 –



Alexandr M. Kytmanov, Simona G. Myslivets On One Integral Representation of the Potential . . .

Therefore, from the form of the integral operator Φ, we get that G[f ] = −Φ[h]. 2

We formulate a theorem on the form of partial derivatives of the function f .

Theorem 2. Let D be a bounded domain with a twice smooth boundary and a function f is
harmonic in D and f ∈ C1(D) and ak,l ∈ C1(∂D), k, l = 1, . . . , n, then

∂f

∂zm
=
∂Q[f ]

∂zm
= M

[
Lm(f) + L̃m(h)

]
− Φ

[
Km(f) + K̃m(h)

]
,

∂f

∂z̄m
=
∂Q[f ]

∂z̄m
= M

[
Lm̄(f) + L̃m̄(h)

]
− Φ

[
Km̄(f) + K̃m̄(h)

]
.

Proof. From Lemma 1 and formula (6) we get that

Q[f ] = M [f ] +G[f ] = M [f ] − Φ[h].

Now, using formulas (7)–(10), we obtain expressions for partial derivatives of the function f , and
hence the operator Q[f ]. Then

∂f

∂zm
=
∂Q[f ]

∂zm
=
∂M [f ]

∂zm
− ∂Φ[h]

∂zm
=

= M
[
Lm(f)

]
+ Φ

[
Km(f)

]
+M

[
L̃m(h)

]
− Φ

[
K̃m(h)

]
=

M
[
Lm(f) + L̃m(h)

]
− Φ

[
Km(f) + K̃m(h)

]
.

Similarly

∂f

∂z̄m
=
∂Q[f ]

∂z̄m
=
∂M [f ]

∂z̄m
− ∂Φ[h]

∂z̄m
=

= M
[
Lm̄(f)

]
− Φ

[
Km̄(f)

]
+M

[
L̃m̄(h)

]
− Φ

[
K̃m̄(h)

]
=

M
[
Lm̄(f) + L̃m̄(h)

]
− Φ

[
Km̄(f) + K̃m̄(h)

]
.

2

The boundary behavior of the potential of a simple layer and the Bochner-Martinelli integral
operator is well known (see, for example, [7], [5, Ch. 1], [6, Ch. 1]). Therefore, from these
properties of potentials, we obtain the statement

Theorem 3. If ∂D ∈ C∞ and f ∈ C∞(∂D), ak,l ∈ C∞(∂D), k, l = 1, . . . , n, then the integral
Q[f ](z)(z ∈ D, z ∈ Cn \ D) continues on D and on Cn \ D, respectively, as an infinitely
differentiable function.

For the Bochner–Martinelli integral, this property is noted in [8].

2. Integral representation for smooth functions
For the integral representation of (5), an analogue of the Bochner–Martinelli formula for

smooth functions is valid (see, for example, [5, Ch. 1]).

Theorem 4. Let D be a bounded domain with a smooth boundary and a function f of class
C1(D̄), then

f(z) =

∫
∂D

f(ζ)U(ζ, z) −
∫
D

∂̄f(ζ) ∧ U(ζ, z), z ∈ D, (11)

where the operator ∂̄ =
n∑
k=1

∂

∂ζ̄k
dζ̄k, and the integral of the domain in (11) converges absolutely.
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We will now prove an analogue of this formula for our operator Q.

Theorem 5. Let D be a bounded domain with a smooth boundary and a function f of class
C1(D̄) and ak,l ∈ C1(D̄),k, l = 1, . . . , n, then

f(z) =

∫
∂D

f(ζ)
(
U(ζ, z) +W (ζ, z)

)
−
∫
D

∂̄f(ζ) ∧
(
U(ζ, z) +W (ζ, z)

)
, z ∈ D, (12)

and the integral of the domain in (12) converges absolutely.

Proof. Since the theorem is true for the operator U(ζ, z) (Theorem 1.3 in [5]), it remains to show
that ∫

∂D

f(ζ)W (ζ, z) −
∫
D

∂̄f(ζ) ∧W (ζ, z) = 0, z ∈ D.

Let z ∈ D, by B(z, ε) denote a ball of radius ε > 0 centered at z, and its boundary by S(z, ε).
For sufficiently small ε, using the Stokes formula, we obtain∫

D

∂̄f(ζ) ∧W (ζ, z) =

∫
D\B(z,ε)

∂̄f(ζ) ∧W (ζ, z) +

∫
B(z,ε)

∂̄f(ζ) ∧W (ζ, z) =

=

∫
∂D

f(ζ)W (ζ, z) −
∫

S(z,ε)

f(ζ)W (ζ, z) +

∫
B(z,ε)

∂̄f(ζ) ∧W (ζ, z).

According to Green’s formula (2), for the modulus of the integral, we get∣∣∣∣∣
∫

S(z,ε)

f(ζ)W (ζ, z)

∣∣∣∣∣ =

∣∣∣∣∣
∫

S(z,ε)

g(ζ, z)µf

∣∣∣∣∣ 6 (n− 2)!

(2π)nε2n−2

∫
S(z,ε)

|µf | 6 Cε,

then lim
ε→+0

∫
S(z,ε)

f(ζ)W (ζ, z) = 0.

Since the singularity of the integral
∫

B(z,ε)

∂̄f(ζ) ∧W (ζ, z) is equal to (2n − 1) < 2n, then

lim
ε→+0

∫
B(z,ε)

∂̄f(ζ) ∧W (ζ, z) = 0. From here we get the necessary equality.
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Об одном интегральном представлении типа потенциала
Александр М. Кытманов

Симона Г.Мысливец
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. Цель работы состоит в исследовании свойств одного интегрального представления
для голоморфных функций (типа Коши–Фантаппье), ядро которого состоит из производных фун-
даментального решения уравнения Лапласа.

Ключевые слова: интеграл Бохнера-Мартинелли, ограниченная область, граничное поведение.
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Abstract. The work is based on Sommerfeld’s ideas in solving the diffraction problem on a mirror
segment. On this basis, a new method for solving the dynamic problem for a vibrating rigid stamp is
developed. The solution is sought by minimizing a functional. Sommerfeld’s method is used to select
the only physically correct solution. Namely, the expressions in the minimized functional are reduced
to dimensionless form. This allowed us to create a method for calculating wave acoustic fields for
arbitrary radius of a rigid stamp. Applied to vibration problems, the solution for a small rigid stamp is
obtained in explicit form. This allows stable calculation of vibrating wave fields for teleseismic distances.
The program created on this basis allows carrying out calculations even on personal computers with
OpenMP parallelization. A result of analytical calculations the distinction of wave fields for a stamp
and a distributed source of small dimensions are shown.

Keywords: Sommerfeld method, mixed problem, hard stamp, functional minimization, dimensionality
equalization, acoustic waves.
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Introduction

A considerable number of works are devoted to methods of solving mixed problems. Let us
note the works [1–6]. In the paper, based on the solution of the diffraction problem [1], a new
method for solving the dynamic problem for a vibrating rigid die is developed. This method for
solving the dynamic problem for a vibrating rigid stamp, which allows to carry out calculations for
teleseismic distances. The acoustic case for an arbitrary layered medium is considered. Following
[2, 3, 4, 6] in a cylindrical coordinate system on one part of the daytime surface (z=0) is given a
displacement different from zero; on the other — stress equal to zero. Following [1], the solution
is sought by minimising the functional. This method of solution construction admits an infinite
number of mathematically correct solutions. And only one of them will give physically correct
solution. To choose the only solution, the behaviour of the solution in the vicinity of the point
of discontinuity of the of boundary conditions (condition on an rib) [3, 4, 5]. But other methods
are also known. In [2], it is assumed that the force applied to the stamp is known. On this
basis of the only solution is found. In this paper, in order to select the only physicallys correct
solution, Sommerfeld’s method [1] is used. Namely, in the minimised functional, the expressions
are reduced to dimensionless form (dimensionalitys is equalised). As a result, the problem is

∗agfat@mail.ru https://orcid.org/0000-0001-6038-6505
c⃝ Siberian Federal University. All rights reserved
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reduced to the solution of a system of linear algebraic equations (SLAE). This allowed us to
create a method of calculation of wave acoustic fields for arbitrary radius of rigid stamp. SLAE
is solved on the basis of the open package of linear algebra, developed at Moscow State University.
In this case, the solution of SLAE for significant spatial and temporal scales requires the use
of technology of high-performance computing. That is, for calculations it is necessary to use
supercomputer. For vibration problems, the size of the seismic source (stamp) is always much
smaller than the length of the wavelength. In this case, an explicit received formula for the
solution in the spectral domain. For it it is no longer necessary to solve SLAE. And it allows to
stably calculate vibrating wave fields for teleseismic distances. The programme created on this
basis allows to carry out calculations even on personal computers with OpenMP parallelisation.
A result of analytical calculations, the distinction between the wave fields for a stamp and a
distributed source of small sizs.

1. Statement of the task

The mathematical statement of the task of modelling P waves is formulated in a cylindrical
coordinate system (0 6 r < ∞, 0 6 z < ∞) in the axisymmetric case as follows. Determine the
function u(z, r, t) from the equation:

∂2u

∂z2
+

1

r

∂u

∂r
+
∂2u

∂r2
=

1

V 2(z)

∂2u

∂t2
. (1)

In this paper, the problem of wave propagation from a vibrating rigid stamp. Statements of
the task for a rigid stamp are given in many works [2, 3, 4, 6]. Of these, the boundary conditions
in the axisymmetric case for the wave displacement u in the cylindrical coordinate system (r, z)

are set as follows:
u/z=0 = f(t), r 6 r0, (2)

∂u

∂z
/z=0 = 0, r > r0. (3)

The initial conditions are added to the (1)–(3) formulas

u =
∂u

∂t
/t=0 = 0. (4)

In (1)–(3) r0 is the radius of the stamp, the velocity V (z) > 0 is an arbitrary piecewise function
(layered medium). The input impulse f(t) is chosen as a Gaussian function e−(πf0t/2)

2

sin(2πf0t),
f0 is its carrier frequency.

In addition, we still need a condition for the isolation of a single physically correct solution,
which will be discussed below.

2. Analytical method of solution

The solution (1)–(4) is constructed by using finite integral transformations in terms of of time
t and lateral variable r:

u(z, r, t) =
1

2T

∞∑
j=−∞

u(z, r, ωj) exp(−ωj · t). (5)
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u(z, r, ωj) =
2

a2

∞∑
n=1

u(z, knωj)J0(knr)/J
2
1 (kna). (6)

In (5) and (6) ωj = j · π/T , kn = xn/a. Where xn are the roots of the equation J0(x) = 0.
T and a are the boundaries of the computational domain.

In the following, irrelevant indices will be omitted to shorten the notation. Also, for the sake
of clarity, we first consider the case of a homogeneous half-space. In this case, the equation (1)
using (5)–(6) will turn into an ordinary differential equation:

d2u(z, kn, ω)

dz2
= (k2n − ω2/V 2)u(z, kn, ω). (7)

From (7) we elementarily obtain

u(z, kn, ω) = u(0, kn, ω) exp(−νnz) = Cn exp(−νnz), (8)

du(z, kn, ω)

dz
= −νnCn exp(−νnz). (9)

The formulas (8) and (9) give expressions for the displacement u and "stress"
du

dz
as a function

of the as yet unknown coefficients Cn, νn =
√
k2n − ω2/V 2. In the following, for the sake of clarity,

"stress" will not be taken in quotes. To satisfy the conditions at infinity in (8)–(9), the principle
of limiting absorption is used. For this purpose instead of ω2 we take ω2 + i · ε · ω, where ε is a
small value [7].

Given (8)–(9), the boundary conditions (2)–(3) in the spectral region (k, ω) will look as
follows:

∞∑
m=1

CmβmJ0(kmr) = F (ω), r 6 r0, (10)

−
∞∑
m=1

νmCmβmJ0(kmr) = 0, r > r0. (11)

In (10)–(11) F (ω) is the spectrum of the function f(t) and the abbreviation is introduced:
βm = 2/

⟨
a2J2

1 (kma)
⟩
.

To find the unknown coefficients of Cm, following Sommerfeld [1] we consider the quadratic
errors corresponding to (10) and (11):∫ r0

0

∣∣∣∣F −
∑
m

Cmβm
J0(kmr)

∣∣∣∣2rdr and
∫ a

r0

∣∣∣∣∑
m

νmCmβm
J0(kmr)

∣∣∣∣2rdr. (12)

The sum of both errors in (12) should reach a minimum at the appropriate choice of Cm.
Differentiating over C∗

n we obtain a system of linear algebraic equations (SLAE):∑
m

(an,m + ν∗nνmbn,m)βmCm = F (ω)

∫ r0

0

rJ0(knr)dr = F (ω)gn. (13)

In (13) and hereafter, an asterisk denotes a complex-conjugate quantity. The matrices an,m
and bn,m using Green’s formula [1] are calculated exactly by explicit formulas.

ann =

∫ r0

0

rJ0(knr)Jo(kmr)rdr =
r20
2

[
J2
0 (knr0) + J2

1 (knr0)
]
,
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anm = r0
kmJ0(knr0)J1(kmr0) − knJ0(kmr0)J1(knr0)

k2m − k2n
, n ̸= m. (14)

Similarly for bn,m.
In this case, the time frequency ω is included as a parameter in the SLAE (13).

gn =

∫ r0

0

rJ0(knr)dr =r0J1(knr0)/kn. (15)

The equality (11) can be multiplied by any real number X different from zero. In this case,
when minimising the functional, instead of the SLAE (13) we obtain:∑

m

(an,m/X
2 + ν∗nνmbn,m)βmCm = F (ω)gn/X

2 = F (ω)fn. (16)

SLAE (16) has an infinite number of mathematically correct solutions for different X. And
only one will give a physically correct solution [5]. В At present, the only physically correct
solution is chosen on the basis of the asymptotics of the solution in the vicinity of the stamp
edge (rib) [3, 4, 5].

However, other methods are also known. In [2], it is assumed that the the force applied to
the stamp known. Based on this, received correct solution. In this paper, the single solution is
determined based on the method of Sommerfeld method [1]. At consideration of diffraction on
a part of a mirror, he brings the corresponding quantities to a dimensionless form. Since νn has
dimension inverse to the metre, then X must have a dimension in metres. From (15) and (16),
consider the expression gn/X

2. Require, that at r0 → 0 gn/X
2 → 1. That is, so that at the

point stamp (r0 = 0) there is a concentrated impact. Since J1(α) ≈ α/2 when α is small, we
obtain that X = r0/

√
2. The value X will have the dimension in metres. Thus the dimensions in

(10) and (11) will coincide. In this case

fn = gn/X
2 = 2J1(knr0)/knr0. (17)

The expression (17) coincides with the source of the normal force uniformly distributed over
the area of the circle on a flat day surface [8].

For a stamp of arbitrary sizes, the SLAE (16) is solved using the software open source software
developed at Moscow State University.

For vibration problems, the size of the seismic source (stamp) is always is much smaller than
the wavelength. In this case, following [1], an approximate explicit formula for the solution in
the spectral region is obtained. Let r0 ≪ λ. Here λ is the wavelength. This condition is known
fulfilled for the radiating platform of the vibrator.

It is known, for example, from [1] that at small ρ

J0(ρ) ∼ 1, J1(ρ) ∼ ρ/2. (18)

In (18), terms above the first order of smallness are discarded.
Consider the SLAE (16) at small r0. Using (18) we obtain

ann/X
2 =

2

r20

r20
2

[
J2
0 (knr0) + J2

1 (knr0)
]
∼ 1, anm/X

2 ∼ 1. (19)

Given (19), the SLAE of (16) will take the form:∑
m

βmCm + ν∗nνnCn = F (ω)fn. (20)
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After the transformation βmCm = xm (20) will take the elementary form:

νnν
∗
n

βn
xn +

∑
m

xm = F (ω)fn. (21)

We find the solution to (21) as follows. Assume

xm = c(F (ω)fmβm/νmν
∗
m). (22)

Substituting (22) into (21) we determine c.

c =
fn

fn + s
=

1

1 + 1
fn
s
. (23)

In (23)

s =
∑
m

βm
νmν∗m

fm. (24)

Since from (17) and (18)

1

fn
=
knr0

2

1

J1(knr0)
∼ 1. (25)

In (25), terms above the first order of smallness are also discarded.
Taking into account (25) we obtain

c = c(ω) =
1

1 + s
. (26)

Since Cm = xm/βm then from (22–26) taking into account (8) we obtain the the solution for
a stamp of small dimensions. On the day surface z = 0 the solution looks as follows:

u(0, kn, ω) = c
F (ω)

νnν∗n
fn. (27)

Verification of the accuracy of the formula (27) was performed by comparing it with the
solution of the SLAE (16) in the physical domain. For transition to the physical domain formulas
(5) and (6) were used. The result was a match with an accuracy of three digits.

At present, the formulations often used for vibration problems are, when the stress distribu-
tion on the day surface is given. In [9] it is stated that such a problem is solved much easier than
the mixed problem. И there is no need to solve the mixed problem at small sizes of the source.

Let us set a uniform stress distribution on the day surface at 0 < r 6 r0 :

∂u

∂z
/z=0 =

2

r20
f(t), r 6 r0;

∂u

∂z
/z=0 = 0, r > r0. (28)

The solution of the problem (1), (28), (4) is well known [8]. In the notation of this paper, it
is as follows:

u(0, kn, ω) =
F (ω)

νn
fn. (29)

Thus, the solution for a rigid stamp (27) is fundamentally different from the solution for a
radiation source in the form of a distributed force (29).
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In this approach it is quite simple to take into account the layering of the medium. For this
purpose second-order ordinary differential equation (7) by introducing a auxiliary function α(z)

such that
du

dz
= −α(z)u in each layer reduces to a first order equation [10].

dα

dz
− α2 = −ν2. (30)

The nonlinear equation (30) has an explicit solution. Let the medium consists of N layers.
And all of them are located on a half-space. In this case, the recalculation of the auxiliary
function αp from the layer with index p to the layer with index p − 1. Index p − 1 is made by
the formula:

αp−1 = νp
αp + νpth(νp(hp − hp−1))

νp + αpth(νp(hp − hp−1))
. (31)

In (31) hp − hp−1 is the power of the layer with index k.

The process starts with the layer with index N. In this case, αN =
√
k2n − ω2/V 2

N+1, where
VN+1 is the velocity in the half-space. Finally, using the differential sweep method (31). α0 is
found [10]. And then the solution for a rigid stamp of small size will be given by the formula
(27), in which ν is replaced by α0.

3. Results of the analytical solution

Fig. 1 gives the wavefield for the rigid stamp at z=0. On the vertical axis is the time,
milliseconds (increases down); on the horizontal axis is the dis tance, kilometres. The initial
distance is 1 kilometre and the final distance is 5 kilometre. The radius of the rigid stamp r0=.
1 metre. A homogeneous half-space is considered. The velocity in the half-space V=1 km/sec.
The pulse f(t) in the source is taken as a Gaussian function with a carrier frequency of 50 hertz.
Fig. 1 (A) shows the displacement, and Fig. 1 (B) — stress. It can be seen from Fig. 1 that the
displacement occurs and the the stress is zero. Thus it is numerically shown that the condition
(3) is fulfilled.

Next, the wave fields for a stamp and a distributed source are given. Moreover, the rigid
stamp and the distributed source have small sizes. For the simplest model of a layer on a half-
space is taken for comparison. Fig. 2 is given the wave field with a distributed source. A layer
on a half-space is taken. The velocity in the layer is 1 km/sec and in the half-space is 2 km/sec.
The thickness of the layer is 1 km. The distributed source has a size of 1 metre. In Fig. 3 shows
the wave field in the case for a 1 metre size rigid stamp. The other parameters are the same as
in Fig. 2. In Figs. 2 and 3, P — direct wave, PP — reflected wave, PPP — multiple wave. It can
be seen from Fig. 2 that in the case of supercritical reflection, for example, the reflected wave
becomes larger than the direct wave. This is consistent with wave theory [11]. In the case of the
rigid stamp in Figure 3, the wave dynamics strongly changes. Thus, the wave fields are different
for a rigid stamp and a distributed source of small sizes.

Conclusions

In this paper, based on Sommerfeld’s ideas, a new method of solving the dynamic problem
for a rigid stamp. It allows to carry out calculations of acoustic waves for teleseismic distances.
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Fig. 1. Wave fields for a rigid stamp. Half-space. The radius of the stamp is 1 metre. Displace-
ment field (A). Stress field (B)

Fig. 2. Wave field for a distributed source of 1 metre. The layer on a half-space
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Fig. 3. Wavefield for a 1 metre rigid stamp. The layer on a half-space

The method is based on minimisation of a functional. The functional includes the displacement
at the foot of the stamp and the stress outside the stamp. Knowing the law of stress distribution
under the plate of the seismic source is not necessary for this method. In order to choose the only
physically correct solution of this diffraction problem, the Sommerfeld method is used. Namely,
in the minimised functional, the expressions are reduced to a dimensionless form (dimensionalitys
is equalised). From the minimisation of the functional in the standard way, a system of linear
algebraic equations (SLAE) is obtained. For its solution is used open source software developed
at the MSU.

Applied to vibration problems, when the size of the stamp is much smaller than the wave-
length, an explicit formula for the solution is obtained. In this case, there is no need to solve
SLAE. Therefore, the created programme allows to calculate vibration wave fields for teleseismic
distances even on personal computers with OpenMP parallelisation. As a result of analytical
calculations, a distinction was found between the wave fields for a rigid stamp and a distributed
source in the case of their small sizes.

This work was conducted within the framework of State Assignments of the Institute of Com-
putational Mathematics and Mathematical Geophysics SB RAS, project No. FWNM-2025-0004.
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Метод Зоммерфельда решения динамической задачи
о вдавливании жесткого штампа

Алексей Г.Фатьянов
Институт вычислительной математики и математической геофизики СО РАН

Новосибирск, Российская Федерация

Аннотация. Работа основана на идеях Зоммерфельда при решении задачи дифракции на сегмен-
те зеркала. На этой основе развит новый метод решения динамической задачи для вибрирующего
жесткого штампа. Решение ищется с помощью минимизации функционала. Для выбора единствен-
ного физически верного решения используется метод Зоммерфельда. А именно, в минимизируемом
функционале выражения приводятся к безразмерному виду. Это позволило создать метод расчета
волновых акустических полей для произвольного радиуса жесткого штампа. Применительно к виб-
рационным задачам получено решение для малого жесткого штампа в явном виде. Это позволяет
устойчиво вычислять вибрационные волновые поля на телесейсмические расстояния. Созданная на
этой основе программа позволяет проводить расчеты даже на персональных компьютерах с распа-
раллеливанием OpenMP. В результате аналитических расчетов показано отличие волновых полей
для штампа и распределенного источника малых размеров.

Ключевые слова: метод Зоммерфельда, смешанная задача, жесткий штамп, минимизация функ-
ционала, выравнивание размерностей, акустические волны.
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Abstract. In this work, a new approach to the preparation of heterostructured nanoparticles (NPs)
based on bismuth silicates Bi2SiO5/Bi12SiO20 is proposed and implemented. This approach is based
on solid-phase synthesis by annealing of a pre-homogenized mixture of β-Bi2O3 and SiO2 powders
in different ratios. For this purpose, industrial silica nanopowder and β-bismuth oxide NPs powder
obtained by pulsed laser ablation (PLA) in air are used. The morphology, phase composition and optical
properties of the obtained materials are studied. By changing the ratio of precursors, the powders
similar in structure to single-phase bismuth silicates Bi2SiO5 and Bi12SiO20 as well as heterostructured
NPs on their basis are obtained. The activity of the photocatalysts in the reactions of Rhodamine B
(Rh B) decomposition and selective oxidation of 5-hydroxymethylfurfural (5-HMF) is estimated. The
best photocatalytic activity is demonstrated by powders with a similar Bi2SiO5/Bi12SiO20 (or 4Bi: 1Si)
phase ratio. As a result of the analysis of the data obtained, the formation of a type II heterojunction
is proposed.

Keywords: solid-phase synthesis, bismuth silicates, heterostructured nanoparticles, pulsed laser abla-
tion, photocatalysis, heterojunction II type, rhodamine B, 5-hydroxymethylfurfural.
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Introduction

In recent years, photocatalytic (PC) technologies have attracted increasing interest due
to their great potential for solving challenges in green energy, bioresource processing, and ecol-
ogy [1–3] Photocatalysis is effective for cleaning the industrial wastewater from synthetic dyes,
phenols, and antibiotics [4]. Another promising area of photocatalysis is the production of
valuable materials with high added value by oxidizing intermediate products of processing of
biomass, the most accessible raw material on Earth [5]. For instance, selective photooxidation
of 5-hydroxymethylfurfural (5-HMF) can produce 5-formyl-2-furancarboxylic acid (FFCA) and
subsequently 2,5-furandicarboxylic acid (FDCA) [6]. The FFCA and FDCA are an alternative
substitute for phthalic acid and furan polymers, which are obtained from fossil resources and are
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widely used in industry. The ability to use sunlight as a radiation source and non-toxic, low-cost
materials as catalysts makes photocatalysis a safe and environmentally friendly method.

The effectiveness of PC technologies primarily depends on the catalyst characteristics. Cur-
rently, the most successful and promising photocatalysts are materials based on semiconductor
nanoparticles (NPs). Due to a wide choice of semiconductor materials, it is possible to se-
lect a photocatalyst with the desired value of the band gap (Eg) for optimal light absorption.
The use of NPs as photocatalysts is due to their unique physical-chemical properties, including
size, morphology, surface charge, large specific surface area, spectroscopic characteristics, and
the presence of defects. Among the wide variety of photocatalysts, bismuth-based materials are
distinguished [7, 8], in particular bismuth silicates (Bi2SiO5, Bi12SiO20) [9, 10], which feature
suitable physical-chemical properties. However, as in the majority of single-phase semiconduc-
tors, a relatively rapid charge recombination occurs in bismuth silicates, which reduces their
PC activity [11]. The best solution to this problem is currently considered to be the creation
of heterostructured NPs consisting of two or more semiconductors with different band gaps.
If the heterojunction is of the so-called type II, then spatial charge separation occurs better
in such a composite particle. If the Z-scheme of operation is implemented in NPs based on
such a heterojunction, then it is also possible to increase the oxidation-reduction capacity of the
photocatalyst [12,13].

An important task in the development of the PC technologies is the elaboration of methods
to synthesize new photocatalysts. It is possible to increase the variability and effectively con-
trol the structure and properties of materials by combining different synthesis methods. This
approach also allows one to avoid the limitations inherent in any single method. For instance,
along with traditional chemical synthesis approaches, the laser methods to synthesize the nano-
materials for photocatalysis have recently been actively developed [14, 15]. Thus, by combining
procedures such as pulsed laser ablation (PLA), laser treatment (LT) of colloids, coprecipitation,
drying and annealing, various single-phase and composite particles based on bismuth oxides and
silicates were obtained [16,17].

In this work, a new approach to prepare the heterostructured NPs of bismuth silicates
Bi2SiO5/Bi12SiO20 was proposed. The approach was based on solid-phase synthesis by an-
nealing a pre-homogenized mixture of β-Bi2O3 and SiO2 powders in different ratios by grinding.
In this case, β-bismuth oxide powder obtained by PLA in air was used as one of the precursors.
The structure and properties of the obtained powders as well as their PC activity in the reac-
tions of Rhodamine B (Rh B) decomposition and selective oxidation of 5-HMF were studied and
analyzed.

1. Materials and methods

The samples were obtained by the solid-phase synthesis from precursors, namely, SiO2 and β-
Bi2O3 nanopowders. The β-Bi2O3 powder was obtained by PLA of metallic bismuth (99.5 % pu-
rity) in atmospheric air. Ablation was carried out by focusing radiation of the LS2131-20 Nd:YAG
laser (LOTIS TII, Belarus) (1064 nm, 7 ns, 150 mJ, 20 Hz) onto the target. The laser power
density on the target surface was 1200 MW/cm2. The nanopowder obtained as a result of the
PLA consisted predominantly of the β-bismuth oxide phase (∼94 %, with an admixture of non-
stoichiometric bismuth oxide) with an average particle size of 20 nm and a specific surface area
of 44 m2/g. The experimental technique and powder characteristics are described in detail in
Ref. [18]. Silica of the Polysorb MP brand (JSC "Polysorb", Russia) had a particle size of less
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than 10 nm and a specific surface area of 300 m2/g.
Bismuth and silicon oxides were mixed at atomic ratios Bi:Si = 2:1, 4:1, 6:1, 8:1, 12:1.

The extreme ratios in this series correspond to stoichiometric Bi2SiO5 and Bi12SiO20 bismuth
silicates. The mixtures were then thoroughly ground in an agate mortar for 15 min. The resulting
series of samples was calcined at 600 ◦C in a muffle furnace for 4 h.

The size and shape of the NPs were analyzed using the CM12 transmission electron microscope
(Philips, Netherlands). The crystal structure of the powders was studied by X-ray diffraction
using the XRD 6000 diffractometer (Shimadzu, Japan). The phase content was analyzed using
the Powder Diffraction Database PDF-4 (ICDD, USA) and PowderCell 2.4 software. The optical
properties of the powders were studied by diffuse reflectance spectroscopy (DRS) in the UV-Vis
range using the Cary 100SCAN spectrophotometer (Varian, Australia) with the DRA-CA-30I
add-on (Labsphere, USA). The band gap (Eg) was estimated using two methods. The widely
used Tauc method involved estimating the Eg by the edge of the absorption band using the
following equation:

(αhν)
1/n

= A (hν − Eg) , (1)

where α is the absorption coefficient, hν is the photon energy, A is a constant independent of
energy, n is a parameter depending on the type of transition (n = 2 for indirect transition,
n = 1/2 for direct transition).

As an alternative, the DASF (Derivation of Absorption Spectrum Fitting) method [19] was
used. This method is not sensitive to the transition type and is particularly effective in assessing
multiphase composite semiconductor particles. The Eg is estimated according to the equation:

∂ [ln (α/λ)] /∂ [1/λ] = m/ (hν − Eg) , (2)

where m is constant, λ is a wavelength.
The PC activity of the samples was studied in the reactions of Rh B decomposition and

selective oxidation of 5-HMF under LED irradiation with a wavelength of λ = 375 nm.
During the Rh B decomposition in water, the total optical power of the LEDs was

Wrad = 50 mW, the solution volume was 30 ml, the photocatalyst mass was 15 mg, and the
dye concentration was 5× 10−6 M. Before the irradiation, the dispersion was stirred in the dark
for 1 h to establish the adsorption-desorption equilibrium. After irradiation, the absorption
spectra of the Rh B were recorded at regular intervals on the SF-56 spectrophotometer (LLC
"SDB SPEKTR", Russia). Based on the change in the Rh B concentration at the absorption
maximum at λ = 553 nm, the rate constant of the first-order reaction was calculated according
to the equation:

ln (C0/C) = KN t, (3)

where C0 is the concentration of Rh B at the initial moment of time, C is the current concentration
value, t is the time of the PC reaction.

During selective photooxidation of 5-HMF, the total optical power of the LEDs was
Wrad = 2 W. The reactor was loaded with 100 mg of the photocatalyst under study and 100 ml
of the HMF aqueous solution with a concentration of 0.01 M. Na2CO3 was added as an alkaline
agent at a concentration of 0.04 M. The dispersion was stirred in the dark for 1 h, similar to the
experiment with Rh B. During the photocatalysis, the reactor with the dispersion was purged
with atmospheric air. Photoproducts were analyzed by a high-performance liquid chromatogra-
phy (HPLC) using the Prominence-i LC-2030C chromatograph (Shimadzu, Japan). The Rezex
ROA-Organic Acid H+ (8 %) LC column and 0.025 M H2SO4 eluent as well as PDA detector
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were used for separation and registration of the components. The 5-HMF, 5-hydroxymethyl-2-
furancarboxylic acid (HMFCA), 2,5-furandicarboxylic acid (FDCA), 2,5-diformylfuran (DFF),
and 5-formyl-2-furancarboxylic acid (FFCA) reference solutions were used to calibrate the detec-
tor, with the compound concentrations being determined from the peak areas. The analysis was
carried out at the eluent flow rate of 0.8 mL/min, and the injection volume was 10 µL. Prior to
the analysis, 50 µl aliquot taken was diluted with 1 mL of 0.0125 M H2SO4. The HMF conversion
X(HMF), product yield Y(i), and selectivity S(i), were calculated based on the concentrations
determined by HPLC:

X (HMF) =
C (HMF)0 − C (HMF)

C (HMF)0
· 100%, (4)

S(i) =
C(i)

C (HMF)0 − C (HMF)
· 100%, (5)

where C(HMF)0 and C(HMF) are initial and current HMF concentrations, mol/l; C(i) is current
concentration of the ith product, mol/l; i = HFCA, FDCA, DFF, and FFCA.

2. Results and discussion

Fig. 1 shows the diffraction patterns, and Tab. 1 presents the phase composition of the
obtained samples. The samples synthesized at the 2Bi:1Si and 12Bi:1Si ratios are pre-
dominantly represented by the phases of the orthorhombic bismuth metasilicate Bi2SiO5

(PDF-4 #00-036-0287) with the space group Cmc21 and the lattice constants a = 15.22 Å,
b = 5.47 Å, c = 5.33 Å and cubic sillenite Bi12SiO20 (PDF-4 #04-007-2767) with the space group
I23 and the latticie constant a = 10.11 Å, respectively. At intermediate non-stoichiometric Bi:Si
ratios, two phases of bismuth silicates Bi2SiO5 and Bi12SiO20 are formed in the samples after
calcination. Their content correlates with the bismuth oxide and silicon oxide ratios selected
during the synthesis. Tab. 1 shows the data on the phase content in the samples and crystallite
sizes (based on the calculation of coherent scattering regions (CSR)). According to the XRD
analysis, with varying Bi-to-Si ratio, the CSR size changes in the range and does not exceed
56–90 nm.

10 20 30 40 50 60 70 80

2θ, degree

 2Bi:1Si

 3Bi:1Si

 4Bi:1Si

 6Bi:1Si

 8Bi:1Si

 12Bi:1Si

 Bi2SiO5 (PDF-4 #00-036-0287) 

 Bi12SiO20 (PDF-4 #04-007-2767)

Fig. 1. XRD patterns for synthesized powders
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Table 1. Phase content, CSR size, and Eg values for studied samples

Sample Phase content, mass. % CSR size, nm Eg, eV
Bi2SiO5 Bi12SiO20 Bi2SiO5 Bi12SiO20 Tauc method DASF method

2Bi:1Si 99.8 0.2 57 — 3.9 3.8
3Bi:1Si 66 36 87 90 3.3 / 3.9 3.3 / 3.8
4Bi:1Si 47 53 75 90 3.3 / 3.9 3.3 / 3.8
6Bi:1Si 21 79 56 77 3.2 3.0–3.3
8Bi:1Si 19 81 62 82 3.2 3.0–3.3
12Bi:1Si 3 97 — 82 3.1 3.0

In solid-phase synthesis, as a result of calcination, a homogenized mixture of powders of
NPs of amorphous silica and highly active particles of the quasi-stable phase of the β-bismuth
oxide, their effective chemical interaction with the formation of bismuth silicate phases, sintering
and coarsening occur. Fig. 2 shows the morphology of the obtained particles. The NPs feature
an irregular shape with rounded edges, some of the particles are fused together, forming spatial
structures, which is typical for such materials [16]. In addition, at high magnification, small
(∼5 nm) spherical NPs are observed in the samples, which are located on the surface of large
particles. Depending on the Bi-to-Si ratio, these particles can be attributed to either bismuth
metasilicate or silica [16]. Due to the complex shape and sintering, we did not evaluate the particle
size, but from Fig. 2, it is evident that with an increase in the Bi fraction in the samples in
relation to Si, an increase in the average particle size can also be observed. The largest particles
are characteristic of the sample obtained with a ratio of 12Bi:1Si and represented predominantly
by the metasilicate phase. Fig. 2d shows a single composite particle of the 4Bi:1Si sample and
the corresponding selected area electron diffraction (SAED) (Fig. 2e). The SAED data (Fig. 2e)
show the presence of reflections belonging to two the Bi2SiO5 and Bi12SiO20 silicate phases,
which is consistent with the XRD data and confirms the presence of the composite particles
in the sample.

Fig. 3a shows the UV-vis spectra of the samples characterizing the absorption. They were ob-
tained by transforming the reflectance spectra using the Kubelka-Munk function F (R). For the
nearly monophase 2Bi:1Si sample consisting of Bi2SiO5, the absorption band edge lies in the spec-
tral region of 300–340 nm. With an increase in the Bi concentration, the absorption band edge
shifts towards the long-wavelength region of the spectrum to 380–420 nm for the 12Bi:1Si sample
consisting of the Bi12SiO20 phase. For the 3Bi:1Si and 4Bi:1Si samples, two absorption bands
can be observed in the spectra, which is consistent with the XRD analysis data on the presence
of several phases in the sample.

Tab. 1 and in Fig. 3b (an example for the DASF method) show the results of the Eg esti-
mation. According to the literature data [20, 21], both Bi2SiO5 and Bi12SiO20 are direct-gap
semiconductors, the Eg values for them are 3.9–3.5 eV and 2.9–3.3 eV, respectively, and can vary
depending on the particle size and a number of other factors. In our case, for single-phase bis-
muth metasilicate Bi2SiO5 (sample 2Bi:1Si), the Eg value is estimated by both Tauc and DASF
methods as 3.8–3.9 eV, for sillenite Bi12SiO20 (sample 12Bi:1Si), the Eg value is 3.0–3.1 eV.

In heterostructured NPs, the absorption of the short-wave semiconductor can be observed
up to the 4Bi:1Si ratio. The optical width of its band gap remains unchanged (the position of
the short-wave peak in Fig. 3b). The long-wave band related to Bi12SiO20 and the corresponding
band gap with an increase in the content of this phase in the heterostructure is shifted towards
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Fig. 2. TEM images of 2Bi:1Si (a), 4Bi:1Si (b, d), 12Bi:1Si (c) samples and SAED of 4Bi:1Si
sample (e)

the long-wave region from 3.3 to 3.0 eV. A broad band with the redistributed maxima can indicate
the presence of particles with different ratios of bismuth metasilicate and sillenite in such samples.
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Fig. 3. UV-Vis spectra (a) and DASF plots (b) of Bi2SiO5/Bi12SiO20 samples

Fig. 4 shows the results of the study of the PC decomposition of Rh B in the presence of
the obtained photocatalysts. Without a catalyst, no decomposition of the dye occurs during
the experiment under soft UV irradiation (Fig. 4b). As a result of the Rh B destruction in the
presence of the photocatalyst, a decrease in its intensity occurs in the entire spectrum range, and
a shift in the absorption maximum from 553 nm towards the short-wave region of the spectrum
is observed (Fig. 4a), which indicates the occurrence of the process of Rh B N-deethylation with
the formation of the intermediate product Rhodamine 110 [22]. Calculation of the reaction rate

– 314 –



Aleksandra G. Golubovskaya . . . Solid-phase Synthesis and Photocatalytic Properties . . .

200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

-60 -30 0 30 60 90 120

0.0

0.2

0.4

0.6

0.8

1.0

0.015

0.020

0.025

0.030

0.035

0.040

A
b
so

rb
an

ce
, 
a.

u
.

λ, nm

 Rhodamine B

 dark stage

 20 min

 40 min

 60 min

 80 min

 100 min

 120 min

4Bi:1Si  (a)

C
/C

0

Time, min

 2Bi:1Si

 3Bi:1Si

 4Bi:1Si

 6Bi:1Si

 8Bi:1Si

 12Bi:1Si

 mix

(b)

K
N
, 
m

in
−1

2Bi:1Si 3Bi:1Si 4Bi:1Si 6Bi:1Si 8Bi:1Si 12Bi:1Si

mix

(c)

Fig. 4. Rh B spectra during PC decomposition (a), kinetic curves (b), and deethylation rate
constant KN for different samples (c)

constant KN (Fig. 4c) shows that at a non-stoichiometric Bi:Si ratio, the samples work more
efficiently than the monophasic samples 2Bi:1Si (Bi2SiO5) and 12Bi:1Si (Bi12SiO20). The highest
efficiency is demonstrated by the 4Bi:1Si sample, in which the phase ratio is 47 % Bi2SiO5 and
53 % Bi12SiO20. For comparison, the catalytic activity of a simple mixture of 2Bi:1Si and 12Bi:1Si
monophasic powders in a 50/50 ratio, corresponding in composition to the 4Bi:1Si composite,
was also investigated. The data in Fig. 4 show that the powder mixture works significantly
worse than the 4Bi:1Si sample obtained by the solid-phase synthesis. The reaction rate constant
KN for the mixture lies between those for the monophasic samples indicating the independent
operation of the two phases in the powder mixture during photocatalysis. Based on the data
obtained, it can be concluded that in the composite samples consisting of two phases of bismuth
silicates, there is a better separation of the photogenerated charges. Thus, it can be assumed
that a type II heterojunction is formed between two semiconductors Bi2SiO5 and Bi12SiO20.

Fig. 5 shows the histograms of 5-HMF conversion and product yield in the selective PC
oxidation of 5-HMF. It is evident from Fig. 5 that the oxidation of 5-HMF occurs both through
the formation of DFF and HMFCA. Then, the subsequent oxidation of the semi-products to
FFCA and even to FDCA occurs. The lowest 5-HMF conversion (∼11 %) and selectivity are
demonstrated by the 2Bi:1Si sample, which consists of the Bi2SiO5 phase (Fig. 5a). As in the
case of the Rh B decomposition, the best efficiency is demonstrated by the sample obtained
at the 4Bi:1Si ratio with a similar contents of bismuth metasilicate and sillenite. The 5-HMF
conversion for this sample for 8 h of irradiation reached 35.1 %, while the yields of the products
FFCA and FDCA are 10.0 and 2.1 %, respectively (Fig. 5c). It is noteworthy that the samples
synthesized in this work by the solid-phase synthesis method show better PC characteristics in the
5-HMF oxidation under the same conditions compared to the composite NPs β-Bi2O3/Bi12SiO20

(conversion is 20.6 %, selectivity towards FFCA is 9.4 % and the one to FDCA is 1.3 %), which
we obtained earlier using the PLA in liquid [17].

Using the optical band gap estimated from the spectra, the energy band positions were
calculated and the energy state diagram was constructed (Fig. 6). The calculation was based
on the technique described in Refs. [23, 24]. In the literature, Bi2SiO5 is defined as the n-type
semiconductor [25], and Bi12SiO20 is defined as the p-type semiconductor [26]. After contact,
these semiconductors form a type II heterojunction. In addition, sillenite Bi12SiO20 has a unique
feature: upon photoexcitation, the long-lived electron-donor center Bi3+Si +h+, which is 1 eV above
the valence band [27], is populated; this leads to a decrease in the band gap and an additional
shift of the Fermi level. In this case, the conductivity type also changes from p-type to n-type
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Fig. 5. Photocatalytic oxidation of 5-HMF in the presence of Na2CO3 over 2Bi:1Si (a),
3Bi:1Si (b), 4Bi:1Si (c), 6Bi:1Si (d), 8Bi:1Si (e), and 12Bi:1Si (f) samples
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Fig. 6. Scheme of energy states in individual semiconductor NPs (left) the Bi2SiO5/Bi12SiO20

heterostructure in the dark (middle) and under the influence of light (right)

(Fig. 6, left). It can be assumed that during the operation of such a heterojunction, the Z-scheme
(dotted arrow) is implemented, however, this assumption requires additional studies.

Conclusion

In the present work, heterostructures based on bismuth silicates Bi2SiO5/Bi12SiO20 were
obtained by the solid-phase synthesis from a mixture of bismuth and silicon oxides, their
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phase composition, morphology and optical properties were studied. Photocatalytic activity
of powders was tested in reactions of Rhodamine B decomposition and selective oxidation of
5-hydroxymethylfurfural. Successful synthesis was ensured by both high dispersions of both
precursors and high activity of the powder of unstable β-Bi2O3 phase obtained by pulsed laser
ablation of metallic bismuth in air. It was shown that at stoichiometric ratios Bi:Si = 2:1 and
12:1, Bi2SiO5 and Bi12SiO20 powders similar to single-phase composition were formed, respec-
tively. At the Bi:Si ratios of 3:1, 4:1, 6:1, and 8:1, the samples consisted of two phases of bismuth
silicates, thus forming a heterojunction. Formation of composite particles was confirmed by the
SAED data. Analysis of the optical characteristics of the obtained Bi2SiO5/Bi12SiO20 nanopar-
ticles showed that the heterojunction belonged to the second type. This explained the increase
in the PC activity of the composite nanoparticles, which was maximum for the sample with
a similar content of bismuth metasilicate and sillenite obtained at the Bi:Si ratio of 4:1.

This work was supported by the Russian Science Foundation, grant no. 19-73-30026-P.
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Твердофазный синтез и фотокаталитические свойства
гетероструктур Bi2SiO5/Bi12SiO20

Александра Г. Голубовская
Тамара С.Харламова

Валерий А. Светличный
Томский государственный университет

Томск, Российская Федерация

Аннотация. В работе предложен и реализован новый подход к созданию гетероструктурных на-
ночастиц (НЧ) на основе силикатов висмута Bi2SiO5/Bi12SiO20. В основе данного подхода лежит
твердофазный синтез путем отжига предварительно гомогенизированной перетиранием смеси по-
рошков β-Bi2O3 и SiO2 в различном соотношении. Для этого использовались промышленный на-
нопорошок диоксида кремния и порошок наночастиц β-оксида висмута, полученный импульсной
лазерной абляцией (ИЛА) в воздухе. Исследованы морфология, фазовый состав и оптические свой-
ства полученных материалов. Изменяя соотношение прекурсоров, были получены порошки, близ-
кие по cтруктуре к монофазным силикатам висмута Bi2SiO5 и Bi12SiO20, так и гетероструктурные
НЧ на их основе. Оценена активность фотокатализаторов в реакциях разложения Родамина Б и
селективного окисления 5-гидроксиметилфурфурола (5-HMF). Лучшую фотокаталитическую ак-
тивность демонстрируют порошки с близким соотношением фаз Bi2SiO5/Bi12SiO20 (или 4Bi:1Si).
В результате анализа полученных результатов было предположено формирование гетероперехода
II типа.

Ключевые слова: твердофазный синтез, силикаты висмута, гетероструктурные наночастицы,
импульсная лазерная абляция, фотокатализ, гетеропереход II типа, 5-гидроксиметилфурфурол,
родамин В.
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Abstract. A model of three-layer sandwich plate consisting of two layers of composite material con-
nected by an elastic isotropic layer is considered in the paper. Composite layers with different tensile
and compression moduli of elasticity are described as an orthotropic material reinforced with parallel
carbon fibres. Constitutive equations of the model are based on the generalized rheological method. The
energy functional is constructed with the use of the Lagrange variational method which is minimized
using the initial stress method and the finite element method. The results of a series of computational
experiments are presented wherein the stress-strain state of a vertical section of a plate under the action
of cylindrical load is calculated.

Keywords: composite material, multi-modular theory of elasticity, generalized rheological method,
composite plate, finite element method.

Citation: I.E. Petrakov, Modelling of a Sandwich Plate Cross-section with Different
Moduli of the Material under Cylindrical Loads, J. Sib. Fed. Univ. Math. Phys., 2025,
18(3), 320–330. EDN: KOZBCF.

Composite materials are materials consisting of two or more distinct components and they
have properties different from the properties of the original materials. In addition, the compo-
sition and distribution of individual components are known in advance, the proportion of each
component is not lower than a certain value, and there are clear boundaries separating the start-
ing materials [1,2]. Despite the heterogeneity of composites on micro-scale they can be considered
as homogeneous materials on macro-scale. The components of a composite material are divided
into a continuous phase, which is called the matrix, and a reinforcing phase. Moreover, the same
material can play the role of a matrix or be a reinforcing material in various composites [3].

Various industries such as automotive industry, mechanical engineering, aircraft manufac-
turing and space industry widely use composite materials. The use of composite materials is
growing in aerospace industry. The share of composites ranges from 15% to 30% of the total
weight in modern aircraft, and in rocket engines reaches 90% [4,5].

One of the composite materials is sandwich structures consisting of a filler and a shell. Poly-
mers reinforced with glass fibre, carbon fibre or biofilter [6] can be used as shell material. Sand-
wich structures are increasingly used in industry, building structures and transportation due to
their light weight and strength under heavy loads. A sandwich structure in which the shell is a
fibrous composite reinforced with long parallel fibres, and the filler is an elastic isotropic mate-
rial is considered in this paper. Since such shell material has different moduli of elasticity and
different strengths it is necessary to take this into account when calculating structures made of
such material [7].

∗petigr@icm.krasn.ru
c⃝ Siberian Federal University. All rights reserved
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One of the approaches that allows one to construct model that takes into account different
moduli of elasticity of a composite under tension and compression is the generalized rheological
method [8]. The method provides thermodynamically correct governing equations for fibre com-
posites. The method is based on the construction of rheological schemes using basic elements
(elastic spring, viscous damper and plastic hinge) and a new element — hard contact that sim-
ulates the behaviour of ideal granular medium with absolutely solid particles. The rheological
method has proven itself well in modelling the dynamics and statics of granular and porous
materials with a threshold change in rigidity during the collapse of pores. A similar change in
stiffness occurs in fibre composite when the sign of deformation changes.

1. Generalized rheological method

Let us construct the scheme describing a three-layer structure that consists of two layers of
a multi-modulus composite and one layer of isotropic filler. Fig. 1 shows rheological scheme
consisting of five elastic elements and two rigid contact elements, where σ is the actual stress
tensor, ai is the tensor of elastic moduli in compression for i-th layer, bi is the tensor of additional
moduli under tension for the i-th layer.

Fig. 1. Scheme of three-layer sandwich plate

Derivation of the rigid contact equations used to describe heteromodularity is presented
in [9, 10]. Two equivalent variational inequalities for the reverse rigid contact are

σ(ε− ε̃) > 0, ε, ε̃ 6 0; (σ − σ̃)ε > 0, σ, σ̃ > 0. (1)

Let us consider layer of composite material separatly.
Layer of a material with different moduli is described by the diagram shown in Fig. 2, where ε

is the strain tensor, σ is the actual stress tensor, σ′ is the additional stress tensor, a is the tensor
of elastic moduli in compression, b is the tensor of additional moduli in tension. The governing
equations of the stress-strain state of elastic composites for finite linear or non-linear relations
between stress tensors σ and strain tensors ε admit the potential representation

σ =
∂Φ(ε)

∂ε
, ε =

∂Ψ(σ)

∂σ
. (2)
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Fig. 2. Scheme of layer of composite material

Here Φ and Ψ are elastic potentials of stress and strain related to each other through the Young
transformation:

Ψ(σ) = sup
ε

(σ : ε− Φ(ε)), (3)

Φ(ε) = sup
σ

(σ : ε− Ψ(σ)), (4)

where the colon denotes double convolution of tensors.
According to [11,12] such scheme corresponds to the following governing equation

σ = a : ε+ b : (ε− Π(ε)), (5)

where Π(ε) is the projection of tensor ε onto the cone C according to the norm |ε| =
√
ε : b : ε

and stress and strain potentials

Φ(ε) =
1

2
ε : a : ε+

1

2
(ε− Π(ε))2, (6)

Ψ(σ) =
1

2
σ : a−1 : σ − 1

2
∥π(σ̄)∥2, (7)

where π(σ̄) is the projection of stress tensor σ̄ onto the cone that is conjugate to the cone C
according to the norm ∥σ∥2 = σ : (a−1 + b−1) : σ. The equivalent form of equation (9) are two
equations for the actual stress tensor σ, the additional stress tensor σ′ and the intrinsic strain
tensor of the rigid contact ε′:

σ − σ′ = a : ε, σ′ = b : (ε− ε′). (8)

Let us assume that governing equation at each point of composite layers of the plate has the
form

σ = a(x1, x2, x3) : ε+ b(x1, x2, x3) : (ε− Π(ε)), (9)

where a(x1, x2, x3) and b(x1, x2, x3) take constant values a1, b1 and a2, b2 for each layer, respec-
tively, cones Ci are half-spaces associated with direction of reinforcement. In the filler layer,
potentials and the governing equation take the form

Φ(ε) =
1

2
ε : am : ε, Ψ(σ) =

1

2
σ : a−1

m : σ, σ = am : ε. (10)

– 322 –



Igor E. Petrakov Modelling of a Sandwich Plate Cross-section with Different . . .

2. Sandwich plate section

Let us consider the stress-strain state of the sandwich plate section. Let the x1 axis of the
Cartesian coordinate system Ox1x2 be located in the direction of fibre. Let us assume that
during compression the plate material is described by the Hooke law for transversally isotropic
body. Then the first equation of system (8) can be written in the following matrix formε11ε22

ε12

 =

 1
E1

− ν2
E2

0

− ν1
E1

1
E2

0

0 0 1
2G


σ11 − σ′

11

σ22 − σ′
22

σ12 − σ′
12

 , (11)

where E1 and E2 are the Young moduli along the fibre and perpendicular to the fibre, respectively,
ν1 and ν2 are the corresponding Poisson’s ratios, and G is the shear modulus. When the strain
of fibres is positive additional stress is

σ′
11 = b11ε11,

which is introduced using tensor b. In the case under consideration it has only one non-zero
component b11. To ensure that introduced tensor is non-degenerate and positive definite small
positive components β and γ are introduced, and they subsequently tend to zero. Let us write
the second equation of system (8)ε11 − ε′11

ε22 − ε′22
ε12 − ε′12

 =


1
b11

0 0

0 1
β 0

0 0 1
2γ


σ′

11

σ′
22

σ′
12

 . (12)

Substituting the resulting expressions into (9), governing equations for the plane stress state are
obtained: 

σ11 =
E1(ε11 + ν2ε22)

1 − ν1ν2
+ b11(ε11 − Π11),

σ22 =
E2(ε22 + ν1ε11)

1 − ν1ν2
,

σ12 = 2Gε12.

(13)

Let us write out tensor a−1 + b−1 and represent it in matrix form
1
E1

+ 1
b11

− ν2
E2

0

− ν1
E1

1
E2

+ 1
β 0

0 0 1
2G + 1

2γ

 . (14)

Consider the minor of size 2 × 2 of the matrix (a−1 + b−1)−1:

1

(b11 + E1)(β + E2) − ν1ν2bβ

(
b11(β + E2)E1 ν1bβE2

ν1b11βE2 β(b11 + E1)E2

)
. (15)

Taking the limit β, γ → 0, matrix with single non-zero element bE1/(b+E1) is obtained. Thus,
components of the conditional stress tensor σ̄ are

σ̄11 =
E1b11
b11 + E1

(
σ11
E1

− ν2
σ22
E2

)
, σ̄22 = σ̄12 = 0. (16)
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Let us assume that each layer of the shell is reinforced with parallel fibres in the plane of the
plate at an angle Ri to the x axis. Let us write down the governing equations for this case. Since
the rotation occurs in the plane of the plate, components σ22 and σ12 remain unchanged:

σ11 =

(
(E1 cosRi + E2 sinRi)(ε11 + ν2ε22)

1 − ν1ν2
+ b11 cosRi(ε11 − Π11)

)
,

σ22 =
E2(ε22 + ν1ε11)

1 − ν1ν2
,

σ12 = 2Gε12.

(17)

Let us consider the following problem. Region Ω with boundary Γ coincide with the vertical
section of the sandwich plate. Boundary Γ consists of a part Γu on which there are no movements
and part Γσ that does not intersect with it, and distributed load is specified on part Γσ:{

u = 0 на Γu,

σn = q на Γσ.
(18)

It is required to determine the vector displacement field u and the tensor field σ that satisfy the
differential equations

∇ · σ = 0, 2ε(u) = ∇u+ (∇u)∗,

and boundary conditions (18), and for which the following variational equations are satisfied in
Ω

σi = ai : εi + bi : (εi − Πi(εi)), σm = am : εm. (19)

Components of the small strain tensor are related to displacements as follows

ε11 =
∂ux
∂x

, ε22 =
∂uy
∂y

, ε12 =
1

2

(
∂ux
∂y

+
∂uy
∂x

)
.

Let us formulate variational principles that are equivalent to the differential formulation of
the problem under consideration. The required displacement field minimizes the integral

J(u) =

∫
Ω

(Φ(ε(u))) dΩ −
∫
Γσ

qu dΓ (20)

on the linear space U of generalized functions u ∈ H1(Ω).
To obtain the equation of the stress-strain state, the Lagrange variational principle is used.

The actual distribution of plate displacements is minimized on a set of variations consistent with
the main boundary conditions by the elastic energy functional:

∑
i=1,2

(∫
Ωi

(
1

2
∇u : (ai + bi) : ∇u− bi : Πi(ε)σ : ∇u

)
dΩi −

∫
Γi

q⃗ · u dΓi

)
+

+

∫
Ωm

(
1

2
∇u : am : ∇u

)
dΩm −

∫
Γm

q⃗ · u dΓm = 0,

where index i denotes the layer number, u is the vector field of displacements in Ω, ∇ is the
Hamilton operator, q⃗ is the stress vector at the boundary of the plate Γσ, ai is the tensor of
elastic moduli under compression, bi is the tensor of additional moduli under tension, am is the
tensor of elastic moduli of the interlayer.
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Let us apply the obtained constitutive equations to the analysis of the plane stress state of
the section of a sandwich plate loaded along the edge with static self-balanced stress system,
using the initial stress method. To do this, defining equation of the fibre composite in form (19)
is replaced the with the following iterative formula

σk =
∑
i=1,2

(
(ai + bi) : εk − ∆σk−1

i

)
+ am : εk, ∆σk−1

i = bi : Πi(ε
k−1).

At the first step, the problem for unstressed plate is solved when initial stress tensor ∆σ0 is
identically equal to zero. In this case, the elastic modulus tensor is a + b. For the next steps,
tensor ∆σk−1 is determined, using the projection of tensor εk−1. Taking into account the
iterative formula, the elastic energy functional takes the following form

∑
i=1,2

(∫
Ωi

(
1

2
∇u : (ai + bi) : ∇u− ∆σk−1 : ∇u

)
dΩi −

∫
Γi

q⃗ · u dΓi

)
+

+

∫
Ωm

(
1

2
∇u : am : ∇u

)
dΩm −

∫
Γm

q⃗ · u dΓm = 0. (21)

To ensure the uniqueness of the solution any point on the plate is fixed, and rotation around
this point is excluded. By minimizing functional (21) at each step of the algorithm, the required
displacement vector u is obtained.

3. Numerical results

The finite element method is used for the numerical solution. The triangular Lagrange element
with three nodes is used, and displacements ux, uy are specified at the nodes. An irregular
triangular mesh is constructed in domain Ω. Vector of generalized coordinates U of dimension
2n is introduced, where n is the number of grid nodes. The functional is represented as a sum
of integrals over all triangles of the mesh

J(U) =

m∑
l=1

∫∫
Ωl

(
(Ul)

TSTK(x1, x2)SUl − bΠ(SUk−1
l )SUl − qlUl

)
dx1 dx2, (22)

where Ωl is the domain of the lth finite element, Ul is the local vector of generalized coordinates,
Sl is the local matrix of displacements and deformations, K is the matrix of elastic constants,
q is a global vector of generalized forces, the superscript T means transpose. When conducting
computational experiments, sandwich plates with different layer thicknesses were considered.
Loading schemes are presented in Fig. 3. The shell parameters corresponded to carbon fibre
plastic are E+

1 = 114, E−
1 = 57, E2 = 14, G = 3.5 GPa, ν1 = 0.19. The filler is isotropic

epoxy resin with parameters E = 4, G = 1.54GPa, ν = 0.3. In the first series of computational
experiments, tension-compression along fibres is considered. The figures show axial displacements
for the plate with shell layer thickness of 1 mm and filler of 3 mm. The force of 50 kN (tension,
Fig. 5) and −50 kN (compression, Fig. 6) is applied to the right side of the plate.

Similar calculations are carried out for the transverse direction. The deformation is calculated
under the action of distributed load applied to the upper boundary of the plate. Displacements
for tension and compression are shown in Fig. 7.
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Fig. 3. Schemes of sandwich plate loading under tension-compression along and across fibres

As a result of calculations for the described material, the following values of effective elastic
moduli for the sandwich structure are obtained

E+
1 = 41ГПа, E−

1 = 23ГПа, E+
2 = 5.88ГПа, E−

2 = 5.93ГПа.

A series of computational experiments on bending of the sandwich plate under the action of
concentrated force (diagram is shown in Fig. 4) is carried out.

Fig. 4. Loading diagram for cylindrical bending

���� ���� ���� ���� ���	 ����
x,m

�����

�����

����

����

����

y,
m

ux,mm

���

���

���

���

���

���

���� ���� ���� ���� ���� ����
x,m

�����

�����

����

����

����

y,
m

uy,mm

������

������

������

�����

�����

�����

�����

Fig. 5. Displacement of sandwich plate under tension with force applied along the shell rein-
forcement

Displacements and strains ε11 during bending for sandwich plate with shell layer thickness of
4 mm and filler layer of 4 mm are shown in Fig. 8. One can observe the distribution of tension
and compression zones near edges and the centre of the plate.
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Fig. 6. Displacement of sandwich plate under compression with force applied along the shell
reinforcement
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Fig. 7. Displacement of sandwich plate under tensile (top pictures) and compressive (bottom
pictures) with force applied across the shell reinforcement

Tab. 1 shows values of deflections for various ratios of shell and filler thicknesses, where Ti is
the thickness of the interlayer, Ta is the thickness of the reinforcement, wd is the deflection when
difference in modularity is taken into account, w is the deflection when difference in modularity
is not taken into account. As thickness of the shell layers increases the influence of different
moduli on the value of deflection is also increased. When difference in moduli is not taken into
account different moduli the error of calculation of deflection can reach 10%.
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Table 1. Deflection of sandwich plate under the action of concentrated force

Ti, mm Ta, mm wd, mm w, mm δw, %
0.24 0.96 1.88 1.66 11%
0.48 0.72 1.99 1.78 10%
0.72 0.48 2.11 1.9 10%
0.96 0.24 2.24 2.08 7%
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Fig. 8. Strain and displacement of sandwich plate with equal thickness of layers under the action
of concentrated force

Conclusion

Model of sandwich plate that takes into account the different resistance of the material to
tension and compression was considered. Computational algorithm for solving the problem of
calculating the stress-strain state of sandwich plate section under the influence of cylindrical load
has been developed. The developed model allows one to determine tension-compression zones of
the sandwich plate section. Analysis of the results of numerical calculations showed the influence
of different moduli on the deformed state of sandwich plate under cylindrical bending.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Centers for Mathematics Research and Education (Agreement
No. 075-02-2024-1378).
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Моделирование сечения сэндвич-пластины
при цилиндрических нагрузках с учетом
разномодульности материала

Игорь Е. Петраков
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация

Аннотация. В работе рассматривается модель трехслойной сэндвич-пластины, состоящей из двух
слоев композитного материала, связанного упругой изотропной прослойкой. Слои композитного
материала моделируются с учетом различных модулей упругости при растяжении и сжатии и пред-
ставляют собой ортотропный материал, армированный параллельными углеродными волокнами.
Представлена модель на основе обобщенного реологического метода, с помощью которого полу-
чены определяющие уравнения. С помощью вариационного метода Лагранжа построен функцио-
нал энергии, минимизация которого проведена с использованием метода начальных напряжений и
метода конечных элементов. Представлены результаты серии вычислительных экспериментов по
расчету напряженно-деформированного состояния вертикального сечения пластины под действием
цилиндрической нагрузки.

Ключевые слова: композитный материал, разномодульная теория упругости, обобщенный рео-
логический метод, сэндвич-пластина, метод конечных элементов.
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Abstract. The conditions for spectrum broadening of 60 fs radiation pulse at a central wavelength 950
nm in fused quartz plates due to phase self-modulation are studied experimentally and theoretically.
The studies are conducted at radiation intensities from 50 to 400 GW/cm2 and plates thicknesses from
1 to 10 cm. The experimental conditions and a calculation model based on solving a system of nonlinear
Schrödinger equations in the approximation of a slowly changing wave are described. The possibility of
compressing radiation pulse with a broadened spectrum in case of quadratic nonlinear phase compensa-
tion is estimated. It is shown that in case spectrum broadening it is possible to reduce the spectrally
limited duration by no more than two times.

Keywords: femtosecond pulse, spectrum width, self-phase modulation, fused quartz.
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Introduction

Currently, powerful infrared (0.8 – 1 µm) laser systems are usually used to obtain powerful
radiation pulses in the visible spectrum, the radiation pulses of which are converted into the
second harmonic (SH) in nonlinear crystals. In Tomsk (IHCE SB RAS) together with Moscow
group (FIAN), the alternative way of obtaining such pulses in visible region (475 nm) is being
developed based on the THL-100 hybrid laser system. This way is associated with the initial
production of femtosecond SH pulse in visible region with low energies (1 – 5 mJ) and subsequent
increase in energy in a gas amplifier on XeF(C-A) molecules to the Joule level. The THL-100
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laser system, operating on this principle, is currently one of the most powerful systems in visible
spectrum [1, 2]. The general interest in powerful pulses of radiation in visible spectrum is con-
nected with the higher quantum energy, which allows to increase the efficiency of interaction of
laser beam with various materials and environments. Powerful pulses also help to develop new
applications, which include the creation of an X-ray laser in transparency window of water and
the generation of powerful terahertz radiation [3–5].

One of the ways to increase the power of THL-100 laser system is to reduce the duration
of output radiation pulse while maintaining the radiation energy. To do this, it is necessary to
increase the spectral width of SH radiation pulse in the Ti:Sa complex and amplify it in active
medium on XeF(C-A) molecules, which has a wide gain contour corresponding to a spectrally
limited duration of 10 fs [6]. Since the femtosecond complex operates at the gain contour edge
(950 nm) to match the SH wavelength with gas amplifier, it does not allow forming a radiation
pulse shorter than 60 fs at the fundamental harmonic. To reduce the spectrally limited duration
of radiation pulse, it is necessary to increase the width of its spectral contour by some artifi-
cial method. At present, the most common method of spectrum broadening for reducing the
spectrally limited pulse duration is self-phase modulation in a medium with cubic nonlinearity.

This approach was proposed for high-power laser systems [7] and demonstrated at the PEARL
facility (central wavelength 910 nm, pulse duration 65 – 75 fs, pulse energy up to 17 J, beam
diameter 18 cm) [8]. The pulse spectrum at the laser output was broadened due to self-phase
modulation in fused silica and then the pulse was compressed by chirped mirrors. It was demon-
strated that with optimal choice of mirror dispersion a pulse with energy of 17 J can be com-
pressed from 70 to 14 fs. This compression has undoubted merits: simplicity, low cost, negligible
pulse energy losses, and applicability to any high-power laser.

This paper presents theoretical and experimental results of studies aimed at studying the
possibility of broadening the radiation spectrum with a central wavelength of 950 nm depending
on the glass block thickness and radiation intensity.

1. The equipment and methods

In the experiments, the femtosecond Ti:Sa laser complex operating at the gain contour edge
(central wavelength is 950 nm) and serving as master oscillator (front end) for multiterawatt
THL-100 laser system was used. The laser complex consists of master oscillator, stretcher, re-
generative and two multi-pass amplifiers, and compressor on diffraction gratings. The output
pulse at the fundamental harmonic has duration of 60 fs, beam diameter of 15 mm with in-
tensity decay of e2 times and energy of up to 10 mJ. The beam was directed without focusing
onto polished fused quartz plates of different thickness (from 1 to 10 cm), where the spectrum
was broadened due to self-phase modulation. After that, the radiation was recorded with an
Ocean Optics HR4000 spectrometer (200 – 1100 nm, 0.7 nm). The laser radiation energy in the
experiments was measured by Gentec-e maestro energy meter.

The model that takes into account the influence of phase self-modulation, group velocity
dispersion and nonlinear response, nonlinear absorption, plasma formation and spatial effects
associated with self-focusing was used in simulations. The model is based on solving the system
of nonlinear Schrödinger equations in approximation of slowly varying wave [9] in cylindrical
coordinate system and it has the following form:

∂A

∂z
+ iD

∂2A

∂η2
+ iD⊥∆⊥A+ i

ik20n2
n0

(
1 +

i

ω0

∂

∂η

)(∫ ∞

0

R(t
′
)|A(η − t

′
)|2dt

′
)

= 0 (1)
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where η is the dimensionless time in the traveling coordinate system, z is the longitudinal co-
ordinate, D is the coefficient characterizing the second-order dispersion, ω0 is the average pulse
frequency, k0 is the wave number, A(n, r, z) is the complex envelope of the electric field (the
initial distribution was Gaussian), R(t) is the nonlinear response function, including the fast and
slow part, n0 and n2 are linear and nonlinear refractive coefficients. For numerical solution of
nonlinear Schrödinger equations the conservative difference scheme with second order approxi-
mation was used both in the spatial coordinate and in time [10]. The simulations were carried
out for laser beam intensity from 50 to 400 GW/cm2. The thickness of fused quartz was varied
in the same range as in experiments.

2. Results and discussion

The experimental study of spectrum broadening of first harmonic radiation was carried out
at laser pulse energy of 8 mJ and radiation intensity at entrance to the material of 76 GW/cm2.
The initial width of laser radiation spectrum at half-maximum (FWHM) was 28 nm (Fig. 1).
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Fig. 1. Spectral contour of the fundamental harmonic radiation

The beam was passed through plates of fused quartz starting from 1 cm thickness and up
to 10 cm. At the same time with thickness increase of the plates to 6 cm the spectrum width
was increased, and with its further increase the spectrum width began to decrease due to Kerr
nonlinearity. Here we present the spectrum only for the optimal regions. Thus, the spectrum
width increased to 41.8 nm when using a 4 cm thick plate (Fig. 2a). When using a 6 cm plate,
the spectrum width increased to 53.3 nm (Fig. 2b). That is, for these conditions, the spectrum
width increased by 1.5 and 2 times, respectively. It is clear that, in general, the spectrum shifts to
the short-wave side. Most likely, this is due to the fact that the temporal shape of laser radiation
pulse is not Gaussian and the trailing edge is significantly steeper than the leading edge. Deep
amplitude modulation of the radiation intensity is typical for spectral form behavior in phase
self-modulation. In this case the duration of spectrally limited pulse is usually determined by
the spectrum envelope at half amplitude. That is, we can hope that in our case the duration will
be reduced by about two times.

Simulations close to the experiment showed that at intensity of 100 GW/cm2 and 4 and 6
cm thick plates the spectrum width increases to 38.9 and 42.6 nm, respectively (Fig. 3a). In
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(a) (b)

Fig. 2. Experimental spectral contours of broadened radiation obtained after passing through
4 m (a) and 6 cm (b) of fused quartz

this case, the broadening occurs symmetrically on both sides of the central wavelength. With
increasing of intensity to 400 GW/cm2 the spectrum width increased to 72 nm (Fig. 3b). In this
case a significant width increase at the spectrum base was observed. Simulations showed that
the spectrum broadening occurs mainly due to phase self-modulation. The simplified model did
not allow obtaining a real picture of the spectrum with modulation.

(a) (b)

Fig. 3. Theoretical spectral contours of broadened radiation obtained after passing 4 (black) and
6 (red) cm of fused quartz at laser beam intensity of 100 (a) and 400 (b) GW/cm2

To calculate the pulse duration of radiation with a broadened spectrum the beam was prop-
agated in medium with negative dispersion. It was shown that pulse duration was reduced no
more than twice. That is compensation for only the second-order dispersion is sufficient for
Gaussian beam profile.

Conclusion

Thus experimental and theoretical studies of the broadening possibility of radiation spectral
contour of the fundamental harmonic at a central wavelength of 950 nm in fused quartz have
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been carried out and the possibility of compression of the radiation pulse with a broadened
spectrum when compensating for the quadratic nonlinear phase was evaluated. It was shown
that with increase of the material thickness from 1 to 6 cm in experiment and simulations the
spectrum widens up to two times. However, the calculated shape of broadened spectral contour
does not coincide with the experiment. To reconcile these data, both further refinement of the
computational model (accounting for absorption and scattering) and greater approximation of
the calculation conditions to the experiments (non-Gaussian pulse, the presence of cubic phase,
etc.) are required. This is planned in our further research. Actually, in calculations, it is possible
to reduce the spectrally limited duration up to two times. A similar pattern is expected in the
experiment when compensating for the positive dispersion.

The work was supported by the Ministry of Science and Higher Education of the Russian
Federation (FWRM-2021-0014).
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Уширение спектра фемтосекундного импульса излучения
на длине волны 950 нм в материале с кубической
нелинейностью

Сергей В. Алексеев
Валерий Ф. Лосев
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Томск, Российская Федерация

Яков В. Грудцын
Андрей В. Корибут
Валерий И. Яловой
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Аннотация. Экспериментально и теоретически исследуются условия уширения спектра 60 фс
импульса излучения на центральной длине волны 950 нм в пластинах из плавленого кварца за
счет фазовой самомодуляции. Исследования проводятся при интенсивности излучения от 50 до
400 ГВт/cm2 и толщине пластин от 1 до 10 см. Описываются условия экспериментов и расчет-
ная модель, основанная на решении системы нелинейных уравнений Шредингера в приближении
медленно меняющейся волны. Оценивается возможность сжатия импульса излучения с уширен-
ным спектром при компенсации квадратичной нелинейной фазы. Показывается, что при уширении
спектра удается сократить спектрально ограниченную длительность не более двух раз.

Ключевые слова: фемтосекундный импульс, ширина спектра, плавленый кварц.
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Abstract. Analysis of the orientational thermoelasticity effect using a two-dimensional simplified dy-
namic model of liquid crystal in the acoustic approximation is presented in the paper. It is assumed
that effect occurs when one of the boundaries of a rectangular liquid crystal layer is heated. To solve the
system of model equations, the method of two-cycle splitting with respect to spatial variables is used in
combination with the finite-difference Godunov scheme for the acoustic equations and the Ivanov scheme
with controlled energy dissipation for the heat conduction equation. This combination of finite-difference
methods allows one to calculate related thermomechanical processes using the same time and space steps
that satisfy the Courant-Friedrichs-Levy criterion. The numerical algorithm was implemented as a par-
allel program written in C++. Parallelization of computations was performed with NVIDIA graphic
accelerators using CUDA technology. Simulations demonstrate that it is impossible to observe the effect
of reorientation of liquid crystal molecules under the influence of temperature for the presented simplified
model in the acoustic approximation. It was concluded that when surface tension forces are taken into
account this effect will be observed for the model used in this work.

Keywords: liquid crystal, thermal conductivity, dynamics, CUDA technology.
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Introduction

Liquid crystals are substances combining the optical anisotropy of crystals and the molecular
mobility of liquids in some temperature range. This is the most important property of such
systems [1, 2]. Liquid crystal molecules have a specific shape but they also have the property of
fluidity. Depending on the initial orientation, liquid crystals are divided into nematic, smectic
and cholesteric. The most common type of liquid crystals, namely, nematic crystal is considered
in present which best reflects the dual nature of these substances. This type has a wide range
of applications, ranging from information display technologies to optical devices and sensors. It
helps to regulate the brightness of the screen in LCDs by changing the strength of the electric
field acting on the crystal. In addition, orientation of liquid crystals is sensitive to temperature
change. If liquid crystals are heated they take a more ordered state which can be used, for
example, for data storage. If such liquid crystals are cooled they return to their original state.
It means that data can be erased and rewritten. Liquid crystal sensors are used for temperature
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c⃝ Siberian Federal University. All rights reserved
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measurement and biochemical analysis, they continue to be of interest due to their controllable
optical and electro-optical properties. Studies in this field are progressing, and new applications
are being developed so liquid crystals play an important role in modern constantly evolving
technologies. By now, dynamic model of Ericksen and Leslie [3, 4] has been developed on the
basis of conservation laws. It takes into account all types of movements as well as the flow of liquid
crystals. However, it turned out to be too complex to solve using numerical methods because it
includes a large number of equations and parameters that must be determined experimentally
which is not always possible. Then, there was a need to develop simpler models allowing for a
detailed description of the processes occurring in liquid crystals that would significantly facilitate
their study.

This paper presents analysis of the orientational thermoelasticity effect using a simplified two-
dimensional model in the acoustic approximation. It takes into account mechanical, temperature
and electrical effects in liquid crystals [5]. The effect occurs when the boundary of a horizontal
liquid crystal layer is heated. The effect of temperature on the orientation of liquid crystal
molecules was studied experimentally [6]. It was concluded that susceptibility to heat flows
is similar to the interaction with electromagnetic fields. However, a plate with significantly
different coefficient of volumetric expansion was used in experiments. It is likely that the effect
of molecular reorientation is associated with the thermal expansion of the plate but not with the
effect of the heat flow.

1. Mathematical model of liquid crystal in acoustic approxi-
mation

The equations of the model that describe behaviour of liquid crystals under thermomechanical
and electrical perturbations are derived from the integral conservation laws of energy, momentum,
and angular momentum on the basis of the Cosserat continuum theory [7] using the Clausius–
Duhem inequality. In the planar case, the model includes the following equations

translational motion ρ
∂v1
∂t

= − ∂p

∂x1
− ∂q

∂x2
+ f1, ρ

∂v2
∂t

=
∂q

∂x1
− ∂p

∂x2
+ f2, (1)

rotational motion J
∂ω

∂t
= 2 q +

∂µ1

∂x1
+
∂µ2

∂x2
+m, (2)

couple stresses
∂µ1

∂t
= γ

∂ω

∂x1
,

∂µ2

∂t
= γ

∂ω

∂x2
, (3)

angle of rotation
∂θ

∂t
= ω, (4)

state for pressure and tangential stress

∂p

∂t
= −κ

(
∂v1
∂x1

+
∂v2
∂x2

)
+ β

∂T

∂t
,

∂q

∂t
= α

(
∂v2
∂x1

− ∂v1
∂x2

)
− 2α

(
ω +

q

η

)
, (5)

anisotropic heat conduction

ρ c
∂T

∂t
=

∂

∂x1

(
æ11

∂T

∂x1
+ æ12

∂T

∂x2

)
+

∂

∂x2

(
æ12

∂T

∂x1
+ æ22

∂T

∂x2

)
− (6)
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−β T

(
∂v1
∂x1

+
∂v2
∂x2

)
+

2 q2

η
+H,

æ11 = æ∥ cos2 θ + æ⊥ sin2 θ, æ12 = (æ∥ − æ⊥) sin θ cos θ, æ22 = æ∥ sin2 θ + æ⊥ cos2 θ,

where v1 and v2 are the components of the velocity vector, ω is the angular velocity, θ is the
rotation angle of molecules, p is the pressure, q is the tangential stress, µ1 and µ2 are the
couple stresses, T is the temperature, ρ is the density, J is the moment of inertia, κ is the bulk
compression modulus, α is the modulus of elastic resistance to rotation, β is the coefficient of
thermal expansion, γ is the modulus of elastic resistance to curvature change, η is the viscosity
coefficient, H is the intensity of heat sources, c is the specific heat capacity, æ∥ and æ⊥ are
the thermal conductivity coefficients of a liquid crystal in the direction of molecular orientation
and in the transverse direction, f1, f2 and m are the bulk forces and couple force caused by the
electric field. Here, they are not taken into account when studying the thermodynamic effect
since they do not affect the temperature change. The algorithm of the electric effect is presented,
for example, in [8].

2. Computational algorithm

A rectangular region of liquid crystal is considered with dimensions lx1 and lx2 in the direc-
tions x1 and x2, respectively. The finite-difference grid is

Rii1 i2 = {(ti, x1i1 , x2i2 ) : ti= i∆t, x1i1= i1∆x1, x2i2= i2∆x2,

i = 0, . . . , Nt, i1 = 0, . . . , Nx1, i2 = 0, . . . , Nx2},

where ∆x1 and ∆x2 are space steps in the directions x1 and x2 such that x1i1 ∈ (0, lx1), x2i2 ∈
(0, lx2

), ∆t is the time step, Nt is the number of time steps, Nx1 and Nx2 are the arbitrary
numbers of cells of the finite difference grid in the directions x1 and x2. At the initial moment of
time, zero values are set in this region for all quantities except θ = θ0 and T = T0. The boundary
conditions are presented in terms of pressure, velocity, stress and temperature. The load on the
boundary can act continuously or for a given number of time steps.

System of equations (1)–(6) is hyperbolic in the sense of Friedrichs so the formulation of the
Cauchy problem is correct. The system is solved using the method of two-cycle splitting by
spatial variables, and it is assumed that five consecutive stages occur at each time step. At the
1st and 5th stages, one-dimensional equations that depend on x1 are solved at different half-steps
in time: 

ρ
∂v1
∂t

= − ∂p

∂x1

∂p

∂t
= −κ

∂v1
∂x1

,


ρ
∂v2
∂t

=
∂q

∂x1

∂q

∂t
= α

∂v2
∂x1

,


J
∂ω

∂t
=
∂µ1

∂x1

∂µ1

∂t
= γ

∂ω

∂x1

, (7)

ρ c
∂T

∂t
=
∂h1
∂x1

− β T
∂v1
∂x1

, h1 = æ11
∂T

∂x1
+ æ12

∂T

∂x2
. (8)

To solve equations (7), the finite-difference Godunov scheme [9] of the "predictor-corrector"
type is used. At the "predictor" step, the following equations on characteristics obtained from
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(7) are used
dx1 = ∓

√
κ/ρ dt : dI±1 = 0, I±1 = p± v1

√
κρ

dx1 = ±
√
α/ρ dt : dI±2 = 0, I±2 = q ± v2

√
αρ

dx1 = ±
√
γ/J dt : dI±3 = 0, I±3 = µ1 ± ω

√
γJ.

(9)

These equations allow one to determine the values with fractional indices on the lateral faces of
the cells of the finite difference grid in the plane x1 and t:

v1i1−1/2
=
I+1,i1−1 − I−1,i1

2
√
ρκ

, p
i1−1/2

=
I+1,i1−1 + I−1,i1

2
, v2i1−1/2

=
I+2,i1 − I−2,i1−1

2
√
ρα

,

q
i1−1/2

=
I+2,i1 + I−2,i1−1

2
, ω

i1−1/2
=
I+3,i1 − I−3,i1−1

2
√
γJ

, µ1i1−1/2
=
I+3,i1 + I−3,i1−1

2
,

(10)

where integer indices refer to the internal nodes of the grid i1 = 2, . . . , Nx1. At the boundary
nodes, these values are found from the boundary conditions. Then heat conduction equation (7)
is solved with the help of the Ivanov finite-difference scheme [10] that is used to solve problems
of the dynamics of solids, plates and shells. The idea of the method is to implement the law of
conservation of energy at discrete level. Let us consider the extended system in the x1 direction

ρ c
∂T

∂t
=

∂h̄

∂x1
, h = æ11

∂T̄

∂x1
+ g,

where the unknown functions are T̄ ̸= T and h̄ ̸= h. For this system, the energy balance equation

ρ c

2

∂T 2

∂t
+ æ11

(
∂T̄

∂x1

)2

=
∂h̄

∂x1
(T − T̄ ) +

∂T̄

∂x1
(h− h̄) +

∂(T̄ h̄)

∂x1
− g

∂T̄

∂x1
. (11)

is satisfied. It is transformed into a dissipative inequality

ρ c

2

∂T 2

∂t
+ æ11

(
∂T̄

∂x1

)2

6 ∂(T̄ h̄)

∂x1
− g

∂T̄

∂x1
.

The closing equations of the extended system take the form

[
T − T̄

h− h̄

]
= −D


∂h̄

∂x1

∂T̄

∂x1

 , D =

[
D11 D12

D21 D22

]
,

where D is a positive definite matrix. The discrete analogue of the extended system is the
“corrector” step of the finite difference scheme:

ρ c
T i1 − Ti1

∆t/2
=
hi1+ 1

2
− hi1− 1

2

∆x1
, hi1 = æ11,i1

Ti1+ 1
2
− Ti1− 1

2

∆x1
+ gi1 . (12)

For a more brief notation, there are no indices of the second direction, the upper indices
correspond to the current time step, the lower indices correspond to the previous one, ∆x1,
hi and æ11 are the spatial step, fluxes with mixed derivatives and the thermal conductivity
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coefficient in the x1 direction. The quantities gi are calculated explicitly using the values from
the previous time step, and they include mixed derivatives with the coefficient æ12. The solution
is constructed with the time step ∆t/2 as required for the splitting stages. The discrete analogue
of equation (11) is

ρ c
(T i1)2 − (Ti1)2

∆t
+ æ11,i

(
Ti1+ 1

2
− Ti1− 1

2

∆x1

)2

=
hi1+ 1

2
− hi1− 1

2

∆x1

(
T i1 + Ti1

2
−
Ti1+ 1

2
+ Ti1− 1

2

2

)
+

+
Ti1+ 1

2
− Ti1− 1

2

∆x1

(
hi1 −

hi1+ 1
2

+ hi1− 1
2

2

)
+

(Th)i1+ 1
2
− (Th)i1− 1

2

∆x1
− gi1

Ti1+ 1
2
− Ti1− 1

2

∆x1
.

The closing equations take the form[
T i1 + Ti1 − Ti1+ 1

2
− Ti1− 1

2

2hi1 − hi1+ 1
2
− hi1− 1

2

]
=

−2D

∆x1

hi1+ 1
2
− hi1− 1

2

Ti1+ 1
2
− Ti1− 1

2

 .
For simplicity, matrix D with one non-zero element with free parameter d is used: D11 =

= d−∆t/c∆x1 > 0 since the scheme approximates the heat conduction equation only with small
elements of this matrix. The closing equations take the form

Ti −
Ti1+ 1

2
+ Ti1− 1

2

2
= − d

hi1+ 1
2
− hi1− 1

2

2
, gi1 + æ11,i1

Ti1+ 1
2
− Ti1− 1

2

∆x1
=

hi1+ 1
2

+ hi1− 1
2

2
.

The equations for heat fluxes are obtained by adding and subtracting the closing equations:

d hi1± 1
2

= dæ11,i1

Ti1+ 1
2
− Ti1− 1

2

∆x1
±
Ti1+ 1

2
+ Ti1− 1

2

2
± Ti1 + d gi1 .

The step "predictor" for temperature is calculated using three-point sweep method in each
direction:

−
(
dæ11,i1

∆x1
− 1

2

)
Ti1+ 1

2
+

(
1 +

d
(
æ11,i1 + æ11,i1−1

)
∆x1

)
Ti1− 1

2
−
(
dæ11,i1−1

∆x1
− 1

2

)
Ti1− 3

2
=

= Ti1 + Ti1−1 + d
(
gi1 − gi1−1

)
.

The final step of the splitting stage is the "corrector" step of the Godunov scheme. Taking
into account that temperature in the right part is already found, the unknown quantities are
determined as follows

ρ
v̄1 − v1

∆t
=
pi1 − pi1−1

2∆x1
, ρ

v̄2 − v2
∆t

=
qi1 − qi1−1

2∆x1
,

p̄− p

∆t
= −κ

v1i1 − v1i1−1

2∆x1
+ β

T̄ − T

∆t
,

q̄ − q

∆t
= α

v2i1 − v2i1−1

2∆x1
, J

ω̄ − ω

∆t
=
µ1i1

− µ1i1−1

2∆x1
,

µ̄1 − µ1

∆t
= γ

ω
i1
− ω

i1−1

2∆x1
.

The values with a bar denote the values at the current time step, without a bar - at the
previous time step. The indices for the second direction i2 − 1/2 are omitted for brevity. In the
finite differences in time, the indices i1 − 1/2, i2 − 1/2 are also omitted. At the 2nd and 4th
stages, system of acoustic equations (13) and heat conduction equation (14) for the direction x2
are solved in a similar way:
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
ρ
∂v1
∂t

= − ∂q

∂x2

∂q

∂t
= −α

∂v1
∂x2

,


ρ
∂v2
∂t

= − ∂p

∂x2

∂p

∂t
= −κ

∂v2
∂x2

,


J
∂ω

∂t
=
∂µ2

∂x2

∂µ2

∂t
= γ

∂ω

∂x2

. (13)

ρ c
∂T

∂t
=
∂h2
∂x2

− β T
∂v2
∂x2

, h2 = æ12
∂T

∂x1
+ æ22

∂T

∂x2
. (14)

At the 3rd stage the equations

J
∂ω

∂t
= 2 q,

∂θ

∂t
= ω,

∂q

∂t
= − 2α

(
ω +

q

η

)
, ρ c

∂T

∂t
=

2 q2

η
.

are solved in accordance with the Crank–Nicholson scheme:

J
ω̄ − ω

∆t
= 2

q̄ + q

2
,

θ̄ − θ

∆t
=
ω̄ + ω

2
,

q̄ − q

∆t
= − 2α

(
ω̄ + ω

2
+
q̄ + q

2 η

)
, ρ c

T̄ − T

∆t
=

(q̄ + q)2

2 η
.

The indices i1− 1/2, i2− 1/2 for the values at the previous time step q, ω, θ and T as well as
at the current time step q̄, ω̄, θ̄ and T̄ are omitted for brevity. Calculations are performed using
the following formulas

q̄ =
J η − ∆t α (∆t η + J)

J η + ∆t α (∆t η + J)
q − 2 ∆t α J η

J η + ∆t α (∆t η + J)
ω,

ω̄ = ω +
∆t

J
(q̄ + q), θ̄ = θ +

∆t

2
(ω̄ + ω), T̄ = T +

∆t

2 ρ c η
(q̄ + q)2.

3. Results of computations

The described algorithm was implemented using the CUDA parallel programming technology
[11]. Numerical calculations were performed for the 5CB liquid crystal. Parameters of the liquid
crystal are [12, 13] ρ = 1022 kg/m3, j = 0.03 · 10−12 kg/m, κ = 11.1 GPa, α = 360 Pa,
β = 0.3 · 10−6 K−1, γ = 6 · 10−12 N, η = 0.036 Pa · c, c = 100 J/(kg ·K), æ∥ = 0.226 W/(m ·K),
æ⊥ = 0.135 W/(m · K).

A rectangular LC layer with dimensions of 200× 80 µm was considered. The finite difference
grid contains 640 × 256 cells. At the initial moment of time T0 = 297 K and θ = π/2. At the
upper border the temperature is set as follows T = T0 + T ′e−4(xi1

−xc)
2/x2

r , where T ′ is some
constant, xc is the centre of load application, xr is the radius of the load.

Fig. 1 shows the results of the action of four heat sources with the radius of 20 µm on the
lower boundary. In this case, xc = (i − 0.5)lx1/n, where n = 4 is the number of heat sources,
i = 1, 2, 3, 4. Fig. 2 demonstrates the propagation and reflection of pressure waves initiated in
the heating region. Fig. 3 shows the vector field of velocities. Fig. 4 shows the results of the
action of one heat source in the middle of the right boundary. The other parameters are similar
to the previous case. Fig. 5 and Fig. 6 show the propagation of pressure waves and the vector
field of velocities, respectively. In both cases, velocities change in accordance with the change in
pressure. Tangential stress, angular velocity and moment stresses in this case are equal to zero.
The rotation angle remains unchanged due to the absence of tangential stresses. Thus, within
the framework of the described model it is impossible to change the orientation of nematic liquid
crystal molecules by varying only temperature field.
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Fig. 1. Heating of the lower boundary: temperature level lines T, [K]

a b

c d

Fig. 2. Heating of part of the lower boundary: pressure level lines p, [nPa] (a — 9 ps, b — 18 ps,
c — 36 ps, d — 45 ps)

a b

c d

Fig. 3. Heating of part of the lower boundary: vector velocity field (a — 9 ps, b — 18 ps, c — 36 ps,
d — 45 ps)
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Fig. 4. Heating in the middle of the right boundary: temperature level lines T , [K]

a b

c d

Fig. 5. Heating in the middle of the right boundary: pressure level lines p, [nPa] (a — 9 ps,
b — 54 ps, c — 108 ps, d — 162 ps)

a b

c d

Fig. 6. Heating in the middle of the right boundary: vector velocity field (a — 9 ps, b — 54 ps,
c — 108 ps, d — 162 ps)
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Conclusion

The paper presents: a simplified model of thermomechanical and electrical effects in the
acoustic approximation; an algorithm for numerical solution of the model equations; implemen-
tation of the algorithm as a parallel program in the C++ language with the help of the CUDA
technology; a series of simulations that demonstrate that it is impossibile to observe the effect
of orientational thermoelasticity using the presented dynamic model. It is assumed that if the
surface tension forces will be taken into account then orientation of the molecules would change
when one of the boundaries of the liquid crystal layer is heated.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Centers for Mathematics Research and Education (Agreement
No. 075-02-2024-1378).
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Исследование эффекта ориентационной термоупругости
с помощью упрощенной модели нематического жидкого
кристалла в акустическом приближении

Ирина В. Смолехо
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация

Аннотация. В работе представлен анализ эффекта ориентационной термоупругости с примене-
нием двумерной упрощенной динамической модели жидкого кристалла в акустическом прибли-
жении. Предполагается, что эффект возникает при нагревании одной из границ прямоугольного
жидкокристаллического слоя. При решении системы уравнений модели применяется метод дву-
циклического расщепления по пространственным переменным в сочетании с конечно-разностной
схемой распада разрыва Годунова для уравнений акустики и схемы Иванова с контролируемой
диссипацией энергии для уравнения теплопроводности. Использование такой комбинации конечно-
разностных схем позволяет проводить расчеты связанных термомеханических процессов с одина-
ковыми шагами по времени и по пространству, удовлетворяющими условию Куранта-Фридрихса-
Леви. Численный алгоритм реализован в виде параллельной программы, написанной на языке
C++. Распараллеливание вычислений выполнено для компьютеров с графическими ускорителями
NVIDIA по технологии CUDA. Проведены расчеты, демонстрирующие невозможность наблюдения
эффекта переориентации молекул жидкого кристалла под действием температуры для представ-
ленной упрощенной модели в акустическом приближении. Однако воздействие температуры суще-
ственно влияет на давление и скорости. Сделано заключение, что при учете сил поверхностного
натяжения этот эффект будет наблюдаться для используемой в работе модели.

Ключевые слова: жидкий кристалл, теплопроводность, динамика, технология CUDA.
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Abstract. In this paper, we study the effects of plasmonic enhancement of spontaneous emission in
colloidal nanoclusters consisting of Au nanoparticles and CeYTbF3 phosphor. Based on numerical sim-
ulation of various configurations of Au nanoparticles coated with polyethyleneimine, we analyzed the
dependence of plasmonic resonances position on their number and distribution. The results showed
that optimal nanoparticle configurations significantly enhance luminescence in the desired region of the
visible spectrum, which opens up new possibilities for the development of highly sensitive nanosensors.
At the same time, nanoclusters located on a Au substrate demonstrate a lower luminescence enhance-
ment coefficient, while having a more inhomogeneous distribution of the optical near field. The results
obtained reveal the dependence of the luminescence enhancement coefficient on the spatial distribution
and coordination number of plasmonic nanoparticles in a nanocluster. This study contributes to the
understanding of plasmonic interaction mechanisms and its applications in optical immunoassay and
biomedical technologies.

Keywords: plasmonic nanoparticles, Purcell effect, Förster effect, FDTD modeling, luminescent
nanoparticles.
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Introduction
The scale of quantitative and dynamic analysis, which allows determining the state and

behavioral characteristics of chemical and biological objects, is steadily growing [1]. Over the
past decades, a number of electronic methods and devices have been developed for the detection
of biomolecules. On the other hand, analysis based on the detection of photons rather than
electrons is of growing interest to researchers due to the simplification of analytical instruments
and their low cost. Moreover, optical analysis methods are more suitable for studying biological
samples, are non-invasive and allow the sample to be examined under normal conditions. One
such method is immunoassay based on the use of luminescent labels, the emission of which
changes when an antigen with this label (refered to as probe when combined) is attached to
the analyte [2]. Organic molecules are primarily used as labels in many areas of biomedicine.
Nevertheless, despite the significant amount of research devoted to optical sensor systems using
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organic probes, the difficulties associated with the preparation and production of such systems,
as well as the photonic instability of organic materials, to some extent limit their practical
application, especially in the context of long-term monitoring. In this regard, it seems advisable
to develop stable optical systems based on new materials.

In the context dynamic progress in various fields of medicine, nanomaterials with a high spe-
cific surface area and unique optoelectronic properties are widely used for adsorption, in catalysis
and analyte detection [3–5]. In particular, optical analysis based on plasmonic nanoparticles is
applied to study various target objects, including chemical compounds, biomolecules, as well as
physical characteristics such as temperature and viscosity to name a few [6–8]. Localized surface
plasmon resonance (LSPR) in noble metal nanoparticles, associated with collective oscillations
of free electrons, not only determines the color of the nanoparticles, but also leads to a change in
the luminescence of nearby emitters due to interaction with the their near-field. In this regard,
optical analysis based on plasmonic nanoparticles can be carried out both through absorption
and through fluorescence. The high stability of LSPR allows for long-term tracking of individual
plasmonic nanoparticles, which facilitates the detection of transient processes and detailed study
of chemical and biological reactions [9].

LSPRs significantly increase the efficiency of photon absorption and scattering. As a result,
plasmonic nanoparticles, unlike traditional organic dyes, demonstrate a significantly higher ex-
tinction coefficient, which often exceeds that of dyes by several orders of magnitude. LSPRs
enhance electric fields near the surface of nanoparticles, with the magnitude of the enhancement
depends on the inverse of the distance to the surface. In addition, the LSPR characteristics of
nanoparticles can be tuned by varying parameters such as size, morphology, distance between
nanoparticles, and properties of the environment [10, 11]. In particular, the aggregation of col-
loidal plasmonic nanoparticles into clusters can significantly modify the fields on their surface.
Recent studies have demonstrated that excited conduction electrons located on the surface of
plasmonic nanoparticles are also capable of interacting with the dipoles of nearby luminescent
nanoparticles (LNPs) used to detect a specific target molecule, changing their luminescent prop-
erties [11, 12]. This interaction can lead to two opposite results: luminescence quenching and
enhancement. In particular, the degree of quenching or enhancement caused by LSPR is affected
by the LNP characteristics and the distance between the LNP and plasmonic nanoparticles in
addition to the LSPR parameters. An increase in the signal level is usually achieved when the
LSPR frequency of the metal nanostructure coincides with the LNP excitation frequency. This
contributes to an increase in the excitation intensity due to the localization of the electromag-
netic field near the metal nanostructure. An increase in the luminescence intensity can also be
realized by increasing the rate of radiative transition of emitters, which is known as the Purcell
effect [13]. This effect is observed when the LSPR frequency of the metal nanostructure coincides
with the radiation frequency of the LNP.

In addition to enhancing luminescence, this condition can lead to non-radiative resonant
energy transfer (RET) from the donor ion to the metal nanostructure through their near fields.
This interaction can cause luminescence quenching, known as the Förster effect [14, 15]. Most
studies indicate that the luminescence of LNPs is enhanced by interaction with various types
of plasmonic metal nanostructures, such as silver periodic nanogratings [16], gold pyramids,
nanoholes, nanorods and planar triangular nanoantennas [17–20]. A 20-30-fold enhancement
of the fluorescence of labeled biomarkers on cells was also demonstrated using plasmonic gold
nanoisland films [9]. A significant Purcell factor (∼100) and a limiting detection concentration
of 3.1 pmol/L were demonstrated using a system consisting of an organic label and an Au/Ag
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oligomer [21]. In the work [22], the influence of the geometry and number of NPs in Au oligomers
on the luminescence of organic label was studied, but the authors did not distinguish Purcell
effect from other causes of decay rate increasing. However, luminescence quenching has also been
observed in other studies. For example, Zhang et al. [23] reported a decrease in the luminescence
brightness of 120 nm diameter LNPs with a 20 nm thick silica shell when interacting with 9.4 nm
diameter gold nanoparticles. Luminescence quenching due to non-radiative RET in LNPs has
also been demonstrated when interacting with gold nanoparticles of similar or smaller size [24, 25].

In the context of the above, plasmon-enhanced luminescence is the result of the influence of
many factors. In particular, the sensitivity of LSPR to the surrounding analyte molecules can
be used. In our work, nanoclusters are considered, the cores of which are LNPs of CeYTbF3

surrounded by gold nanoparticles (AuNP). The luminescence of these LNPs occurs due to tran-
sitions from the 5D4 level to the sublevels of the 7F state [26]. The wavelengths of the four
observed transitions are approximately 490 nm, 540 nm, 590 nm and 620 nm. These lines are
partially or completely overlapped by the LSPR band of AuNP, which enables Purcell effect.
This system can be synthesized in a colloidal solution and then deposited on a substrate. An
idea arises to use such structures as labels for immunoassay of biologically significant analytes
both in liquid and in the form of special substrates for analysis. Radachlorin, which has absorp-
tion bands in the violet and red-orange regions of the visible spectrum, is considered as a test
analyte in the work. Among the extensive set of experimental data on the control of particle
luminescence using plasmonic nanostructures, two main aspects are distinguished that determine
the unique properties of hybrid systems: the size and shape of the subsystems, as well as the
distance between them. Our main goal is to characterize from a fundamental perspective the
possibility of plasmonic enhancement of luminescence as the number of plasmonic nanoparticles
and their configuration change. This will allow us to predict the average Purcell factor and to
determine the configurations that contribute most to the luminescence enhancement for different
concentrations of AuNPs and their ratio to the concentration of LNPs. This will be a significant
step in the development of nanosensors based on luminescence quenching or enhancement.

1. Simulation parameters and conditions
Simulation of plasmonic enhancement of spontaneous emission (Purcell effect) in a nanocluster

was carried out, consisting of a core – a dielectric particle of CeYTbF3 phosphor with a radius
of 10 nm and ligands surrounding the core – plasmonic AuNP with a radius of 47 nm, coated
with a polyethyleneimine (PEI) shell with a thickness of 4 nm. The polymer shell was used as a
linker between the core and ligands, as well as to reduce the influence of near-field energy transfer
(Förster effect). Radachlorin was considered as a possible analyte near the examined system.
The finite-difference time-domain (FDTD) method was used. The size of the simulation region
was 600x600x650 nm, the cell size of the computational grid was 4 nm, and a denser grid with
a cell size of 1 nm was set on the objects. The refractive index of the surrounding space was
chosen to be constant and equal to 1.33 (water). The boundary conditions chosen were perfectly
matched layers (PML) with a total of 8 layers with a standard profile in the stretched-coordinate
formulation. To mitigate the consequences of the staircasing approximation of non-flat surfaces
on a Cartesian computational grid, a conformal sub-pixel smoothing algorithm was applied. The
dielectric permittivity of the phosphor was specified using the Lorentz model:

ε = εd +
Ne2

mε0

fosc
ω2
0 − ω2 − iωγ

(1)
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where εd = 2 is the dielectric permittivity of the crystalline matrix, N = 1021 см−3 is the
concentration of Tb ions, fosc = 6 · 10−8 is the oscillator strength of the transition from the
ground state to the 5D4 level [27, 28], ω0 and γ are the cyclic frequency and linewidth, taken
from the experimental spectrum [26], m, e are the mass and charge of the electron. The dielectric
permittivity of gold was taken from the CRC Handbook [29]. Tabulated values are approximated
by built-in models of the simulation software (Ansys Lumerical FDTD). The refractive index of
the polymer linker shell (PEI) was assumed constant and equal to 1.52 [30].

The Purcell factor was calculated as the ratio of local densities of electromagnetic states in
the presence and absence of plasmonic nanoparticles. The power emitted by a unit point light
source was calculated for this. The local density of states is defined by the formula:

ρµ(r, ω) =
6ω

πc2

{
nµ · Im

[
Ĝ(r, r, ω)

]
· nµ

}
(2)

where c is the speed of light in vacuum, nµ is the unit vector in the direction of the dipole
moment, Ĝ is the total dyadic Green’s function for the electric field. The light source was a
point dipole located at the center of the LNP. The range of emitted wavelengths was 300–800
nm. As follows from the Eq. (2), the Purcell effect depends on the Green’s function, which means
the enhancement of luminescence is influenced by the environment. For the sensor to be most
sensitive to the presence of a specific analyte, the absorption bands of the analyte should fall
within the band of the LSPR. In this case, the influence of the analyte on the Purcell effect will
be greatest, potentially shifting the peak of luminescence enhancement.

2. Modeling of different configurations of Au ligands
surrounding a CeYTbF3 nanoparticle on an Au substrate

In order to achieve a significant change in the Purcell effect in the presence of one or more
analyte molecules near a nanoparticle or nanocluster, it is necessary to use structures with LSPR
in the analyte absorption region. To find structures with such properties, we simulated the
plasmonic enhancement of spontaneous emission in a system consisting of one dielectric particle
of the CeTbF3 phosphor and a different number (from 1 to 5) of AuNPs coated with a PEI shell
and lying on an Au substrate.

The number of all simulated configurations of the ligand arrangement around the LNP was 7:
there were 1 configuration with one AuNP, 1 with two AuNPs, 2 with three AuNPs, 2 with four
AuNPs, and 1 with five AuNPs.

In the first configuration, one AuNP and a LNP were positioned vertically one above the other
relative to the Au substrate, with the AuNP being closer to the substrate surface. The dipole
moment of the source was directed along the vertical axis of the nanocluster, perpendicular to
the substrate surface (Fig. 1(a)). In this configuration, the plasmon resonance was in the green
region of the visible spectrum. In the second configuration, two AuNPs and a LNP lay on the
surface of an Au substrate on one straight line, the dipole moment of the source was directed
parallel to the substrate surface (Fig. 1(b)). The main peak of the plasmon resonance was also in
the green region of the visible spectrum, but, in addition, there were also bands in the red-orange
region.

In the configuration with three AuNPs, the ligands were arranged on the substrate surface in
such a way that they formed an isosceles triangle, with the LNP located at its center. The dipole
moment was oriented parallel to the substrate surface and parallel (blue curve) or perpendicular
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a b

c d

Fig. 1. The Purcell factor: (a) in the presence of one ligand on the Au substrate with the source
dipole moment oriented along the vertical axis of the nanocluster, perpendicular to the substrate
surface, (b) in a linear configuration of 2 ligands on the Au substrate with the source dipole
moment oriented parallel to the line of connection of AuNPs, (c) in a triangular configuration
of 3 ligands on the Au substrate with the source dipole moment oriented along the height (blue
curve) and perpendicular to the height (orange curve) of the triangle, (d) in a square configuration
of 4 ligands on the Au substrate with the source dipole moment oriented along the side (blue
curve) and the diagonal (orange curve) of the square. The insets show the nanocluster geometry
(side view for (a-b) and top view for (c-d)

(orange curve) to the height of the triangle. The Purcell factor for this configuration are presented
in Fig. 1(c).

In the configuration with four AuNPs, the ligands were arranged on the surface of the Au
substrate to form a square, with the LNP at its center. The dipole moment was oriented parallel
to the substrate surface along the side (blue curve) or the diagonal (orange curve) of the square.
Fig. 1(d) shows the Purcell factor in this configuration.

In the configuration with five AuNPs, the ligands were located on the surface of the Au
substrate, forming a regular quadrangular pyramid, the LNP was in the center of the pyramid.
The dipole moment was oriented parallel to the surface of the substrate along the diagonal
of the pyramid base. A schematic representation of this configuration (side view) is shown in
Fig. 2. It should be noted that the spectrum contains additional plasmon resonance peaks at
other wavelengths, which is due to the fact that the geometry of this cluster supports several
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plasmon resonance modes. When using radachlorin as an analyte, configurations with four and
five AuNPs on a substrate are optimal, since they exhibit a plasmonic enhancement peak that
coincides with the long-wavelength absorption region of radachlorin.

Fig. 2. Purcell factor in a configuration with 5 AuNPs forming a regular quadrangular pyramid
with the LNP in the center, on an Au substrate. The dipole moment was oriented parallel
to the substrate surface along the diagonal of the pyramid base. The inset shows a schematic
representation of the system configuration (side view)

3. Modeling of different configurations of Au ligands
surrounding a CeYTbF3 nanoparticle in a colloidal solution

In order to clarify the overall picture of luminescence enhancement in a colloidal solution,
the simulations of plasmonic enhancement of spontaneous emission were performed in a system
consisting of one dielectric particle of the CeTbF3 phosphor and a different number (from 1 to 4)
of Au ligands in nonequivalent configurations. The number of all simulated configurations of the
arrangement of AuNPs around the phosphor was 19, of which there were 1 configuration with
one nanoparticle, 4 with two AuNPs, 7 with three AuNPs, and 7 with four AuNPs. In the case
of two AuNPs, we simulated the local density of states in the following configurations:

2.1. Two AuNPs are adjacent to the LNP along the diameter, the source dipole moment
vector is parallel to the system axis;

2.2. Two AuNPs are adjacent to the LNP and touch each other, forming a dimer, the dipole
moment is directed towards the center of one of the AuNP of the dimer;

2.3. Two AuNPs are adjacent to the LNP and are in contact with each other, forming a
dimer, the dipole moment is directed perpendicular to the direction of the center of one of the
AuNPs;

2.4. Two AuNPs are adjacent to the LNP and are in contact with each other, forming a
dimer, the dipole moment is parallel to the dimer axis.

In the case of three gold particles, we performed numerical simulation of the local density of
states in the following configurations:

3.1. The third AuNP is added to the configuration 2.1 adjacent with one of the AuNPs along
the diameter;
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3.2. Three AuNP are adjacent each to the LNP and placed at the vertices of the isosceles
triangle, which lateral sides are formed by contacting AuNP, the source dipole moment is oriented
along the height of the isosceles triangle;

3.3. Similar to the configuration 3.2, but the source dipole moment is oriented parallel the
base of the isosceles triangle formed by the centers of AuNPs;

3.4. Similar to the configuration 3.2, but the source dipole moment is oriented parallel the
leg of the isosceles triangle formed by the centers of AuNPs;

3.5. Three AuNPs are in contact and are located at the vertices of the square, in the center
of which is the LNP, leaving one corner of the square free; the dipole moment is directed along
the diagonal of the square;

3.6. The third AuNP is added to the configuration 2.1 adjacent with both of the AuNPs,
but no touching LNP, the source dipole moment is oriented along the base of the acute-angled
isosceles triangle formed by the centers of AuNPs;

3.7. Three AuNPs are in contact and are located at the vertices of obtuse-angled isosceles
triangle, the LNP occupies the base center, contacting only the middle AuNP (at the obtuse
angle), the source dipole moment is oriented along the base of the triangle;

In the case of four AuNPs, we modeled the local density of states in the following configura-
tions:

4.1. Two dimers of AuNPs are arranged along the diameter of the LNP, touching it so that
the centers of all five nanoparticles lie on the same line; the dipole moment of the source is
parallel to the axis of the system;

4.2. The fourth AuNP is added at the free corner of the square in the configuration 3.5, the
dipole moment of the source is directed parallel to the side of the square;

4.3. Similar to the configuration 4.2, but the source dipole moment is directed parallel to the
diagonal of the square;

4.4. The four contacting AuNPs are located at the corners of a rhombus and the LNP
occupies the center, touching two AuNPs and forming the minor diagonal of the rhombus; the
dipole moment of the source is directed parallel to the major diagonal of the rhombus;

4.5. Similar to the configuration 4.4, but the dipole moment of the source is directed parallel
to the minor diagonal of the rhombus;

4.6. Two dimers are each contacting the LNP by all their AuNPs so that the axes of the dimers
are mutually perpendicular, and they themselves form two of the six edges of a tetrahedron with
the LNP in the center; the dipole moment of the source is oriented orthogonally to the axes of
both dimers;

4.7. Similar to the configuration 4.6, but the source dipole moment is oriented parallel to the
axis of one dimer and perpendicular to the axis of the other dimer.

Several plasmon resonance modes were observed in clusters of plasmonic nanoparticles. For
each configuration, the positions and values of the Purcell factor function were found in no more
than two most intense maxima of the spectrum. The results are shown in Fig. 3(a). In most
configurations, the plasmon resonance peak is in the green part of the visible spectrum. Due to
the large inhomogeneity of the field near the contacts of AuNPs, plasmon resonance peaks at
other wavelengths are also observed in the spectrum. For example, in the configurations 2.4, 4.2
and 4.4, the main plasmon resonance peak is located in the orange part of the spectrum, and
in the configuration 4.5, both plasmon resonance peaks (green and orange) have approximately
the same intensity. For instance, the Purcell factor for different configurations of two AuNPs are
given in Fig. 3(b).
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a b

Fig. 3. (a) Purcell enhancement factor as a function of the number of AuNPs for different
configurations of their arrangement. The wavelength of the plasmon resonance peaks is shown
in color. (b) Purcell enhancement factor for different configurations of two AuNP as a function
of wavelength

Conclusion

The study yielded interesting results concerning plasmonic enhancement of spontaneous emis-
sion in Au-CeYTbF3 colloidal nanoclusters. Modeling of various AuNP configurations showed
that the number and spatial arrangement of nanoparticles relative to each other significantly
affect plasmonic resonances and, accordingly, the luminescence efficiency. The Purcell factor at
the peak of plasmonic resonance in the most nanocluster configurations reaches about a hundred.

In the studied configurations, the main peaks of plasmon resonance were observed, which
were mainly located in the green part of the visible spectrum. This peak is associated with the
main dipole mode of plasmon resonance of nanoparticles. However, depending on the geometry
of the nanoclusters, peaks were also recorded at other wavelengths, which indicates a complex
nature of interactions between nanoparticles. There are configurations where plasmon resonance
is observed in the red-orange region of the visible spectrum. This is also a dipole resonance, but
not in individual particles, but in the cluster as a whole. In this case, the remaining peaks are
associated with the excitation of a higher order multipolar resonances. As a consequence, the
optical near-field of these modes decays in space much faster.

Numerical simulation of clusters on the Au substrate showed that there also can be excited
several plasmon resonance modes. The substrate acts as a mirror, as if doubling the number of
particles, thereby leading to greater inhomogeneity in the space of the exciting field, and this
in turn leads to the excitation of modes of greater multipolarity, while the field has a greater
localization in the space between the particles. If it is necessary to control the symmetry of
individual configurations, the system of clusters on a substrate looks preferable. In addition,
a nanocluster located on a substrate leads to the excitation of surface plasmons on its surface,
thereby part of the energy leaks away. Therefore, for these systems, a smaller value of the Purcell
factor is observed than in colloidal nanoclusters.

The best results in terms of plasmonic enhancement were obtained for configurations with four
and five AuNPs, where the plasmonic enhancement peaks coincided with the long-wavelength
absorption region of radachlorin.

– 354 –



Elina A.Izbasarova, Almaz R.Gazizov Near-field interaction effects in colloidal ...

The study allows us to determine the number of particles in a cluster that is required for a
given analyte to produce plasmonic resonance in the desired region. Specific configurations can
be controlled in the case of a nanocluster on a substrate, but cannot be controlled in a colloidal
solution. Thus, by changing the particle size and changing the concentration of plasmonic par-
ticles, it is possible to tune the sensor for a specific desired substance. Given the importance of
the spatial distribution and orientation of nanoparticles, further research can focus on optimizing
the configurations and studying the effect of the ligand material on the plasmonic resonance of
the nanoparticle cluster, which will improve the performance of future sensor systems.

This paper has been supported by the Kazan Federal University Strategic Academic Leadership
Program "Priority 2030".
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Эффекты ближнеполевого взаимодействия в коллоидных
нанокластерах Au-CeYTbF3 при плазмонном
иммуноанализе

Элина А. Избасарова
Алмаз Р. Газизов
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Казань, Российская Федерация

Аннотация. В данной статье исследуются эффекты плазмонного усиления спонтанного излучения
в коллоидных нанокластерах, состоящих из золотых наночастиц и люминофора CeYTbF3. С по-
мощью моделирования различных конфигураций наночастиц, покрытых полиэтиленимином, была
проанализирована зависимость положения плазмонных резонансов от их количества и располо-
жения. Результаты показали, что оптимальные конфигурации наночастиц значительно усиливают
люминесценцию в требуемой области видимого света, что открывает новые возможности для раз-
работки высокочувствительных наносенсоров. В то же время нанокластеры, расположенные на
золотой подложке, демонстрируют меньший коэффицент усиления люминесценции, обладая при
этом более неоднородным распределением ближнего оптического поля. Полученные результаты
раскрывают зависимость коэффициента усиления люминесценции от пространственного распре-
деления и координационного числа плазмонных наночастиц в нанокластере. Данное исследование
вносит вклад в понимание механизмов плазмонного взаимодействия и его применения в области
оптического иммуноанализа и биомедицинских технологий.

Ключевые слова: плазмонные наночастицы, эффект Парселла, эффект Ферстера, моделирова-
ние методом FDTD, люминесцентные наночастицы.
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Abstract. The finite difference time domain method was used to simulate the propagation of Gaussian
beams and optical vortices with circular, radial, azimuthal polarization on subwavelength ring gratings
with standard and GRIN substrates in this paper. The height of individual zones of the optical elements
relief was varied. It was shown that it is possible to select the beam type and element parameters in
such a way that a long light needle (up to 8.2λ) and a narrow focal spot are formed on the optical axis
(up to 0.33λ).
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Introduction

The materials and media with gradient refractive index (GRIN) have found wide application
in many areas of human activity [1–13]. The use of GRIN materials for light collimation [8, 14],
solving optical communication problems [15], light propagation control [5, 16], and in biology
[6, 12] is well known. One of the main features of gradient refractive index media is the non-
uniform distribution of the refractive index in space [2, 4, 9, 17]. Such media can be classified
depending on the shape of the surfaces, for which the refractive index is constant [9], often
distinguishing symmetrical GRIN media with respect to a given coordinate [9] and arbitrary
GRIN media (F-GRIN), where an arbitrary three-dimensional distribution of the refractive index
is observed [4]. Also, neural networks are known to be used for designing such media [18].

The vortex and Gaussian beams have been actively used to solve problems in optics and
photonics [19–36] in recent years. In particular, such laser beams are used for tight focusing
[16, 30, 25, 37], optical information transmission [22, 38], optical manipulation [20, 24, 35, 39–41],
and probing [42]. To generate such beams, it is known to use such optical structures as metalenses
and metasurfaces [8, 20, 43], spiral phase plates [20, 44, 45], and ring gratings [46–48]. It should
be noted that ring gratings and diffraction axicons in various combinations are also used to obtain
optical needles with a large focal depth [30, 34, 49–51].

The diffraction of Laguerre–Gaussian modes (0, 0) and (0, 1) (Gaussian beams and first-order
optical vortices with the azimuthal index is equal to one were considered) with circular, radial,
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azimuthal polarization in the near zone of subwavelength ring gratings with a standard substrate
and a GRIN substrate was studied in this paper. The height of individual zones of the element
relief was varied. Numerical 3D-modeling was performed by the finite difference time domain
(FDTD) method using the Meep software package [52].

1. The Gaussian beams diffraction on different substrates
with varying relief height

The FDTD simulation was performed with the following simulation parameters: the wave-
length λ of the input radiation was 0.532 µm, the spatial simulation step was λ/30, and the time
step was λ/(60c), where c is the speed of light.

The three-dimensional computational domain with 8.4 µm in size was considered in paper,
which was surrounded on all sides by a 0.6 µm thick PML absorbing layer.

The effect of three different types of substrates was analyzes in the paper: a standard sub-
strate with a refractive index of n = 1.47, and two types of GRIN substrates with different
directions of refractive index change. The case when the refractive index changes from a maxi-
mum value in the center to a minimum value at the edges will be called a direct GRIN substrate,
the opposite case, when the minimum refractive index is in the center and its uniform increase
occurs toward the edges of the substrate, will be called a reverse GRIN substrate.

The minimum refractive index size in the case of GRIN substrates was n = 1.47 (similar to
the standard substrate), the maximum refractive index was 2.7. The refractive index change step
was 0.123. It should be noted that the GRIN substrates were rings of the same width with differ-
ent radii, uniformly inscribed into each other on a square substrate measuring 16.5λ× 16.5λ×λ.
The height of all substrates was fixed and was λ.

The propagation of Laguerre–Gauss modes in free space can be described by the expression (1)
[53–55]:

GLnm(r, ϕ, z) =

(√
2r

σ(z)

)|m|

exp(ikz) exp[−i(2n+ |m| + 1)η(z)] ×

× exp

[
iπr2

λR(z)

]
exp

[
− r2

σ2(z)

]
L|m|
n

(
2r2

σ2(z)

)
exp(imϕ), (1)

where r2 = x2 + y2, ϕ = arctg(y/x), η = arctg(z/z0), R(z) = z(1 + z20/z
2) — radius of curvature

of the light field parabolic front, σ(z) = σ0
√

1 + z2/z20 — the effective beam radius, z0 = πσ2
0/λ

— confocal parameter, Lmn (x) — generalized Laguerre polynomial.
The input beams were first-order optical vortices (Laguerre-Gaussian modes (0, 1)) and Gaus-

sian beams with σ = 1.5 µm with circular, radial and azimuthal polarizations. It should be noted
that the circular polarization, in which the sign of the circular polarization is opposite to the sign
of the introduced vortex phase singularity, was considered in this paper. In this case the maxi-
mum intensity value is formed on the optical axis for the Laguerre–Gaussian modes (0, 1) [21].

The optical elements were considered: a diffraction axicon with a height of h = 1.06λ (the
relief height was chosen based on the phase jump of π radians), a direct ring grating (the height
of the relief rings changed from a maximum in the center hmax = 4.79λ to a minimum at the
edge hmin = 1.06λ with a step of 0.53λ), and an inverse ring grating (similar maximum height
and step of its change), in the case of which the height changed from a minimum in the center
hmin = 1.06λ to a maximum value hmax = 4.79λ at the edge of the element. The period of all
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optical elements considered was 1.05λ.
The longitudinal and transverse dimensions of the light segments obtained on the optical axis

were estimated in the paper. The focal spot size was estimated by the standard full width at half
maximum (FWHM) at the point of maximum intensity on the optical axis outside the element,
and the length of the light needle along the radiation propagation axis (depth of focus – DOF)
was estimated in a similar manner.

It should be noted that a direct GRIN substrate allows for additional focusing of radiation
and, accordingly, a smaller focal spot size, while in the case of a reverse GRIN substrate, which
in this case acts as a diffusing lens, an extension of the light segment size is observed.

Fig. 1 shows the passage of a Gaussian beam through a diffraction axicon with a standard

Fig. 1. Longitudinal cross-section (xz) of Gaussian beam propagation (intensity), diffraction
axicon for different types of substrate, circular polarization (a, b, c), radial polarization (d, e, f),
azimuthal polarization (g, h, i)

substrate and GRIN substrates for different polarizations of laser radiation; the element relief
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height was h = 1.06λ, and the numerical aperture was NA = 0.95. Focusing on the optical axis
is observed for circular and radial polarizations of laser radiation.

The minimum focal spot size was obtained for radial polarization with a direct GRIN substrate
FWHM = 0.33λ, which is 21.4% smaller than the focal spot size obtained with the same type of
polarization for a standard substrate.

The maximum size of the light needle was also obtained for radial polarization, but for a
reverse GRIN substrate DOF = 2.93λ, which is 23.6% longer than the light needle obtained in
the case of a standard substrate. It also should be noted that for circular polarization, the use
of a direct GRIN substrate led to focusing of the beam inside the element.

Let us now consider the diffraction of Gaussian beams on the direct and inverse ring gratings
described above (Fig. 2 and Fig. 3, respectively). We will also monitor the longitudinal and
transverse sizes of the light segment on the optical axis. Accordingly, we will now consider
circular and radial polarization of laser radiation.

Fig. 2. Longitudinal cross-section (xz) of Gaussian beam propagation (intensity), direct ring
grating for different types of substrate, circular polarization (a, b, c), radial polarization (d, e, f)

So, as can be seen from Fig. 2, the formation of intensity peaks on the optical axis inside the
element is observed for the standard substrate, as well as for the direct GRIN substrate with ra-
dial polarization. The smallest focal spot size was obtained for the reverse GRIN substrate with
circular polarization FWHM = 0.43λ. The maximum size of the light needle was also obtained
for circular polarization with the direct GRIN substrate (DOF = 7.7λ).

It should be noted that in the case of the direct GRIN substrate for radial polarization a
redistribution of intensity from the optical axis and the formation of a ring are observed at a
distance of over 4λ from the element relief.

In the case of the inverse ring grating (Fig. 3) the main intensity peak is formed inside
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the element for circular polarization and the standard and direct GRIN substrates, but then
the formation of maxima of comparable intensity values was observed outside the element.
The minimum focal spot size was obtained for the direct GRIN substrate with radial polar-
ization (FWHM = 0.54λ). In this case, the maximum size of the light needle also was obtained:
DOF = 8.2λ.

Fig. 3. Longitudinal cross-section (xz) of Gaussian beam propagation (intensity), inverse ring
grating for different types of substrate, circular polarization (a, b, c), radial polarization (d, e, f)

Thus, the direct GRIN substrate with radial polarization of laser radiation demonstrated its
efficiency for Gaussian beams: the minimum focal spot size (FWHM = 0.33λ) was obtained for
the usual relief of the diffraction axicon, the maximum size of the light needle was obtained for
the relief of the inverse ring grating (DOF = 8.2λ).

Let us further consider similar optical elements with a different type of input laser radiation —
the Laguerre–Gauss mode (0, 1).

2. The Laguerre-Gauss mode (0, 1) diffraction on different
substrates with varying relief height

This section presents studies on the influence of changes in the height of individual relief zones,
the type of substrates, and the polarization of the input laser radiation for Laguerre–Gaussian
modes (0, 1) on the diffraction pattern in the near zone.

Fig. 4 shows the passage of first-order optical vortices through a standard substrate and GRIN
substrates for different laser radiation polarizations (the element relief height was h = 1.06λ). The
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focusing on the optical axis is observed for circular and azimuthal laser radiation polarizations
as expected [21].

The minimum focal spot size was obtained for the direct GRIN substrate for azimuthal
polarization of laser radiation (FWHM = 0.42λ). However, it should be noted that the decrease
in the focal spot size is insignificant. The maximum size of the light needle was also obtained for
azimuthal polarization in the case of the reverse GRIN substrate (DOF = 3.07λ).

Fig. 4. Longitudinal cross-section (xz) of the propagation of first-order optical vortices (intensity),
diffraction axicon for different types of substrate, circular polarization (a, b, c), radial polarization
(d, e, f), azimuthal polarization (g, h, i)

Let us consider further, as before, the direct and inverse ring gratings (Fig. 5 and 6, respec-
tively), with circular and azimuthal polarization of laser radiation.

As can be seen from Fig. 5, the focusing is observed inside the element for a standard substrate,
as in the case of a Gaussian beam. It should be noted that the focusing on the optical axis is
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observed for a direct ring substrate only in two cases: for a reverse GRIN substrate with circular
polarization (with a focal spot size of FWHM = 0.52 λ) and for a direct GRIN substrate in the
case of azimuthal polarization (DOF = 4.91λ).

Fig. 5. Longitudinal cross-section (xz) of the propagation of first-order optical vortices (intensity),
direct ring grating for different types of substrate, circular polarization (a, b, c), azimuthal
polarization (d, e, f)

For a direct GRIN substrate a ring is formed in the case of circular polarization. But a
light needle was formed on the optical axis for a similar type of element and polarization for a
Gaussian beam.

In the case of a reverse ring grating (Fig. 6), for the considered types of polarization, intensity
oscillations are observed on the optical axis. Moreover, for circular polarization, with distance
from the element, a redistribution of intensity from the optical axis is observed and intensity
ring with a minimum intensity value on the optical axis is formed.

The minimum focal spot size was obtained for a direct GRIN substrate with azimuthal po-
larization of laser radiation (FWHM = 0.43λ) in the first maximum outside the element.

The maximum size of the light needle is also obtained for this case, i.e. in the case of the
reverse GRIN substrate (DOF = 5.99λ). However, it should also be noted that a powerful
light needle is formed for the case of the reverse GRIN substrate with azimuthal polarization
(DOF = 5.58λ).

Thus, the use of both the direct and reverse GRIN substrates also allows one to obtain longer
focal segments for the Laguerre-Gaussian modes (0, 1) than when using a standard substrate.

In particular, the use of the reverse GRIN substrate for circular polarization allowed one to
achieve an increase in the focal light segment size by 31.8% (DOF = 2.86λ) than when using a
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standard substrate in the case of a diffractive axicon. And both the direct and reverse GRIN
substrates in the case of a reverse ring grating for azimuthal polarization allow one to obtain an
extended light segment.

Moreover, the formation of a light needle 2.43 times longer than the light needle formed by a
standard diffractive axicon (DOF = 5.99λ) is observed in the case of the direct GRIN substrate.

It should be noted that for a Gaussian beam, the maximum light tip size was also obtained
for the inverse ring grating relief (DOF = 8.2λ) and the direct GRIN substrate.

Fig. 6. Longitudinal cross-section (xz) of the propagation of first-order optical vortices (intensity),
inverse ring grating for different types of substrate, circular polarization (a, b, c), azimuthal
polarization (d, e, f)

Conclusion

The FDTD method was used to simulate the diffraction of Gaussian beams and Laguerre-
Gauss modes (0, 1) with circular, radial, azimuthal polarization on subwavelength ring gratings
with standard and GRIN substrates in this paper. The height of individual zones of the element
relief was varied.

It should be noted that the use of a direct GRIN substrate resulted in a decrease in the focal
spot size for both the Gaussian beam (FWHM = 0.33λ) and the Laguerre–Gaussian mode (0, 1),
FWHM = 0.42λ, compared to the action of a diffractive axicon with a conventional substrate.

The influence of the direct GRIN substrate for individual cases also manifested itself in the
formation of long light segments. In particular, for Gaussian beams, the maximum size of the
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light needle was obtained for the relief of the inverse ring grating (DOF = 8.2λ) with radial
polarization. In the case of an optical vortex, this type of element also made it possible to form
an extended light segment with azimuthal polarization (DOF = 5.99λ).

The use of the inverse GRIN substrate also resulted in the formation of extended light seg-
ments, in particular, for the inverse ring grating in the case of the Laguerre-Gaussian mode
(0, 1), a powerful light needle with DOF = 5.58λ was obtained. The same type of element, when
illuminated by a conventional Gaussian beam, allowed the formation of a focal light segment
with an extension of DOF = 6.14λ.

This research was funded by the Russian Science Foundation (project No. 24-22-00044),
https://rscf.ru/en/project/24-22-00044/.
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Исследование дифракции гауссовых пучков и оптических
вихрей в ближней зоне субволновых оптических
элементов переменной высоты

Дмитрий А. Савельев
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Аннотация. В работе методом конечных разностей во временной области было проведено моде-
лирование распространения гауссовых пучков и оптических вихрей первого порядка с круговой,
радиальной, азимутальной поляризацией на субволновых кольцевых решетках со стандартной и
GRIN-подложками. Изменялась высота отдельных зон оптических элементов. Показано, что можно
подобрать тип пучка и параметры элемента таким образом, чтобы на оптической оси формирова-
лась длинная световая игла (до 8.2λ), а также узкое фокальное пятно (до 0.33λ).

Ключевые слова: гауссовы пучки, оптические вихри, FDTD, GRIN, субволновые кольцевые ре-
шетки, Meep.
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Abstract. The paper presents experimental studies of physical processes and conditions for generate
high-directional white-light supercontinuum in visible range. It was shown that it occurs in filamenta-
tion area and postfilamentation channel under different spectral broadening mechanisms step by step.
Experimentally shown that these phenomena can be realized under aberration focusing.
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Introduction

One of the most interesting phenomena of modern nonlinear physical optics is the effect of
supercontinuum (SC) generation. A significant broadening of laser pulse spectrum during the
propagation in transparent media, including air, under self-focusing, channeling and filamentation
conditions leads to generation of white-light SC. Studies of SC generation present not only
fundamental interest, but also a practical one. The first is associated with the diversity of
nonlinear optical mechanisms involved in the formation of wide SC spectra and determining the
set of its properties, which can change both when using different optical media and when varying
the parameters of pump. Interest in the use of SC in various applications arose and increased
not only due to transportation of light energy over long distances, but also due to fundamental
possibility of remote monitoring of the environment and study of ultrafast processes. In this
case, not only the spectrum width, but also the directionality of the SC is important from both
scientific and practical points of view.

The listed parameters depend on the physical characteristics of the laser radiation such as, for
example: central wavelength, power and intensity, pulse duration and steepness of its leading and
trailing edges, width and shape of the pulse envelope, distribution of radiation in the beam, etc.,
as well as environmental parameters: media composition and concentration of elements, nonlinear
responsibility, external influences. In addition, the spectral parameters of the SC depend not
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only on the propagation medium parameters, but also on the conditions and mechanisms of
interaction of the electromagnetic field with the external environment. Moreover, environment
conditions strongly depend on the beam parameters in the case of high-intensity beams.

SC generation in air has a particular interest, which is accompanied by the filamentation phe-
nomenon during propagation of a powerful ultrashort laser pulse. This effect was first described
by Brown in [1]. Studies of various scientific groups were devoted to the investigation of processes
occurring during filamentation. Thus, the filament structure was studied by the teams of MSU
and Quebec Laval University [2–6], the same groups considered the process of broadening of SC
conical spectrum arising from self-phase modulation (SPM) during filamentation of collimated
beams [7, 8]. The groups of National Research Institute of Quebec and Laval University investi-
gated the broadening of axial SC arising from focusing a beam in air [9, 10]. In this case, using
dual-frequency pumping, the four-wave Raman mixing (FWRM) process with broadening of the
spectrum into the anti-Stokes region was realized. The generation of separate anti-Stokes lines
is also caused by the rotational SRS processes described in [11, 12].

The filamentation process under fs pulse focusing in gases (air and nitrogen under pressure) is
considered in this paper. It is shown that under these conditions axial broadband SC is generated
by the alternate implementation of various spectrum broadening mechanisms which is promoted
by aberration focusing.

1. Results and discussion

The experiments were carried out on the laser complex ’Start-480M’ (Avesta project, Russia)
with the following parameters: central wavelength of 940 nm, pulse energy up to 10 mJ, pulse
duration of 60±10 fs. Radiation focusing was performed both by lenses with a focal length of
400 to 1000 mm and by mirror with same foci. Laser beam was focused in a cell filled with air
at atmospheric pressure or with nitrogen of 1–3 atm. The tilt angle of the lens (mirror) and
the gas pressure were selected such that the laser pulse was transformed into an axial white
supercontinuum. The supercontinuum spectrum was recorded using an Ocean Optics HR4000
spectrometer (200–1100 nm): reflected beam sent directly to the spectrometer. The duration of
the pump pulse was measured using an autocorrelator ASF-20 (Avesta Project, Russia). The
energy parameters were recorded by a power and energy meter Gentec Maestro. The experimental
setup is shown in Fig. 1.

The experimental spectra, which are obtained from experiments with producing 2 beams,
are shown in Fig. 2. Results were similar for experiment with 1 beam. Spectral measurements
were made both in the middle of filamentation area (Fig. 2a) and at a distance of 10 meters
from it (Fig. 2b). To obtain stable generation of white light, the tilt angle of the lens (to obtain
one white-light beam) or the mirror (to obtain two white-light beams) was adjusted in each
experiment; in both cases, the tilt angle was about 15◦. When focusing with a mirror, two
beams of white light arise due to diffraction on the plasma near the first geometric focus of the
system [13]. All presented spectra were recorded in atmospheric air.

In our investigations [14, 15] it was shown that when focusing a high intensity fs pulse in
air medium, SRS on rotational transitions of nitrogen occurs. At the same time, coherent anti-
Stokes Raman scattering (CARS) is observed, producing a peak in the blue wing of the spectrum
(Fig. 2a). The presence of the resulting triplet triggers a cascade FWRM process in the anti-
Stokes region up to 300–500 nm (Fig. 2b). The evidence that it is precisely these processes lead
to spectrum broadening, versus, for example SPM [7] are: high conversion efficiency; dependence
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a)

b)

Fig. 1. Experimental setup: a) with focusing lens, b) with focusing mirror

a) b)

Fig. 2. Spectral measurements: а) in filamentation area (dotted line is spectra from output
laser); b) at distance of 10 m from filamentation area

of the threshold value of the pump energy required to generate a white-light beam on the pump
wavelength (in [16] the conditions of a same experiment to produce white-light with pumping
at 800 nm are described, but no explanation of the conversion mechanisms is given). Also,
the dependence of intensity of white-light beam on the gas pressure in the cell was obtained in
experiments. When the spectrum is broadened due to the SPM process such phenomena should
not be observed.

However, the fact of need to use aberration focusing to produce white light has previously
remained unnoticed. A number of experiments to determine the optimal lens (mirror) tilt angle
have shown that the optimal angle is 15±5◦. At this tilt angle, stable generation of a narrow-
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Fig. 3. Four-wave Raman mixing near the central wavelength spectral region

Fig. 4. Photo of filamentation area under aberration focusing by mirror. Light propagation from
left to right. Bright regions are geometrical focuses. Plasma formation between two thick beams
in second foci region is an energetic reservoir

beam white-light supercontinuum is observed. A study of the spectral component of the white
supercontinuum in the 600–1000 nm region at different lens (mirror) tilt angles has shown that
at non-optimal angles, a process of FWRM to the anti-Stokes region containing only a few peaks
is observed (Fig. 3), whereas in the optimal mode, a cascade process is observed (Fig. 2b).
An analysis of different sources [17, 18] shows the contribution of the energy reservoir to the
formation of a stable beam. The same energy reservoir in the region of the second geometric
focus of the system (Fig. 4) contributes to the processes of radiation amplification, which leads
to cascade generation of spectral lines.

Conclusions

The presented results allow us to state that aberration focusing of femtosecond radiation
causes a number of physical processes that lead to ultra-wideband broadening of the pump pulse
and formation of a beam with a divergence close to the diffraction limit. In the prefilament area,
stimulated Raman scattering on nitrogen molecules occurs, leading to the generation of first-
and second-order Stokes lines. Further, in the filamentation area, as a result of the process of
CARS an anti-Stokes component is generated. In the filament and post-filamentation channels,
a cascade process of FWRM is started, the seed components of which are the pump pulse and
the anti-Stokes line. Aberration focusing provides the cascade process, supplement energy from
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the paraxial energy reservoir. High intensity of white-light beam promotes self-channeling in the
post-filamentation area, providing a divergence close to the diffraction limit.

The work supported by the Ministry of Science and Higher Education of the Russian Federa-
tion (FWRM-2021-0014).
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Процесс филаментации фемтосекундного излучения
в воздухе и явления ее сопровождающие
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Аннотация. В работе приводятся экспериментальные результаты исследований условий и меха-
низмов формирования высоконаправленного широкополосного суперконтинуума в видимой обла-
сти спектра. Показано, что формирование такого излучения происходит в области филамента и
постфиламентационном канале путем последовательной реализации различных механизмов уши-
рения спектра. Экспериментально подтверждается, что данное излучение наиболее устойчиво фор-
мируется при создании аберраций на волновом фронте излучения накачки.

Ключевые слова: фемтосекундный лазер, лазерный филамент, суперконтинуум, вынужденное
комбинационное излучение, когерентное антистоксово рассеяние света, четырехволновое взаимо-
действие.

– 376 –



Journal of Siberian Federal University. Mathematics & Physics 2025, 18(3), 377–386

EDN: RULPRP
УДК 535.8

Simulation of Single-Pixel Camera Method Application
for mapping the Spatial Layout of Objects in LIDAR
Technologies

Anastasiia K. Lappo-Danilevskaia∗

Azat O. Ismagilov†

ITMO University
Saint-Petersburg, Russian Federation

Aleksei A. Kalinichev ‡

Saint-Petersburg State University
Saint-Petersburg, Russian Federation

Anton N. Tcypkin§

ITMO University
Saint-Petersburg, Russian Federation

Received 27.10.2024, received in revised form 13.12.2024, accepted 14.01.2025

Abstract. This work presents the simulation results demonstrating the successful application of single-
pixel imaging for the reconstruction of three-dimensional object images, in combination with LIDAR
technologies. Specifically, the integration of pulsed radiation-based Time of Flight (ToF) and Frequency
Modulated Continuous Wave (FMCW) LIDAR methods is explored. In the case of ToF, the simulations
reveal enhanced accuracy in distinguishing distances between objects that are smaller than the distance
light travels in half the duration of the scanning pulse. These findings highlight the potential of single-
pixel imaging in advanced 3D visualization and distance measurement applications.
Keywords: Single pixel camera, 3D visualisation, Time of flight LIDAR, Frequency-modulated contin-
ious vawe LIDAR
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With the active development of autonomous vehicles, robotics, digitalization of the urban
environment, and the spread of smart home technology, object recognition, visualization, and
location detection systems are becoming key elements to ensure more advanced, secure, high-
precision implementations that can adapt to changing conditions. One of the popular methods
currently in use is LIDAR — a technology that stands for "Light Detection and Ranging". LIDAR
technologies are actively used for autonomous navigation [1], environmental monitoring [2], for
autonomous and safe precision landing on solar system bodies [3], service robots [4], odometry
and geospatial mapping [5]. Despite significant progress in remote 3D visualization, current
methods are limited by either detection range or application mode limitations.

The principle of distance measurement in LIDARs can be classified based on the type of
the source. Pulsed illumination is used in the Time of Flight (TOF) technique, where the
distance is calculated by measuring the time it takes for light to return from the object. Con-
tinuous frequency-modulated signal is used in Frequency Modulated Continuous Wave (FMCW)
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LIDAR systems, where the distance is determined using the beat frequency between the initial
and reflected from the object signals. Such techniques can be combined with different imaging
principles.

One of them is raster scanning. For example, advantages of TOF-systems with raster scanning
are a high resolution and long detection range due to the use of short pulses with high peak power.
Notably, the reconstruction of a scene consisting of n × n × n pixels takes n2 measurements.
Accordingly, there is a task of reducing the number of measurements while maintaining quality,
as, for example, increasing the image speed is important for visualizing moving targets. Another
implementation is a Flash camera that illuminates the entire field of view. Flash cameras utilize
a matrix of detectors, raising concerns related to increasing quality and distance range. The cost
associated with resolution enhancements can prove to be exorbitant when employing detector
matrices.

As an alternative can be considered single-pixel imaging (SPI) techniques. Single pixel imag-
ing has found applications in various fields, showcasing its versatility and potential impact. Some
notable applications are Terahertz imaging [7, 8], X-ray imaging [9], where is a lack of detectors
with spatial resolution, remote sensing [10], microscopy [11], imaging in low light [12] and noisy
environments [13]. Instead of capturing the entire image at once, SPI relies on illuminating the
object with a series of known, structured light patterns. For each pattern, the light transmit-
ted or reflected by the object is collected by a single-pixel detector (sometimes called a "bucket
detector"), which measures the total intensity of light, without any spatial information. The
modulator position in the setup determines the setup configuration. In the case when the modu-
lator stays between the object and illumination source, the technique names as a ghost imaging
(GI) [14]. Currently from single-pixel technologies, the use of ghost imaging to improve LIDAR
technology has been investigated and has shown both distance improvement and reconstruction
speed increase [15–17].

Another approach is a single pixel camera method (SPC) that is based on structured detection
[18]. This method achieves higher quality of the reconstructed image with an increased distance
compared to the Ghost Imaging (GI) methods. This difference in quality can be attributed to the
contributions of the optical setup elements [19]. This shows the possibility of obtaining better
results when using the SPC method in lidar technologies compared to the GI.

In this work, SPC approach as a a method for obtaining information about the spatial dis-
tribution of objects was studied in combination with Time-of-Flight and Frequency modulated
continuous wave LIDAR technologies for three-dimensional Objects Image Reconstruction.

1. Methods

The simulation was conducted in a Matlab Software Package. The propagation of the spatial
distribution of radiation is considered using the example of the TOF configuration presented in
the Fig. 1a. Simulation of the spatial profile of radiation includes calculating the field in the
plane in front of the object E0(x, y, t), its interaction with objects T (x, y, t), propagation of the
interacted radiation to the DMD and its modulation by patterns.

The distribution of the field in the cross-section was given in the Gauss form according to [20].
The time distribution of pulses also took the form of a Gaussian distribution. The interaction
of the spatial profile with the objects with transfer function T (x, y, t) is calculated as follows:
E(x, y, t) = E0(x, y, t) × T (x, y, t). Propagation of whole reflected light to the DMD and all
transmitted light to the next objects were made via angular spectrum approach [21].

The pulse EbeforeDMD(x, y, t), which came to the spatial light modulator, is modulated by
the mask Pi(x, y) at each moment of time. After that, the integral intensity of the modulated
radiation coming to the detector is calculated:
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Bi(t) =

NT∑
n=1

∫∫
EbeforeDMDn(x, y, t) · Pi · cos (φ(x, y)) dxdy, (1)

φ(x, y) = arctan

(√
x2 + y2

Rn

)
, (2)

where φ(x, y) is the solid angle between the target points and detector.

(a) (b)

Fig. 1. A schematic diagram of (a)SPC TOF LIDAR. A pulsed radiation source illuminates the
scene with the object, the light from the target reflects and goes to a DMD. Modulated radiation
is collected on a single-pixel detector, (b) SPC FMCW LIDAR. Frequency chirped radiation
passes through a beamsplitter. The small fraction acts as a local oscillator, another one goes to
the target, reflects and passes to the DMD. After DMD object beam is combined with the LO
signal on the beamsplitter and combined radiation is detected by a balanced detector

The selection of patterns plays a crucial role in SPI, as there are various options available. One
approach is to utilize random patterns, which are particularly advantageous in image recognition
tasks where the full set of patterns is unnecessary. This approach can significantly reduce the
number of measurements, making the process faster and more efficient. However, achievement
of high-precision image restoration still requires a large number of measurements [22]. Another
option is to use Fourier patterns, although they involve gray-scale values, which adds complexity
to their generation and projection when compared to binary Hadamard patterns [23]. At the
same time, in order to obtain a correct image, there is no need to use the entire set of masks.
There are proposed techniques that help to reduce the required number of patterns based on
sorting the columns of the Hadamard matrix, vivid examples are cake-cutting basis sort [24] and
russian dolls [25]. In simulation the Hadamard patterns were used, the Pi modulation pattern
is a 256 × 256 pixel matrix. To reduce the computational complexity, the generated mask was
64×64 and was expanded in 4 times. Hadamard patterns were formed from the Hadamard matrix
H2n of order n = 6. Initially, the elements of the matrix contain values (–1.1), however, only
positive Hadamard patterns are used to restore the images, therefore the –1 value is changed to 0.
The Single pixel image were reconstructed with the use of Hadamard patterns by the following
formula for SPC approach:

G(x, y) =
1

N

N∑
i=1

BiPi,(x,y). (3)

The quality assessment can be performed using the structural similarity index (SSIM), which
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takes into account parameters such as luminance l(x, y), contrast c(x, y) and structure s(x, y)

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ , (4)

where α = β = γ = 1.
The Fig. 1b shows a schematic diagram on which the simulation of the implementation of

FMCW SPC LIDAR based on heterodyne detection [26] was performed. Electric field of the
initial laser radiation Emodulated has a linear frequency chirp with the start frequency f0 and the
final fmax [27]:

Emodulated(t) = A exp

(
2πi

[
f0 +

fmax − v0
2T

t

]
t

)
, (5)

where A is an amplitude, T is a period of modulation.
Signal splits on a beamsplitter, one part acts as a local oscillator ELO = Emodulated and

another fraction goes to the object, reflects and asquires time delay τ . The object signal is
modulated by spatial masks on the DMD. The spatial profile of radiation and its interaction
with the DMD is simulated as in the TOF case.

On the second beam splitter, Esig is combined with ELO and then the combined signal is
sent to the balanced photodetector. The signal on the balanced photodetector after filtering
sum-frequency signal components looks like this [27]:

PScope(t) =
ϵ0c

2

(∣∣∣∣∣ELO(t) + i
∑
j ESig(t− τj) ∗ PR(t)
√

2

∣∣∣∣∣
2

−

−

∣∣∣∣∣ iELO(t) +
∑
j ESig(t− τj) ∗ PR(t)

√
2

∣∣∣∣∣
2)

= (6)

= ϵ0c
∑
j

ALOAjPR(t) sin

(
2π

∆ντj
T

t+ v0τj −
∆v

2T
τ2j

)
.

The received signal is amplified by the signal of the local oscillator, which is 2 orders of
magnitude more intense and at the same time contains only the following frequencies, which are
visible as peaks in the frequency spectrum after the Fourier transform PScope(t):

vj =
v0τj
2T

. (7)

They are used to calculate the distance

dj =
vjTc

2∆v
(8)

the value of the peak is used to reconstruct an image of the object via SPI method.

2. Simulation results
The following parameters were used: w0 = 15mm is the waist radius of a laser beam,

λ = 1550 nm — laser wavelength. The spatial distribution of objects is shown in the Fig. 2a.
The size of the reconstructed images is 256 × 256 pixels or 0.04 × 0.04 m.

The single-pixel camera approach reconstructs the image that directly passed on the spatial
modulator, that is the diffracted one. When the Hadamard patterns are used for image recon-
struction due to the high accuracy and quality on reconstructed image the diffraction artefacts
are clearly visible (Fig. 2b). This necessitates the back propagation by the angular spectrum
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(a) (b) (c)

Fig. 2. (а) Object’s spatial profile, (b) reconstructed image, (c) reverse propagated reconstructed
image

method over a distance of d1 =
t1c

2
, obtained using LIDAR technology. In the image obtained

with its help, objects become clearly visible (Fig. 2c).
The temporal profile of the radiation was simulated with the following parameters: standard

deviation σ = 1.2 × 10−9 and FWHM = 2.8 ns. This parameter determines the distance that
can be distinguished using the TOF technique and it is determined by the response time of the
detector. The time resolution of detected signal is controlled by an oscilloscope. On the market
are presented oscilloscopes with following sampling rate: 2,5 GSa/s ( Rohde Schwarz RTM3004),
8 GSa/s (RIGOL MSO5104), up to the 4 GSa/s (GW Instek GDS-73504A). 4 GSa/s was selected
which corresponds to the time step 1 ps. The sampling rate Fs directly affects the resolution of
the distance δR =

c

2Fs
.

Globally, the time profiles of reflected signals can be divided into two cases: objects are
too close and the signals overlap into one indistinguishable peak (Fig. 3a) and objects are at a
sufficient distance for the reflected signals to be resolved by the detection system (Fig. 4a). Using
single-pixel imaging, it is possible to restore the image of objects at each discretized point, build
depth maps of objects using them, take the average distance at which the object is distinguishable
and thereby improve the quality of distance determination.

As an illustration of the construction of three-dimensional depth maps, two-dimensional re-
constructed images were taken, restored at each discretized time point with a signal intensity
above 20 %. After isolating objects from noise, the objects were built at a certain distance
FROM LIDAR technology, forming a three-dimensional map of the objects.

To evaluate the determination of distances using TOF LIDAR technology and using recon-
structed depth maps, error functions were constructed, calculated as a relative measurement
error:

error =
dmeasured − dreal

dreal
(9)

where dmeasured is a calculated distance dreal is a real distance.
For comparison, the distance determination with using only the peak intensity (Fig. 5b) is

presented. It increases linearly for all objects except the central one until the peaks of the pulses
are distinguishable at a distance of about 60 centimeters between the objects. However, when
peaks are distinguishable, the technology produces a minimal error, which indicates that there is
no need to improve it and single-pixel imaging can be used only at peak points for visualization.
When determining the distance from depth maps (Fig. 5a) the advantage of the technology is
visible at distances less than 60 centimeters, since the error does not exceed 2.5% against 10%
for the case of classical determination.

During simulation of FMCW LIDAR were used following parameters of radiation: T ≈ 3ms
— modulation time of each signal, f0 = 0.5GHz — initial frequency, B = 4.3GHz — chirp
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(a) (b) (c)

Fig. 3. The SPC TOF realisation based depth maps of three objects located at the distences
5m — square, 5.05m — rectangle, 5.1 m — triangle, (a) Temporal profile of the reflected signals,
isometric (b) and side (c) view of depth maps constructed with single pixel images reconstructed
using Hadamard patterns

(a) (b) (c)

Fig. 4. The SPC TOF realisation based depth maps of three objects located at the distences
5m — square, 5.85m — rectangle, 6.6 m — triangle, (a) Temporal profile of the reflected signals,
isometric (b) and side (c) view of depth maps constructed with single pixel images reconstructed
using Hadamard patterns

(a) (b)

Fig. 5. Relative error in distance determination via simulated TOF LIDAR, (a), with SPC and
Hadamard patterns, (b) without SPC

bandwidth. Range resolution of FMCW LIDAR system can can be calculated as: δR =
c

2B
.

After the Fourier transform, just B determines the position and width of the frequency peak,
which directly affects the ability to recognize distances. The step between the frequencies is
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approximately 0.03 MHz, which, when converted to a distance using B = 4300 MHz 0.07 m. To
demonstrate the application of the single-pixel camera method using B = 4300 MHz frequency
peak intensities marked with red dots correlate with information about objects located at a
distance of 5 centimeters (Fig. 6). It indicates the possibility of improving the quality of distance
determination, as in the case of TOF LIDAR, Despite the proximity of the frequency peaks,
the single-pixel visualization method does not produce noise in the form of residual information
about neighboring objects.

(a)

(b) (c) (d)

Fig. 6. The SPC FMCW realisation (B = 4300MHz) with three objects at the distances 5m —
square, 5.05m — rectangle, 5.1m — triangle: (a) Frequency spectrum of the reflected signals, (b),
(c), (d) reconstructed images using Hadamard patterns

Conclusion
In this work, we explored the feasibility of integrating Time-of-Flight (TOF) and Frequency–

Modulated Continuous–Wave (FMCW) LIDAR technologies with the single-pixel camera ap-
proach to enhance systems for generating three-dimensional depth maps of objects. The success-
ful combination of LIDAR techniques with ghost imaging and the application of methods like
compressive sensing to accelerate image acquisition has inspired further research into developing
single-pixel LIDAR systems. While the use of single-pixel cameras for LIDAR applications has
received limited attention, it shows promise for improving object image reconstruction at longer
distances compared to ghost imaging.

The key result of this study is the simulation of the successful application of the single-pixel
camera method to both FMCW and TOF LIDAR technologies to restore three-dimensional object
maps. One important finding is the complementarity of these technologies: distance information
obtained from LIDAR systems is crucial for image reconstruction through backward propagation.
This confirms that three-dimensional single-pixel camera imaging relies on this data, highlighting
avenues for the continued development of 3D single-pixel visualization.

Additionally, single-pixel imaging demonstrates improvements in LIDAR systems, particu-
larly in visualizing objects that would otherwise be indistinguishable due to proximity. This
is especially relevant in cases where frequency peaks merge in FMCW systems. In the simula-
tions of SPC TOF and SPC FMCW systems, images of objects were successfully reconstructed
even when the distance between them was small enough that the reflected signals became indis-
tinguishable. For TOF LIDAR, this distance was less than 65 centimeters, demonstrating the
system’s ability to accurately locate objects based on compiled three-dimensional maps.

The successful integration of SPC TOF and SPC FMCW technologies demonstrated in this
research opens new possibilities for enhancing remote sensing systems. It enables the visualization
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of objects at greater distances than conventional TOF and FMCW LIDARs can achieve with
similar technical performance. For FMCW LIDAR, SPC presents an appealing alternative to
raster scanning, allowing for faster imaging. For TOF LIDAR, SPC offers an opportunity to
improve accuracy without increasing the response time or cost of the receiver
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Моделирование метода однопиксельной визуализации
для получения пространственного распределения
объектов в ЛИДАР технологиях
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Аннотация. В данной работе представлены результаты моделирования, демонстрирующие успеш-
ное применение однопиксельной визуализации для реконструкции трехмерных изображений объ-
ектов в сочетании с технологиями лазерных дальномеров. В частности, рассматривается интегра-
ция методов лазерного дальномера с импульсным излучением на основе времени пролета (ToF) и
частотно-модулированного непрерывного излучения (FMCW). В случае ToF моделирование пока-
зывает повышенную точность в различении расстояний между объектами, которые меньше рассто-
яния, которое свет проходит за половину длительности сканирующего импульса. Эти результаты
подчеркивают потенциал однопиксельной визуализации в современных приложениях трехмерной
визуализации.

Ключевые слова: однопиксельная визуализация, трехмерная визуализация, лидары.
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Abstract. In this work we study very basic concepts of potential theory: polar sets and m−cv measures
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class m-convex functions and will prove a number of its potential properties.
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1. Introduction and preliminaries

Let u(x) ∈ C2(D) be a twice smooth function in the domain D ⊂ Rn. Then the matrix(
∂2u

∂xj∂ xk

)
is symmetric,

∂2u

∂xj∂ xk
=

∂2u

∂xk∂ xj
. Therefore, after a suitable orthonormal transfor-

mation, it can be transformed into a diagonal form

(
∂2u

∂xj∂ xk

)
→


λ1 0 . . . 0

0 λ2 . . . 0

. . . . . . . . . . . .

0 0 . . . λn

 ,

where λj = λj(x) ∈ R are the eigenvalues of the matrix
(

∂2u

∂xj∂ xk

)
. Let

Hk(u) = Hk (λ) =
∑

16j1<···<jk6n
λj 1 . . . λjk
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be the Hessian of dimension k of the vector λ = (λ1, λ2, . . . , λn).

Definition 1.1. A twice smooth function u(x) ∈ C2(D) is called m-convex in D ⊂ Rn, u ∈
m− cv(D), if its eigenvalue vector λ = λ(x) = (λ1(x), λ2(x), . . . , λn(x)) satisfies the conditions

m− cv ∩ C2(D) =
{
Hk(u) = Hk (λ(x)) > 0, ∀x ∈ D, k = 1, . . . , n−m+ 1

}
.

When m = n the class n − cv coincides with the class of subharmonic functions sh =

{λ1 + λ2 + · · · + λn > 0}, when m = 1 it coincides with the class of convex functions cv =

{λ1 > 0, λ2 > 0, . . . , λn > 0}, moreover cv = 1 − cv ⊂ 2 − cv ⊂ · · · ⊂ n − cv = sh. The theory
of subharmonic functions is a developed and important part of theory functions and mathe-
matical physics. The theory of convex functions is well studied and reflected in the works of
A.Aleksandrov, I. Bakelman, A. Pozdnyak and others (see [2–5]). When m > 1 this class was
studied in the series of works by N. Ivochkina, N.Trudinger, X.Wang et al. [11, 19–21] (see
also [8]).

If we want to construct a good theory of m− cv functions, then the class of functions C2(D)

is not enough. For example, if we want to solve the equation

Hn−m+1 (u) = f (u, x) ,

u|∂D = φ

or want to work with extreme m− cv functions, such as maximal m− cv functions, we need to
extend the definition of m − cv functions to a wider class of upper semi-continuous functions.
In the work of N.Trudinger, X.Wang [21] m − cv functions are introduced in the class of upper
semi-continuous functions u(x) in the domain D ⊂ Rn, using the so-called "viscous" definition,
that is Hk(q) > 0, k = 1, 2, . . . , n − m + 1, for any quadratic polynomial q(x), such that the
difference u(x) − q(x) has only a finite number of local maximum in the domain D. In addition,
in this work Hn−m+1(u) (maximum degree operator) is defined as a Borel measure and with the
help of this operator the capacity of condenser C(E,D) was introduced, a number of potential
properties of this capacity was proved.

To expand the domain of definition of m− cv functions from C2(D) to a wider class of semi-
continuous functions, we have proposed a completely new approach, the connection ofm−cv func-
tions with m-subharmonic (shm) functions in complex space Cn. The theory of shm-functions is
well developed and is currently subject of study by many mathematicians (Z. B locki [6], S.Dinew
and S. Kolodziej [9,10], S. Y. Li [13], H. C .Lu [14,15] and etc). Quite a complete overview of this
theory is available in the survey article by A. Sadullaev and B. Abdullaev [1] in proceedings of
Mathematical Institute of the RAS.

Let us recall that the theory of the shm-functions is based on differential forms and currents
(ddcu)

k∧βn−k > 0, k = 1, 2, . . . , n−m+1, where β = ddc ∥z∥2 is a standard volume form in Cn.
A twice smooth function u (z) ∈ C2(D), D ⊂ Cn is called strongly m-subharmonic u ∈ shm(D),

if at each point of the domain D

shm(D) =
{
u ∈ C2 : (ddcu)

k ∧ βn−k > 0, k = 1, 2, . . . , n−m+ 1
}

=

=
{
u ∈ C2 : ddcu ∧ βn−1 > 0, (ddcu)

2 ∧ βn−2 > 0, . . . , (ddcu)
n−m+1 ∧ βm−1 > 0

}
,

(1)

where β = ddc ∥z∥2 is a standard volume form in Cn.
Operators (ddcu)

k ∧ βn−k are closely related to the Hessians. For a twice smooth function

u ∈ C2(D), the second-order differential ddcu =
i

2

∑
j,k

∂2u

∂zj∂ z̄k
dzj∧d z̄k (at a fixed point o ∈ D) is
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a Hermitian quadratic form. After a suitable unitary coordinate transformation, it is reduced to

a diagonal form ddcu =
i

2
[λ1dz1 ∧ d z̄1 + · · · + λndzn ∧ d z̄n], where λ1 , . . . , λn are eigenvalues

of the Hermitian matrix
(

∂2u

∂zj∂ z̄k

)
, which are real: λ = (λ1 , . . . , λn ) ∈ Rn. Note that the

unitary transformation does not change the differential form β = ddc ∥z∥2 . It is easy to see that

(ddcu)
k ∧ βn−k = k!(n− k)!Hk(u)βn, (2)

whereHk(u) =
∑

16j1<···<jk6n
λj1 . . . λjk is the Hessian of dimension k of the vector λ = λ(u) ∈ Rn.

Hence, the twice smooth function u(z) ∈ C2(D), D ⊂ Cn is strongly m-subharmonic if at
each point o ∈ D it satisfies the following inequalities

Hk(u) = Hk
o (u) > 0, k = 1, 2, . . . , n−m+ 1. (3)

Note that, the concept of the strongly m-subharmonic functions in a generalized sense is also
defined for upper-semicontinuous functions.

Definition 1.2. The function u(z) defined in a domain D ⊂ Cn is called shm, if it is upper
semi-continuous and for any twice smooth shm functions v1, . . . , vn−m ∈ C2(D) ∩ shm(D) the
current ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ βm−1 defined as[

ddcu ∧ ddcv1 ∧ · · · ∧ ddcvn−m ∧ βm−1
]

(ω) =

=

∫
u ddcv1 ∧ · · · ∧ ddcvn−m ∧ βm−1 ∧ ddcω, ω ∈ F 0,0 .

(4)

is positive,
∫
uddcv1 ∧ · · · ∧ ddcvn−m ∧ βm−1 ∧ ddcω > 0 ∀ω ∈ F 0,0, ω > 0. Here F 0,0(D) is

a family of infinitely smooth finite in D functions.

In the B locki’s work [6] it was proved that, this definition is correct, that for u ∈ C2(D)

functions this definition coincides with the initial definition of shm-functions.

2. Relation between m− cv and shm functions

To establish a connection between m − cv functions and shm functions, we embed a real
space Rnx into a complex space Cnz , Rnx ⊂ Cnz = Rnx + iRny (z = x+ iy) , as a real n-dimensional
subspace. Then, we extend the function u(x), given in the domain D ⊂ Rnx into domain
Ω = D × iRny ⊂ Cnz as uc(z) = uc (x+ iy) = u(x), by assuming it is a constant on parallel planes
Πx0 =

{
z ∈ Cn : x = x0, y ∈ Rn

}
.

Theorem 2.1 (see [16, 18]). A twice smooth function u(x) ∈ C2(D), D ⊂ Rnx , is m− cv in D,
if and only if a function uc(z) = uc(x+ iy) = u(x), that does not depend on variables y ∈ Rny , is
shm in the domain Ω.

Theorem 2.1 allows us to define a m-convex function in the class of semi-continuous functions.

Definition 2.1. An upper semi-continuous function u(x) in a domain D ⊂ Rnx is called m-convex
in D, if the function uc(z) is strongly m-subharmonic, i.e. uc(z) ∈ shm (Ω) .

This definition is convenient in the study of m-convex functions, by transferring well-known
properties of shm-functions to the class m− cv. We present some non-trivial ones:
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– (Approximation). We take a standard kernel Kδ(x) =
1

δn
K
(x
δ

)
, δ > 0, where

– K(x) = K(|x|);
– K(x) ∈ C∞(Rn);

– suppK = B(0, 1);

–
∫
Rn

K(x)dx =
∫

B(0,1)

K(x)dx = 1.

Then the convolution

uδ(y) =

∫
D

u(x)Kδ(x− y)dx =

∫
Rn

u(x+ y)Kδ(x)dx (5)

has the property, that uδ(x) ∈ m − cv(Dδ), where Dδ = {x ∈ D : dist(x, ∂D) > δ} , uδ(x)

decreases as δ ↓ 0 and converges point wise to the function u(x) ∈ m− cv(D).

– the limit of a uniformly convergent or decreasing sequence of m− cv functions is m− cv;
– the maximum of a finite number of m− cv functions is an m− cv function;
– for an arbitrary locally uniformly bounded family, {uθ} ⊂ m− cv the regularization u∗(x)

of the supremum u(x) =

{
sup
θ
uθ(x)

}
will also be an m− cv function. Since m− cv ⊂ sh, then

the set {u(x) < u∗(x)} is polar in Cn ≈ R2n. In particular, it has Lebesgue measure zero.
Similarly, for a locally uniformly bounded sequence, {uj} ⊂ m− cv the regularization u∗ (x)

of the limit u (x) = lim
j→∞

uj (x) will also be an m − cv function, and the set {u (x) < u∗ (x)} is

polar;
– if u(x) ∈ m− cv(D), then for any hyperplane Π ⊂ Rn the restriction u|Π ∈ m− cv (D ∩ Π) .

From this property it easily follows that if u(x) ∈ m − cv(D), then for any plane Π ⊂
Rn, dim Π = m, the restriction u|Π ∈ sh(D ∩ Π).

For m = 1 it is not difficult to prove that a convex function u(x) ∈ 1 − cv(D) belongs
to Lipschitz class, i.e. u(x) ∈ Lip(D). In the work [20] N.Trudinger and X.Wang proved a
generalization of this remarkable result, that any m-convex function u(x) ∈ m− cv at m <

n

2
+1

is Hölder with exponent α = 2 − n

n−m+ 1
, u(x) ∈ Lipα (D) .

Example 2.1. (fundamental m− cv function).

χm(x, 0) =


|x|2−

n
n−m+1 if m <

n

2
+ 1

ln |x| if m =
n

2
+ 1

− |x|2−
n

n−m+1 if m >
n

2
+ 1

(6)

Thus, for m <
n

2
+ 1 the fundamental function is bounded and Lipschitz, and for m > n

2
+ 1

it is equal to −∞ at the point x = 0. Note that for m = n, i.e. for the subharmonic case it

coincides with the fundamental solution − 1

|x|n−2 of the Laplace operator ∆.

3. m− cv polar sets and m− cv measure

Definition 3.1. By analogy with polar sets in classical potential theory, a set E ⊂ D ⊂ Rn is
called m − cv polar in D, if there exists a function u(x) ∈ m − cv(D), u(x) ̸≡ −∞, such that
u |E = −∞.
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From the embedding m − cv(D) ⊂ sh(D) it follows that every m − cv polar set is polar
in the sense of classical potential theory. In particular, for a m − cv polar set E it is true
H2n−2+ε(E) = 0, ∀ε > 0: and, therefore, the Lebesgue measure of a m− cv polar set E is equal
to zero.

m − cv polar sets have another unexpected phenomenon, that when m <
n

2
+ 1 they are

empty, i.e. if the set E ⊂ D is m − cv polar, m <
n

2
+ 1, then E = ∅. This follows from the

fact that for m <
n

2
+ 1 any m− cv function is Hölder continuous (see section 2). However, for

m > n

2
+ 1 there are non-empty m− cv polar sets. Therefore, the properties of m− cv polar sets

proved below are meaningful only for the cases m > n

2
+ 1.

Theorem 3.1. The countable union of m − cv polar sets is m − cv polar, i.e. if Ej ⊂ D is

m− cv polar, then E =
∞∪
j=1

Ej is also m− cv polar.

The proof is identical to a similar proof for polar sets and we omit it.
Potential theory is usually constructed in regular domains with respect to one or another

class of functions.

Definition 3.2. A domain D ⊂ Rn is called m−cv regular if there exists ρ(x) ∈ m−cv(D) such
that ρ(x) < 0, lim

x→∂D
ρ (x) = 0. It is called strictly m − cv regular if there exists a twice smooth

strictly m− cv function in some neighborhood of the closure D+ ⊃ D̄ such that D = {ρ(x) < 0} .
Strictly m-convexity of the function ρ(x) in D+ means that for some δ > 0 the difference
ρ(x) − δ ∥x∥2 is an m− cv function in D+.

In the theory of m-convex functions, m − cv measure plays the same role as the harmonic
measure in classical potential theory. To exclude trivial cases, m − cv regular or even strictly
m− cv regular domains are usually taken as a fixed domain D ⊂ Rn.

Let E ⊂ D be some subset of a strictly m− cv regular domain D ⊂ Rn.

Definition 3.3. Consider the class of functions

U(E,D) = {u(x) ∈ m− cv(D) : u|D 6 0, u|E 6 −1} (7)

and put ω(x,E,D) = sup {u(x) : u ∈ U(E,D)}. Then the regularization ω∗(x,E,D) is called
m− cv measure of the set E with respect to the domain D.

From the property of the upper envelope of m − cv functions it follows that ω∗(x,E,D) ∈
m − cv(D). By Choquet’s lemma (see [12, 17]) there is a countable subfamily U ′ ⊂ U(E,D)

such that {sup {u(x)} : u(x) ∈ U ′(E,D)}∗ ≡ ω∗(x,E,D). It follows that an m − cv measure
ω∗(x,E,D) can be represented as a limit of a monotonically increasing sequence {uj(x)} ⊂

U(E,D) :

[
lim
j→∞

uj(x)

]∗
≡ ω∗(x,E,D).

In the particular case when E ⊂⊂ D is compact, the functions uj(x) ∈ U(E,D) can be
chosen to be continuous in D, which can be easily verified by continuing uj(x) ∈ U(E,D)

into some fixed neighborhood D+ ⊃ D̄ and then approximating them with smooth functions
ujk = uj ◦Kk(x− y) ∈ m− cv (D+) ∩C∞ (D+) , j, k = 1, 2, . . . , we can fined a sequense ujkj ∈

m−cv (D+)∩C∞ (D+) monotonically increasing and
{
ujkj (x)

}
⊂ U(E,D) :

[
lim
j→∞

ujkj (x)

]∗
≡

ω∗(x,E,D).
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Properties of m− cv measures:
1) (monotonicity) if E1 ⊂ E2, then ω∗(x,E1, D) > ω∗(x,E2, D); if E ⊂ D1 ⊂ D2, then

ω∗(x,E,D1) > ω∗(x,E,D2).
2) ω∗(x,U,D) ∈ U(U,D) for open sets U ⊂ D and, therefore ω∗(x,U,D) ≡ ω(x,U,D);
This property follows from the fact that for concentric balls B(x0, r) ⊂ B(x0, R) ⊂⊂ U,

0 < r < R, an m− cv measure

ω∗(x,B(x0, r), B(x0, R)) = max

{
−1,

χm
(
x, x0

)
− χm

(
R, x0

)
χm (R, x0) − χm (r, x0)

}

and therefore in both cases m <
n

2
+1 or m > n

2
+1 we have ω∗(x0, U,D) = −1. Here χm

(
x, x0

)
is a fundamental m− cv function (see (6)).

3) If U ⊂ D is an open set, U =
∞∪
j=1

Kj , where Kj ⊂
◦
K
j+1

, then ω∗(x,Kj , D) ↓ ω(x,U,D)

(easily follows from property 2).
4) If E ⊂ D an arbitrary set, then there is a decreasing sequence of open sets Uj ⊃ E,

Uj ⊃ Uj+1 (j = 1, 2, . . . ), such that ω∗(x,E,D) =

[
lim
j→∞

ω(x,Uj , D)

]∗
.

In fact, if {uj(x)} ⊂ U(E,D) is monotonically increasing such that
[

lim
j→∞

uj(x)

]∗
≡

ω∗(x,E,D), then an open set Uj =

{
uj < −1 +

1

j

}
has the property as Uj ⊃ E, Uj ⊃ Uj+1

(j = 1, 2, . . . ) and

ω∗(x,E,D) 6 ω(x,Uj , D) 6 uj(x) +
1

j
.

Hence ω∗(x,E,D) =

[
lim
j→∞

ω(x,Uj , D)

]∗
.

5) a m− cv measure ω∗(x,E,D) is either nowhere equal to zero or identically equal to zero.
ω∗(x,E,D) ≡ 0 if and only if E is m− cv polar in D.

Remark 3.1. Property 5 is meaningful only if m > n

2
+ 1. At m <

n

2
+ 1 non-empty m − cv

polar set does not exist, so the trivial m− cv measure ω∗(x,E,D) ≡ 0 does not exist.

Example 3.1. Consider m = 1, a ball B = B(0, 1) and a set in it E = {0}, consisting of one
point. Consider a 1 − cv measure ν = ω∗(x,E,B), x ∈ Rn, ν ∈ R as a function in Rn+1

(x,ν). Then
it is easy to see that the convex function ν = ω∗(x,E,B), x ∈ Rn, ν ∈ R will be a cone, with a
vertex at point (0,−1) and a base at {x ∈ ∂B, ν = 0}. Thus, 1 − cv measure ω∗(x,E,B) ̸≡ 0.

Definition 3.4. A point x0 ∈ K is called m− cv regular of a compact set K (relatively to D), if
ω∗(x0,K,D) = −1. A compact set K ⊂ D is called m− cv regular compact if each of its points
x0 ∈ K is m− cv regular.

Since m−cv(D) ⊂ sh(D), then m−cv measure of a pair (K,D) is always no greater than the
harmonic measure of this pair. Consequently, regular compacts in the sense of classical potential
theory are always m − cv regular. Therefore, the closure of the domain G ⊂⊂ D, with a twice
smooth boundary ∂G is a m− cv regular compact. It follows that for any compact K ⊂ U ⊂ D,
where U is an open set, there is always a m − cv regular compact F : K ⊂ F ⊂⊂ U ⊂ D. All
this shows that the family m− cv regular compact is quite rich.
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6) If the set E lies compactly in a strictly m− cv regular domain D = {ρ(x) < 0} , E ⊂⊂ D,

then m−cv measure ω∗(x,E,D) continues as m−cv function to a neighborhood ρ(x) < δ, δ > 0,
of the closure D̄.

Actually, since E ⊂⊂ D is a compact set, then there is a constant C > 0 such that Cρ(x) <

−1, ∀x ∈ E. It follows that Cρ(x) ∈ U(E,D) and Cρ(x) 6 ω∗(x,E,D). Therefore, the function

w(x) =

{
max {Cρ (x) , ω∗ (x,E,D)} if x ∈ D

Cρ (x) if x /∈ D

is m− cv in some neighborhood D+ ⊃ D̄, w (x) = ω∗ (x,E,D) , ∀x ∈ D.
The following theorem plays an important role in the introducing condenser capacity and

further studying the potential properties of m-convex functions.

Theorem 3.2. If a compact set E ⊂ D is m− cv regular, then a m− cv measure ω∗ (x,E,D) ≡
ω (x,E,D) and is a continuous function in D, ω∗ (x,E,D) ∈ C(D).

Proof. According to property 6) a m − cv measure ω∗(x,E,D) continues to the neighborhood
ρ(x) < δ, δ > 0, of the closure D̄ and approximating ω∗(x,E,D) in some neighborhood D+ ⊃ D̄

we fined uj(x) ∈ C∞ (D+) ∩m− cv (D+) : uj(x) ↓ ω∗ (x,E,D) .

We fix a number ε > 0 and two neighborhoods U = {ω∗(x,E,D) < −1 + ε} ⊃ E, D̆ =

{ω∗(x,E,D) < ε} ⊃ D̄. Applying Hartogs’ lemma twice to the sequence uj(x) ↓ ω∗ (x,E,D) and
U ⊃ E, D̆ ⊃ D̄ find the number j0 ∈ N : uj(x) < −1+2ε, ∀x ∈ K, uj(x) < 2ε, ∀x ∈ D̄, j > j0.

Then uj(x) − 2ε < −1, ∀x ∈ E, uj(x) − 2ε < 0, ∀x ∈ D, j > j0, i.e. uj (x) − 2ε ∈ U(E,D).

From here, ω∗ (x,E,D) − 2ε 6 uj (x) − 2ε 6 ω∗ (x,E,D) . This means that the sequence of
smooth functions uj (x) ↓ ω∗ (x,E,D) converges uniformly and ω∗ (x,E,D) ∈ C(D). 2

4. Capacity value of a pair (E,D)

We fix a set E ⊂ D, considering, as above, the domain D ⊂ Rn to be strongly m-convex. Let
ω∗(x,E,D) be a m− cv measure of E ⊂ D. Then the integral

Pmcv(E,D) = −
∫
D

ω∗(x,E,D)dV

is called m− cv capacity of the set E with relation to D.
m − cv capacity expresses the capacity value of a pair (E,D). It has the following obvious

properties: Pmcv(E,D) > 0 and Pmcv(E,D) = 0 if and only if E is a polar set in D.

Theorem 4.1. The value Pmcv(E,D) is an increasing and countably subadditive function of the
set: Pmcv(E1, D) 6 Pmcv (E2, D) for E1 ⊂ E2 and

Pmcv

( ∞∪
j=1

Ej , D

)
6

∞∑
j=1

Pmcv (Ej , D) . (8)

Moreover, Pmcv(E,D) is continuous on the right, i.e. for any set E ⊂ D and for any ε > 0
there is an open set U ⊃ E such that Pmcv(U,D) − Pmcv(E,D) < ε.

Proof. Monotonicity of Pmcv(E,D) obviously follows from the monotonicity of the m − cv

measure. Proof of (8) follows from a similar inequality −ω
(
x,

∞∪
j=1

Ej , D

)
6 −

∞∑
j=1

ω (x,Ej , D)
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for m − cv measures: for any sets Ej ⊂ D and uj(x) ∈ U (Ej , D) the sum
∞∑
j=1

uj(x) is m − cv

function in the broad sense (i.e., it can also equal −∞). Besides
∞∑
j=1

uj(x) ∈ U
( ∞∪
j=1

Ej , D

)
and

therefore,
∞∑
j=1

uj(x) 6 ω

(
x,

∞∪
j=1

Ej , D

)
. On the other side,

sup

{ ∞∑
j=1

uj(x) : uj(x) ∈ U (Ej , D)

}
=

=

∞∑
j=1

sup {uj(x) : uj(x) ∈ U (Ej , D)} =

∞∑
j=1

ω (x,Ej , D) ,

i.e.
∞∑
j=1

ω (x,Ej , D) 6 ω

(
x,

∞∪
j=1

Ej , D

)
.

Integrating this inequality and using Levy’s theorem, we get

−
∫
ω

(
x,

∞∪
j=1

Ej , D

)
dV 6 −

∞∑
j=1

∫
ω (x,Ej , D) dV,

so that (8) is true.
It remains to show the right continuity of the set function Pmcv(E,D). We fix a set E ⊂ D

and according to the m − cv measure property, construct a sequence of open sets Uj ⊃ E,

Uj ⊃ Uj+1:
[

lim
j→∞

ω (x,Uj , D)

]∗
≡ ω∗ (x,E,D). So, as ω (x,Uj , D) increasing, then again by

Levy’s theorem

lim
j→∞

Pmcv (Uj , D) = − lim
j→∞

∫
ω (x,Uj , D) dV = −

∫
lim
j→∞

ω (x,Uj , D) =

= −
∫ [

lim
j→∞

ω (x,Uj , D)

]∗
dV = Pmcv (E,D) .

Hence, for any ε > 0, there is a number j0 such that for j > j0 the inequality Pmcv (Uj , D)−
Pmcv (E,D) < ε is true. The theorem is proved. 2

Corollary 4.1. For any decreasing sequence of compacts K1 ⊃ K2 ⊃ . . . the following right
continuity holds

Pmcv

( ∞∩
j=1

Kj , D

)
= lim
j→∞

Pmcv (Kj , D) .

For arbitrary given sets G1 ⊂ G2 ⊂ . . . , G =
∞∪
j=1

Gj , the left continuity holds

Pmcv

( ∞∪
j=1

Gj , D

)
= lim
j→∞

Pmcv (Gj , D) .

From Corollary 4.1 it follows that the introduced capacity satisfies the Choquet axioms on
the measurability of a capacity quantity Pmcv(E,D) (see [12,17]).
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Theorem 4.2 (Choquet). If a set function C(E) satisfies the following Choquet conditions
a) 0 6 C(E) <∞, ∀E ⊂⊂ D;
b) if E1 ⊂ E2, then C(E1) 6 C(E2);
c) for any set E ⊂ D and number ε > 0 there exists an open set U ⊃ E such that C(U) −

C(E) < ε;
d) for any increasing sequence Ej ⊂ Ej+1 holds

C

( ∞∪
j=1

Ej

)
= lim
j→∞

C (Ej) ,

then any Borel set E ∈ B is measurable, i.e. if E ∈ B, then

C(E) = C∗(E) = sup {C(K) : K ⊂ E − compact} .

Thus, we have obtained that the capacity value Pmcv(E,D) we introduced above is a mea-
surable function of the sets E ⊂ D, Pmcv(E,D) = sup {Pmcv(K,D) : K ⊂ E − compact} .

5. Hessians Hk and condenser capacity

Although the Pmcv(E,D)-capacity of sets is simpler to define, measurable and has many
properties of capacities, the concept of a condenser capacity is more natural, which is defined
using the Hessians Hk as total mass of the measure.

Let us first recall the definition of Hessians Hk for a bounded semi-continuous function
u(x) ∈ m − cv(D) ∩ L∞(D) as positive Borel measures (see [16]). We embed Rnx in Cnz , Rnx ⊂
Cnz = Rnx + iRny (z = x+ iy) , as a real n−dimensional subspace of the complex space Cnz . Then
an upper semi-continuous function u(x) in the domain D ⊂ Rnx will be m-convex in D, if the
function uc(z) = uc(x + iy) = u(x) which does not depend on the variables y ∈ Rny , is strongly
m-subharmonic, uc(z) ∈ shm

(
D × iRny

)
in the domain D × iRny (Theorem 2.1).

If an m-convex function u(x) ∈ m − cv(D) is locally bounded in the domain D ⊂ Rnx , then
uc(z) will also be a locally bounded, strongly m-subharmonic function in the domain D× iRny ⊂
Cnz . As it is known, the operators

(ddcuc)
k ∧ βn−k, k = 1, 2, . . . , n−m+ 1

are defined for any bounded function u ∈ shm
(
D × iRny

)
as Borel measures in the domain

D × iRny ⊂ Cnz , µk = (ddcuc)
k ∧ βn−k, k = 1, 2, . . . , n−m+ 1.

Since for a twice smooth function (ddcuc)
k∧βn−k = k! (n− k)!Hk (uc)βn, then for a bounded,

strongly m-subharmonic function uc(z) in the domain D × iRny ⊂ Cnz , it is natural to determine
its Hessians, equating to the measure

Hk (uc) =
µk

k! (n− k)!
=

1

k! (n− k)!
(ddcuc)

k ∧ βn−k. (9)

Since uc(z) ∈ shm
(
D × iRny

)
does not depend on y ∈ Rny , then for any Borel sets

Ex ⊂ D, Ey ⊂ Rny the measures
1

mesEy
µk (Ex × Ey) do not depend on the set Ey ⊂ Rny ,

i.e.
1

mesEy
µk (Ex × Ey) = νk (Ex). Borel measures νk : νk (Ex) =

1

mesEy
µk (Ex × Ey),

k = 1, 2, . . . , n−m+1, we call hessiansHk, k = 1, 2, . . . , n−m+1 for bounded, m-convex function
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u(x) ∈ m−cv(D) in the domain D ⊂ Rnx . For a twice smooth function, u(x) ∈ m−cv(D)∩C2(D)

the Hessians are ordinary functions; however, for a non-twice smooth but bounded semi-
continuous function, u(x) ∈ m − cv(D) ∩ L∞(D) the Hessians Hk, k = 1, 2, . . . , n − m + 1,
are positive Borel measures.

Now we can define the concept of condenser capacity

Definition 5.1. Let K be a compact in the domain D ⊂ Rn. Then the value

Cm(K) = Cm(K,D) =

= inf

{
Hn−m+1
u (D) : u ∈ m− cv (D)

∩
C (D) , u|K 6 −1, lim

x→∂D
u (x) > 0

}
(10)

is called the condenser capacity (m-capacity of condenser) of (K,D). For easiness of writing
below, we omit the index ”m” in the notation Cm(K).

Let us prove the following properties of capacity C(K) = Cm(K) = Cm(K,D)

1) The capacity is monotonic, i.e. C(E) > C(K) ∀E ⊃ K (obviously).
2) For any m− cv regular compact K ⊂ D holds C(K) = Hn−m+1

ω∗ (K).

Actually, since compact K ⊂ D is m − cv regular, then ω∗ (x,K,D) ≡ ω (x,K,D) ∈ C(D)

and ω∗ (x,K,D) = −1 ∀x ∈ K. Consequently,

C(K) = inf

{
Hn−m+1
u (D) : u ∈ m−cv(D)∩C(D), u|K 6 −1 , lim

x→∂D
u(x) > 0

}
6 Hn−m+1

ω∗ (K).

Conversely, for any fixed ε, 0 < ε < 1 and for any u ∈ m − cv(D) ∩ C(D), u|K 6 −1,
lim
x→∂D

u(x) > 0, an open set F =
{
x ∈ D : u (x) +

ε

2
< (1 − ε)ω∗ (x,K,D)

}
⊂⊂ D. Therefore,

according to the comparison principle,

Hn−m+1
u (F ) > (1 − ε)

n−m+1
Hn−m+1
ω∗ (F ).

In addition, K ⊂ F and Hn−m+1
ω∗ (D\K) = 0 in D\K. So that

(1 − ε)n−m+1Hn−m+1
ω∗ (D) = (1 − ε)

n−m+1
Hn−m+1
ω∗ (K) = (1 − ε)

n−m+1
Hn−m+1
ω∗ (F ) 6

6 Hn−m+1
u (F ) 6 Hn−m+1

u (D) .

Due to the arbitrariness ε, from here we get

Hn−m+1
ω∗ (D) 6 Hn−m+1

u (D),

i.e. inf on the right side of (10) reaches at m− cv measure ω∗(x,K,D).
3) For any compact K ⊂ D

C(K) = inf {C (E) : E ⊃ K, E m− cv regular} . (11)

In fact, from the monotonicity of capacity (property 1), the left side of (11) does not exceed
the right side, i.e.

C(K) 6 inf {C(E) : E ⊃ K, E m− cv regular} . (12)

Now, for any ε, 0 < ε < 1 there exists u ∈ m − cv(D) ∩ C(D) such that u|K 6 −1,
lim
x→∂D

u(x) > 0 and

Hn−m+1
u (D) − C(K) < ε. (13)
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Let U = {x ∈ D : u(x) < −1 + ε} a neighborhood of a compact K and E is a m − cv regular
compact set, such that K ⊂ E ⊂⊂ U . Consider the open set

F =
{
x ∈ D : u(x) +

ε

2
< (1 − ε)ω∗(x,E,D)

}
⊂⊂ D.

Since E is m− cv regular compact, then E ⊂ F ⊂⊂ D. Therefore, according to the comparison
principle and (13), we obtain

C(E) = Hn−m+1
ω∗ (E) = Hn−m+1

ω∗ (F ) 6 1

(1 − ε)
n−m+1H

n−m+1
u (F ) 6

6 1

(1 − ε)
n−m+1H

n−m+1
u (D) 6 1

(1 − ε)
n−m+1 (C (K) + ε) .

Hence, the right side of (11) does not exceed
1

(1 − ε)
n−m+1 (C(K) + ε). Since ε it is arbitrary,

it does not exceed C(K), i.e.

C(K) > inf {C(E) : E ⊃ K, E m− cv regular} .

This inequality, together with (12), gives us the required statement.
4) If a compact K ⊂ D is m− cv regular, then

C(K) = sup
{
Hn−m+1
u (K) : u ∈ m− cv(D) ∩ C(D), −1 6 u < 0

}
. (14)

Proof. Since C(K) = Hn−m+1
ω (K), then

C(K) 6 sup
{
Hn−m+1
u (K) : u ∈ m− cv(D) ∩ C(D), −1 6 u < 0

}
. (15)

On the other hand, for any function u ∈ m − cv(D) ∩ C(D), we set v(x) =

= max {(1 + ε)ω(x,K,D), u(x)}, 0 < ε < 1. Then v ∈ m − cv(D) ∩ C(D), −1 6 v < 0

and lim
x→∂D

v(x) = 0. Therefore, according to the comparison principle

(1 + ε)n−m+1Hn−m+1
ω (D) > Hn−m+1

v (D) > Hn−m+1
v (K) .

Since Hn−m+1
ω (D\K) = 0, then

Hn−m+1
v (K) = Hn−m+1

u (K).

From here,
(1 + ε)n−m+1Hn−m+1

ω (D) > Hn−m+1
v (K) > Hn−m+1

u (K)

and tending ε→ 0 we will receive

C(K) = Hn−m+1
ω (K) > Hn−m+1

u (K).

Due to the arbitrariness of the function u

C(K) > sup
{
Hn−m+1
u (K) : u ∈ m− cv(D) ∩ C(D), −1 6 u < 0

}
,

which together with (15) gives us (14).
We define the external capacity in a standard way by assuming

C∗(E) = inf {C(U) : U ⊃ E − open} ,
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where the capacity of an open set is

C (U) = sup {C (K) : K ⊂ U} = sup {C (K) : K ⊂ U, K m− cv regular} .

Let us note the following properties of the external capacity
5) For any compact, K ⊂ D its external capacity C∗ (K) = C (K).

This follows from property 3).
The following property of capacity is very important in practice.

Theorem 5.1. If a set U ⊂ D is open, then

C(U) = sup
{
Hn−m+1
u (U) : u ∈ m− cv(D) ∩ C(D), −1 6 u < 0

}
=

= sup
{
Hn−m+1
u (U) : u ∈ m− cv(D) ∩ C∞(D), −1 6 u < 0

}
. (16)

Proof. For any m− cv regular compact set K ⊂ U we have

C(K) = sup
{
Hn−m+1
u (K) : u ∈ m− cv(D) ∩ C(D), −1 6 u < 0

}
.

Therefore, C(U) > C (K) > Hn−m+1
u (K) for any fixed u ∈ m − cv(D) ∩ C(D), −1 6 u < 0.

Since K ⊂ U is an arbitrary m− cv regular compact, then C(U) > Hn−m+1
u (U). From here,

C(U) > sup
{
Hn−m+1
u (U) : u ∈ m− cv(D) ∩ C(D), −1 6 u < 0

}
>

> sup
{
Hn−m+1
u (U) : u ∈ m− cv(D) ∩ C∞(D), −1 6 u < 0

}
. (17)

On the other hand, we fix an arbitrary m − cv regular compact set K ⊂ U . According
to property 7) of the m − cv measure, the Pmcv(E,D)-measure ω(x,K,D) m − cv continues
into a certain neighborhood G ⊃ D. It follows, that ω(x,K,D) can be approximated in some
neighborhood of D̄ by infinitely smooth m − cv convex functions uj(x) ↓ ω(x,K,D). Since the
compact K ⊂ U is m−cv regular, then ω(x,K,D) is continuous in D. From this the convergence
uj(x) ↓ ω(x,K,D) will be uniform and the sequence of Borel measures Hn−m+1

uj
weakly converges

to the measure Hn−m+1
ω , Hn−m+1

uj
7→ Hn−m+1

ω .
From the properties of convergent Borel measures we have

C(K) = Hn−m+1
ω (K) = Hn−m+1

ω (U) 6 lim
j→∞

Hn−m+1
uj

(U) . (18)

Let’s us now fix a ε > 0 and put it down vj =
uj − ε

1 + ε
. Then −1 6 vj < 0, for large j > j0 and

therefore,
Hn−m+1
uj

(U) = (1 + ε)
n−m+1

Hn−m+1
vj (U) 6

6 (1 + ε)
n−m+1

sup
{
Hn−m+1
w (U) : w ∈ m− cv(D) ∩ C∞(D), −1 6 w < 0

}
.

From here and according to (18) we have

C (K) 6 lim
j→∞

Hn−m+1
uj

(U) 6

6 (1 + ε) sup
{
Hn−m+1
w (U) : w ∈ m− cv(D) ∩ C∞(D), −1 6 w < 0

}
.

Due to the arbitrariness of the number ε > 0

C(K) 6 sup
{
Hn−m+1
w (U) : w ∈ m− cv(D) ∩ C∞(D), −1 6 w < 0

}
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and taking here the supremum over all m− cv regular compacts K ⊂ U we get

C(U) 6 sup

{∫
U

(ddcw)n : w ∈ m− cv(D) ∩ C∞(D), −1 6 w < 0

}
,

which together with (17) proves the theorem completely. 2

Remark 5.1. If U ⊂⊂ D and K ⊂ U is an arbitrary fixed compact, then m − cv measure
ω∗(x,K,D) m−cv continues into a fixed neighborhood D+ ⊃ D such that the extended function
does not exceed 1 in D+. According to properties 2) and 4) we have

C(K) 6 sup
{
Hn−m+1
u (K) : u ∈ m− cv(G) ∩ C(G), −1 6 u < 0 inD and |u| < 1 in D+

}
6

6 sup
{
Hn−m+1
u (U) : u ∈ m− cv(D) ∩ C(D), −1 6 u < 0

}
= C (K) .

So that

C(K) = sup
{
Hn−m+1
u (K) : u ∈ m− cv(G) ∩ C(G), −1 6 u < 0 in D and |u| < 1 in D+

}
.

Using C (U) = sup {C (K) : K ⊂ U, K m− cv regular}, for an open set U ⊂⊂ D we get

C(U) = sup
{
Hn−m+1
u (U) : u ∈ m− cv(D) ∩ C(D), −1 6 u < 0 in D and |u| < 1 in G

}
.

Moreover, approximating ω∗(x,K,D) in the neighborhood D̄ by infinitely smooth functions,
just as in the proof of Theorem 2.1, we obtain

Corollary 5.1. If U ⊂⊂ D− an open set lying compactly in D, then

C(U)= sup
{
Hn−m+1
u (U) : u ∈ m− cv(D)∩C∞(D), −1 6 u < 0 in D and |u| < 1 in G⊃⊃D

}
.

This relation is useful in practice because the Hessian Hn−m+1
u here is an ordinary function,

defined in the neighborhood of D̄.
6) The external capacity of condenser C∗(E) is monotonic, i.e. if E1 ⊂ E2, then C∗(E1) 6

C∗(E2); it is countably subadditive, i.e. C∗
(∪

j

Ej

)
6
∑
j

C∗(Ej).

In fact, monotonicity C∗ follows from monotonicity C(K) in the class of pluriregular com-
pacts. Let us show countably subadditivity: firstly let Ej ⊂ D are open sets and E =

∪
j

Ej .

According to Theorem 5.1

C(E) = sup
{
Hn−m+1
u (E) : u ∈ m− cv(D) ∩ C∞(D), −1 6 u < 0

}
6

6 sup

{∑
j

Hn−m+1
u (Ej) : u ∈ m− cv(D) ∩ C∞(D), −1 6 u < 0

}
6

6
∑
j

sup
{
Hn−m+1
u (Ej) : u ∈ m− cv(D) ∩ C∞(D), −1 6 u < 0

}
6
∑
j

C(Ej).

For arbitrary sets Ej ⊂ D, for a fixed ε > 0 we will construct open sets Uj ⊃ Ej such that
C(Uj) − C∗(Ej) <

ε

2j
. Then∑

j

C∗(Ej) >
∑
j

C(Uj) − ε > C

(∪
j

Uj

)
− ε > C∗(E) − ε

and from here, at ε→ 0 we obtain the required statement.
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7) For any increasing sequence of open sets Uj ⊂ Uj+1, C
(∪

j

Uj

)
= lim
j→∞

C(Uj).

It obviously follows from the fact that any compact space K ⊂
∪
j

Uj belongs to Uj , starting

from some j > j0.
We prove that the introduced outer condenser capacity C∗(E) satisfies the Choquet axioms

on the measurability (see Theorem 4.2).

Theorem 5.2. Any Borel set E ∈ B is measurable, i.e. if E ∈ B, then

C∗(E) = C∗(E) = sup {C(K) : K ⊂ E − compact} .
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[7] M.Brelot, Éléments de la théorie classique du potentiel, Les Cours de Sorbonne. 3e cycle,
Centre de Documentation Universitaire, Paris, 1959.

[8] K.S.Chou, X.J.Wang, Variational theoryfor Hessian equations, Comm. Pure Appl. Math.,
54(2001), 1029–1064. DOI: 10.1002/CPA.1016

[9] S.Dinew, S.Kolodziej, A priori estimates for the complex Hessian equation, Anal. PDE,
7(2014), 227–244. DOI: 10.2140/apde.2014.7.227

[10] S. Dinew, S.Kolodziej, Non standard properties of m-subharmonic functions, Dolom. Res.
Not. Approx., 11(2018), 35–50.

[11] N.Ivochkina, N.S.Trudinger, X.J.Wang, The Dirichlet problem for degenerate Hessian equa-
tions, Comm. Partial Diff. Equations, 29(2004), 219–235. DOI: 10.1081/PDE-120028851

[12] N.S.Landkof, Foundations of Modern Potential Theory, Springer Berlin Heidelberg, 1972.

[13] S.Y.Li, On the Dirichlet problems for symmetric function equations of the eigenvalues of
the complex Hessian, Asian J.Math., 8(2004), 87–106. DOI: 10.4310/AJM.2004.v8.n1.a8

– 400 –



Azimbay Sadullaev . . . m− cv measure ω∗(x,E,D) and condenser capacity C(E,D) . . .

[14] C.H.Lu, A variational approach to complex Hessian equations in Cn, Journal of Mathemati-
cal Analysis and Applications, 431(2015), no. 1, 228–259. DOI: 10.1016/j.jmaa.2015.05.067

[15] H.Ch.Lu, Solutions to degenerate Hessian equations, Journal de Mathematique Pures et
Appliques, 100(2013), no. 6, 785–805. DOI: 10.1016/j.matpur.2013.03.002

[16] A.Sadullaev, Definition of Hessians for m-convex functions as Borel measures, Analysis
and Applied Mathematics. AAM 2022. Trends in Mathematics, Birkhauser, Cham, 6(2024),
13–19. DOI: 10.1007/978-3-031-62668-5_2

[17] A.Sadullaev, Potential theory, Universitet, Tashkent, 2022 (in Russian).

[18] R.A.Sharipov, M.B.Ismoilov, m-convex (m − cv) functions, Azerbaijan Journal of Mathe-
matics, 13(2023), no. 2, 237-247. DOI: 10.59849/2218-6816.2023.2.237

[19] N.S.Trudinger, X.J.Wang, Hessian measures I, Topological Methods in Nonlinear Analysis,
Topol. Methods Nonlinear Anal., 10(1997), no. 2, 225–239.

[20] N.S.Trudinger, X.J.Wang, Hessian measures II, Anal. Math., 150(1999), 579–604.

[21] N.S.Trudinger, X.J.Wang, Hessian measures III, J. Funct. Anal., 193(2002), 1–23.

m− cv мера ω∗(x,E,D) и емкость конденсатора C(E,D)
в классе m-выпуклых функций
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Аннотация. В данной работе изучаются самые начальные понятия теории потенциала: полярные
множества и m − cv меры в классе m-выпуклых функций в вещественном пространстве Rn. Мы
также изучаем емкость конденсатора C(E,D) в классе m-выпуклых функций и будем доказывать
некоторые ее потенциальные свойства.

Ключевые слова: m-субгармонические функции, выпуклые функции, m-выпуклые функции, m−
cv полярное множество, m− cv мера, борелевские меры, гессианы.
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1. Introduction and preliminaries

After Banach’s result in 1922, many researchers in mathematics tried to somehow generalize
his famous result. They did this either by breaking the metric space axioms or by generalizing
the right-hand side "λd(x, y)" of the Banach’s contractive condition d(fx, fy) 6 λd(x, y) of the
mapping f from the metric space (X, d) to itself, where the scalar λ ∈ [0, 1). Using the first
case, new classes of spaces called generalized metric spaces such as partial metric spaces, metric-
like spaces, b-metric spaces, partial b-metric and b-metric like spaces were created. In the last
20-30 years, these kinds of spaces have been studied a lot. According to the second case, many
contractive conditions arose within metric spaces, such as Kannan, Chatterjea, Reich, Hardy-
Rogers, Boyd–Wong, Meir–Keeler, Ćirić and many others. For more details on the various types
of contractions see [3]. In addition to the aforementioned generalizations of the famous Banach
result from 1922, in 2012 the Polish mathematician D.Wardowski [26] introduced a new type
of contraction called F -contraction. And by using it, he gives a result that in the true sense
generalizes Banach’s contraction principle from 1922. After that, many works appeared on F -
contractions that were applied to almost all the mentioned general metric spaces. Wardowski
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Nora Fetouci, Stojan Radenović Some Remarks and Corrections of Recent Results . . .

introduces a strictly increasing function F defined on (0,+∞) with values in R and denotes this
property by F1. In addition to it, it adds two more properties F2 (For each sequence {cn} of
positive numbers, the following holds: limn→+∞ cn = 0 if and only if limn→+∞ F (cn) = −∞)
and F3 (There exist k ∈ (0, 1) such that limα→0+ α

kF (α) = 0). The set of all functions F that
map (0,+∞) to R and that satisfy F1, F2 and F3 in the literature is denoted by F . For these
and more details, the reader can see the papers [9,10,25,26] and references therein. Particularly
useful is the paper [9] in which all known results are proved using only the property F1. In works
such as [2, 13, 14, 18] some authors consider Wardowski’s approach but within the framework of
S-metric spaces. In doing so, they use all three properties of mapping F and the so-called β-
admissible mapping T from the given space (X,S) to itself. We will substantially improve these
results in our discussion by using only the strictly increasing mapping F . We will also take an
β-admissible mapping which is of transitive type (Definition 1.3., 1.4. and Lemma 1.3.). Also,
see [19]. In both previous cases, the "distance" between two points was considered as a function
with two variables, i.e., we had a mapping from X2 to [0,+∞) i.e. metric d, partial metric p,
b-metric b etc. Later, some researchers instead of two-variable functions went to three-variable
functions, i.e., the mappings from X3 to [0,+∞) and thus arrived at the following four classes of
spaces: G-metric, Gb-metric spaces, S-metric and Sb-metric, The aim of this paper is to give an
overview of the results on the last two classes of space as well as to present some new observations
about them. We begin with definitions of basic terms in the class of S-metric spaces.

Definition 1.1 ( [20]). Let X be a non-empty set and denote by S the mapping from X3 to
[0,+∞) that satisfies the following axioms:

(S1): S (x, y, z) = 0 if and only if x = y = z;
(S2): S (x, y, z) 6 S (x, x, a) + S (y, y, a) + S (z, z, a) for all x, y, z, a from X.
Then the pair (X,S) is called an S-metric space and the mapping S is called a S-metric

on X.

Some examples of S-metric spaces:

Example 1.1. Let ∥.∥ a norm on the vector space V, then
S (x, y, z) = ∥y + z − 2x∥ + ∥y − z∥ is an S−metric on V .

Example 1.2. Let ∥.∥ a norm on the vector space V, then
S (x, y, z) = ∥x− z∥ + ∥y − z∥ is an S−metric on vector space V.

Properties such as convergence of a sequence, Cauchyness of a sequence, complete of the space
and continuity of a function, all within S-metric spaces are given by the following definition:

Definition 1.2 ( [20]). Let (X,S) be an S-metric space.
(1) A sequence {xn} in X converges to x if and only if S (xn, xn, x) → 0 as n→ +∞.
(2) A sequence {xn} in X is called a Cauchy sequence if S (xn, xn, xm) → 0 as n,m→ +∞.
(3) The S-metric space (X,S) is said to be complete if every Cauchy sequence is convergent.
(4) A mapping T : X → X is said to be S-continuous if {Txn} is S-convergent to Tx, where

{xn} is an S-convergent sequence converging to x.

For still details reader can see the following papers: [1, 2, 4–8,11–14,17,18,20–23,27].
Similar to metric andG-metric spaces, open and closed balls are defined and the corresponding

topology is based on them. For details, see the papers on S-metric spaces in the reference list.
Here, the sequence converges on the S-metric if and only if it converges on that resulting topology.
It is well known that such equivalence does not hold for b-metric, Gb-metric and Sb-metric spaces.
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This is because the open sphere defined in them does not have to be open in the generated
topology.

In this paper, we will discuss several recent results established by several authors and pub-
lished recently in [2,13,14,18]. All these results connect F -contractions to β-admissible mappings
of both within S-metric spaces. Using the connection of S-metric and b-metric spaces that is
given and explained in the following Proposition, we will in one of the next papers provide a sub-
stantial correction of the result from [5]. Now we state the position on the relationship between
S-metric and b-metric spaces:

Proposition 1.1. Let (X,S) be an S-metric space. Then with
b(x, y) = S(x, x, y) a b-metric on the set X is given.

The following applies:
a) (X,S) is complete S-metric space if and only if (X, b) is a complete b-metric space;
b) A Sequence xn converges in S-metric space (X,S) if and only if it converges in b-metric

space (X, b);
c) The same applies when the sequence xn is a Cauchy sequence. Namely, it is Cauchy in

(X,S) if and only if it is Cauchy in the b-metric space (X, b);
d) The mapping T from X to itself is continuous in (X,S) if and only if it is continuous in

(X, b);
e) Since S is a continuous function with three variables, then the newly defined b-metric b is

also such, i.e., a continuous function with two variables.

Remark 1.1. For a proof of the mentioned properties, see the recent interesting paper [21].

Thus, the coefficient s in the obtained b-metric space is equal to
3

2
. Let us also mention one error

from the work of G. S. Saluja [18]: If (X,S) is a given S-metric space, then with
dG(x, y) = S(x, x, y) + S(y, y, x) a metric on the set X is defined. According to Proposition 1.1,
it is false. Indeed, if the above equality were possible, then we would have that the metric dG is
equal to the 2 · b from Proposition 1.1. But since the coefficient s of the b-metric b is equal to
3

2
> 1, it means that b is not a metric. It follows from the assertion of the author in [18] that

b =
1

2
dG, i.e., that b is a metric, because obviously

1

2
dG is a metric.

In the continuation of the work, we significantly improve the results from several works
( [2, 13, 14, 18]). We will only use the property F1, i.e. strict increasing of mapping F . In
addition to the two lemmas that will be listed, we will use the following important property
of the strictly increasing function F from (0,+∞) to R. It reads: For each strictly increasing
function F from (0,+∞) to R the following applies: F (a− 0) 6 F (a) 6 F (a+ 0) where F (a− 0)

and F (a + 0) are respectively the left and right limits of the function F at point a. Note that
the following also applies: either F (0 + 0) = −∞ or F (0 + 0) = A where A is a real number.

In some works on F -contractions in S-metric spaces, it is assumed that the contractive con-
dition

τ + F (S (Tx, Ty, Tz)) 6 F (S (x, y, z))

holds whenever S(Tx, Ty, Tz) > 0. In this case, in the proofs, instead of x, i.e., y and z, the
authors take x = y = xn−1 and z = xn, respectively. Namely, in some papers they assume that
τ + F (Tx, Tx, Ty)) 6 F (S(x, x, y)) is fulfilled whenever S(Tx, Tx, Ty) > 0.

As in the case of considering F -contractions within metric spaces ( [9,24]), the following two
Lemmas occupy an important place.

Lemma 1.1. Let (X,S) be an S-metric space and {xn} be a Picard’s sequence in it. If
S (xn+1, xn+1, xn) < S (xn, xn, xn−1) for all n ∈ N then xn ̸= xm whenever n ̸= m.
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Nora Fetouci, Stojan Radenović Some Remarks and Corrections of Recent Results . . .

Proof. Suppose the opposite, i.e., let xn = xm for some n,m from N with n < m. Due to the
fact that xn+1 = Txn = Txm = xm+1 we have

S (xn+1, xn+1, xn) = S (xm+1, xm+1, xm) < S (xm, xm, xm−1) < . . .

· · · < S (xn+2, xn+2, xn+1) < S (xn+1, xn+1, xn) < . . . ,

which is a contradiction. �

Lemma 1.2 ( [22]). Let (X,S) be an S-metric space and let {xn} be a Picard’s sequence in it
such that

lim
n→+∞

S (xn+1, xn+1, xn) = 0.

If {xn} is not a Cauchy sequence, then there exist an ε > 0 and two sequences {mk} and {nk} ,
nk > mk > k of positive integers such that the following sequences tend to ε+ when k → +∞ :

{S (xmk
, xmk

, xnk
)} , {S (xmk

, xmk
, xnk+1)} , {S (xmk−1, xmk−1, xnk

)} ,

{S (xmk−1, xmk−1, xnk+1)} , {S (xmk+1, xmk+1, xnk+1)} , . . .

For the all details of the proof see [22] as well as [16].
The following two concepts and the result that connects them will be useful to us in the

continuation of our work.

Definition 1.3 ( [27]). Let T : X → X and β : X3 → [0,+∞). Then we say that T is β-
admissible if for all x, y, z ∈ X we have

β (x, y, z) > 1 implies β (Tx, Ty, Tz) > 1.

Definition 1.4 ( [27]). Let β : X3 → [0,+∞). We say that β is transitive if

β (x, y, y) > 1 and β (y, z, z) > 1 implies β (x, z, z) > 1,

for all x, y, z ∈ X.

The next result is the key to our further consideration and correction of already published
results on F -contractions in S-metric spaces.

Lemma 1.3 ( [27]). Let T : X → X and β : X3 → [0,+∞) be β-admissible and transitive,
respectively. Assume that there exists x0 ∈ X such that
β(x0, Tx0, Tx0) > 1. Define a sequence {xn} by xn = Tnx0. Then
β(xm, xn, xn) > 1, for all m,n ∈ N with m < n.

We end this part of the paper with a list of all known F − β contractive conditions, where F
is a mapping from (0,+∞) to R with all three known properties, while β is a mapping from X3

to [0,+∞) β−admissible or β-admissible and transitive. We list all those contractive conditions:
1) S(Tx, Ty, Tz) > 0 implies τ + β(x, y, z) · F (S(Tx, Ty, Tz)) 6 F (S(x, y, z));

2) S(Tx, Ty, Tz) > 0 implies τ + F (β(x, y, z) · S(Tx, Ty, Tz)) 6 F (S(x, y, z));

3) S(Tx, Tx, Ty) > 0 implies τ + β(x, x, y) · (F (S(Tx, Tx, Ty) 6 F (S(x, x, y));

4) S(Tx, Tx, Ty) > 0 implies τ + F (β(x, x, y) · S(Tx, Tx, Ty)) 6 F (S(x, x, y)).

If in 3)–4) on the right sides if S(x, x, y) is replaced with

M(x, x, y)=max {S(x, x, y), S(x, x, Tx), S(y, y, Ty), (S(x, x, Tx) +S(x, x, Ty) +S(y, y, Tx))} ,
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then we have the so-called β − F−weak contractions. In some papers from the reference list,
theorems about the existence of a fixed point for β − F contractions have been proven, but
only if the mapping F satisfies all 3 listed properties. In the continuation of the work, we will
significantly improve such results in the sense that we add the property of transitivity to the
mapping β and remove the properties F2 and F3 from the mapping F .

Remark 1.2. According to Proposition 1.1, we have that relations 3) and 4) give an
F -contraction within b-metric spaces.

We now state one of the first results stated and proved in ( [14], Theorem 1).

Theorem 1.1. Let (X,S) be a complete S-metric space and T : X → X be a β − F−weak
contraction satisfying the following conditions:

(T1) T is β-admissible,
(T2) there exists u0 ∈ X such that β (u0, u0, Tu0) > 1,
(T3) T is S-continuous.
Then T has a fixed point.

Remark 1.3. For several results of this type the reader can see ( [14], Theorem 2, [18], Theo-
rem 3.2, [23], Theorem 5, [15], Theorems 2, 3 and 4).

2. Main results

Our first new general result is given by the following Theorem:

Theorem 2.1. If (X,S) is a complete S-metric spaces and if there exists τ > 0 such that

τ + F (S (Tx, Ty, Tz)) 6 F (S (x, y, z)) ,

whenever S (Tx, Ty, Tz) > 0, where F : [0,+∞) → R is a strictly increasing function, then the
mapping T has a unique fixed point in X. Moreover, if x is an arbitrary point in X, then the
Picard’s sequence Tnx converges to this fixed point.

Proof. If u and v are two different fixed points of the mapping T , then
S(u, u, v) = S (Tu, Tu, Tv) > 0, because Tu ̸= Tv. In this case, according to the given contractive
condition we get τ + F (S (u, u, v)) 6 F (S (u, u, v)) which is a contradiction with τ > 0. So, if
T has a fixed point it is unique. Also, from the given contractive condition the continuity of
the mapping T follows. Indeed, the given contractive condition gives S(Tx, Ty, Tz) < S(x, y, z)

which means that the mapping T : X → X is S-continuous.
Now, we will prove the existence of the fixed point for the mapping T. Let x0 be an arbitrary

point in X and let xn = Tnx0 be the corresponding Picard’s sequence. If xn−1 = xn for some
n ∈ N, then obviously xn−1 is a unique fixed point of the mapping T. And hence Theorem is
proved. Let us now in the following prove that xn−1 is different from xn for each n ∈ N. Putting
in the given contractive condition x = y = xn−1 and z = xn, we get that
S (Tx, Ty, Tz) = S (xn, xn, xn+1) which further means that:

τ + F (S (xn, xn, xn+1)) 6 F (S (xn−1, xn−1, xn)) .

Since τ > 0 and F is a strictly increasing function, we get that the sequence
{S (xn, xn, xn+1)} is strictly decreasing and therefore its limit S∗ > 0 exists when n → +∞.

Let us prove that S∗ = 0. Indeed, by switching to the limit when n → +∞ in the last relation
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and using the property of the function F about left and right limits we get τ + F (S∗ + 0) 6
F (S∗ + 0) , which is a contradiction since τ > 0. Note that according to Lemma 1.1 obtained
that all members of the sequence xn are mutually different, i.e., that xn ̸= xm whenever n ̸= m.

We need this when we prove the Cauchyness of the sequence {xn} because we will need the area
of definition of the function F .

In order to prove that {xn} is a Cauchy sequence, we apply Lemma 1.2, i.e. We put
x = y = xnk

, z = xmk
in the given contractive condition, and so we get the following

τ + F (S (xnk+1, xnk+1, xmk+1)) 6 F (S (xnk
, xnk

, xnk
)) .

If, in the last relation, we let k tends to +∞ and use the property on the left and right limits
of the function F, we get: τ + F (ε+) 6 F (ε+) , which is obviously a contradiction with τ > 0.

Therefore, the sequence {xn} is a Cauchy sequence and since (X,S) is a complete S-metric space,
it converges to some point, say u from X. By definition, this is written as S(xn, xn, u) → 0 when
n→ +∞. From the continuity of the mapping T we have that Txn → Tu as n→ +∞, which is
written as S (Txn, Txn, Tu) → 0 when n→ +∞ or in the equivalent form S(xn+1, xn+1, Tu) → 0

when n → +∞. The latter means that the sequence {xn+1} → Tu when n → +∞. Due to the
uniqueness of the limit within S-metric spaces, we have that Tu = u is a unique fixed point of
the F -contraction T on S-metric space. The proof of the Theorem is completed. �

The following theorem is a mild generalization of Theorem 2.1 and its proof is the same as
the proof of Theorem 2.1.

Theorem 2.2. If (X,S) is a complete S-metric spaces and if there exists τ > 0 such that

τ + F (S (Tx, Tx, Ty)) 6 F (S (x, x, y)) ,

whenever S (Tx, Tx, Ty) > 0, where F : [0,+∞) → R is a strictly increasing function, then the
mapping T has a unique fixed point in X. Moreover, if x is an arbitrary point in X, then the
Picard’s sequence Tnx converges to this fixed point.

Corollary 2.1. By putting F = ln in the Theorems 2.1 and 2.2 we get one type of Banach
contraction principle within S-metric spaces. It reads

0 < S (Tx, Ty, Tz) 6 e−τS (x, y, z) and 0 < S (Tx, Tx, Ty) 6 e−τS (x, x, y) ,

respectively, where τ > 0.

The previous Corollary shows that by choosing the function F , it is obtained that the
F -contraction within S-metric spaces is also a Banach’s contraction in the same framework.
While the following example shows that there is an F -contraction that is not a Banach’s con-
traction, i.e., that Wardowski’s approach is also a true generalization of the Banach’s contraction
in this class of spaces within S-metric spaces. It is inspired by Wardowsi’s example from the
paper [26].

Example 2.1. Consider the sequence {xn}n∈N as follows: xn =
n(n+ 1)

2
. Let

X = {xn : n ∈ N} and S(x, y, z) = |x − z| + |y − z|. Then (X,S) is a complete S-metric
space. Define the mapping T : X. → X by the formulae: T (xn) = xn−1 for n > 1 and
T (x1) = x1 = 1, that is, x1 is a fixed point of T. The mapping T with the F -contractive con-
dition as in Theorem 2.1. is not an F -contraction with F = ln (which means that T is not the
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Banach’s contraction). Indeed, we check it. Since, xn ̸= xm whenever n ̸= m, we have for that
case S (Txn, Txn, Tx1) > 0. Therefore, for n > 1 we get

lim
n→+∞

S (Txn, Txn, Tx1)

S (xn, xn, x1)
= lim
n→+∞

|xn−1 − 1| + |xn−1 − 1|
|xn − x1| + |xn − x1|

=

= lim
n→+∞

|xn−1 − 1|
|xn − 1|

= lim
n→+∞

(n−1)n
2 − 1

n(n+1)
2 − 1

= 1.

This means that the condition

τ + ln (S (Txn, Txn, Tx1)) 6 ln (S (xn, xn, x1)) ,

that is, the condition

ln
S (Txn, Txn, Tx1)

S (xn, xn, x1)
6 e−τ

is not possible for sufficient large n and any positive τ
Assuming now that F (α) = α+lnα, we obtain, according to Theorem 2.1 that Wardowski F -

contraction in the framework of S-metric spaces is a true generalization of Banach contraction
principle in the same framework. And in this case we have that xn ̸= xm whenever n ̸= m,
that is, S (Txn, Txn, Txm) > 0. Therefore, if τ = e−1 we check the following relation

e−1 + S (Txn, Txn, Txm) + ln (S (Txn, Txn, Txm)) 6 S (xn, xn, xm) + ln (S (xn, xn, xm)) ,

or equivalently,

ln
S (Txn, Txn, Txm)

S (xn, xn, xm)
6 S (xn, xn, xm) − S (Txn, Txn, Txm) − e−1,

that is,
S (Txn, Txn, Txm)

S (xn, xn, xm)
eS(Txn,Txn,Txm)−S(xn,xn,xm) 6 e−1.

Since Txn = xn−1, Txm = xm−1 whenever both n > m > 1 and Tx1 = x1 the last inequality
become

|xn−1 − xm−1|
|xn − xm|

e|xn−1−xm−1|−|xn−xm| 6 e−1.

We further get
(n−1)n

2 − (m−1)m
2

n(n+1)
2 − m(m+1)

2

e|
(n−1)n−(m−1)m

2 |−|n(n+1)−m(m+1)
2 | =

=
n+m− 1

n+m+ 1
e−(n−m) 6 e−1,

which is true, because
n+m− 1

n+m+ 1
< 1 as well as from n > m we get n − m > 1, i.e.,

e−(n−m) 6 e−1.

About corrected results. Just as in Theorems 2.1 and 2.2, using Lemmas 1.1 and 1.2, we
managed to get rid of the application of the properties F2 and F3 in the proofs, so in the
rest of this paper we will describe (state) the steps of the proof of Theorem 1.1 using only
the property F1. The price that for what we pay for is adding transitivity to the mapping
β : X3 → [0,+∞). The same procedure applies to the correction of the evidence of the results
mentioned in Remark 1.1. It is well known that in the presence of a β-admissible mapping, a
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Nora Fetouci, Stojan Radenović Some Remarks and Corrections of Recent Results . . .

possible fixed point is not necessarily unique. That is why we only approach proving its existence.
The first step in this proof would be to prove, starting from a given point x0 with properties (T2)
and (T1), the existence of a sequence {xn} such that β(xn, xn, xn+1) > 1 for each n from N.

Using this obtained relation from the given contractive condition, it is obtained for the se-
quence xn that the sequence S(xn, xn, xn+1) is strictly decreasing. From there, according to the
property about the left and right limits of the strictly increasing function F , it is obtained that
S(xn, xn, xn+1) tends to zero when n tends to +∞. According to Lemma 1.1, it follows from
the strictly decreasing sequence S(xn, xn, xn+1) that all members of the sequence xn are mutu-
ally different. Therefore, the conditions have been met to apply Lemma 1.2. to prove that the
sequence {xn} is Cauchy. Of course, to eliminate the sequence β(xn, xn, xn+1) the Lemma 1.3 is
used. And then, in the last step, by letting k tends to +∞, as in the proof of Theorems 2.1 and
2.2, we get a contradiction with τ > 0. The rest of the proof is further as in Theorems 2.1. This
method can therefore be used to improve (shorten) all the proofs of the results mentioned in the
works from the list of references. To conclude: if any β-admissible function does not participate
in the contractive condition, the fixed point is unique and it is sufficient only for the function
F to assume the property F1. If a β-admissible function is present, with the addition that it is
transitive, it is again sufficient to assume only the property F1, but then the fixed point does
not have to be unique. �
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Некоторые замечания и исправления недавних
результатов из теории S-метрических пространств
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Аннотация. Содержание этой статьи состоит из результатов по F -сжатию Вардовского в
S-метрических пространствах. В ней мы представляем поправки к некоторым недавним резуль-
татам, используя только свойство F1 строгого возрастания функции F . В наших результатах мы
объединяем β-допустимые функции с F -сжатиями. Наконец, мы приводим пример, показывающий,
что F -сжатие в рамках S-метрических пространств является истинным обобщением принципа сжа-
тия Банаха в тех же рамках.

Ключевые слова: S-метрическое пространство, b-метрическое пространство, неподвижная точка,
F -сокращение, β-допустимо.
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of collagen-containing allogeneic hydrogel produced at the Biotech Research Institute (Samara, Russia)
from bioimplants of the Lioplast® trademark in comparison with the hydrogels available on the market
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of human supporting and connective tissues.
As part of the current import substitution task, the developed collagen-containing allogeneic hydrogel
may in the future represent a competitive analogue to foreign commercial products — hydrogels in
bioprinting.

Keywords: Raman spectroscopy, infrared Fourier spectroscopy, collagen-containing hydrogel, support-
ing and connective tissues, 3D bioprinting.

∗lazer-optics.timchenko@mail.ru https://orcid.org/0000-0002-0539-7989
†info@samsmu.ru https://orcid.org/0000-0002-1332-953X
‡frolov679@mail.ru https://orcid.org/0000-0002-3225-8511
§timpavel@mail.ru https://orcid.org/0000-0003-3089-7966
¶l.t.volova@samsmu.ru https://orcid.org/ 0000-0002-8510-3118
‖koditek00@yandex.ru

© Siberian Federal University. All rights reserved

– 412 –



Elena V. Timchenko . . . Application of Optical Methods in Standardization . . .

Citation: E.V. Timchenko, N.A. Ryabov, O.O. Frolov, P.E.Timchenko, L.T. Volova,
S.S. Ivanov, Application of Optical Methods in Standardization of Collagen-containing
Hydrogen for 3D Bioprinting of Supporting and Connective Tissues, J. Sib. Fed. Univ.
Math. Phys., 2025, 18(3), 412–419. EDN: XPPAYA.

Introduction

To date, 3D bioprinting of tissues and organs is one of the promising methods of biofabrica-
tion and is of great interest in the direction of creating complex cellular and tissue constructs
for tissue regeneration, which allows for the manufacture of personalized implants taking into
account the anatomy, pathology and biomechanical properties of organs and body parts of the
patient’s body [1]. The bioprinting process is carried out using bioinks, which include two main
components — cells and hydrogel. Hydrogels are three-dimensional polymer meshes that, due to
The properties of hydrophilicity are capable of retaining large amounts of water. Various natural
polymers are used to produce hydrogels, among them biopolymers of allogeneic origin have pre-
dominant characteristics, including good biocompatibility and biodegradability, as well as low
antigenicity and high regenerative potential. Commercial bioinks presented on the market today
are characterized by a fairly high cost, which makes it necessary to develop our own domestic
competitive analogues of such bioinks within the framework of the direction import substitution
[2, 3].

Among the large number of biogenic hydrogels available on the market today, the hydrogels
of PureColo "Cellink" (Sweden) and hydrogel can be distinguished INVIVO-GEL-ESSENTIAL
(Korea), which have already successfully proven themselves as products for bioprinting and per-
fectly combined with various types of cells. The presented products are mainly used in scientific
research tasks. Today, the Russian Federation is actively working on the development of domestic
hydrogels, the creation of which will solve the problem of import substitution of foreign bioinks.

An important step in the bioprinting process of various constructs is their standardization,
both at the stage of obtaining the initial material for bioprinting - hydrogels, and the final printed
product. Therefore, it is necessary to evaluate the quality of hydrogels and bioinks in order to
obtain data on the structure of the components contained in them. Among the physical research
methods, optical methods such as Raman spectroscopy and IR Fourier spectroscopy are widely
used, which They are non-destructive and operational methods of analysis, as well as widely used
for solving biomedical problems [4-9]. Thus, in the work of the authors [4-5], studies on the use
of Raman spectroscopy to assess the composition of tissues with a detailed interpretation of the
main lines of Raman are presented.

The authors of the work [6], using the method of Raman spectroscopy, investigated the
composition of biomaterials and extracellular matrix, including bone marrow. In the work of the
authors [7] it is shown that using this method it is possible to determine the composition of the
cell. So in The work of the authors [8] shows that non-destructive analysis of various biomaterials
can be carried out using IR spectroscopy (FTIR).

Therefore, the aim of the work was to evaluate the possibility of using optical methods in
the standardization of collagen-containing hydrogel for 3D bioprinting of human supporting and
connective tissues.

Materials and methods of research

The objects of the study were: group 1 — allogeneic collagen-containing hydrogel (obtained
from human bone tissue), Samara, Russia, Biotech Research Institute, Lioplast ©; group 2 —
PureCol hydrogel © "Cellink" (Sweden); group 3 — INVIVO-GEL-ESSENTIAL hydrogel (Ko-
rea); group 4 — type I collagen sample "Cellink" (Sweden). The collagen-containing hydrogel was
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obtained from an allogeneic material of demineralized bone tissue, pretreated using the original
technology for obtaining bioimplants of the trademark "Lyoplast"© (TU- 9398-001 -01963143-
2004, patent R+ No. 2366173 dated 05/15/2008; Certificate of conformity ISO 13485:2016, reg.
No. RU CMS-RU.PT02.00115; ISO 9001:2015 certificate, per TIC 15 100 159171) [9].

Raman spectroscopy and IR Fourier spectroscopy were used as research methods. The Raman
spectroscopy (Raman) method was implemented using an experimental stand consisting of a
semiconductor laser (LML-785.ORB-04.450 MW), a spectrograph (Andor Sharmrock SR-303i)
with an integrated digital camera cooled to –60℃, an optical raman module (PBL785) and a
computer. The use of this spectrograph provided a resolution of 0.15 nm in wavelength at a low
level of intrinsic noise. In this work, the Raman spectra were analyzed in the range 700–1800
cm−1. The Raman spectra were recorded using an optical probe, which was located above the
object at a distance of 7 mm. Further processing of the Raman spectra consisted in filtering
autofluorescence in the Raman spectra using the method of subtracting the fluorescent component
by polynomial approximation I-ModPoly with polynomial degree 11 [10].

Normalization and smoothing of Raman spectra were performed using the SNV and Maximum
Likely good Estimation Savitzky–Golay filter (ME-SG) (=4) methods. Infrared spectra were
obtained using a Fourier spectrometer FT modification 801 (factory number 465; manufacturer
Limited Liability Company Scientific and production company "SIMEX" (LLC NPF "SIMEX"),
Novosibirsk). Transmission spectra were recorded using the prefix of multiple disturbed total
internal reflection (hereinafter referred to as the prefix MNPVO) at the following parameter
values:
- spectrum resolution of 8 cm−1;
- the number of scans (accumulations) for obtaining spectra is 36.

The results of the study

Fig. 1 shows the averaged Raman spectra of the samples.

Fig. 1. Research materials

It can be seen from Fig. 1 that lines are present in all three studied groups 1-3 of hydrogels
CR, which are characteristic of type I collagen "Cellink": 1242-1265 cm−1 (AmideIII/a-helix),
1412 cm−1 (CH2 bending and scissoring modes of collagen and phospholipids), 1560 cm−1 (Amid
II Parallel/Antiparallel a-sheet structure). At the same time, it can be seen that in the hydrogel
of Korean production in the Raman spectra there are lines 1003 - 1075 cm−1 (Phenylalanine,
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Breathingmode (collagenassignment)), 1650 cm−1 (AmideI/a-helix), which also correspond to
type I collagen "CELLINK" and determine the elasticity of tissues. Spectra of allogeneic collagen-
containing hydrogel and hydrogel PureCol0 "Cellink" have similar spectral characteristics and,
unlike the Korean-made hydrogel, have a Raman line at 832 cm−1 (C-C stretching, proline and
hydroxyproline (collagen assignment)), which determines the properties of collagen fibrils such
as elasticity and elasticity, which is important for tissue bioprinting. Further, a detailed analysis
of the studied objects was carried out, the results of which are presented in Tab. 1 and in
Figs. 2 and 3.

Table 1. Metric values for each sample group.

– Precision Recall fl-score support
Hydrogel 0.00 0.00 0.00 2
Purecol 0.00 0.00 0.00 1
ESSENTIAL 0.40 1.00 0.57 2

As can be seen from Tab. 1, the value of the Fl-Score model is at the level of 40 percent, the
ROC AUC is within 60 percent, and the rest of the metrics have low indicators, which indicates
that groups 1–3 are difficult to distinguish between each other, which indicates the spectral
similarity of their composition.

Fig. 2. Averaged Raman spectra of the samples: 1 (red line) — allogeneic collagen-containing hy-
drogel, 2(blue line) — PureCol° "Cellink" hydrogel, 3(green line) — INVIVO-GEL-ESSENTIAL
hydrogel, 4(brown line) — type I collagen sample "Cellink")

According to the decision matrix, it is clear that all test spectra are correctly classified (5).
According to the ROCAUC and Precision-Recall graphs, the low classifying ability of the resulting
classifier is also visible.

The value of ROC AUC (Receiver Operating Characteristic Area Under Curve) equal to 0.5
indicates that the model is not able to identify differences between the studied groups, which
also indicates their spectral similarity.

Thus, the results obtained using Raman spectroscopy showed spectral similarities of the three
studied hydrogels.

Fig. 4 shows the Fourier-infrared spectra of the three types of hydrogels studied from different
manufacturers, as well as type I collagen "Cellink".

In the infrared spectra of all samples in the range of 3310–3291 cm−1, a wide peak of high
intensity is observed, characteristic of valence vibrations of O-H, N-H ("Amide A") bound by
intermolecular interaction (hydrogen bonds) . In the region of 3078–3074 cm−1, both valence
vibrations of the C-H (sp3) bond of heterocyclic fragments of amino acids that make up col-
lagen (proline, oxyproline) and the "Amide B" band (stretching vibrations of C-N bonds) can
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Fig. 3. Results matrix

Fig. 4. Obtaining operating characteristics

manifest themselves. Absorption bands in the region of wave numbers 2958–2932 cm−1 and 2875–
2874 cm−1 correspond to valence bands fluctuations in the C-H (sp3) bond of alkyl groups. The
most significant and widely used band for the characterization of biological materials is the peak
"Amide 1", located near the range of 1700–1580 cm−1. It corresponds to the valence fluctuations
of the C=O bond of the peptide group. In this case, high intensity bands at 1657–1631 cm−1 are
present on the infrared spectra of all samples See−1. These bands are characteristic of valence
vibrations of C=0 and N-H bonds (peak "Amide 1"). In the region of 1555–1536 cm−1 on the
infrared spectra of the standard collagen type 1 "Cellink" and samples of all bands of high in-
tensity corresponding to stretching vibrations of C-N and planar vibrations of N-H bonds (peak
"Amide 2") are observed in the analyzed hydrogels.
In the region of 1453–1447 cm−1 and 1405–1404 cm−1, bands of medium and low intensity are
present on all spectra , characteristic of both deformation vibrations of C-H and N-H bonds, and
valence vibrations of C-N, C-C bonds. Further, in the region of 1340–1332 cm−1, maxima are
observed, most likely associated with deformation fluctuations of the CH2 groups of the proline

– 416 –



Elena V. Timchenko . . . Application of Optical Methods in Standardization . . .

Fig. 5. Averaged IR spectra of the samples: 1 (black line) — type I collagen sample "Cellink";
2(red line) — INVIVO-GEL-ESSENTIAL hydrogel; 3(green line) — PureCol° "Cellink" hydrogel;
4(blue line) — allogeneic collagen-containing hydrogel

residue in the collagen polypeptide chain.
Absorption bands in the area of 1240–1232 cm−1 are caused by characteristic fluctuations of the
amide group, deformation fluctuations of the carbon skeleton of amino acids that are part of
the polypeptide chain of the material under study ("Amide 3"). Based on the spectral analysis
carried out, it can be concluded that the main absorption bands in the infrared spectrum of the
allogeneic hydrogel developed at the Biotech Research Institute are associated with characteris-
tic fluctuations of specific groups in polypeptides. The IR spectrum of the allogeneic hydrogel
is identical to the IR spectrum of the standard type 1 collagen "Cellink", which reflects their
qualitative composition. The transmission spectrum of the Biotech Research Institute hydrogel
has similar absorption bands with commercial hydrogels from "Rokit" and "Cellink" companies.

Taking into account the spectral similarities of the hydrogel developed by Vinni Biotech and
the PureCol Cellink hydrogel, it can be concluded that the allogeneic hydrogel developed at the
Biotech Research Institute can subsequently be applied to 3D bioprinting of human supporting
and connective tissues using commercially available 3D bioprinters in the framework of import
substitution.

Results

As a result of the conducted studies using the Raman spectroscopy method, it was found that
the composition of the studied hydrogels of imported production, as well as the manufactured
collagen-containing hydrogel, revealed AMIDII (Raman Spectroscopy lines 1200–1300 cm−1),
Amide II (Raman Spectroscopy line 1554 cm−1), CH2 bending and scissoring modes of collagen
and phospholipids 1450 cm−1 and Amide I (KP line 1650–1665 cm−1. These CD lines indicate
the presence and preservation of the collagen structure in the composition of the studied hy-
drogels. The spectral composition of the developed at the Research Institute Biotech (Russia,
Samara, Biotech Research Institute, Lioplast8) of allogeneic hydrogel has a similar composition
to hydrogels of imported production. Additionally, using IR Furie spectroscopy, it was found
that the main absorption bands on the infrared spectrum of the allogeneic collagen hydrogel of
the Biotech Research Institute are associated with characteristic fluctuations of specific groups
in They are identical to the IR spectrum of the human type 1 collagen standard "Cellink", which
reflects their qualitative composition and confirms the preservation of the collagen structure, and
also has similar absorption bands with commercial hydrogels of Rokit and Cellink companies,
which indicates the possibility of using the proposed allogeneic hydrogel of the Biotech Research
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Institute in the future as an alternative to analogues available on the market as part of the
import substitution program. The obtained research results can be further used as an express
assessment and standardization of collagen-containing hydrogel with addition for personalized
3D bioprinting in the restoration of human supporting and connective tissues.
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Аннотация. В работе представлены результаты применения оптических методов в стандартиза-
ции коллагенсодержащего аллогенного гидрогеля, произведенного в НИИ "Биотех" (г. Самара,
Россия) из биоимплантатов торговой марки Lioplast® в сравнении с имеющимися на рынке гидро-
гелями компаний "Rokit" и "Cellink". В качестве основного метода исследования был использован
метод спектроскопии комбинационного рассеяния. Дополнительным методом исследования являл-
ся метод ИК-Фурье-спектроскопии.
В результате проведенных исследований с помощью оптических методов установлено, что в составе
аллогенного гидрогеля, произведенного в НИИ "Биотех" (г. Самара, Россия), полностью сохране-
на коллагеновая структура. Подобный спектральный состав также имеют гидрогели импортного
производства компаний Rokit и Cellink.Полученные результаты могут быть в дальнейшем использо-
ваны в качестве экспресс-оценки и стандартизации коллагенсодержащего гидрогеля с добавлением
различных компонентов для персонализированного 3D-биопринтинга опорных и соединительных
тканей человека.
В рамках актуальной на сегодняшний день задачи импортозамещения разработанный коллагенсо-
держащий аллогенный гидрогель в дальнейшем может представлять собой конкурентоспособный
аналог зарубежным коммерческим продуктам — гидрогелям в биопечати.

Ключевые слова: инфракрасная Фурье-спектроскопия, метод спектроскопии комбинационного
рассеяния, коллагенсодержащий гидрогель, опорные и соединительные ткани, 3D-биопечать.
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Introduction

Harmonic analysis on topological groups plays an important role in mathematics and its
applications (see, for example, [1–8] and references therein). New directions of research are
related with nonassociative algebra, noncommutative geometry, nonassociative mathematical
physics, where quasigroups and loops appear frequently. They are nonassociative group analogs
(see [9–11] and references therein). Moreover, quasigroups are frequently and actively used in
informatics databases, since they open new possibilities in comparison with groups [18].

Harmonic analysis on nonassociative quasigroups and loops remains a little elaborated. There
is very little known about relations between topologies and algebraic structures of quasigroups
in comparison with groups. An existence of left- or right-invariant measure was studied earlier
on topological groups in [19]. There was obtained a result, that from an existence of a left-
or right-invariant nontrivial measure on the topological loop, it follows that it is everywhere
dense in a locally compact loop. In particular, on locally compact core quasigroups left-invariant
measures were constructed in [20]. Core quasigroups are particular cases of quasigroups. General
topological quasigroups are studied in this article, as well as left or right quasigroups and loops.
It is worth to emphasize, that the class of left (or right) quasigroups is wider than the class of
quasigroups. Therefore this article contains new aspects in this area.

There are specific features of topological quasigroups in comparison with groups. This is
caused by a reason, that in the associative case for the topological group G, there exists either
left- or right-invariant uniformity on G compatible with its topology [3,5,21]. For the topological
quasigroup generally the uniformity need not be neither symmetric, nor left-, nor right-invariant
because of its nonassociativity.

∗ludkowski@mail.ru
c⃝ Siberian Federal University. All rights reserved
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In abstract harmonic analysis on groups a large role is played by invariant and quasiinvariant
measures. There is very little known about them in the nonassociative case. Therefore their
investigations on quasigroups is important for the development of abstract harmonic analysis
in the nonassociative case. The first section is devoted to this for smashed and twisted wreath
products of quasigroups. On the other hand, it permits to construct quasiinvariant or invariant
measures on a wide class of quasigroups. Moreover, the quasiinvariance of measures relative to
isotopies is investigated. Specific features are found for quasigroups in comparison with groups.
The second section deals with studies of ideals in the convolution algebra on a space of measures
with the help of invariant and quasiinvariant measures on the quasigroup. The convolution alge-
bra appears to be in general nonassociative because of the quasigroup nonassociativity. Minimal
ideals of the topological convolution algebra are investigated.

All main results of this article are obtained for the first time. Their applications are discussed
in the conclusion section.

We recall a definition in order to avoid any misunderstanding.

Definition 1. Let G be a set with multiplication (that is a single-valued binary operation)
G2 ∋ (a, b) 7→ ab ∈ G defined on G such that

(i) for each a and b in G a unique x ∈ G exists with ax = b.
The set G with multiplication satisfying condition (i) is called a left quasigroup. Symmetri-

cally is considered the case:
(ii) a unique y ∈ G exists satisfying ya = b.
The set G with multiplication satisfying condition (ii) is called a right quasigroup. Mappings

in (i) and (ii) are denoted by x = a \ b = Divl(a, b) and y = b/a = Divr(a, b) correspondingly.
If G is the left and right quasigroup, then it is called a quasigroup. If in addition

(iii) a neutral (that is unit) element exists eG = e ∈ G: eg = ge = g for each g ∈ G, then
the left (or right) quasigroup G with the unit element is called a left (or right correspondingly)

loop. If G is the left and right loop, then it called a loop (or a unital quasigroup). Assume that
G is the loop, C(G) is a center of the loop, Cm(G) ⊆ C(G), Cm(G) is a commutative group such
that (ab)c = t3(a, b, c)a(bc) for each a, b, c belonging to G, where t3(a, b, c) ∈ Cm(G). Then G is
called a metagroup.

Let T be a topology on a left (or right) quasigroup (or loop)G such that multiplicationG×G ∋
(a, b) 7→ ab ∈ G and the mapping Divl(a, b) (or Divr(a, b) correspondingly) are jointly continuous
relative to T , then (G, T ) is called a left (or right correspondingly) topological quasigroup (or
loop correspondingly). If G is the left and right topological quasigroup (loop), then it is called
a topological quasigroup (loop correspondingly).

It is supposed in this article that T is the T1 ∩ T3.5 topology, if something other will not be
specified. For subsets A and B in G by means of A − B is denoted their difference A − B =

= {a ∈ A : a /∈ B}.

Remark 1. The notation B(X) is used in this article for the Borel σ-algebra on a topological
space X, Fµ(X) denotes a completion of B(X) by means of |µ|, where µ is a measure on B(X)
with values in R̄ = [−∞,∞] or C, |µ| is a variation of the measure µ. Henceforth it assumed
that Fµ(X) ⊇ B(X), σ-additive measures are considered on σ-algebras, on locally compact
spaces Radon measures are investigated, if something other will not be specified. The measure
λ : Fλ(G) → R̄ or λ : Fλ(G) → C is called left-quasiinvariant (or left-invariant) relative to
H, if λLx is equivalent to λ (or λLx = λ correspondingly) for each x ∈ H, where H ⊆ G,
λLx(Ω) = λ(xΩ) for each Ω ∈ Fλ(G). For H = G "relative to G" is frequently omitted for short.

Definitions of smashed products and twisted wreath products are given in the appendix.
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1. Quasiinvariant measures on smashed products
of quasigroups

Theorem 1. Assume that A and B are locally compact left T1 quasigroups with nontrivial left-
quasiinvariant measures λA and λB both taking values either in R̄ = [−∞,+∞] or in C such that
λB is also quasiinvariant relative to ϕ1(a1) for each a1 ∈ A; C = A℘ξ1,ξ2,ϕ1,ϕ2,ϕ3B is a smashed
product of A and B, with (jointly) continuous smashing mappings ξi, ϕj for each i ∈ {1, 2}
and j ∈ {1, 2, 3}. Then a nontrivial left-quasiinvariant measure λC exists on C induced by λA
and λB.

Proof. In view of Theorem 5.3 in [17] C as the topological space A × B is supplied with the
Tychonoff product topology TC , consequently, C is locally compact, since A and B are locally
compact. Multiplication on C is given by the formula

µ((a1, b1), (a2, b2)) = ((a1a2), [(ξ1(a1, b1, a2)b
(a2)
1 )ξ2(a1, b1, a2)]{a1}ba12 ) for each a1, a2 in A;

b1, b2 in B, where
ba12 := ϕ1(a1)b2, b

(a2)
1 := ϕ2(a2)b1, b

{a1}
2 := ϕ3(a1)b2, ϕj : A → A(B), where A(B) denotes a

family of all homeomorphisms from B on B, ξi : A×B×A→ B and A×B ∋ (a, b) 7→ ϕj(a)b ∈ B

are (jointly) continuous mappings for each i ∈ {1, 2} and j ∈ {1, 2, 3}, (a1, b1) ∈ C, a product on
C is shortly denoted by (a1, b1)(a2, b2) instead of µ((a1, b1), (a2, b2)). From the Radon–Nikodym
and the conditions of this theorem it follows that there exist factors of a quasiinvariance (that is

Radon–Nikodym derivatives) dλA
(La, w1) :=

λLa

A (dw1)

λA(dw1)
, dλB

(ϕ1(a1), w2) :=
λ
ϕ1(a1)
B (dw2)

λB(dw2)
, and

dλB
(Lb1 , w2) :=

λ
Lb1

B (dw2)

λB(dw2)
, where λgB(W2) = λB(g(W2)) for a mapping g : B → B such that

g : FλB
(B) → FλB

(B), dλB
(g, w2) :=

λgB(dw2)

λB(dw2)
, Lb1b2 = b1b2 for each b1 and b2 belonging

to B, W2 ∈ FλB
(B), where FλB

(B) denotes a completion o the Borel σ-algebra B(B) relative
to the variation |λB | of the measure λB . Then it is possible to provide the product measure
λC = λA× λB on C by virtue of theorem 1 in Ch. 3, Sect. 5 in [14], since B(C) ⊃ B(A)×B(B).
For each f ∈ K(C,F) according to the Fubini theorem∫

C

f(L−1
(a1,b1)

x)λC(dx) =

∫
A

(∫
B

f((w1, w2))λ
Lβ(a1,b1,w1)

B (dwa12 )

)
λ
La1

A (dw1),

where L−1
c x = c \ x, x ∈ C, c ∈ C, w1 ∈ A, w2 ∈ B,

β = β(a1, b1, w1) = [(ξ1(a1, b1, w1)b
(w1)
1 )ξ2(a1, b1, w1)]{a1}, K(C,F) denotes the space of all

continuous functions h : C → F with a compact support, either F = R or F = C correspondingly.
Since λLa1

A is equivalent to λA, also λLb

B and λ
ϕ1(a1)
B are equivalent λB for each a1 ∈ A, b ∈ B,

then λL(a1,b1)

C is equivalent to λC . Moreover

dλC
(L(a1,b1), w) = dλA

(La1 , w1)dλB
(Lβ , w

a1
2 )dλB

(ϕ1(a1), w2),

where w = (w1, w2) ∈ C, w1 ∈ A, w2 ∈ B, β = β(a1, b1, w1). 2

Corollary 1. If the conditions of theorem 1 are satisfied and in addition λA and λB are left-
invariant, λϕ1(a1)

B = λB for each a1 ∈ A, then λC is left-invariant.

Example 1. In particular, ϕ1(a1) may be in theorem 1 compositions of left shift operators
of the form Lc1L

n
π(a1)

Lc2 with fixed c1 and c2, where π : A → B is a continuous mapping,
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LcLbx = Lc(Lbx), Lbx = bx, L−1
b x = b \ x, Ln+1

b = LbL
n
b for each a1 ∈ A, for each b, b1, c1,

c2, x belonging to B. From the left quasiinvariance of the λB it follows in this case, that it is
quasiinvariant relative to the transformations ϕ1(a1).

Theorem 2. Assume that a left topological loop C = D∆ϕ,η,κ,ξ
A F is smashed twisted wreath

product of D with F and (jointly) continuous smashed mappings ξ : A× F × A → C1 and ϕ, η,
κ, where F = BV , D and B are locally compact T1 metagroups, A is a submetagroup in D with
a finite discrete transversal set V for A in D with a continuous transversal mapping τ : D → V ,
C1 ↪→ C(D) ∩ C(B). Let λD and λB be nontrivial left-quasiinvariant measures taking values both
either in R̄ of in C, such that λB is also quasiinvariant relative to ϕ(a1) for each a1 ∈ A. Then
there exists a nontrivial left-quasiinvariant measure λC on C induced by λD and λB.

Proof. Since V is finite, then F is a locally compact T1 metagroup by Theorem 4 and Corollary
3 in [15]. From the continuity of τ : D → V it follows that the mapping ψ : D → A is continuous
by remark 1 in [16], since q = qψqτ , qψ = ψ(q), qτ = τ(q) for each q ∈ D, the mapping
D2 ∋ (q, r) 7→ q/r ∈ D is (jointly) continuous. By virtue of theorem 3 in [16] C is the locally
compact T1 ∩ T3 loop, since D are F locally compact, since V is finite and discrete. Moreover,
the local compactness and regularity imply that C Tychonoff T1 ∩ T3 1

2
by Theorems 3.3.11 and

3.2.6 in [21].
On the metagroup F the measure λF =

∏
v∈V (λB)v exists, where (λB)v = λB for each v ∈ V

by theorem 1 in Chapter 3, Section 5 in [14], since the set V is finite. Evidently the measure
λF is F left-quasiinvariant and also quasiinvariant relative to ϕ(a1) for each a1 ∈ A. Then
dλF

(Lx, y) =
∏
v∈V dλB

(Lxv
, yv), where y = {yv ∈ B : v ∈ V } ∈ F .

Multiplication on C has the form:
(d1, f1)(d2, f2) = (d1d2, ξ((d

ψ
1 , f1), dψ2 )f1f

{d1}
2 ),

where ξ((dψ1 , f1), dψ2 )(v) = ξ((dψ1 , f1(v)), dψ2 ) ∈ C1 for each d1 and d2 in D, f1 and f2 in F , v ∈ V ,
C1 ↪→ C(D) ∩ C(B), C(B) = Com(B) ∩N(B) is the center of the metagroup B, (d1, f1) ∈ C (see
remark 3 and theorem 3 in [16]), since by the conditions of this theorem ξ : A × F × A → C1,
in the considered case ξ is independent of f2. Moreover, f{d1}2 (v) = f

s(d1,v)
2 (v[d1\e]), s(d1, v) =

e/(v/d1)ψ, (aτ )[c] = (aτ c)τ for each a and c in D, v ∈ V , ba1 = ϕ(a1)b for each b ∈ B and
a1 ∈ A, A(B) denotes a family of all homeomorphisms from B onto B, ϕ : A → A(B); η, κ, ξ
and A×B ∋ (a1, b) 7→ ϕ(a1)b ∈ B are the (jointly) continuous mappings.

As a measure on C it is possible to take the product measure λC = λD × λF , consequently,
λC(W ) = λD(W1)λF (W2) for each W = W1 × W2, W1 ∈ B(D), W2 ∈ B(F ). Therefore
λ
L(d1,f1)

C (dw) = λ
Ld1

D (dw1)λ
Lβ

F (dw
{d1}
2 ) for each w = (w1, w2) ∈ C, w1 ∈ D, w2 ∈ F , (d1, f1) ∈ C,

where β = β(d1, f1, w1) = ξ((dψ1 , f1), wψ1 )f1. Hence for each f ∈ K(C,F) by virtue of the Fubini
theorem ∫

C

f(L−1
(d1,f1)

x)λC(dx) =

∫
D

(∫
F

f((w1, w2))λ
Lβ(d1,f1,w1)

D (dw
{d1}
2 )

)
λ
Ld1

D (dw1)

On the other hand, w{d1}
2 (v) = ϕ(e/(v/d1)ψ)(w2((v(d1 \ e))τ )) for each v ∈ V .

Therefore λF (U1 × · · · × Um) = λF (Ug(1) × · · · × Ug(m)) for each U1, . . . , Um
belonging to B(B) and each bijection g of the set {1, . . . ,m}, where m =

card(V ). Then dλF
(ϕ4(d1), w2) =

∏
v∈V dλB

(ϕ5(v, d1), w2(v)) for ϕ4(d1)w2 = w
{d1}
2 ,

ϕ5(v, d1)(w2(v)) = ϕ(e/((ϕ6(d1)v)/d1)ψ)(w2(v)), where ϕ6(d1)(v[(d1\e)]) = v for each v ∈
V . Thus the measure λ

L(d1,f1)

C (dw) is equivalent to λC(dw) and dλC
(L(d1,f1), w) =

dλD
(Ld1 , w1)dλF

(Lβ(d1,f1,w1), w
{d1}
2 )dλF

(ϕ4(d1), w2). 2
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Corollary 2. If the conditions of theorem 2 are satisfied and λD aand λB are left-invariant,
λ
ϕ(a1)
B = λB for each a1 ∈ A, then λC is left-invariant.

Remark 2. Examples of metagroups, satisfying the conditions of Theorem 2, are provided
in [15, 16] and with the help of theorems given there. Examples of left quasigroups are in [17].
For their construction it is possible to use not only topological quasigroups, but also topological
groups b subsequently construct topological left (and symmetrically right) quasigroups, loops
and metagroups with the help of smashed and twisted wreath products. In their turn, with the
help of Theorems 1, 2 and Corollaries 1, 2 this provides abundant families of locally compact
left (or right) quasigroups and loops with left- (or right-) quasiinvariant or invariant measures.
It also is possible to use topological isotopies according to the theorem given below.

Theorem 3. Assume that G = Q(A) and H = Q1(B) are topological left T1 quasigroups, which
are topologically isotopic: γA(x1, x2) = B(α1x1, α2x2) for each x1 and x2 in Q, where α1, α2 are
γ homeomorphisms of topological spaces Q and Q1. Assume also that λG is a measure left relative
to α−1

2 γ quasiinvariant on G. Then λG and isotopy (α1, α2, γ) induces a left- quasiinvariant
measure on H.

Proof. The measure λG and γ induce the measure λH(W ) = λG(γ−1W ) for each W ∈ B(Q1).

Then λH(γU) = λG(U) and λLb

H (γU) = λ
L

α
−1
1 b

G (α−1
2 γU) for each U ∈ B(Q) and b ∈ Q1, where

α−1
2 γU = α−1

2 (γ(U)). By the conditions of this theorem the measures λG(du), λLa

G (du) and

λ
α−1

2 γ
G (du) are equivalent for each a ∈ Q, where u ∈ Q. Therefore the measures λH(dw) and
λLb

H (dw) are equivalent for each b ∈ Q1, since a = α−1
1 b ∈ Q, where w ∈ Q1. Moreover

dλH
(Lb, w) = dλG

(Lα−1
1 b, α

−1
2 w)dλG

(α−1
2 γ, γ−1w). 2

2. Applications of invariant measures and ideals
in convolution algebras

Definition 2. Let G be a topological (left) T1 quasigroup, M(G,F) be a space of σ-additive
measures µ : Fµ(G) → F with a finite norm ∥µ∥ = |µ|(G) <∞, where F = R or F = C. For µ1

and µ2 belonging to M(G,F) the convolution is provided by the formula

(µ1 ∗ µ2)(Ω) =

∫
G

∫
G

χΩ(xy)µ1(dx)µ2(dy),

where χΩ(z) is the characteristic function of the subset Ω in G, χΩ(z) = 1 for each z ∈ Ω,
χΩ(z) = 0 for each z ∈ G− Ω, Ω ∈ Fµ(G).

Theorem 4. Assume that G is a topological left T1 quasigroup, µj ∈ M(G,F), j ∈ {1, 2}. Then
∥µ1 ∗ µ2∥ 6 ∥µ1∥∥µ2∥ and µ1 ∗ µ2 ∈ M(G,F).

Proof. For each Ω ∈ B(G) by virtue of the Fubini theorem∣∣∣ ∫
G

∫
G

χΩ(xy)µ1(dx)µ2(dy)
∣∣∣ 6 ∫

G

∣∣∣ ∫
G

χΩ(xy)µ1(dx)
∣∣∣|µ2|(dy) 6

6
∫
G

(∫
G

χΩ(xy)|µ1|(dx)

)
|µ2|(dy) = (|µ1| ∗ |µ2|)(Ω) 6 ∥µ1∥∥µ2∥, since x \ Ω ∈ B(G) for each

x ∈ G. Therefore
(µ1 ∗ µ2)(

∪∞
j=1 Ωj) =

∞∑
j=1

(µ1 ∗ µ2)(Ωj)

for each disjoint Ωj in B(G), Ωj1 ∩ Ωj2 = ∅ for each j1 ̸= j2 in N, with
∪∞
j=1 Ωj = Ω, since

χΩ(z) =
∞∑
j=1

χΩj
(z) for each z ∈ G. Then µ1 ∗ µ2 has an extension on Fµ1∗µ2

(G) ⊃ B(G). 2
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Proposition 1. Assume that G is a compact left T1 quasigroup, λ : Fλ(G) → [0, 1] is a
left-invariant measure, λ(G) = 1. Then Fλ is a one-dimensional left ideal in the algebra
(M(G,F),+, ∗).

Proof. For each Ω ∈ Fλ(G) and µ ∈ M(G,F) there is the equality µ ∗ λ(Ω) = λ(Ω)µ(G), since
µ ∗ λ(Ω) =

∫
G

λ(x \ Ω)µ(dx). 2

Theorem 5. Let G be a locally compact T1 quasigroup, λ : Fλ(G) → [0,∞] (and λ1 : Fλ1
(G) →

[0,∞]) be a nontrivial left- (or right- correspondingly) invariant measure, µ ∈ M(G,F); the
measure µ generates an one-dimensional left (or right) ideal in the algebra (M(G,F),+, ∗). Then
G is compact, the measure µ generates the one-dimensional (two-sided) ideal, µ(dx) =

γ

α(x)
λ(dx)

with a constant γ ̸= 0 in F, α : G→ F is a continuous bounded function, α(xy) = α(x)α(y) for
each x and y in G, λ(dx) = βλ1(dx) with a positive constant β.

Proof. If Fµ is the one-dimensional left ideal in M(G,F), then ν ∗µ = ανµ with αν ∈ F for each
ν ∈ M(G,F). In particular, δa ∗ µ = α(a)µ with α(a) ∈ F for each a ∈ G. Moreover

∥δa ∗ µ∥ = |α(a)|∥µ∥ 6 ∥δa∥∥µ∥ = ∥µ∥ by Theorem 4, consequently, α(a) is the bounded
function. For each a ∈ G and f ∈ C0(G,F) there is the equality∫

G
af(x)µ(dx) = α(a)

∫
G

f(z)µ(dz),

since δa ∗ µ(Ω) = µL
−1
a (Ω) = α(a)µ(Ω) for each Ω ∈ Fµ(G), where C0(G,F) denotes the set of

all continuous functions f : G → F such that for each 0 < ϵ < ∞ there exists a compact subset
K in G with |f(x)| < ϵ for each x ∈ G − K, where F = R or F = C, af(x) := f(ax). From
Theorem 5.2 in [17] it follows that α(a) is the continuous function, since∫

G

(af(x) − bf(x))µ(dx) = (α(a) − α(b))
∫
G

f(x)µ(dx)

for each a and b in G. Since Fµ is the one-dimensional left ideal, then ∃Ω ∈ Fλ(G), µ(Ω) ̸= 0,
consequently, α is the nonzero function.

From the proof above it follows that µL
−1
a (dx)/µ(dx) = α(a), consequently, µ is the left-

quasiinvariant measure. In view of the Riesz Theorem 7.2.8 in [4] and Remark 4.4 the measures
|µ|, λ and λ1 are regular. In view of Theorem 4 in [17] µ ≪ λ a function exists h ∈ L1(G,λ,F)

such that µ(dx) = h(x)λ(dx). Therefore h(a \ x) = α(a)h(x), since λ is left-invariant. Since
a(a \ x) = x is the quasigroup G, then µ(dx) =

γ

α(x)
λ(dx), where γ ̸= 0 is the constant in F.

Therefore α(az) = α(a)α(z) for each a and z in G. Thus the measure α(x)µ(dx) is left-invariant.
The function α(x) is bounded, consequently, λ(G) < ∞. Then M(f) :=

∫
G

f(x)λ(dx) is the

left-invariant mean on L1(G,λ,F), since λ is left-invariant. Moreover M(L1(G,λ,F)) ̸= 0.
It remains to prove that G is compact. Assume the contrary, that G is locally compact

noncompact left T1 quasigroup, M is the left-invariant mean on L1(G,λ,F). We take an open
subset V in G such that its closure clGV is compact. We choose b1 ∈ G, b2 ∈ G − b1V with
b2V ⊂ G − b1V , further by induction bn ∈ G −

∪n−1
j=1 bjV with bnV ⊂ G −

∪n−1
j=1 bjV , since G

is noncompact. The function fn =
n∑
j=1

L̂−1
bj
χV belongs to L1(G,λ,F), since clGV is compact,

n ∈ N, where L̂bf(x) = f(bx), L̂−1
b f(x) = f(b \ x) for each x ∈ G. Then for x ∈ G the condition

bj \ x ∈ V is equivalent to x ∈ bjV . On the other hand, (bjV ) ∩ (bkV ) = ∅ for each j ̸= k

according to the choice of b1, . . . , bn in G. Therefore either fn(x) = 1 or fn(x) = 0, consequently,
∥ 1
nfn∥ = 1

n and M(χV ) = 0, since M(L̂bf) = M(f) is equivalent to M(L̂−1
b f) = M(f) for each
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b ∈ G, f ∈ L1(G,λ,F). Thus, M(L1(G,λ,F)) = {0}. This gives the contradiction, consequently,
G is compact.

In view of proposition 1 Fλ is the left ideal, and symmetrically Fλ1 is the right ideal in
(M(G,F),+, ∗). Therefore λ1∗λ = pλ1 = qλ, where p and q are positive constants, consequently,
a positive constant exists β such that λ(dx) = βλ1(dx). 2

Conclusion

The results of this article can be used for the subsequent studies of the topological quasi-
groups and loops structure, homogeneous spaces and noncommutative manifolds related with
quasigroups and loops [11,12]. Besides applications of left- (or right-)invariant or quasiinvariant
measures on quasigroups and loops mentioned in the introduction it is interesting to mention pos-
sible applications to the mathematical control of ruling simultaneously functioning programmed
robots [18, 22], since they frequently are based on topologically-algebraic binary systems and
measures. Other very important applications are: representation theory of quasigroups and
loops, harmonic analysis on quasigroups and loops [1–3,5–8], mathematical physics, etc.

Smashed products of topological left quasigroups and smashed twisted wreath products of
topological metagroups were use in this article. On the other side, smooth quasigroups were con-
structed in [23] with the help of a generalization of the Lie group construction method such that
a composition law was dependent on transformation parameters and on transformed variables.
In particular, this was used on hypersurfaces described in the first class restrictions in a phase
space.

It is possible to formulate a question for subsequent studies. Whether will coincide an ex-
tended measure from the loop on an enveloping (by Sabinin) group with the Haar measure of
the enveloping loop? There different extension may be, while transformations of measures on
the loop and on the group are different, since loops are nonassociative.

3. Appendix

For convenience of readers definitions and a notation are recalled in this appendix from
works [15–17].
Definition 3. A topological left quasigroup prescribed by the conditions given below is de-
noted by Aξ1,ξ2,ϕ1,ϕ2,ϕ3B and it is called a smashed product of topological left quasigroups (with
smashing mappings ξ1, ξ2, ϕ1, ϕ2, ϕ3).

Conditions. Let
(i) (A, τA) and (B, τB) be topological left quasigroups,
(ii) ξi : A×B × A → B and A× B ∋ (a, b) 7→ ϕj(a)b ∈ B be (jointly) continuous mappings

for each i ∈ {1, 2} and j ∈ {1, 2, 3},
(iii) µ : (A×B)2 → A×B be a mapping such that
(iv) µ((a1, b1), (a2, b2)) = ((a1a2), [(ξ1(a1, b1, a2)b

(a2)
1 )ξ2(a1, b1, a2)]{a1}ba12 ) for each a1, a2 in

A; b1, b2 in B, where
(v) ba12 := ϕ1(a1)b2,
(vi) b

(a2)
1 := ϕ2(a2)b1,

(vii) b
{a1}
2 := ϕ3(a1)b2,

ϕj : A→ A(B), where A(B) denotes a family of all homeomorphisms from B onto B,
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(viii) the Cartesian product C = A× B is suppliedwith the Tychonoff product topology τC
and the mapping µ.

Remark 3. Let A and B be topological metagroups, C be a commutative group such that
(i) Cm(A) ↪→ C, Cm(B) ↪→ C, C ↪→ C(A) and C ↪→ C(B),

where Cm(A) denotes a minimal closed subgroup in C(A) containing tA(a, b, c) for each a, b and
c in A.

An equivalence relation Ξ is considered on A×B:
(ii) (γv, b)Ξ(v, γb) and (γv, b)Ξγ(v, b) and (γv, b)Ξ(v, b)γ

for each v in A, b in B, γ in C.
Let (iii) ϕ : A→ A(B) be (jointly) continuous (single valued) mappings,

where A(B) denotes a family of all homeomorphisms from B onto B, satisfying conditions
(iv)–(viii) given below. If a ∈ A and b ∈ B, then it will be shortly written ba instead of ϕ(a)b,
where ϕ(a) : B → B. Let also

ηA,B,ϕ : A×A×B → C, κA,B,ϕ : A×B ×B → C
and ξA,B,ϕ : ((A×B)/Ξ) × ((A×B)/Ξ) → C

are (single valued jointly) continuous mappings shortly written by η, κ and ξ such that
(iv) (bu)v = bvuη(v, u, b), eu = e, be = b;
(v) η(v, u, γb) = η(v, u, b);
(vi) (cb)u = cubuκ(u, c, b);
(vii) κ(u, γc, b) = κ(u, c, γb) = κ(u, c, b);
(viii) κ(u, γ, b) = κ(u, b, γ) = e;
ξ((γu, c), (v, b)) = ξ((u, c), (γv, b)) = ξ((u, c), (v, b))

ξ((γ, e), (v, b)) = e and ξ((u, c), (γ, e)) = e

for each u and v in A, b, c in B, γ in C, where e denotes the unit element in C, A and B.
Let D be a topological metagroup, A be a submetagroup in D, V be a transversal set for A

in D. Then, as it is known,
(ix) ∀a ∈ D, ∃1s ∈ A, ∃1b ∈ V, a = sb.
Then b in the decomposition (ix) is denoted by b = τ(a) = aτ and s = ψ(a) = aψ, where τ

and ψ are shortened notations for τA,D,V and ψA,D,V . Thus (single-valued) mappings exist
(x) τ : D → V and ψ : D → A.
Assume that mappings τ and ψ are continuous.
(xi) If b = aτ , then e/b is also denoted by ae/τ , and b \ e is also denoted by aτ\e.
We put
(xii) (aτ )[c] := (aτ c)τ for each a and c in D.

Remark 4. Let B and D be topological metagroups, A be a submetagroup in D, V be the
transversal set for A in D. Assume also that conditions (i)-(viii) are satisfied in remark3 for A
and B. Then a topological metagroup exists

(i) F = BV , where BV =
∏
v∈V Bv, Bv = B for each v ∈ V .

We put Thf = fh for each f ∈ F in h : V → A. The we define
Ŝd(ThfJ) = ThS−1

d
fSdJ ,

where J : V × F → B, J(f, v) = fJv, SdJv = Jv[d\e] for each d ∈ D, f ∈ F and v ∈ V . Let
also for each f ∈ F , d ∈ D

(ii) f{d} = Ŝd(TgdfE),
where
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(iii) s(d, v) = e/(v/d)ψ, gd(v) = s(d, v),
fEv = f(v) for each v ∈ V

(see also (ix) and (xii) in Remark 3).

Definition 4. Assume that the conditions of Remarks 3 and 4 are satisfied, and on C = D×F

a binary operation is provided by the formula:
(i) (d1, f1)(d, f) = (d1d, ξ((d

ψ
1 , f1), (dψ, f))f1f

{d1}),
where ξ((dψ1 , f1), (dψ, f))(v) = ξ((dψ1 , f1(v)), (dψ, f(v))) for each d and d1 in D, f in f1 in F ,
v ∈ V , where C = D×F is supplied with the Tychonoff product topology. Then the topological
loop C supplied with this multiplication is called a smashed twisted wreath product of D with
F . It is denoted by C = D∆ϕ,η,κ,ξF .
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Меры на сокрушающих произведениях квазигрупп
и их алгебры

Сергей В. Людковский
Российский технологический университет

Москва, Российская Федерация

Аннотация. Исследуются квазиинвариантные и инвариантные меры на сокрушающих и скручен-
ных венечных произведениях квазигрупп. Также изучается квазиинвариантность мер относительно
изотопий. Найдены специфические особенности для квазигрупп по сравнению с группами. Изуча-
ются пространства мер. Алгебры сверток в общем случае оказываются неассоциативными из-за
неассоциативности квазигрупп. Исследуются идеалы топологических алгебр сверток.

Ключевые слова: квазигруппа, мера, алгебра, свертка, топология, инвариантность.
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