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Processes on the Composite Synthesis on the Substrate

Anna G. Knyazeva∗

Olga N. Kryukova†

Institute of Strength Physics and Materials Science
Siberian Branch of the Russian Academy of Sciences

Tomsk, Russian Federation

Received 15.09.2024, received in revised form 20.10.2024, accepted 26.11.2024

Abstract. A coupled mathematical model for the process of a composite synthesis from a powder
mixture under laser heating conditions is presented. The model takes into account two phenomena that
are neglected in traditional models of surface treatment and 3D technologies. They are the heat transfer-
deformation behaviour and heat release in chemical reactions. The formation of composition is described
by a simplified reaction scheme that includes the total reaction leading to the formation of hardening
particles and the total reaction of matrix formation. The influence of stress work on reaction rates is
taken into account. The stress-strain state is described in the quasi-static approximation. As a result,
it is shown that coupling of processes of different physical nature is important both for determining
composition of the composite and for estimating the associated stresses and strains.

Keywords: coupled model, composite synthesis, associated stresses, controlled mode.

Citation: A.G. Knyazeva, O.N. Kryukova, Influence of Coupling of Thermokinetic and
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Introduction

A large number of publications are devoted to process modelling in modern technologies.
The authors often repeat each other and use the term "coupled models" unnecessarily. Coupled
models should be understood as such models in which the interaction between physical fields
is taken into account. There are many examples of coupled models in physics and continuum
mechanics. One can mention models of solid-phase combustion theory in which the interaction
of heat transfer and chemical reactions is taken into account [1]. Another example is solid-state
diffusion models which take into account the interaction of diffusion of atoms and vacancies,
the interrelation between diffusion and stresses [2]. However, when modelling the synthesis of
new materials, it is of interest to study the stress and strain fields accompanying the synthesis.
Together with the external load they influence the kinetic patterns of phase formation through
different channels. Despite the fact that term "coupled model" is used in a huge number of
publications, there are not many real coupled models. Results of modelling of the temperature
field, residual stresses, processes in the melt bath (singled out as an independent object), crys-
tallization in meso-volumes, powder melting in the beam, mechanical behaviour of synthesized

∗anna-knyazeva@mail.ru https://orcid.org/0000-0002-9765-7695
†okruk@ispms.ru https://orcid.org/0000-0002-7522-0249

c⃝ Siberian Federal University. All rights reserved
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objects, effective properties from experimentally obtained structural data were presented [3–5].
The aim of this paper is to demonstrate the role of different channels of interaction between
processes of different physical nature within the model of synthesis of composite coating on a
substrate.

1. General problem formulation

Let us assume that under experimental conditions the mixture of powders from which a
coating or a layer of three-dimensional product is formed under the governing of a moving heat
source is freely poured on a flat substrate. Chemical reactions may occur in the mixture of
powders. Reactions are accompanied by thermal effects. When the melting temperatures are
reached the liquid phase appears. Sometimes its appearance in large quantities is undesirable
as it may lead to splashing and other negative effects. Therefore, it is convenient to carry out
the process in such a way that the area occupied by the liquid phase is small compared to
the size of the whole sample or that the proportion of liquid phase anywhere in the sample is
negligible. In this case it is possible to neglect melting effects and consider solid-phase processes.
Then conventional description of thermokinetic phenomena requires heat conduction equation
and kinetic equation:

ρc
∂T

∂t
= −∇ · Jq +Wch +Wext; (1)

dηi
dt

=
∑
(k)

νikΦk, (2)

where T is the temperature; t is time; ρ is the density; c is the isobaric heat capacity; Jq is the
heat flux satisfying the Fourier law Jq = −λT∇T ; λT is the heat transfer coefficient; Wch is
the total chemical heat release, Wch =

∑
(k)QkΦk; Qk is the heat effect of k -reaction (number

of which r); Φk is the k -th reaction rate; ηi is the concentration of i -component; νik is the
stoichiometric coefficient of i -component in k -reaction; Wext is the heat source associated with
heating by an external energy source (laser, electron beam, electric arc, plasma) which in general
case has limited size and it moves along the surface on some specified trajectory.

The boundary conditions at x = 0; x = Lx; y = 0; y = Ly and at the bottom surface of the
substrate are related to heat loss by radiation and/or convection. For example, one can write
for x = 0

λT
∂T

∂x
= αL (T − Te) + σ0εL

(
T 4 − T 4

w

)
, (3)

where Te is the environment temperature; Tw — is the vacuum chamber wall temperature (if the
process is carried out in the chamber); αL is the heat loss coefficient; εL — surface emissivity;
σ0 — Stefan-Boltzmann constant.

When synthesis process is described in detail then properties can depend on temperature,
composition and porosity. However, in the vast majority of cases such relationships are unknown.
Then one should use some effective values. The influence of these values on the process can be
studied in special way [6].

However, considering dynamics of synthesis of new materials the role of the associated me-
chanical processes is of great interest. These processes are not reflected in (1), (2). In general, in
order to take into account the properties of the substrate or surrounding layers and, at the same
time, the stress-strain state in the model of controlled coating synthesis three-dimensional heat
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conduction equations together with equations of equilibrium are required. However, it leads to
cumbersome formulations and it is problematic for parametric studies.

Let us take advantage of the fact that a thin flat substrate together with the coating can be
considered as a flat (two-dimensional) object whose thickness is much smaller than its width and
length. Then averaging the three-dimensional equations over the thicknesses of the substrate
and the coating, one can consider a plane stress state and a two-dimensional problem [7–9]. In
this case, the two-dimensional heat conduction equation takes the following form

(cερ)eff
∂T

∂t
= λT,eff

(
∂2T

∂x2
+
∂2T

∂y2

)
+
hRWch +H

hS + hR
+
Wext,eff

hS + hR
− 3 (KαT )eff T

∂εkk
∂t

. (4)

Equation (4) contains effective properties (index "eff ") that take into account the properties and
thicknesses of the powder layer and the substrate [7] as well as two new terms. One of them
takes into account heat losses from the surfaces of the substrate and coating:

H

hS + hR
=

αeff
hS + hR

(T − T0) +
σ0εeff
hS + hR

(
T 4 − T 4

w

)
= α

′

eff (T − T0) + σ0ε
′

eff

(
T 4 − T 4

w

)
,

where αeff , α
′

eff — effective heat transfer coefficients εeff , ε
′

eff — effective emissivities of sur-
faces, hS and hR — substrate and powder layer thicknesses; T0 — temperature of the environment;
Tw — temperature of the walls with which the heat is exchanged by radiation.

The second term 3KeffαT,eff
T∂εkk/∂t also contains effective properties (bulk elastic modulus

Keff and linear thermal expansion coefficient αT,eff ). It reflects the coupling of heat transfer
and deformation processes. Chemical reactions take place only in the powder. Then multiplier
hR/ (hS + hR) can be accounted for as corrections to the thermal effects of the reactions Q

′

k =

hRQk/ (hS + hR). The external heat source can also be modified. For example, in the case of a
laser it is

W
′

ext,eff =
Wext,eff

hS + hR
=

(1− fL)
hS + hR

W0

kSL
f (x, y) = q0f (x, y) ,

where SL — effective heating spot area; W0 — laser power; fL — reflection coefficient; k —
concentration factor (or correction factor); q0 — effective power density of the heat source; type
of function f (x, y) depends on the mode and frequency of scanning. In this form (with the
introduction of q0 and f (x, y)), the source corresponds to any of the aforementioned movable
heat sources. In the model (4) that takes into account the coupling of thermal and mechanical
processes it is used not isobaric (or isochoric) heat capacity but heat capacity at constant strains
cε.

2. Equilibrium problem

To determine deformations εij one needs to solve the equilibrium problem of a planar object.
For the plane stress state the following relations are true

σzz = 0, σxy = σxz = σyz = 0, (5)

ε =

∣∣∣∣∣∣
εxx εxy 0

εyx εyy 0

0 0 εzz

∣∣∣∣∣∣ . (6)

Then there are two equations of equilibrium:

∂σxx
∂x

+
∂σxy
∂y

= 0;
∂σyx
∂x

+
∂σyy
∂y

= 0. (7)
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Components of the strain tensor are related to components of the displacement vector by
Cauchy relations

εxx =
∂ux
∂x

; εyy =
∂uy
∂y

; εxy =
1

2

(
∂ux
∂y

+
∂uy
∂x

)
, (8)

where ux, uy — displacement vector components.
The additional relations are the equation

∂2εxx
∂y2

+
∂2εyy
∂x2

= 2
∂2εxy
∂x∂y

. (9)

and the Duhamel–Neumann relations

σij = 2µeffεij + δij [λeffεkk − ⟨Kω⟩] , (10)

where λ, µ — Lamet coefficients (K = λ+ 2µ/3), i, j = x, y, z; ω is a function of concentrations
and temperature:

ω = 3

[
αT (T − T0) +

n∑
k=0

αk (ηk − ηk0)

]
, (11)

αk — concentration expansion coefficients; index "0" refers to the undeformed state; n — number
of components; δij — Kronecker delta: δij = 1, if i = j and δij = 0, if i ̸= j.

Designation ⟨Kω⟩ means averaging over coating and

⟨Kω⟩ = 1

hS + hR
[KSwShS +KRwRhR] =

=
KShSαS +KRhRαR

hS + hR
(T − T0) +

hRKR

hS + hR

n∑
k=0

αk (ηk − ηk0) =

= Keff

[
αT,eff (T − T0) +

n∑
k=0

αk,eff (ηk − ηk0)

]
= Keffωeff .

In what follows index «eff» and dash «’» in properties and effective parameters are omitted
for simplicity.

Then for the plane stress state one can find from (10) that

εxx =
σxx
2µ
−
[
λ

2µ

σxx + σyy
3K

− ω

3

]
; εyy =

σyy
2µ
−
[
λ

2µ

σxx + σyy
3K

− ω

3

]
; (12)

εzz = −
[
λ

2µ

σxx + σyy
3K

− ω

3

]
; εxy =

σxy
2µ

. (13)

The strain tensor and the stress tensor are symmetric, εxy = εyx.
After simple transformations [9] one can obtain from (2), (8) and (9) the system of equations

∆σkk = − Kµ

λ+ µ
∆ω, ∆σyy =

∂2σkk
∂x2

, ∆σxy = −∂
2σkk
∂x∂y

. (14)

The remaining component of the stress tensor follows from the obvious relation σxx = σkk −
σyy. Components of the strain tensor follow from (12)–(13).

At the initial moment of time t = 0

σij = 0; εij = 0. (15)

Since the plate is free on the substrate, the stresses on all its surfaces are zero. However, any
end fixation conditions can be set in the model.
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3. Kinetics of composite formation

Suppose that a composite material is synthesized on a substrate from a mixture of powders
in which the formation of strengthening particles occurs simultaneously with the formation of
the matrix composition. It is assumed, as in [6, 9], that the process of composite synthesis can
be described by two successive-parallel stages: one of the products of reaction P2, in which
strengthening particles P1 are formed, goes to the formation of matrix P according to some total
reaction:

2X → P1 + 2P2, X + 2P2 → P.

The presence of different components in the initial mixture X affects the rates of total stages.
The rate of the first reaction is Φ1, second — Φ2.

Hereinafter concentrations of components for the written out total reaction scheme is denoted
by the same letters as the symbols in this scheme. Then system of kinetic equations (2) has the
following form

dP1

dt
= Φ1,

dP2

dt
= 2 [Φ1 − Φ2] ,

dP

dt
= Φ2. (16)

The total reagent X = 1− P1 − P2 − P .
It is assumed that reaction rates depend on concentrations according to the acting masses

law and on temperature according to the Arrhenius law

Φ1 (T ) = k10W1 (T )X
2; Φ2 (T )2 = k20W2 (T )P

2
2X,

W1 (T ) = exp

(
−Ea1
RT

)
, W2 (T ) = exp

(
−Ea2
RT

)
,

where k10 and k10 are pre-exponential factors, Ea1 and Ea2 are activation energies of total
reactions, R is the universal gas constant.

Consequently, the total chemical heat release in reactions is written as follows Wch = Q1Φ1+

Q2Φ2, where Qk are heat effects of reactions 1 and 2.
The rate of reactions involving solids can depend not only on temperature but also on stresses.

A reaction can be activated not only by changing internal energy but also by mechanical work.
Then [10]

W1 = exp

[
−Ea1 − kσ1Π

RT

]
, W2 = exp

[
−Ea2 − kσ2Π

RT

]
, (17)

where kσ1, kσ2 are coefficients of sensitivity of reaction rates to mechanical work (proportional
to activation volumes); Π = − (σxxεxx + σyyεyy + 2σxyεxy) — mechanical work.

As a result, the heat conduction equation takes the form

cερ
∂T

∂t
= λT

(
∂2T

∂x2
+
∂2T

∂y2

)
+Q1Φ1 +Q2Φ2 −H +Wext − 3KαTT

∂εkk
∂t

. (18)

Next, let us assume that Wext = q0 exp
(
−
(
(x− V t)2 + y2

)
/a2t
)
, H = αeff (T − T0) +

σ0ε0(T
4 − T 4

w).

Thus, the thermokinetic problem involves kinetic equations (16) and heat conduction equation
(18). Conditions for this part of the problem are

t = 0 : T = T0, X = 1, P = P1 = P2 = 0;

y = 0 : ∂T/∂y = 0, x = 0, ∞ : ∂T/∂x = 0, y →∞ : ∂T/∂y = 0.
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4. Problem in dimensionless form

The nature of processes occurring in the plate depends on the ratio of different physical scales
which in turn depend on the properties characterizing different physical processes. Properties
in the process of reactions continuously change, and it is impossible to find data to describe the
change of properties so effective properties were introduced above. Further, in order to study
phenomena qualitatively, it is advisable to switch to dimensionless variables. They significantly
reduce the number of unknown quantities and allow us to develop a convenient algorithm for the
numerical realization of the model.

Let us introduce dimensionless variables

θ =
T − T∗
T∗ − T0

, τ =
t

t∗
, ξ =

x

x∗
, η =

y

x∗
, eij =

εij
ε∗
, sij =

σij
σ∗
, Π̄ =

Π

ε∗σ∗
,

where

T∗ =
Q1

cρ
+ T0, t∗ =

cρRT 2
∗

k01Ea1Q1
exp

(
Ea1
RT∗

)
, x∗ =

√
λt∗
cρ

,

σ∗ = 3KαT (T∗ − T0) , ε∗ =
3KαT (T∗ − T0)

2µ
.

As a result, the problem takes the form similar to [9]

∂θ

∂τ
=

[
∂2θ

∂ξ2
+
∂2θ

∂η2

]
+

1

θ0
Φ̄1 + Schzch

1

θ0
Φ̄2+f1 − Sb

[(
θ + σ−1

)4 − (σ−1 − θw
)4]−

−Bi (θ + 1)−
(
θ + σ−1

)
κ−1δε

∂ekk
∂τ

,

(19)

dP

dτ
= γΦ̄1;

dP1

dτ
= 2γ(Φ̄1 − Φ̄2);

dP2

dτ
= γΦ̄2, (20)

∆skk = − κ

2− κ
∆w̄; ∆sηη =

∂2skk
∂ξ2

; ∆sξη =
∂2skk
∂ξ∂η

; sξξ = skk − sηη. (21)

At the initial moment of time

τ = 0 θ = −1; X = 1, P1 = 0, P2 = 0, sij = 0. (22)

Boundary conditions for the thermokinetic problem are

ξ → 0, Lξ :
∂θ

∂ξ
= 0; η → 0, Lη :

∂θ

∂η
= 0; (23)

and for the equilibrium problem are

ξ = 0, ξ = Lξ : sij = 0; η = 0, η = Lη : sij = 0. (24)

It is assumed in (19), (20) that

f1 = Se exp

(
−
(
ξ − V̄ τ

)2
+ η2

δ2t

)
;

Φ̄1 = X2 exp

[
θσ − δεA1Π̄

β (1 + θσ)

]
; Φ̄2 = P 2

2X exp

[
θσ + ek − δεA2Π̄

β (1 + θσ)

]
.
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ekk = eξξ + eηη + eςς ; Π̄ = − (eξξsξξ + eηηsηη + 2eξηsξη) ,

w̄ = [(θ + 1) + g1 (P1 − P10) + g2 (P2 − P20) + g0 (P − P0)] .

The remaining values are also reduced to dimensionless form.
In general, solution of the problem depends on a large number of parameters. Their definition

in terms of physical scales and the ranges of change is given in Tab. 1. All parameters of
the problem have a clear physical meaning and they are described in [6, 9]. The algorithm of
numerical solution of the problem is described there and the role of chemical reactions in the
total values of stresses and strains is demonstrated. However, some important aspects of the
problem formulation are not reflected there.

Ranges of variation of dimensionless parameters were determined using literature data on
the properties of various substances (Ti, Al, Cr, Fe oxides) and parameters of heat sources and
kinetic constants (q0,V ,Eai, Qi, k0i) [9].

Table 1. Parameters of the model and their ranges of variation

Dimensionless
parameter

Range of variation
of dimensionless
parameter

Dimensionless
parameter

Range of variation
of dimensionless
parameter

γ =
(cρ)SRT

2
∗

Ea1Q1
γ = 0.009÷ 0.1 Sch = Q2

Q1
Sch = 0.1÷ 1

σ = T∗−T0

T∗
σ = 0.3÷ 0.9 zch = k2

k1
zch = 10−6 ÷ 106

θ0 = σ
β , β = Ea1

RT∗
θ0 = 4÷ 15 ek = 1− Ea2

Ea1
ek = 0÷ 0.7

Sb =
t∗σ0ε0(T∗−T0)

3

cSρS
Sb = 10−6 ÷ 10−4 Se =

q0
h

t∗
(T∗−T0)cSρS

Se = 10−8 ÷ 103

Bi = αeff
t∗

cSρS
Bi = 0÷ 4 δε =

(3KαT )2

2µ
(T∗−T0)

cρ δε = 0÷ 0.1

θw = T∗−Tw

T∗−T0
θw = 0.4÷ 0.9 δt = at/x∗ δt = 0.03÷ 105

gi =
(αi−αx)
αT (T∗−T0)

gi = −4÷ 4 V̄ = V t∗/x∗ V̄ = 10−8 ÷ 103

A1 = kσ1Q1

Ea1

A2 = kσ2Q1

Ea1
A = 0÷ 20 – –

5. Analysis of results

In the course of calculations, parameters were varied within a fairly wide range. In the
examples presented below, some of the parameters were fixed [9]: zch = 100, ek = −0.2, A = 0.4,
g0 = 3.72, g1 = −0.62, g2 = 3.24; V̄ = 0.25, Se = 2.5, KC = 1; Sch = 0.5, δt = 2, σ = 0.5,
β = 0.025, γ = 0.035, Sb = 0.0015,

The synthesis control conditions are fixed. To illustrate the interrelation of processes of
different nature let us limit ourselves to a single pass. For chosen control parameters for a
single pass after the unsteady stage the process changes to a stationary regime in which the
temperature values, the shape of temperature distributions and the accompanying stress and
strain distributions remain practically unchanged. However, this cannot be stated for multi-
pass processing. The dynamics of the process for different situations is shown in [6–9] and it
is not duplicated here. The composition of the composite behind the laser beam, i.e., where
the external source is absent, no longer changes. This "quasi-stationary" composition depends
both on parameters characterizing the processing conditions and on the interaction of different
physical processes.
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This is illustrated in Fig. 1. The higher parameter Bi the greater heat loss, the lower tem-
perature and, obviously, the lower yield of the reaction product (Fig. 1 a). The higher sensitivity
coefficients to mechanical work the faster reactions start and the higher yield of products.

a b

Fig. 1. Time dependence of composition at the point (x=25, y=0) for various conditions of
heat exchange with the environment (a) and for various relationships between reaction rate and
mechanical work (b). Parameters are δε = 0.05, gk ̸= 0. In figure (a) δk = 0.05, solid lines —
Bi = 0; dashed lines — Bi = 0.1; dotted-lines — Bi = 0.5. In figure (b) δε = 0.05; solid lines —
δk = 0; dashed lines — δk = 0.05; dotted-lines — δk = 0.25; dashed-dotted-lines — δk = 0.5

The values of stresses and strains also depend significantly on the model parameters
(Figs. 2–4). With increasing heat losses (curves 1–3) in Fig. 2 a,b stresses and strains decrease
due to decreasing temperature, decreasing size of the region where gradients are significant, and
slowing down of chemical reactions. The maximum corresponds to the coordinate of the heat
source position at a given time. The behaviour of diagonal components of tensors is qualitatively
similar to that of invariants skk and ekk. The shear stresses and strains at the chosen set of
parameters are much smaller and their behaviour is different from that of diagonal components
(Fig. 2 c,d).

The shape of curves shown in Fig. 2 a,b corresponds to the qualitative temperature distri-
bution (Fig. 3). For Bi = 0 (curves 1) the sample warms up in front of the beam due to heat
conduction and initiated chemical reactions, and since there are no heat losses from the end the
heat is accumulated. Although there are edge effects associated with overheating in experimental
studies, Bi = 0 hardly corresponds to laser treatment. For Bi = 0.1 (curves 2) temperature is
much lower but heat conduction still favours heating in front of the heat source which promotes
preheating. For Bi = 0.5 (curves 3) a temperature profile typical for quasi-stationary laser
treatment is observed.

Fig. 4 illustrates the role of concentration stresses and strains which can be comparable
to thermal stresses in absolute value [9]. For selected values of parameters the consideration
of concentration stresses leads to an increase in the total value of stresses and strains. Shear
stresses and strains are highlighted in Fig. 4 c,d

As noted above, there are two types of coupling in the heat conduction equation. It is found
that neglecting one of them also changes the result. Thus, if there is no coupling in the traditional
sense (Fig. 5, left, τ = 30) but the coefficient of sensitivity of reaction rates to mechanical work is
not equal to zero the distributions of all physical quantities along the coordinate are qualitatively
and quantitatively different from those when coupling is fully taken into account (Fig. 5, right,
τ = 60). The second maximum in stresses and strains is associated with the acceleration of
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a b

c d

Fig. 2. Distributions along the axis of laser motion at time τ=60 of the first invariants of stress
(a) and strain (b) tensors and shear components (c) and (d) of tensors. Parameters are δε = 0.05,
δk = 0.05; gk ̸= 0; 1 — Bi = 0; 2 — Bi = 0.1; 3 — Bi = 0.5

Fig. 3. Temperature distribution at τ = 40 for various conditions of heat exchange with the
environment 1 — Bi = 0; 2 — Bi = 0.1; 3 — Bi = 0.5. δε = 0.05, δk = 0.05; gk ̸= 0

reactions in front of the moving heat source due to mechanical work. Note that composition for
these variants is also different (not shown in the figures). More interesting results are obtained
in coupled models when reverse stages of chemical reactions are taken into account.

Conclusion

The paper describes a model of controlled synthesis on a substrate. It is shown that the
model has several channels of interaction between different physical phenomena accompanying
the synthesis. Even if it is assumed that properties do not depend on composition and tem-
perature it is possible to identify features of coupled models useful for process control in real
conditions. For example, acceleration of reactions in front of a heat source. Note that such an
approach to study dynamics of synthesis of new materials can be useful for various variants of
combined technologies [11–13].
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a b

c d

Fig. 4. Distributions along the axis of laser motion at time τ=60 of the first invariants of stress
(a) and strain (b) tensors and shear components (c) and (d) of tensors. Parameters are δε = 0.05,
δk = 0.05. In figure (a): 1 — sξξ, 2 — sηη, 3 — skk, 4 — sξη. In figure (b): 1 — eξξ, 2 — eηη,
3 — eςς , 4 — ekk, 5 — eξη. Solid lines — gi = 0; dotted lines — gi ̸= 0

a b

c d
Fig. 5. Distributions along the axis of laser motion of the first invariants of stress (a, b) and
strain (c, d) tensors. In figures (а, b) 1 — sξξ, 2 — sηη, 3 — skk, 4 — sξη; δε = 0, solid line —
δk = 0.25, dotted line — δk = 0.5. In figures (c, d): 1 — eξξ, 2 — eηη, 3 — eςς , 4 — ekk, 5 — eξη;
δε = 0.05. Solid lines — δk = 0.05, dotted lines — δk = 0.25
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Влияние связанности термокинетических и механических
процессов на синтез композита на подложке

Анна Г.Князева
Ольга Н. Крюкова

Институт физики прочности и материаловедения
Сибирское отделение Российской академии наук

Томск, Российская Федерация

Аннотация. Представлена связанная математическая модель процесса синтеза композита из по-
рошковой смеси в условиях лазерного нагрева. Модель учитывает два явления, которыми пре-
небрегают в традиционных моделях обработки поверхности и 3D-технологий: взаимное влияние
теплопереноса и деформации и выделение тепла в химических реакциях. Формирование состава
описывается упрощенной схемой реакций, включающей суммарную реакцию, приводящую к об-
разованию упрочняющих частиц, и суммарную реакцию формирования матрицы. Учтено влияние
работы напряжения на скорость реакции. Напряженно-деформированное состояние описывается в
квазистатическом приближении. В результате показано, что связанность процессов различной фи-
зической природы важна как для определения состава композита, так и для оценки сопутствующих
синтезу напряжений и деформаций.

Ключевые слова: связанная модель, синтез композитов, сопутствующие напряжения, контроли-
руемый режим.
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Abstract. Two models of closed microecosystem "algae–heterotrophic bacteria" are considered in this
paper. Mathematical models are the Cauchy problem for system of non-linear ordinary differential
equations. To develop models the Liebig’s law of the minimum is consistently used for both specific
rate of biomass growth and specific mortality rate of algae and bacteria cells. To describe the specific
rate of substrate utilization by algae and bacteria the Andrew model (substrate inhibition) is used. It is
assumed that carbon and nitrogen are main biogenic elements. Both models predict stationary state of
microecosystem «Clorella vulgaris Pseudomonas sp.» that is in reasonable agreement with experimental
data. Stability of the obtained stationary state is examined by means of Lyapunov’s indirect method
and Lyapunov’s direct method based on the proposed form of Lyapunov function.
Keywords: mathematical modelling of ecosystems, closed ecosystem, algae, heterotrophic bacteria,
stationary state, stability, Lyapunov indirect method, Lyapunov direct method.
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1. Notations

x — biomass concentration of algae model cells, g/l
y — biomass concentration of bacteria model cells, g/l
µx, µy — specific growth rate of biomass (algae, bacteria), 1/h
µx,max, µy,max — maximal specific growth rate of biomass (algae, bacteria), 1/h
dx, dy — specific mortality rate of cells (algae, bacteria), 1/h
dx,min, dy,min — specific mortality rate of of cells at optimal conditions (algae, bacteria), 1/h
dx,max, dy,max — specific mortality rate of of cells in the absence of nutrition (algae, bacteria),

1/h
q
(c)
x , q

(c)
y — specific consumption rates of carbon (algae, bacteria), 1/h

q
(n)
x , q

(n)
y — specific consumption rates of nirigen (algae, bacteria), 1/h

q
(c)
x,max, q

(c)
y,max — maximal specific consumption rates of carbon (algae, bacteria), 1/h

q
(n)
x,max, q

(n
y,max — maximal specific consumption rates of nirogen (algae, bacteria), 1/h

C
(x)
max, C

(y)
max — carbon concentration whereby µx,max and µy,max are achieved (algae, bacte-

ria), 1/h
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N
(x)
max, N

(y)
max — nitrogen concentration whereby µx,max and µy,max are achieved (algae, bac-

teria), 1/h
γxc, γxn — stoichiometric coefficients for model cells of algae
γyc, γyn — stoichiometric coefficients for model cells of bacteria
Cm, Nm — concentration of mineral forms of carbon and nitrogen in water, g/l
Cb, Nb — concentration of biological forms of carbon and nitrogen (proteins, lipids, carbohy-

drates) in water, g/l
e — growth efficiency of heterotrophic bacteria

2. Introduction

Closed ecological systems (CES) constitute self-replenishing ecosystems which receive energy
from outside but do not exchange matter with the outside environment. These systems have
a number of applications. They are unique tools for studying fundamental processes and in-
teractions in ecosystems. They also provide a basis for creating life support systems for space
exploration. To gain insight into the functioning of CES mathematical models can be used.
The elaboration of main principles of constructing mathematical models can be conveniently
performed on the basis of closed microecosystems. Microecosystem (MES) is a small-scale, sim-
plified, often laboratory based experimental ecosystem.

Mathematical models often represent the closed ecosystem as a set of first-order autonomous
differential equations. Models based on so called flexible metabolism were suggested [1, 2]. It
was found that these models of closed ecosystems tend to become more stable as the number
of the described species increased. Various models of closed ecological systems with low species
diversity were considered [3]. It was shown that models based on flexible metabolism have a
stable stationary state in a wide range of parameters. Model of closed microecosystem «algae-
heterotrophic bacteria» was proposed [4]. The Liebig’s law of the minimum was consistently
used for constructing this model. Concentration of the biomass in stationary state obtained with
the use of the proposed model is in reasonable agreement with experimental data.

In a closed system external influences are not possible, and the system can only change due to
internal processes. Therefore, once equilibrium is achieved, it will remain as long as the system
stays closed. The concentrations of biomass and biogenic elements will remain constant, and the
system will be in a state of dynamic equilibrium. Any plausible mathematical model of a CES
must produce stable steady state solution. It means that model can describe an arbitrarily long
existence of a CES.

In this paper two models of closed microecosystem «algae–heterotrophic bacteria» are con-
sidered. Both models predict stationary state of microecosystem that is in reasonable agreement
with experimental data. Stability of the obtained stationary state is examined by means of Lya-
punov’s indirect method and Lyapunov’s direct method based on the proposed form of Lyapunov
function.

3. Stoichiometric ratios and physical factors influencing
population growth

Let us introduce model cells that consist of only from carbon and nitrogen (basic biogenic
elements). Values of the stoichiometric coefficients for model cells of algae and bacteria are
calculated using given C/N ratio for real cells:

γsc/γsn − given, γsc + γsc = 1, s = (x, y).
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Mass of model cell is related to the dry mass of real cell as ma = r ·mc, where coefficient r < 1
is determined from the ratio of the mass of carbon and nitrogen to the dry mass of real cell.

Light intensity is one of the important factors for algal photosynthesis. To describe its effect
on algal growth function f1(I) is introduced. The effect of temperature on production of biomass
of algae and bacteria is described by function f2,s(T ). Algae and bacteria are able to grow in
some pH range of medium. In what follows, it is assumed that ecosystem is kept at optimal light
intensity and pH of medium (f1(I) = 1, f3,x(pH) = 1, f3,y(pH) = 1).

4. Models of closed microecosystem «algae – heterotrophic
bacteria»

The first model was presented in detail in [4]. It was assumed that specific substrate con-
sumption rate of biogenic elements (C and N) by algae and bacteria is defined using modified
Andrew’s equation [5]. It was also assumed that specific mortality rate of algae and bacteria
depends on the concentration of biogenic elements [6, 7]. The model can be expressed in the form
of a system of differential equations

d s1/d t = f1 (s1) ,

s1 = (x, y, Cb, Cm, Nb, Nm)
T
, f1 (s1) = (f1,1 (s1) , . . . , f1,6 (s1))

T
.

(1)

Let us consider now second model. Specific growth rate of population can be defined in the
form that is equivalent to modified Andrew’s equation

vs (b) = f2,s (T )
b
(s)
1/2/b

(s)
max + b

(s)
max/b

(s)
1/2 − 2

b/b
(s)
max + b

(s)
max/b+ b

(s)
1/2/b

(s)
max + b

(s)
max/b

(s)
1/2 − 4

,

s = (x, y), b = (C,N),

where bs,1/2 — substrate saturation constant (substrate concentration when ν(bs,1/2) = 1/2. Let
Cyb and Nyb be concentrations of organic carbon and nitrogen that can be consumed by bacteria
(organic matter in water and in algae). It is assumed that carbon and nitrogen are consumed
independently by bacteria. Then consumption rates of organic carbon and nitrogen by bacteria
are

dCyb/dt = dCb/dt+ γxc dxeaten/dt,

dNyb/dt = dNb/dt+ γxn dxeaten/dt,

where dCb/dt and dNb/d t are consumption rates of organic carbon and nitrogen in water,
dxeaten/dt is consumption rates of algae by bacteria. Consumption rates dCb/dt, dNb/d and
dxeaten/dt are propotional to Cb, Nb and xeaten , respectively. Then

dCb/dxeaten = Cb/x, dNb/dxeaten = Nb/x.

Let us express Cb and Nb from the condition of closeness

γxcx+ γycy + Cb + Cm = C0 = const,
γxnx+ γyny +Nb +Nm = N0 = const,

and obtain

dCyb/dt = ((C0 − γxcx− γycy − Cm)/x+ γxc) dxeaten/dt = ((C0 − γycy − Cm)/x) dxeaten/dt,

dNyb/dt = ((N0 − γxnx− γyny −Nm)/x+ γxn) dxeaten/dt = ((N0 − γyny −Nm)/x) dxeaten/dt.
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Using Liebig’s law, one can obtain

dxeaten/dt = x ·min

(
1

C0 − γycy − m
dCyb/dt,

1

N0 − γyny −Nm
dNyb/dt

)
. (2)

Bacteria need for vital activity not only biogenic elements but also energy. Part of consumed
organic matter is used for growing bacterial biomass, and the rest part is degraded by bacteria
releasing inorganic nutrients and obtaining energy. This process is known as mineralization. It
can be described as follows

dCyb/dt = µyc,maxν (Cyb) y = γycdyp/dt+ dCym/dt,

dNyb/dt = µyn,maxνy (Nyb) y = γyndyp/dt+ dNym/dt,
(3)

where µyc,max, µyn,max — maximal specific consumption rate of carbon and nitrogen, respec-
tively; dyp/dt — specific growth rate of heterotrophic bacteria without regard for mortality;
dCym/dt , dNym/dt — rates of mineralization of carbon and nitrogen. It is proved in the Ap-
pendix that if condition (A2) is satisfied then

dyp/dt = µy,max ·min (νy(CY b), νy(NY b)) y. (4)

Algae consume mineral forms of carbon and nitrogen independently. Then

dCxm/dt = γxcµx,maxνx (Cm)x,

dNxm/dt = γxnµx,maxνx (Nm)x,
(5)

where dCxm/dt , dNxm/dt — consumption rates of inorganic carbon and nitrogen in water. Using
Liebig’s law and (5), one can obtain specific growth rate of algae without regard for mortality
dxp/dt as follows

dxp/dt = min
(
(1/γxc)dCxm/dt, (1/γxn)dNxm/dt

)
= µx,max min

(
νx (Cm) , νx (Nm)

)
x (6)

Using (2), (4), (6) and (A3), specific growth rates of algae and bacteria are written in the
form

dx/dt = dxp/dt− dxx− dxeaten/dt,
dy/dt = dyp/dt− dyy,

(7)

where dx , dy – specific mortality rates of algae and bacteria, respectively. Using (3)–(5), the
rate of concentration change of mineral forms of carbon and nitrogen is described as follows

dCm/dt = dCym/dt− dCxm/dt,

dNm/dt = dNym/dt− dNxm/dt.
(8)

Considering (7) and (8), the following system of differential equations is finally obtain

d s2/d t = f2 (s2) ,

s2 = (x, y, Cm, Nm)
T
, f2 (s2) = (f2,1 (s2) , . . . , f2,4 (s2))

T
.

(9)

5. Steady states of closed laboratory microecosystem
«Chlorella-Pseudomonas sp»

Results of experimental studies of various closed microecosystems were presented [8]. For
example, microecosystem that contains algae Chlorella 219 and heterotrophic bacteria Pseu-
domonas sp was studied. Biocenosis was illuminated for 24 hours at 28–30◦C. Concentrations of
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biomass of living algae cells, bacteria cells, dead algae cells and concentration of detritus were
determined.

Let us consider time evolution of microecosystem «Chlorella vulgaris - Pseudomonas sp» that
is described by system of equations (1). It is assumed that microecosystem is kept at optimal
illumination and pH at 29◦C. Functions f2,x(T ) and f2,y(T ) are given in [4]. Stoichiometric
coefficients, parameters r and parameters of functions for specific substrate consumption rate
for Chlorella vulgaris and Pseudomonas sp are also presented in [4]. The following stationary
solution was obtained

sa1 = (x, y, Cb, Cm, Nb, Nm)|t→∞ = (xa, ya, Cab , C
a
m, N

a
b , N

a
m) =

= (0.02465, 0.00647, 0.0906, 0.00273, 0.0002, 0.00048) .

Consider now stationary solution for model 2 that follows from system of equations (9). In
stationary state ds2/dt = 0. Then

0 = dxborn/dt− dxx− dxeaten/dt,
0 = dyborn/dt− dyy,
0 = βCµymaxν(C0 − γyCy − Cm)y − γyCcdyborn/dt− γxCµxmaxν(Cm)x,

0 = βNµymaxν(N0 − γyNy −Nm)y − γyNdyborn/dt− γxNµxmaxν(Nm)x.

(10)

Parameters dx and dy follow from the first two equations of (10)

dx = µxmax min
(
ν(Cm), ν(Nm)

)
− µymaxymin

(
βNν(N0 − γyNy −Nm)

N0 − γyNy −Nm
,
βCν(C0 − γyCy − Cm)

C0 − γyCy − Cm

)
,

dy = µymax min
(
ν(C0 − γyCy − Cm), ν(N0 − γyNy −Nm)

)
.

It is assumed that Chlorella contains 50 % of proteins, 10 % of fats and 40% of carbohydrates.
Using average formulae for proteins, fats, carbohydrates and energy values for them [9], estimates
of parameters QC and QN can be obtained: QC =12.182 kJ/g and QN = 0.595 kJ/g.

Four possible stationary solutions were found

1. Cm < Cmax, Nm < Nmax

Cm = 0.00049, Nm = 0.01794, x = 0.023, y = 0.004, Cb = 0.06, Nb = 0.001.

2. Cm < Cmax, Nm > Nmax

Cm = 0.0000468, Nm = 0.06776, x = 0.02, y = 0.001, Cb = 0.01, Nb = 0.001.

3. Cm > Cmax, Nm < Nmax

Cm = 0.827, Nm = 0.013, x = 0.021, y = 0.002, Cb = 0.01, Nb = 0.001.

4. Cm > Cmax, Nm > Nmax

Cm = 0.3987, Nm = 0.0333, x = 0.019, y = 0.004, Cb = 0.01, Nb = 0.001.

Solution 1 corresponds to the conditions of the experiment. Specific mortality rates are
determined from relations (21), using stationary solution 1. They are

dx = 0.0285, dy = 0.0588.

Organic form of carbon Cb and nitrogen Nb were not immediately determined in the ex-
periment. Biomass concentration of dead chlorella cells (0.12 g/l) and concentration of detritus
(0.12g/l) were determined. It was assumed that dead chlorella cell is chemically identical to living
chlorella cell, and detritus contains 35–50 % of carbon and 1–4 % of nitrogen. Then parameters
Cb and Nb can be estimated for the experiment. Calculated parameters of the microecosystem
are shown in comparison with experimental results in Tab. 1.
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Table 1. Stationary state of closed microecosystem «Clorella Pseudomonas sp»

Parameter Model 1 Model 2 Experiment [9]
xr = x/r, g/l 0.049 0.046 0.05
yr = y/r, g/l 0.011 0.007 0.015
Cb, g/l 0.091 0.06 0.097 – 0.115∗

Nb, g/l 0.0002 0.001 0.007 – 0.01∗
∗ estimate

6. Stability of steady states of closed microecosystem
«Chlorella-Pseudomonas sp»

Now turn to investigate the stability of the obtained steady states. First consider the method
that allows one to determine whether the equilibrium of the nonlinear system is asymptotically
stable or unstable based on the analysis of the linearized system about this equilibrium. This
method is sometimes known as Lyapunov indirect method.

Lyapunov indirect method. Let ds/dt = As be the linearisation of non-linear system
ds/dt = f(s) about the equilibrium point of non-linear system. Let λn, n = 1, . . . , N denote the
eigenvalues of matrix A. If Re(λn) < 0 for all n then the equilibrium of non-linear system is
asymptotically stable. If there exists n such that Re(λn) > 0 then the origin is unstable.

Real parts of eigenvalues of matrix A for model 1 are

(−724.77,−0.236,−0.128,−0.067, 0, 0) .

Real parts of eigenvalues of matrix A for model 2 are

(−0.0025,−775.8166,−0.0001, 0) .

Hence, there are zero eigenvalues. In this case Lyapunov wrote [10] ". . . one can come to conclu-
sion that . . . problem on stability is resolved by the sign of the minimal characteristic number.
Consequently, only cases when this number is equal to zero remain open to question. Then the
problem can not be resolved until higher then linear terms are taken into account in differential
equations". Alternatively, one can use Lyapunov direct method.

Lyapunov direct method. Let s = 0 be an equilibrium point for ds/dt = f(s) where
f : D −→ Rn is locally Lipschitz on domain D ⊂ Rn. Assume there exists a continuously
differentiable function V (s) : D −→ R such that

1. V (0) = 0 and V (s) > 0 for all s ∈ D not equal to zero,

2.
d V

d t
(s) =

N∑
n=1

∂V

∂sn
fn (s) 6 0 for all s ∈ D.

Then s = 0 is stable in the sense of Lyapunov.
To study stability of steady state for model 1 the folloing Lyapunov function is proposed

V (s1) =

6∑
n=1

(f1,n (s1))
2

For model 2 Lyapunov function has similar form:

V (s2) =

4∑
n=1

(f2,n (s2))
2
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Hence the first condition is fulfilled in D. To study stability of nonzero stationary state one
should use change of variables s∗ = s− sa, where sa is nonzero stationary state.

Analytical study of the derivative of the Lyapunov function in the vicinity of stationary
states was performed for both models using Maple software. Then as a result conditions were
established whereby dV/dt 6 0. In the case of model 1 the derivative of the Lyapunov function
is non-positive for

x < 0.135, Nm < 0.0085, Nb < 0.0495.

In the case of model 2 appropriate conditions were established for every stationary state:

1. Cm < Cmax, Nm < Nmax

x < 0.035, y < 0.0105.

2. Cm < Cmax, Nm > Nmax

x < 0.08, y < 0.0065.

3. Cm > Cmax, Nm < Nmax

0.008 < Nm < 0.01335, 0.0009 < y < 0.0029, 0.015 < Cm.

4. Cm > Cmax, Nm > Nmax

Nm > 0.03165, y < 0.035.

By this means the stability of obtained stationary states is proved.

Conclusions

Two models of closed microecosystem «algae-heterotrophic bacteria» were considered in this
paper. Mathematical models are the Cauchy problem for system of non-linear ordinary differ-
ential equations. The Liebig’s law of the minimum and the Andrew model for the specific rate
of biomass growth were used to develop these models. Both models predict stationary state of
microecosystem «Clorella vulgaris Pseudomonas sp.» that is in reasonable agreement with exper-
imental data. To study stability of the obtained stationary state Lyapunov indirect method and
Lyapunov direct method were used. The form of Lyapunov function that is used in Lyapunov
direct method was proposed. Methodology developed in this paper can be used to study stabil-
ity of stationary states of various closed microecosystems that include algae and heterotrophic
species.

Appendix

Energy that bacteria can spend on biomass growth can not exceed energy obtained during
the process of degradation of organic matter by bacteria and releasing inorganic nutrients:

QCdCym/dt+QNdNym/dt ≥ Qydyp/dt (A1),

where QC , QN – energy values of carbon and nitrogen, respectively; Qy – energy needed
to support vital activity of bacteria. Bacterial growth efficiency e introduced in model 1 can be
represented as follows

e = dyp/(dCyb + dNyb) = dyp/(dY + dCym + dNym) =
1

1 + dCym/dyp + dNym/dyp
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Then maximal value of e is

emax =
1

1 + dCym,max/dyp,max + dNym,max/dyp,max
and dCym,max/dyp,max+

+dNym,max/dyp,max = 1/emax − 1

Because QC > QN one can assume that emax has the following form

emax =
1

1 + dCym(emax)/dyp(emax)
and dCym(emax)/dYp(emax) = 1/emax − 1.

If growth is limited by carbon then maximal growth of bacterial biomass is achieved when
e = emax. Then

QCdCym(emax)/dt = Qydyp(emax)/dt.

Let us express Qy and obtain
Qy = QC(1/emax − 1).

Then

µyc,maxy = γycyp(emax)/dt+ Cym(emax)/dt = γycdyp(emax)/dt+ (1/emax − 1)dyp(emax)/dt =
dyp(emax)/dt(γyc + (1/emax − 1)).

Taking into account that dY p/dt = µy(emax)y when e = emax, one can obtain expression for
µyc,max:

µyc,max = (γyc + (1/emax − 1))µy(emax)

Expression for µyc,max can be obtained in analogous way:

µyn,max = (γyn + (QC/QN ) (1/emax − 1))µy(emax).

When e = emax inequality (A1) becomes

QCdCym/dt+QNdNym/dt = QC (1/emax − 1) dYp,max/dt. (A2)

Let us express bacterial biomass growth that follows from energy requirements

dye/dt =
QC (γyc + (1/emax − 1)) ν(Cyb) +QN (γY N + (QC/QN ) (1/emax − 1)) ν(Nyb)

QCγyc +QNγyn +QC (1/emax − 1)
µy(emax).

Maximal specific growth rate of bacterial biomass µy,max is achieved when ν(Cyb) = ν(Nyb) = 1,
(µy(emax) = µy,max). Then

dye/dt =
QC (γyc + (1/emax − 1)) ν(Cyb) +QN (γY N + (QC/QN ) (1/emax − 1)) ν(Nyb)

QCγyc +QNγyn + 2QC (1/emax − 1)
µy,maxY,

dyyb/dt = (γyc + (1/emax − 1))
QCγyc+QNγyn+QC(1/emax−1)
QCγyc+QNγyn+2QC(1/emax−1)µy,maxν(Cyb)Y = (A3)

= βCµy,maxν(Cyb)Y,

dNyb/dt = (γyn + (QC/QN ) (1/emax − 1))
QCγyc+QNγyn+QC(1/emax−1)
QCγyc+QNγyn+2QC(1/emax−1)µy,maxν(Nyb)Y

= βNµy,maxν(Nyb)Y.

Finally, using Liebig’s law, one can obtain

dyp/dt = µy,maxymin (ν(Cyb), ν(Nyb), (dye/dt)(1/t)) =
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= µy,maxymin

ν(Cyb), ν(Nyb), QC (γyc + (1/emax − 1)) ν(Cyb) +QN

(
γyn + QC

QN
(1/emax − 1)

)
ν(Nyb)

QCγyc +QNγyn + 2QC (1/emax − 1)

 .

Let us transform given above expression

dyp/dt = µy,maxymin

(
ν(Cyb), ν(Nyb),

QCγyc +QC (1/emax − 1)

QCγyc +QC (1/emax − 1) +QNγyn +QC (1/emax − 1)
ν(Cyb)+

+
QCγyn +QC (1/emax − 1)

QCγyc +QC (1/emax − 1) +QNγyn +QC (1/emax − 1)
ν(Nyb)

)
.

Let us note that this expression has the form

dyp/dt = µy,maxymin (ν(Cyb), ν(Nyb), aν(Cyb) + (1− a)ν(Nyb)) .

Then

dyp/dt = µy,maxymin (aν(Cyb) + (1− a)ν(Cyb), (1− a)ν(Nyb) + aν(Nyb), aν(Cyb) + (1− a)ν(NY y)) .

Taking into account that

aν(CY b) + (1− a)ν(CY b) < aν(CY b) + (1− a)ν(NY b),
(1− a)ν(NY b) + aν(NY b) < aν(CY b) + (1− a)ν(NY b),

one can finally obtain (15).
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Устойчивость стационарного состояния замкнутой
микроэкосистемы «одноклеточная водоросль –
гетеротрофная бактерия»

Олег А. Золотов
Александра И. Чусовитина

Виктор Е. Зализняк
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. В работе предлагаются две модели замкнутой микроэкосистемы «одноклеточная
водоросль–гетеротрофная бактерия». Математическая модель формулируется в виде задачи Коши
для системы нелинейных обыкновенных дифференциальных уравнений. Для построения модели
последовательно использовался закон минимума Либиха, как для описания скорости роста био-
массы элементов микроэкосистемы, так и для описания скорости отмирания клеток водоросли и
бактерии. Для описания удельной скорости потребления биогенных элементов водорослью и бак-
терией использовалась функция Эндрюса (ингибирование избытком субстрата). Предполагается,
что биогенными элементами являются углерод и азот. Вычисленные с использованием предло-
женных моделей концентрации биомассы микроэкосистемы «Clorella vulgaris-Pseudomonas sp» в
стационарном состоянии хорошо согласуются с данными эксперимента. Устойчивость стационар-
ного состояния исследуется с использованием метода первого приближения и метода функций
Ляпунова.

Ключевые слова: математическое моделирование экосистем, замкнутая экосистема, однокле-
точная водоросль, гетеротрофная бактерия, стационарное состояние, устойчивость, метод первого
приближения, метод функций Ляпунова.
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Introduction

In the modern world, various inflammatory diseases of the oral cavity have become
widespread, in particular periodontitis [1, 2]. The main cause of periodontitis and peri-implantitis
is tissue infection by microorganisms of the oral cavity. One of the known potential participants
in the pathological process is streptococci, which are detected in periodontal pockets in almost
100 percent of cases [3–6]. At the same time, streptococci remain one of the most difficult
to identify microorganisms, even when using modern methods. Currently, an actively used
physical method for diagnosing microorganisms, including streptococci, is matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). No new technology
for microorganism identifications without problems and the same is true for MALDI TOFMS.
Among the most common errors are the inability to perform an accurate differentiation in those
microorgan-isms that have a genotypic/protein profile similarity and an absence of reliable data
in the database [7]. In this regard, the urgent task is the detection of species identification of
streptococci.

As an alternative method for identifying streptococci, the method of Raman spectroscopy
(RS), which has found wide application in biomedical practice [8], can be used. RS allows the
analysis of vibrational modes of molecules and can distinguish between similar molecules, which
gives hope for solving the problem of identifying closely related bacterial species.

Previously, other authors conducted a similar study, but it focused on the species identifi-
cation of pneumococcus, as the main causative agent of generalized infections (pneumonia and
meningitis) [9]. Given the increasing role of streptococci as causative agents of diseases of various
localizations, further research in this direction is required. The aim of the study was a spectral
study of strains of three closely related species of streptococci Streptococcus mitis, Streptococcus
oralis and Streptococcus pneumoniae using Raman spectroscopy for rapid assessment of bacterial
strains in the diagnosis of periodontitis.

Materials and methods of research

4 strains of S.mitis, 4 strains of S.oralis and 3 strains of S.pneumoniae were used as research
objects. All isolates were obtained from the clinical material of patients with oral diseases. The
growth of crops was obtained on 5 procent blood agar (HiMedia, India), with the addition of
mutton blood (HEM LLC, Russia). Incubation of crops was carried out under microaerophilic
conditions. Identification was performed using MALDI-ToF mass spectrometry on a Microflex
device (Bruker, Germany). For all strains, an additional study was conducted to determine
sensitivity to bile and optochine. Daily cultures of streptococcus were suspended in saline solution
to obtain an inoculum with a density of 0.5 McFarland units.

For each species, the spectra were obtained: S.pneumoniae (45 Raman spectra), S.oralis (60
Raman spectra), S.mitis (56 Raman spectra). The Raman spectroscopy method described in
detail in [10, 11] was used as the main method for analyzing S.mitis, S.oralis, and S.pneumoniae
strains. The Raman spectra were captured using a Sharmrock SR-303i spectrograph with an
integrated ANDOR DV-420A-OE digital camera (resolution 0.15 nm in wavelength) cooled to
–60◦C, including a semiconductor laser (LML-785.0RB-04), an optical raman scattering module
(PBL 785).

The normalization of the spectra was carried out by the Extended multiplicative signal correc-
tion (EMSC) method. The smoothing of the spectra was carried out by the Maximum Likelihood

– 172 –



Elena V. Timchenko . . . Raman Spectroscopy Method for Identification . . .

Estimation Savitzky-Golay filter (MLE-SG) method [12] with the parameter s = 4. To exclude
the contribution of autofluorescence to the Raman spectra, a modified method of subtracting
the fluorescent component by polynomial approximation Improved Modified Multi-Polynomial
Fitting (ExModPoly) with a polynomial degree of 8 was used. The analysis of the Raman spectra
of the samples was carried out in the range 450–1800 cm−1.

Results

Fig. 1 shows the averaged Raman spectra of all the studied samples. As can be seen from
Fig. 1, the main analytical indicators are manifested at the level of 527 cm−1 (S-S di sulfide
stretching in proteins, phosphatidylserine or (S-S) gauche-gauche trans (amino acid cysteine)),
621 cm−1 (C-C mode of twisting phenylalanine (proteins)), 1280 cm−1 (amide III, CH2, causing
vibrations of the glycine backbone or side chains of proline), 1333 cm−1 (guanine), 1445 cm−1

(CH2 bending modes, deformation of C-H proteins, deformation of CH2/CH3 in lipids), 1525
microns-1 (amide II), 1692 microns-1 (Stretching CO), 1749 cm−1 (C=O, lipids). On the CR
line 621 cm−1 (C-C twisting mode of phenylalanine (proteins)) The samples of the S.mitis group
show a noticeable increase in peak intensity. On the CR line of 1280 cm−1 corresponding to
Amide III, CH2 wagging vibrations from glycine backbone or proline sidechains, changes in the
intensity amplitude of all the studied groups occur. On the CR line of 1445 cm−1 (CH2 bending
modes, deformation C-H bending proteins, deformation CH2/CH3 in lipids), the group of samples
S.oralis has the highest intensity. On the Raman scattering line of 1525 cm−1 (Amide II), the
group of samples it S.pneumoniae has the highest intensity.

Fig. 1 shows the averaged Raman spectra of the samples
On the line 1692 cm−1 group of samples S.mitis it has a noticeably smaller amplitude. Also,

on the line 1749 cm−1 (C=O, lipids), the group of samples it S.oralis has the highest intensity.
Further, in this work, a nonlinear regression analysis of the spectra was carried out, consisting in
their decomposition into the sum of asymmetric Gauss lines to increase the information content
of the obtained Raman spectra and subsequent analysis using linear discriminant analysis. The
amplitude of the a lines was taken as the criterion variable, depending on the values of the
independent regressors dx and x0, which determine the initial conditions of the analysis. The
composition of spectral lines was determined on the basis of automatic multi-iterative modeling
of 161 Raman spectra and tested based on the results of literature analysis. When modeling the
spectral contour, the position of x0 and the half-width of the line (HWHM) dx were fixed for the
lines used as a template. During the simulation, the line intensity was selected in the range from
0 to the value of the local maximum of the spectrum in the x0 region. HWHM was limited in
the range from 1 to 13 cm−1. This made it possible to achieve high stability of the results when
modeling the contour and take into account all shifts of the Raman lines. For additional analysis
after separation of the spectral lines of the studied samples, the method of linear discriminant
analysis in the RS-tool program was chosen. The drawn lines or areas in the LD-1 and LD-2
space can represent class boundaries, which allows you to predict which group a particular sample
belongs to based on its LD-1 and LD-2 values. The points in the graph corresponding to group
1 are concentrated in the area where LD-2 is significantly less than 2. This may indicate specific
spectral features inherent in this group. For group 2, we notice the concentration of samples in
the upper left part (LD-1 < –8 and LD-2 > 1), which also indicates unique characteristics that
distinguish it from other groups. Group 3, in turn, occupies the upper right corner, where the
values LD-1 >–9.
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Fig. 1. Averaged Raman spectra of the studied sample groups: 1 — S.pneumoniae, 2 — S.oralis,
3 — S.mitis

Fig. 2. The results of linear discriminant analysis are a graph of the values of the linear discrim-
inant function

Fig. 3 shows the coeficients of the matrix of the factor structure for the most significant lines
of the KR, which have a physical meaning of the correlation between the variables in the model
and the discriminating function. The higher the modulo value of LD-1 for a variable, the more
it determines the difference in the discriminative model between groups of samples.
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It can be noted that the variable with the highest value of SHAP (+7.63) is k528.73a, which
indicates its significant influece on the classification. In general, values decrease, which may indi-
cate that variables with high values contribute more to differences between groups than variables
with lower values. The smallest value of SHAP (+0.22) belongs to the variable k1338.65a, which
indicates its insignificand contribution to the model.

Fig. 3. The contribution of variables to the intensity of lines

The results of the classification of groups are shown in Fig. 4. It can be seen that the number
of correctly classified values is approximately equal for each of the groups. For groups 1 and 3,
the number of correctly classified values was 9 out of 12, for groups 2–8 out of 12.

Fig. 4. The Confusion Matrix
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Fig. 5 shows the ROC-curves for each sample group. The specificity of the developed algo-
rithm calculated using ROC analysis was 81–91 percent, depending on the defined group. The
curves show the ratio of true positive and false positive results, which is important for under-
standing the accuracy of the classification.
For furthe analysis, AUC (Area Under Curve) values were calculated, which makes it possible to
quantify the classification ability of the algorithm. The AUC values for each group were:
mitis (AUC=0.91)
pneunom (AUC=0.89)
oralis(AUC=0.81)
microaverage (AUC=0.86)
macroaverage (AUC=0.87)
The AUC index above 0.8 in all cases indicates the high classification ability of the algorithm,
confirming its potential usefulness in practical applications for the diagnosis and classification of
varios conditions.

Fig. 5. ROC-curves for all sample groups

Conclusion

In this work, spectral differences of S.mitis, S.oralis, S.pneumoniae strains are established.
The main spectral differences are visible at 527 cm−1 (S-S di sulfide stretching in proteins, Phos-
phatidylserine or v(S-S) gauche-gauche-trans (aminoacid cysteine)), 621 cm−1 (C-C twisting
mode of phenylalanine (proteins)), 1280 cm−1 (Amide III, CH2 wagging vibrations from glycine
backbone or proline side chains), 1333 cm−1 (Guanine), 1445 cm−1 (CH2 bending modes, de-
formation C-H bending proteins, deformation CH2/CH3 in lipids), 1525 cm−1 (Amide II), 1692
cm−1 (Stretching CO), 1749 cm−1 (C=O, lipids). As a result of this study, criteria were intro-
duced for the identification of groups of samples based on the intensity of the lines of the averaged
Raman spectra and the conducted discriminant analysis. Thus, for strains of S.pneumoniae, the
values LD-2 < 2 correspond, for strains S.oralis the values LD-1 <–8 and LD-2 >1 correspond,
and for strains S.mitis the values LD-1 > –9 preferentially. Using ROC analysis, the specificity
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of the developed algorithm was calculated, which amounted to 81–91 percent, depending on
the defined group. The results obtained will allow further rapid analysis of different types of
streptococcal strains using Raman spectroscopy.
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Аннотация. В современном мире широкое распространение приобрели различные воспалитель-
ные заболевания полости рта, в частности пародонтит. Одним из потенциальных участников вос-
палительного процесса являются стрептококки. В данной работе методом спектроскопии комби-
национного рассеяния были изучены три штамма стрептококков. В результате были установлены
спектральные отличия, введены критерии для идентификации групп образцов.

Ключевые слова: спектроскопия комбинационного рассеяния, стрептококки, пародонтит.
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Abstract. Estimation of ice deformations during dynamic loading plays a primary role in understanding
many processes occurring in the Arctic region. However, the problem of choosing the most suitable
model is complicated due to the complex structural changes in ice that affect its behaviour. In order
to reconstruct observed damage localization, the dynamic von Mises–Schleicher criterion is applied to
calculate the borders of the hydrostatic core in an elastoplastic specimen. This helps to account for
the change in ice strength based on the stress magnitude. In the core, under conditions of uniform
compression ice may pulverize. It results in microfracturing and recrystallization of ice. Additionally,
inner and surface splits are introduced using the principal stress criterion. The model is verified with
the use of numerical modelling of the laboratory experiment that consists of a direct low-speed impact.
The main focus of this work is to study how non-linear processes influence the dynamics of the collision.
The grid-characteristic method is used to accurately reconstruct waves formation. As a result, the
formation of non-linear waves was observed. It causes further fracturing during propagation through the
ice. Moreover, the conducted analysis of deformation curves confirmed that numerical results agree with
the experimental data.
Keywords: ice rheology, non-linear waves, hydrostatic core, Von Mises–Schleicher yield criterion, frac-
tures, low-speed impact.
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Study of ice mechanical behaviour under dynamic loading remains a relevant problem that
becomes especially important for the solution of practical tasks in the Arctic region. However,
studying ice is complicated due to its non-linear behaviour during even for small deformations.
Additionally, formulation of an adequate model is challenging because ice behaviour depends on
many natural and structural factors [1] such as temperature and strain rate. Viscoelastic and
elastoplastic models are commonly used for mathematical modelling, and the latter one is often
applied in cases with large deformations [2, 3]. However, it is still uncertain which model would
work better in specific cases. Furthermore, the influence of non-linear waves generated during
impact is often assumed but not usually identified. Therefore, the main aim of this work is to
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study the role of wave processes occurring during impact on the dynamics of ice at low collision
speeds (approximately up to 7 m/s) which are common of many processes in the Arctic region.
To achieve this, the grid-characteristic method is used, which proved to be effective for many
dynamic processes in complex media [4, 5].

The goal of this work is to develop the most suitable ice model with the use of laboratory
experiments on the low-velocity direct impact conducted at the Ishlinsky Institute for Problems in
Mechanics of the Russian Academy of Sciences. One particular feature that needs to be reflected
is the observed localization of destruction in the high stress zone (contact patch) and the elastic
behaviour far from the impact [2, 6]. Various criteria [7] are used to identify the hydrostactic
core where ice structure can change under triaxial compression, and where microfracturing and
recrystallization are observed. One of the standard choices for isotropic ice that was used in the
conducted experiment is the von Mises criterion. Its advantage lies in the possibility of being
modified by using a function for the calculation of yield strength. The von Mises–Schleicher
criterion introduces linear relationship betwee this parameter and stress [8]. Thus, the observed
changes in ice resistance to loading during collision are taken into account.

Another significant issue is the change in ice behaviour from the ductile behaviour and brittle
failure when the deformation rates increase [1]. The considered low-velocity impacts fall into the
transitional zone where both phenomena can be observed. Existing successful compound models
[9] often require significant computational resources and determination of many parameters.
Therefore, a simpler approach is proposed in this work to account for crack formation, where
cracks appear according to the principal stress criterion [10]. As a result, this work proposes an
elastoplastic model with the hydrostatic core, and boundaries of the core are calculated using
the von Mises-Schleicher criterion and fracturing.

1. Problem formulation

1.1. Laboratory experiment

The laboratory experiment conducted using the procedure given in [11]. The scheme of the
experiment is shown in Fig. 1. Frozen from distilled water, polycrystalline ice disc 3 was placed
on the hard metal stand 4 with the ability to slide freely on its surface. A hard steel spherical
indenter 2 with a piezoelectric accelerometer was hung with an inextensible string above ice
surface attached to the carrier 6 with the trigger 1. The second sensor was set on the rear side
of the sample along the striking axis. The whole set was placed on the metal plate 5 in a cooling
chamber with the constant temperature −10◦C. As a result of the measurements, oscillograph
patterns were obtained as demonstrated in Fig. 1.

Fig. 1. On the left: the design of the laboratory experiment; in the middle: computational
domain; on the right: results of the laboratory experiment (the blue line for sensor in the ball,
magenta line for sensor in the ice)
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1.2. Quantitative analysis procedure

In order to conduct quantitative comparison of the simulations and the experiment the acceler-
ation of indentor obtained from the force F in Fig. 1 was further processed. The instantaneous ve-

locity of the ball was obtained with integration using the Simpson rule: v(t) = 0.56+
1

m

t∫
0

F (τ) dτ ,

with mass of the ball m = 1.76 kg. However, the calculated velocity did not reach zero, presum-
ably due to the influence of tangential velocity. To deal with this problem the transformation

was conducted: v(t) = 0.56

(
1 − v − 0.56

min(v − 0.56)

)
. Additionally, the coordinate of the ball was

estimated: x(t) =
t∫
0

v(τ)sign(v(τ)) dτ . Here additional function sign(v(t)) was introduced. It

was equal to 1 during loading before velocity reaches zero and –1 during unloading. Finally,
in order to estimate the model deformation representing the curves positions in relation to the
experiment the graph extremums were taken as the control points. They were the maximum
value of the ball coordinate xmax which also represents the depth of the forming dent, and the
time when the velocity reaches zero tv=0.

1.3. Computational domain

Computations were conducted in the plane setting in order to be able to thoroughly study
the model qualities. Although the model evaluation in three-dimensional case is still required
calculations still managed to reconstruct ice complex non-linear behaviour. The formulated
computational domain in this work is presented in Fig. 1 with numbers of grid cells along
the horizontal (Nx) and the vertical (Ny) axes. In order to construct structured grids the ball
was divided into 5 parts, where domain 2 corresponds to the rotation of the domain 2∗. Full
adhesion contact condition was used between areas 1–2. Free slippage condition was applied
to the contact areas between the ball, the disc and the stand. Consider the dynamic ball-ice
contact. If the distance between grids is less than the set value (0.05 mm) then corresponding
nodes are considered to be in contact. Moreover, when normal to the surface stresses change
their sign in the nodes these nodes become free. Thus, it is possible to reconstruct the effect of
"glueing" and "unsticking" of the contact patch observed in the real experiments. On the left,
right and bottom sides of the stand no reflection boundary was set. All other boundaries were
considered to be free. Impact velocity equal to 0.56 m

s was used as an initial condition set in the
cells of the ball. All grids were moved by the Lagrange corrector. The time step equal to 25 ns
was chosen to fulfil the stability condition of the calculations. The initial distance between the
ball and the disc was set to be 0.05 mm. The simulations were performed untill the ball stopped
contacting with the ice or when the ball did not rebound from the ice.

In order to translate the set up shown in Fig. 1 into three-dimensional case for future
simulations the computational domain should have rotational symmetry over the striking axis.
Thus, new grids would be the surfaces of revolution of the plane grids. However, for construction
of structured grids in the ice disc one needs to divide it into five parts, similarly to the grids in
the ball in two-dimensional case. To keep the grid step in the impact zone equal to 1 mm as in
the plain setting the number of grid nodes should be increased considerably. Ice grid in Fig. 1
has around 20 thousand nodes and if the horizontal size of the central square of the ice is set to
120–150 mm then the number of nodes can reach 1–1.6 million. The number of nodes in other
four sectors can be limited to around 0.7–1 million. Therefore, the total number of nodes for
the ice can equal 2.6 million which is 130-fold increase with respect to the plain grid. Similar
estimations can be done for the stand and the ball. For the ball, in particular, seven grids can be
constructed: one central square and six sectors. Using the numbers of grid steps that correspond
to Fig. 1, the total number of nodes would increase form the initial 11 thousands to almost 1
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million. Thus, during the three-dimensional modelling the number of performed operations and
the real time of each calculation can increase 130-fold which would require the usage of parallel
computing. Even these rough estimations incentivize the usage of the plain setting to study basic
qualities of the model and its parameters.

2. Governing system of equations

In order to represent the ice of polycrystalline structure that was studied in the experiment
the commonly used in practice isotropic linear elasticity model [12] is chosen as the governing
system of equations:

ρv̇ = ∇·σ + f , (1)

σ̇ = λ(∇·v)I + µ(∇⊗v + (∇⊗v)T ). (2)

Here, the unknown velocity v and stress tensor σ are calculated at each time step using
the Lame parameters λ, µ and density ρ. These parameters can be used to calculate speeds of

pressure and shear waves: cp =

√
λ+ 2µ

ρ
and cs =

√
µ

ρ
. As a result, cp, cs and ρ fully define

the behaviour of system (1)–(2). External volumetric forces can be introduced with f . For the
simulations, the material parameters for hard steel are used for the ball and the metal stand:
cp = 5700 m

s , cs = 3100 m
s , ρ = 7800 kg

m3 . Ice parameters were estimated using the Berdennicov
formula (E = (87.6 − 0.21T − 0.0017T 2)·108 Pa, [13]) with the same temperature as in the
laboratory experiment and the constant Poisson coefficient ν = 0.295. Then parameters for ice
are cp = 3600 m

s , cs = 1942 m
s , ρ = 917 kg

m3 .

3. Computational method and scheme

Nowadays, there is no standard method to solve ice problems related to dynamic loading [14].
Although the finite element methods [15], coupling methods [16] and various mesh-free methods
such as peridynamics [17] are gaining popularity. However, a lot of them still have disadvantages.
They are mainly related to the representation of fracturing. As the focal point of this work is
the study of wave phenomena linked to the occurring damage the grid-characteristic method was
chosen to solve equations (1)–(2). This method allows one to accuratly reproduce dynamic pro-
cesses as proven in [4,5]. The method uses the hyperbolicity of system (1)–(2) in order to conduct
coordinate-wise and process-wise splitting and change of the variables to the Riemann invari-
ants. As a result, the initial system can be reduced to a system of independent one-dimensional
transport equations. In this case, each equation is solved using the third approximation order
grid-characteristic scheme monotonized by the grid-characteristic monotonicity criterion [18].

4. Nonlinear rheological models

Splitting on physical processes allows one to take into account non-linear behaviour. All such
models modify the elastic solution after each calculation step. The introduced compound model
consists of the elastoplastic ice with the hydrostatic core and fractures.

4.1. Elastoplasticity model

Plasticity is described as the Prandtl–Reuss flow rule [19] that corrects the stress deviator(
selij = σelij−

σelll
δmm

δij

)
to return the stress tensor to the von Mises yield surface

(
if 1

2s
el
ijs

el
ij−k2> 0

)
:
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sij = selij

√
2k√

selpqs
el
pq

,

The defining parameter of the model is the maximum shear stress k. The initial state of the
ice is considered to be elastoplastic. During the collision, calculated elastic variables are used to
check the fulfilment of criteria for formation of the hydrostatic core at each time step. Then, the
elastoplasticity in the ice is realized outside of the core.

4.2. Hydrostatic core
In order to account for structural changes in ice the approach formulated in [10] is used. The

damage is divided into static and dynamic part. The static damage is represented as the forma-
tion of the hydrostatic core. It is a zone where the ice is under the triaxial compression due to
loading of the ball. Here complex structural changes such as microfracturing and recrystallization
can occur. Boundaries of this zone are defined on the basis of the von Mises-Schleicher criterion.
It is a modified version of the von Mises criterion that allows for taking into account the change
in the ice strength during collision. This is realized as follows. The constant shear stress value is
replaced with a linear function k0 + ap, where p =

σll
δmm

is the instantaneous value of pressure in

the node. In order to represent material inside the core the sand model [10] is used. It considers
that damaged material could not sustain tension. Thus, all positive principal stresses are set to
zero. Moreover, instead of elastoplastic stress tensor correction elastic parameters are changed,
and the Lame parameter µ is decreased by a factor of 100 to represent the almost liquid state of
the ice.

4.3. Fracture model
The dynamic damage is described by taking fracturing into account [10]. If the principal

stresses exceeded the spallation strength ks in some node of the ice disc grid then a unit fracture
is formed. The size of the fracture is not defined within the cell, and it is considered to be less
then spacial step. As a result, the growth of cracks is described as the increase in the number
of such unit fractures. Free boundary conditions are used in each damaged node in order to
reconstruct the observed reflections from fractures. This allows for the reconstruction of time-
dependent behaviour of ice by observing the complex interactions between wave and damage
processes.

4.4. The compound model algorithm
To sum up the process of the model implementation the following procedure is conducted

at each time step of simulations. At first, the elastic values of unknown variables vel and σel

are calculated and corresponding coordinate-wise splitting boundary and interface conditions are
implemented. Then, the von Mises–Schleicher criterion is used to determine the boundaries of
the core. If condition 1

2s
el
ijs

el
ij − (k0 + ap)2 > 0 is fulfilled then correction of principal stresses

and elastic parameters is performed in each grid node of the ice in accordance with the core
model. In the nodes outside the core stress tensor deviator is corrected when the von Mises
criterion 1

2s
el
ijs

el
ij − k2 > 0 is satisfied as the elatoplastic model suggests. Finally, the principal

stress condition for fracturing is checked in each node, and fractures appear in corresponding
nodes. After all corrections are performed grids are moved.

5. Simulation results
As a result of simulations, wave, stress and damage patterns (Figs. 2–4) are obtained and used

for the comparison with the experiment. Moreover, graphs of the ball velocity and coordinate
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are used for quantitative evaluations (Figs. 5–6).

Fig. 2. Left column: damage patterns, core (red) and fractures (white). Right column: nonlinear
wave (|v|) and stress (vertical stress projection σyy) patterns. Coordinates are in meters, k =
k0 = ks = 0.3 MPa, a = 0.1

Fig. 3. Damage patterns, core (red) and fractures (white) at 0.23 ms, k = k0 = ks = 0.3 MPa,
a = 0.1. Arrows show the direction of fracture growth. Radius of the contact patch is 3 mm.
Coordinates are in meters

5.1. Qualitative comparison with the experiment
Simulations show that behaviour of the model can be drastically changed with different

damage parameters. For big values of k0 and ks damage (core and fractures) is usually localized
near the impact zone (similar to patterns at 0.1 ms in Fig. 2). At the initial stages of collision,
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the first cracks start to appear in the area with the biggest stress on the contact patch. Vertical
cracks form near the boundary of the patch, and their number increases as this boundary moves
along with the ball indentation. Moreover, the core forms directly under the surface fractures.
Its size usually corresponds to the diameter of the contact. Similar localization of fracture can
be observed in real experiments [20, 21]. Additionally, a median fracture can be formed with
the propagation of the impact wave. Its growth starts at a distance from the contact, and it is
additionally stimulated by the reflected wave. Sometimes this crack can be split into two parts,
forming an arch similar to Fig. 2 at 0.12 ms. However, further inner spalling does not occur.

When ks is decreased, the principal stress criterion starts to be fulfilled in a greater number
of nodes, and fracture begin to spread through the disc. As shown in Fig. 2, at certain points
of time the number of cracks can increase exponentially starting from the impact zone. This
phenomenon is seemingly caused by inference between the reflected impact waves and waves
generated from the contact patch due to the surface fracture and waves that propagate in the
ball. The rapid growth of fractures invokes non-linear waves that create further damage far from
the impact zone. With the forward travel of the wave fractures grow from the core, and side
cracks can appear. After reflection cracks begin to form from the rear surface. The damage
patterns are fully developed by the time of the unloading as in Fig. 3.

A similar phenomenon can be observed when the value of k0 is small and the fractures are
localized or not taken into account completely as in Fig. 4. This case clearly demonstrates the
influence of a on the results. When a = 0, the core usually has homogeneous structure and not
many discontinuities. On the contrary, non-zero a can change the form of the core, and it begins
to resemble fractures (Fig. 4). However, when a is too big, the von Mises–Schleicher criterion is
rarely satisfied and the core is localized at the impact zone. When a < 1, the centre of the core is
usually formed in the nearest neighbourhood of the contact patch. The rapid increase in the core
area can also generate non-linear waves that cause patterns similar to conical (middle picture)
and side (top and middle pictures) cracks and horizontally oriented clusters of fractures (bottom
picture). Additionally, the spread of the core zones starting from the rear surface of the ice can
also be recreated (bottom picture). As a result, the appearance of non-linear waves represents a
distinct interaction between the wave and damage processes that was usually assumed but not
clearly demonstrated in previous works.

5.2. Quantitative comparison with the experiment

The influence of model parameters on wave patterns and fracture patterns is studied on the
basis of deformation curves in Fig. 5. The velocities obtained from the laboratory experiment
can be divided into three stages: the inlet section (up to about 0.2 ms), the main stage of impact
(from 0.2 to 0.6 ms) and the time near the rebound (from 0.6 to 0.8 ms). The gradual decrease
of the velocity during the first and last stages may be related to the temperature effects and
surface tension that influence the formation of the dent and the hardening processes. The inlet
section was not reconstructed during the simulation. However, it is in the case of small values of
k0 when it is possible to qualitatively represent the experiment by the time of unloading. This
is demonstrated by similar slopes of the calculated and experimental curves and tapering of the
velocity.

Moreover, Fig. 5 shows the distinction in behaviour between the small and big values of k0.
Small value of k0 leads to a larger core, higher amplitudes of coordinates, less monotone velocity,
and bigger times when the velocity reaches minimum. This trend appears both with (second
row) and without (first row) fractures. Thus, it is possible to find the optimal parameters of
the model to reach agreement with the experiment. As a result, the closest to the experiment
curve is in the case without fractures: k = 0.03 MPa, k0 = 0.08 MPa, a = 0.5. However, when
the value of k0 is big the von Mises–Schleicher criterion stops to be satisfied, and the curves for
various a almost coincide.
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Fig. 4. Damage patterns: core (red) and fractures (white). Picture at the top: no fractures,
k = 0.08 MPa, k0 = 0.1 MPa, a = 0.1, 0.4 ms. Picture at the top middle: with fractures,
k = 0.08 MPa, k0 = 0.1 MPa, ks = 0.3 MPa, a = 0.5, 0.9125 ms. Picture at the bottom: no
fractures, k = 0.3 MPa, k0 = 0.08 MPa, a = 0.5, 0.3 ms

Similar trends can be observed when a and k are varied. However, the introduction of a
generally results in significant oscillations and less monotonous graphs of velocity. Nonetheless,
the change in a allows for the achievement of the optimal parameters of the model as shown in
Fig. 6 for small enough values of k0. These parameters can be predicted using the intersection
between numerical results with the experimental values of xmax and tv=0. Therefore, this allows
for the usage of optimization algorithms and machine learning to train the model. Furthermore,
this approach can be used for both variations of the model with and without fractures. As it
is shown in Fig. 5 (third row), the calculated curves are very similar, especially for small values
of a. However, the influence of the spallation strength ks is ambiguous. Thus, a more thorough
evaluation is still required. As a result, the model proved to be able to reconstruct many aspects
of ice behaviour during the impacts. Although the deformation curves do not coincide completely
with the experimental ones, the simulations represent the experiment during the main stage of
the collision. Moreover, the model allows for the optimization of its parameters. It is one of the
main directions for further work.
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Fig. 5. Ball coordinate (x) and velocity (v) during the collision for various parameters of the
model. First row — no fractures, second row— with fractures, third — comparison of the cases
with and without fractures

Conclusion

As a result of this work, the compound model is used to describe ice behaviour during a
low-speed impact by a spherical indentor. The observed localization of damage and the change
in ice local resistance to loading are accounted for by the determination of the hydrostatic core
in the elastoplastic sample using the dynamic von Mises–Schleicher yield criterion. Fracturing
is introduced using the maximum principle stress criterion. Thus, it is possible to reconstruct
ice complex and time-dependent behaviour with the obtained formation of non-linear waves that
cause further damage. Moreover, both core and fractures could represent different types of cracks,
such as median, side and conical fractures. The cracks formed on the contact patch from the
rear surface and far from the impact zone. The qualitative analysis of deformation curves proves
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Fig. 6. Maximum ball coordinate and velocity in relation to parameter a. For reference, the
values obtained with the use of standard elasticity model for ice are marked by black line

the ability of the model to reach an agreement with the experiment. Therefore, a more detailed
optimization of parameters of the model both in a plane and space setting is the main direction
for further work.

The reported study was carried out with the financial support of the Russian Science Foun-
dation, project no. 23-21-00384.
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Упругопластическая модель льда с динамическим
разрушением для моделирования нелинейных процессов
во время низкоскоростного удара

Евгения К. Гусева
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Кафедра вычислительной физики
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Виктор П. Епифанов
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Москва, Российская Федерация

Аннотация. Определение деформации льда в процессе приложения динамических нагрузок игра-
ет первостепенную роль для понимания многих процессов, происходящих в Арктическом регионе.
Однако решение задачи выбора наиболее подходящей модели усложняется из-за происходящих
структурных изменений, влияющих на поведение льда. Для отражения наблюдаемой локализации
разрушений применяется динамический критерий Мизеса–Шлейхера для выделения гидростати-
ческого ядра в упругопластическом образце льда. Таким образом, также учитывается изменение
прочности льда в зависимости от величины напряжений. В ядре в условиях всестороннего сжатия
лед может крошиться, возможно образование микротрещин и рекристаллизация. Дополнительно
учитывается трещинообразование в объеме материала с помощью критерия по главным напряже-
ниям. Модель верифицируется на основе моделирования лабораторного эксперимента по низко-
скоростному прямому удару. Основной особенностью данной работы является изучение влияния
нелинейных процессов на динамику столкновения. Применение сеточно-характеристического ме-
тода позволяет точно разрешать образующиеся волны. В результате удалось продемонстрировать
образование нелинейной волны, вызывающей трещинообразование при прохождении через лед. К
тому же, анализ деформационных кривых подтвердил возможность согласования расчетов с экс-
периментом.

Ключевые слова: реология льда, нелинейные волны, критерий текучести Мизеса–Шлейхера,
трещины, низкоскоростной удар.
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Abstract. It is demonstrated that mathematical models of gradient-elastic medium and reduced
Cosserat medium, in contrast to the model of classical deformable solid, allow one to describe experimen-
tally observed dispersion of Rayleigh surface wave, i.e., relationship between phase velocity of surface
wave and frequency. At the same time, according to the model of gradient-elastic half-space, velocity of
surface wave cannot exceed the velocity of shear wave but at certain values of frequency it can reach it.
According to reduced Cosserat model, velocity of surface wave exceeds the velocity of shear wave as well
as velocity of propagation of surface wave in classical half-space and gradient-elastic half-space.
Keywords: gradient-elastic half-space, reduced Cosserat model, surface wave, dispersion, phase velocity,
frequency.
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In 1885, English scientist Lord Rayleigh (John William Strutt) theoretically demonstrated
that waves can propagate along the flat boundary of a solid elastic half-space with vacuum or
with sufficiently rarefied medium (for example, air), and their amplitudes rapidly decrease with
depth [1]. These waves called Rayleigh surface waves. They depend on the frequency range and
have different applied directions.

It became obvious that Rayleigh waves in the low-frequency range (1–100 Hz) are the main
type of waves observed during earthquakes. Therefore, they have been studied in detail in
seismology for almost 140 years [2].

The main features of propagation of Rayleigh waves are as follows: absence of dispersion, i.e.,
the wave speed does not depend on its frequency and it is constant for each material; the speed is
slightly less than the speed of the bulk shear wave by a factor 0.87 – 0.96; the displacement vector
has longitudinal and transverse components, and the transverse component always exceeds the
longitudinal component [3].

A series of works by V. V. Krylov [4–10] was devoted to the study of elastic vibrations of the
earth generated by trains and motor vehicles. Very high level of ground vibrations generated
by high-speed trains moving at a speed higher than the speed of Rayleigh surface waves in the
ground was theoretically predicted. For these works V. V. Krylov was honoured with the Rayleigh
Medal in 2000 awarded by the Acoustical Institute of Great Britain and often called the Nobel
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Prize in Acoustics. Krylov’s theory was experimentally confirmed in 1997–1998 (with his direct
participation) on a new high-speed line in Sweden (Gothenburg-Malmo), where on some sections
of the route the speed of Rayleigh waves was only 45 m/s, and a train speed of 160 km/h was
enough to observe the effect. The discovered effect became known as "ground vibration shock"
(by analogy with the well-known sonic boom from a supersonic aircraft). The generation sources
became known as "trans-Rayleigh trains" [11].

It should be noted that the existence of critical speeds of load movement along rail guides
above which bending waves are generated in the guides was discussed back in the first half of
the 1980s [12–14]. However, the critical speeds calculated at that time showed the practical
unattainability of the effect of generating bending waves in the guides by a vehicle. It turned out
to be easier for the load to overcome the speed of the Rayleigh wave in the soil located under the
rail guide and the guide itself with the system of sleepers and ballast acted as an intermediary
between the source of wave generation and the environment in which these waves arose.

At present, problems of stability of motion of high-speed objects along rail guides and
problems of generation of bending and bending-torsional waves in rail guides are recognized
as relevant, and results of their solution serve as methodological and computational support
for experiments on high-speed acceleration (or braking) of payloads on rocket tracks citeero-
feev15,erofeev16,erofeev17,erofeev18, erofeev19, erofeev20.

The mechanics of a homogeneous isotropic deformable solid excludes the possibility of surface
wave propagation with a speed greater than the speed of shear wave. However, along with
the classical continuum model generalized continuum models are also quite widely used in the
mechanics of deformable solid [21–24].

The study of generation of Rayleigh waves by sources moving along the boundaries of non-
classical elastic half-spaces was presented [25]. The purpose of the work was to determine how
the velocities of shear waves and Rayleigh surface waves are related for materials described by the
equations of mechanics of generalized (non-classical) continua such as Cosserat continuum [26]
and its modifications [27,28]) and the gradient-elastic medium [29–31].

1. Dispersion properties of surface waves in generalized
continua

As generalized continua, the gradient-elastic medium and the reduced Cosserat medium are
further considered.

Vector equations of the dynamics of studied media are written with respect to displacements
as follows

• for a gradient-elastic medium

ρü− (λ+ µ)grad div u− µ∆u+ 4µL2∆(∆u+ ν̃grad div u) = 0 (1)

where u — vector of displacements, λ and µ — Lame elastic constants, L — the ratio of the
curvature modulus to the shear modulus, ν̃ — dimensionless constant;

• for the reduced Cosserat medium

(λ+ 2µ)∇(∇ · u)− µ∇ ∗ (∇ ∗ u)− J ∂
2

∂t2
∇ ∗ (∇ ∗ u) = ρ

∂2u

∂t2
, (2)

where J — constant which characterize the inertial properties of a macrovolume, ρ —
density of the material.
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By introducing a scalar φ and vector ψ potentials, solutions of equations (1) and (2) are
sought. In this case, displacement vector u can be written in the form

u = ∇φ+∇ ∗ ψ. (3)

Note that for a plane problem the vector potential has only one non-zero component which
is denoted by ψ. Then, two equations are obtained from equations (1) and (2):

• for a gradient-elastic medium

∆φ− 1

c21

∂2φ

∂t2
= 0, ∆(1− L2∆)ψ − 1

c22

∂2ψ

∂t2
= 0, (4)

• for the reduced Cosserat medium

∆φ− 1

c21

∂2φ

∂t2
= 0, ∆ψ +G∆

∂2ψ

∂t2
− 1

c22

∂2ψ

∂t2
= 0, (5)

where G = J/µ.

The solution of equations (4) and (5) is sought in the form of harmonic waves propagating in
the direction of the axis . Moreover, one should select only those solutions which correspond to
a decrease in wave amplitudes with depth. Then one can obtained

• for a gradient-elastic medium

φ = Aeζy+i(ωt−kx), ψ = B1e
η1y+i(ωt−kx) +B2e

η2y+i(ωt−kx), (6)

• for the reduced Cosserat medium

φ = Aeζy+i(ωt−kx), ψ = Beηy+i(ωt−kx). (7)

Taking into account the absence of stresses at the boundary y = 0, the following dispersion
equation for a gradient-elastic medium are obtained

16(1− βς)(1 + α− ς)[1 + 2α+ 2
√
α(1 + α− ς)] =

= (2− ς)2[(1− 3α2)2 + α(3− α)(1 + α− ς) + (1− α2)(1 + α− ς)2 + α(1 + α− ς)3+

+2(1− 3α2)(3− α)
√
α(1 + α− ς) + 2(1− 3α2)(1− α)(1 + α− ς)−

−2(1− 3α2)(1 + α− ς)
√
α(1 + α− ς) + 2(3− α)(1− α)(1 + α− ς)

√
α(1 + α− ς)−

−2(3− α)(1 + α− ς)2α− 2(1− α)(1 + α− ς)2
√
α(1 + α− ς)].

(8)

Here ς = c2R =
ω2

k2c22
, α = L2k2, β =

1− 2ν

2− 2ν
, ν — Poisson ratio. When L = 0, equation

eqrefeq:8 is reduced to the dispersion equation of the Rayleigh surface wave in the classical case
[3]. Analysis of equation (8) showed that for gradient-elastic medium, the dispersion properties
of the Rayleigh surface wave in the "wave number – frequency" plane are described by two
curves. The first curve (the lower one) comes from the origin of coordinates. The origin of the
second curve is shifted upward along the frequency axis. In this case the surface wave has two
modes, and each mode has dispersion since velocities of both modes depend on frequency. When
frequency increases the speed of each mode of the surface wave increases, and as frequency tends
to infinity (ω →∞) the velocity of the lower mode goes from below to the horizontal asymptote
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CR =
√
2 c2, where c2 =

√
µ

ρ
. The speed of the upper mode of the surface wave increases from

the classical values for Rayleigh waves (0, 87˘0, 96)c2, reaches a maximum, and then goes to the
horizontal asymptote CR =

√
2 c2 when (ω →∞). The value of the maximum velocity increases

with increasing Poisson ratio. For example, for materials with Poisson ratio close to 0.5 the
surface wave velocity at the peak of the curve is 4% greater than the maximum surface wave
velocity for materials with Poisson ratio close to 0.2. Analysis of the second equation of system
(4) shows that volume shear wave in gradient-elastic medium also has dispersion. This follows
from the non-linear relationship between frequency and the wave number ω2 = c22k

2(1 + L2k2).
It allows one to calculate the phase velocity

V 2
ϕ =

ω2

k2
= c22(1 + L2k2). (9)

It is easy to see from (9) that for any non-zero value of the wave number (or frequency) Vph > c2
and, consequently, c2 is not the true velocity of the dispersive shear wave but it serves only as
its lower limit. Therefore, the Rayleigh wave velocity CR should be compared not with c2 but
with Vph.

This result demonstrates that velocity of the surface wave cannot exceed the phase velocity
of the shear wave, reaching it at certain frequency values.

Similarly, taking into account the absence of stresses at the boundary y = 0, one can obtain
dispersion equation for reduced Cosserat medium

η

[
η3 − 8η2 +

(
24− 16

ς

1− J
µω

2

)
η − 16

(
2− 1

1− J
µω

2
− ς

)]
= 0. (10)

where ς =
c22
c21

, η =
c2R
c22

.

Analysis of equation (10) showed that here, too, unlike the classical case [3], the Rayleigh
surface wave has dispersion. In the "wave number – frequency" plane, there are two dispersion
branches: lower and upper. With increasing frequency, the speed of the surface wave related
to the lower dispersion branch decreases and at infinity the square of the speed of the surface
wave c2R → 0.7 c22. The velocity of the surface wave related to the upper dispersion branch
increases with increasing frequency. For dimensionless frequencies ω > 9 this growth becomes
unlimited. Consequently, the upper dispersion branch describes wave processes in the interval of
dimensionless frequencies 0 < ω < 9, then the process ceases to be wave-like.

Analysis of the second equation of system (5) shows that bulk shear wave in the reduced
Cosserat medium also has dispersion. This follows from the non-linear relationship between

frequency and the wave number ω2 =
k2c22

1 + Gk2

c22

which allows one to calculate the phase velocity

V 2
phτ =

ω2

k2
=

c22
1 + Gk2

c22

. (11)

Comparing the frequency dependence of the velocity of the surface wave related to the upper
dispersion branch and the phase velocity of the shear wave given in (11), one can see that velocity
of the surface wave in the entire frequency range exceeds the phase velocity of the shear wave
which converges to c2 for ω → 0 and decreases monotonically to zero when C2

R → 0.8c22 for
ω →∞.

The frequency dependencies of V 2
phτ1 (the square of the phase velocity of the shear wave in

a gradient-elastic medium) and V 2
phτ1 ( the square of the phase velocity of the shear wave in the
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reduced Cosserat medium) are shown in Fig. 1. It is evident from the graphs that phase velocity
of the shear wave in the gradient-elastic medium exceeds phase velocity of the shear wave in the
reduced Cosserat medium in the entire frequency range.

The frequency dependences of C2
R1 (the square of the Rayleigh wave velocity in a gradient-

elastic half-space), C2
R2 (the squared Rayleigh wave velocity in a reduced Cosserat medium

(lower dispersion branch)), C2
R3 (the Rayleigh wave velocity in the classical isotropic elastic half-

space) are shown in Fig. 2. It is evident from the graphs that at low frequencies the maximum
propagation velocity of Rayleigh waves is observed in the reduced Cosserat medium. At the same
time, when frequency increases the Rayleigh wave velocity in the reduced medium decreases,
and the Rayleigh wave velocity in the gradient-elastic half-space increases and exceeds the wave
velocity in the Cosserat medium over the entire frequency range. It is also evident from the graphs
that Rayleigh wave velocity in the classical half-space exceeds the wave velocity in the Cosserat
medium when frequency increases. At the same time, the surface wave velocity in the classical
medium is independent of frequency. Therefore, waves in this medium do not have dispersion.
Considering the upper dispersion branch of the Rayleigh wave velocity, one can see that velocity
of the surface wave in the reduced Cosserat medium exceeds the surface wave velocities in the
classical medium and in the gradient-elastic medium.

Fig. 1. Frequency dependences of phase ve-
locities of shear waves

Fig. 2. Frequency dependences of velocities
of surface waves

Conclusion

It is shown that velocity of the surface wave propagating along the free boundary of the
gradient-elastic half-space is a function of frequency, i.e., the wave has dispersion, and it can
exceed the velocity of the bulk shear wave calculated as the square root of the ratio of the shear
modulus to the density of material. However, in the medium under consideration the shear
wave also has dispersion and the value of the specified velocity is only the lower limit of its
phase velocity. Thus, in a gradient-elastic medium the phase velocity of the surface wave cannot
exceed the phase velocity of the bulk shear wave but at certain values of the wave number it
can reach it. Rayleigh surface waves propagating along the free boundary of the half-space of
the Cosserat medium (reduced model) also have dispersion. In the "phase velocity – frequency"
plane for such waves there are lower and upper dispersion branches. When frequency increases
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the phase velocity of the wave related to the lower dispersion branch decreases. The phase
velocity of the wave related to the upper dispersion branch increases when frequency increases.
The phase velocity of the surface wave exceeds the phase velocity of the bulk shear wave in the
entire frequency range.

The work was carried out with financial support from the Russian Science Foundation (project
no. 20-19-00613).
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О скоростях поверхностных волн Рэлея, распространяю-
щихся вдоль границ обобщенных континуумов

Владимир И. Ерофеев
Артем М. Антонов

Алексей О. Мальханов
Институт проблем машиностроения РАН – филиал ФГБНУ

«Федеральный исследовательский центр Институт прикладной физики
им. А. В. Гапонова–Грехова РАН»

Нижний Новгород, Российская Федерация

Аннотация. Показано, что математические модели градиентно-упругой среды и редуцированной
среды Коссера, в отличие от модели классического деформируемого твердого тела, позволяют опи-
сать наблюдаемую экспериментально дисперсию поверхностной волны Рэлея, т.е. зависимость фа-
зовой скорости от поверхностной волны частоты. При этом, согласно модели градиентно-упругого
полупространства, скорость поверхностной волны не может превосходить скорости сдвиговой вол-
ны, но при определенных значениях частоты может ее достигать. Согласно же редуцированной
модели Коссера скорость поверхностной волны превышает скорость сдвиговой волны, а также
скорость распространения поверхностной волны в классическом полупространстве и градиентно-
упругом полупространстве.

Ключевые слова: градиентно-упругое полупространство, редуцированная модель Коссера, по-
верхностная волна, дисперсия, фазовая скорость, частота.
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Abstract. Self-assembly is one of the methods utilized to create intricate geometry-based structures
at the nanoscale. Earlier research in this field has shown that the formation of multiparticle structures
using this technique is primarily achievable through gradual assembly, where a new particle is connected
with a previously formed cluster. But step-by-step construction requires additional expenses and may
result in defects within the already formed structures. If step-by-step assembly is not appropriate, a
structure can be formed from a ensemble of particles without additional influence, but it is uncertain
whether the probability of structure formation and the process selectivity are high. The paper presents a
mathematical model that demonstrates how to derive a structure from an ensemble of particles, describes
its implementation through software, and proposes the result of computational experiments.
Keywords: mathematical model, nanostructure self-assembly, computational experiment, Langevin
dynamics.
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Introduction
Scientific and technological interest is heightened in terms of the study of nanometric struc-

tures and their application in the creation of devices [1]. This is especially important in elec-
tronics, where smaller components allow for smaller devices with faster signal transmission. At
the same time, many-particle systems play an important role in the description of many pro-
cesses, the elements of which interact with each other through the environment, represented by
both physical and chemical characteristics and a superposition of forces acting on the ensemble.
Here there is an important feature for multiparticle systems: when faced with forces that affect
the ensemble directly or indirectly through the environment, some particles can aggregate into
structures. The term self-organization or self-assembly is used to describe such a process [2].

Self-assembly processes are the subject of theoretical and experimental studies in many appli-
cation. The area of practice application is related to the binary solvents, mixing different kinds
of particles, creating multilayer systems, achieving multistage self-assembly, and controlling the
self-assembly of external fields, such as, for example, inertial forces [3–5]. The use of self-assembly
is especially interesting for describing the aggregation of ultrasmall nanoparticles, like nanodi-
amonds [6, 7], quantum dots and supramolecules [8], and metal particles [9]. There is much
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c⃝ Siberian Federal University. All rights reserved
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less work on theoretical modeling of such systems. Molecular Brownian dynamics, Monte Carlo
methods, dissipative particle dynamics, and self-consistent field theory are commonly utilized as
tools for mathematical and numerical modeling to explore self-organizing structures.

From the point of view of mathematical and computer modeling of self-assembly processes, the
most important is the construction of physically meaningful and computationally simple models.
The choice of model is determined by the approximations necessary to simplify the initially
complex phenomenon. The existing experience of the authors in the application of Brownian
particle dynamics for modeling self-assembly processes in the volume of a solution indicates the
possibility of reproducing and predicting real processes and phenomena in both simple and more
complex systems. Thus, earlier in [10,11], an universal method was proposed for the formation of
nanostructures under the action of an external quasi-resonant field due to the self-organization of
nanoparticles. The first experiments [12,13] showed the fundamental possibility of pair formation
from colloidal quantum dots. Numerical calculations [14] showed the possibility of creating more
complex structures using staged self-assembly. This work is devoted to a mathematical and
computer model of self-organization of aggregates from an ensemble of particles for estimating
the parameters of the medium and field at which such an assembly becomes possible, as well as
to a numerical analysis of the simulated process.

The article is organized as follows. Section 2 is devoted to the mathematical formulation of
the problem and its implementation. Section 3 presents the results of computational experiments.
Section 4 proposes conclusions and discussion of the results.

1. Mathematical formulation

Assume that under laser radiation field an ensemble of N nanoparticles having mass mj of
radius Rj and resonant frequency ω0j , j = 1, . . . , N is considered. For every j−th dipole particle
at any moment in time, we define:

r̄j =
(
rxj , r

y
j , r

z
j

)
− radius-vector of the particle’s center of mass;

v̄j =
(
vxj , v

y
j , v

z
j

)
− vector of translational velocity of the particle’s center of mass;

ω̄j =
(
ωxj , ω

y
j , ω

z
j

)
− particle rotational velocity vector;

d̄j =
(
dxj , d

y
j , d

z
j

)
− dipole moment vector.

The problem is to estimate the probability of assembling structures from an ensemble of
particles for fixed parameters of the medium and field, in a time not exceeding the duration
of one laser pulse (T 6 10). The difference from our previous works lies in the solution of a
multiparticle problem, when we are not limited to step-by-step assembly or a small number of
particles (for example, see [14]). Here we are primarily interested in the possibility of assembling
structures consisting of more than two particles and the selectivity of the process.

1.1. Langevin dynamics to describe the motion of an ensemble
of particles

In this section we briefly describe the model used to describe many-particle interactions. It
is based on a description of interaction through Langevin dynamics, a physical concept devel-
oped for statistical modeling of molecular systems. It represents stochastic dynamics in which
particles move under the influence of a force directed towards the most probable regions of state
space, determined by the parameters of the environment. To avoid repeating complete model
conclusions regarding our previous works for pairs and triplets of particles [14,15], only the main
equations and comments regarding the many-particle problem will be given here.

a) translation motion
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Let us separately describe the translational and rotational motion of an ensemble of particles.
Given that the ensemble size is much smaller than the wavelength of the incident radiation, we
can assume that the external electric field E⃗ is uniform

E⃗ = 1/2 E⃗0 exp (iω
rt) + c.c.

and not to take into account delays. Here ωr is the frequency of laser radiation. One of the widely
used methods for describing the translational motion of an ensemble of particles is Langevin
dynamics [11], expressed in the form of system{

dr̄j/dt = v̄j ,

mjdv̄j/dt = F̄j ,
(1)

where F̄j is the superposition of forces acting on the j-th particle, including friction forces and
stochastic forces that take into account the temperature parameters of the medium. As the F̄j
we will consider the sum of the following components

F̄j = F⃗ vj + F⃗ ej + F⃗ dj − F⃗
f
j + F⃗ cj , (2)

where F⃗ dj = −∇(W d
j ) is the electrodynamic force; F⃗ vj = −∇(W v

j ) is van der Waals force;
F⃗ ej = −∇(W e

j ) is electrostatic repulsion force; F⃗ fj is viscous friction force; F⃗ cj is stochastic
hydrodynamic force. Here W d

j , W v
j , W e

j are the energies of dipole-dipole, van der Waals and
Coulomb interactions of an ensemble of particles at the position point of that particle, determined
by (3)–(5) respectively.

W d
j =

1

4πε0

∑
k ̸=j

(
d⃗j , d⃗k

)
|r⃗jk|2 − 3

(
d⃗j , r⃗jk

)(
d⃗k, r⃗jk

)
|r⃗jk|5

; (3)

W v
j = −AH

6

∑
k ̸=j

(
2Rj

2

h2jk + 4Rjhjk
+

2Rj
2

h2jk + 4Rjhjk + 2Rj
2 + ln

h2jk + 4Rjhjk

h2jk + 4Rjhjk + 2Rj
2

)
; (4)

W e
j = 2πεrε0Rjϕ0

2
∑
k ̸=j

ln [1 + exp (−hjkk0)] . (5)

Here AH is the Hamaker constant; hjk is interparticle gap; ϕ0 is potential at the Helmholtz
boundary; εr is dielectric constant of the medium; k0 is screening constant.

For spherical particles the Stokes formula allows calculate the force of viscous friction F⃗f

F⃗ fj = 6πηRj v⃗j , (6)

where η is the dynamic viscosity of the medium. The interaction of particles with a medium
with fluctuating density usually leads to a random change in their trajectory. To take Brownian
motion into account, consider a random force F⃗ cj described by a Gaussian distribution. Suppose
a particle or particle’s cluster experiences a random force over ∆t. Before each integration step,
the values of the projections of the random force F⃗ cj on the coordinate axes are selected from a
Gaussian distribution with zero mean and standard deviation σ2 = 12πηRkT/∆t .

b) rotational movement
The rotational motion of an ensemble of particles, arising as a result of the interaction of par-

ticles with induced dipole moments d⃗j in a uniform constant laser field in a viscous environment
is determined by the action of the torque N⃗j :

N⃗j =
[
d⃗j × E⃗

]
+ M⃗rot

j , (7)
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where [⃗a× b⃗] is the vector product and M⃗rot
j is the torque caused by the forces of hydrodynamic

resistance to the rotation of the structure

M⃗rot
j =

[
F⃗ trj × r⃗j

]
,

where F⃗ trj is the superposition of forces acting on the particle with the exception of the force
of electrodynamics interaction. One of the techniques to describe the rotation of a structure
mathematically involves identifying it with rotation by a moving (local) coordinate system, which
is fixed to the structure. For the connection between the moving and inertial coordinate systems,
Euler angles are considered [15]. Using the equation of moments [16], we determine the rotation of
the structure in the local coordinate system according to the presence or absence of momentum.

dL⃗j
dt

+
[
w⃗locj × L⃗j

]
= N⃗ loc

j . (8)

Here L⃗j is the angular momentum of the dipole structure, defined as L⃗j = Jjw⃗
loc
j ; N⃗ loc

j is the
rotational moment determined in the local coordinate system (CS). The position of the moving
CS relative to the inertial one is determined by Euler’s kinematic equations [16].

Remark 1. The initial distribution of dipole moments can be determined from a system of
linear algebraic equations:

d⃗j = X0j

(
E⃗ +

∑
k ̸=j

E⃗k

)
,

where X0j is the linear polarizability of j-th isolated particle, E⃗k is the field created by that
particle of the ensemble at the location of k-th particle [15].

Remark 2. The "gluing" of particles into a pair or the formation of more complex multiparticle
structures was considered to be the achievement of an interparticle gap between the gluing
components of less than half the radius of the particle. After gluing, the center of mass of the
formed structure is determined depending on the geometric arrangement of the particles forming
it; mass as the sum of the masses of the parts forming the structure and dipole moment as a
superposition of the forming dipole moments.

Remark 3. When modeling the translational motion of structures consisting of several nanopar-
ticles, the same formulas (1)–(6) were used as for an ensemble of particles, except for the Stokes
formula for calculating viscous friction forces for formed pairs of particles. Instead, we used the
approximation of the pair by a cylinder of the appropriate radius and a generalization of the
Stokes formula proposed in [15]. In turn, rotational motion for pairs of particles and more com-
plex agglomerates, in contrast to isolated particles, requires the introduction and consideration
of a local CS, rigidly related to the structure. Technical issues of modeling the rotation of a pair
are discussed in [15].

1.2. Numerical solution and system scaling
For the numerical implementation of the system of differential equations, the Runge–Kutta

method of the 4-th order was used. For the simulation, we considered an ensemble of CdTe
particles in an aqueous solution. The parameters of particles, medium and field are described in
Tab. 1. Note that the program for modeling the interaction of dipole particles is implemented
in the C++ programming language, and the maximum accuracy of representing a real number
during operation is ensured by the double type and is 15 significant digits. Therefore, it is
necessary that the ratio of the maximum number to the minimum number does not exceed 1015.
Based on this restriction, we scaled the basic units of measurement of the International System
of Units (SI):
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m = 109 m∗; kg = 1023 kg∗; s = 109 s∗; A = 1013 A∗.

The values of the corresponding scaled quantities with descriptions and initial values are
presented in Tab. 1.

Table 1. Description of constants and scaled quantities

Description Desig- Value Scaled value
nation

Particle radius R 1.5·10−9 m 1.5 m∗

Particle mass m 8.2485·10−23 kg 8.2485 kg∗

Planck’s constant ~ 1.054·10−34 J · s 1.054 · 10−2 J∗ · s∗
External field wavelength λ 690·10−9 m 690 m∗

Resonance wavelength λ0 525·10−9 m 525 m∗

Uniform line width G 1.6·1013 Hz 1.6 · 104 Hz∗
Dielectric constant in vacuum ε0 8.82·10−12 F/m 8.82 F ∗/m∗

Relative dielectric constant of water εr 81 81
Potential at the Helmholtz boundary ϕ0 2.34·10−3 V 2.34 · 10−2 V ∗

Viscosity η 0.8902·10−3 Pa · s 0.8902 ·102 Pa∗ · s∗
Screening constant k0 0.1·109 m−1 0.1 m∗−1

Boltzmann’s constant kb 1.38·10−23 J/K 1.38 J∗/K∗

Hamaker constant AH 50kbT 50kbT

Transition dipol moment
in a two-level system

|d12|2 1.91 · 10−44 J ·m3 19.1 J∗ ·m∗3

Temperature T 300 K 300 K∗

Speed of light 0 2.99·108 m/s 2.99 · 108 m∗/s∗

Field intensity I 1010 W/m2 106 W ∗/m∗2

Electric field strength
∣∣∣E⃗∣∣∣ 2.27·106V/m 2.27 · 10−2 V ∗/m∗

Assume also that in Cartesian coordinates the electric field strength vector E⃗ = (Ex, Ey, Ez)
is determined by the radiation intensity and two angles α and β as follows:

Ex = E sinα sinβ,

Ey = E sinα cosβ,

Ez = E cosα.

(9)

2. Results of numerical simulation

Fig. 1 shows an example of modeling the interaction of an ensemble of dipole particles for 10
ns from 10 particles. The initial location of the particles was set randomly within the cube with
a 100 nm edge. As a result of the simulation, a pair is formed at 7 ns. No other structures were
formed.

Fig. 2 shows the probability of assembly of at least one structure depending on the direction
of laser radiation for different numbers of particles in 10 ns. Note that structures other than
pairs were not formed for any combination of angles and initial numbers of particles. Fig. 3
shows the dependence of the average assembly time of the first pair of particles on their initial
number. Fig. 4 shows a visualization of the change in the probability of structure assembly with
an increase in the initial number of particles in the system at certain angles of incidence of laser
radiation.
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a) initial particle location b) state of the ensemble after 5 ns

c) assembly in pair at 7 ns d) state of the ensemble after 10 ns

Fig. 1. An example of modeling the interaction of an ensemble of 10 dipole particles

3. Conclusions and discussion

The article is devoted to a numerical assessment of the possibility of self-assembly of ag-
glomerates from an ensemble of nanoparticles under certain environmental and field parameters.
Previously obtained results, described, for example, in [12–14], show that with certain condi-
tions of the environment, self-organization of particles of a given geometry becomes possible. It
was shown that the probability of such an assembly depends significantly on the initial distance
between particles. The described difficulty can be overcome by changing the concentration of
particles, which, in the presence of random fluctuations, leads to the assembly of structures.
However, it remained not obvious whether the process stay selective with respect to the field
parameters, for which purpose the corresponding computational experiments were carried out.
To implement the assessment, a mathematical model was built, described in Section 2.

Briefly describe the obtained results. Figures 2 and 4 show that, regardless of the initial
number of particles, the maximum probability of assembly is achieved when the laser is positioned
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a) 2 particles b) 4 particles c) 8 particles

d) 12 particles e) 16 particles f) 20 particles

Fig. 2. Probability of pair assembly depending on the direction of laser radiation for different
numbers of particles in 10 ns

Fig. 3. Dependence of the average assembly time of the first pair of particles on their initial
number

along the x axis, while with a different direction of the laser beam, assembly also occurs, but
with a lower probability. Note that, due to the symmetry of the process, there should be no
obvious advantage in the direction of laser radiation for assembly, that is, at high concentrations
and random arrangement of particles, the process should be non-selective in the direction of laser
radiation. This phenomenon most likely arises due to the peculiarities of the software modeling,
since the initial location of particles along the y, z axes was chosen randomly throughout the entire
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a) α = 0; β = 0 b) α = 90; β = 0 c) α = 90; β = 90

Fig. 4. Probability of structure assembly for different numbers of dipole particles for certain field
parameters

computational domain, and along the x axis — in a narrower part of the domain, depending on
the number of particles so that nanoparticles occupied the computational space area uniformly.
This was done so that when the area was randomly filled, it did not occur that some particles were
generated already at the distance at which gluing was performed. Note that from Figures 2 and
4 it is clear that the difference between the maximum and minimum probability of aggregation
narrows with increasing particle concentration.

We also note that at the chosen wavelength of the external field, corresponding to the assem-
bly of pairs of particles [12], structures other than pairs are not assembled. In this case, with an
increase in the number of particles in the ensemble, the growth rate of the assembly probability
slows down, as can be seen from Fig. 4. This can be explained by the superiority of the electro-
static repulsion forces over the electrodynamics interaction forces at a small interparticle gap, as
was shown in [13]. Note also that at N = 20, the average distance between particles along one
axis is of the order of the particles’ diameter, where the use of the dipole-dipole approximation
becomes incorrect. Fig. 3 shows a similar behavior of the average assembly time of the first pair
depending on the initial number of particles.

Thus, the results of computational modeling demonstrated the possibility of self-assembly of
pairs from an ensemble of free isolated dipole particles with a high probability exceeding 50% at
high concentrations in the volume. At the same time, the problem of the possibility of assembling
more complex structures from an ensemble of particles and pairs, as well as taking into account
relaxation processes when turning off laser radiation, remains a question for future research.

V.Petrakova thanks the Krasnoyarsk Mathematical Center and financed by the Ministry of
Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Centers for Mathematics Research and Education (Agreement
no. 075-02-2024-1378). The studies for A. Tsipotan was carried out within the framework of the
state assignment of the Federal State Autonomous Educational Institution of Higher Education
"Siberian Federal University" (number FSRZ-2023-0008).
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Компьютерное моделирование самосборки структур
из ансамбля наночастиц

Виктория С. Петракова
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация
Алексей С. Ципотан

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. Самосборка — один из методов, используемых для создания сложных геометриче-
ских структур на наноуровне. Более ранние исследования в этой области показали, что форми-
рование многочастичных структур с использованием этого метода в первую очередь достижимо
путем поэтапной сборки, когда новая частица присоединяется к ранее образованному кластеру. Но
поэтапное формирование требует дополнительных затрат и может привести к дефектам уже полу-
ченных конструкций. Если поэтапная сборка невозможна, то структура может быть сформирована
из ансамбля частиц без дополнительного воздействия, но неясно, высока ли вероятность структу-
рообразования и является ли процесс селиктивным. В статье представлена математическая модель,
которая демонстрирует, как получить структуру из ансамбля частиц, описывает ее реализацию с
помощью программного обеспечения и предлагает результаты вычислительных экспериментов.

Ключевые слова: математическая модель, самосборка наноструктур, вычислительный экспери-
мент, динамика Ланжевена.
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Abstract. A method has been developed for implementing an algorithm for determining the stress-
strain state (SSS) of a thin shell based on the finite element method (FEM) in a three-field formulation
under step loading. A quadrangular fragment of the median surface of the thin shell is accepted as
the finite element. Nodal unknowns at the loading step used: increments of kinematic quantities (in-
crements of displacements and their derivatives); increments of deformation quantities (increments of
deformations and curvatures of the median surface); increments of force values (increments of forces and
moments). The approximation of kinematic quantities was carried out using bicubic shape functions
based on Hermite polynomials of the third degree, and force and deformation quantities using bilinear
functions. To account for the physical nonlinearity of the shell material, the defining equations are
used in two versions: the first is the defining equations of the theory of plastic flow and the second is
the defining equations based on the proposed hypothesis of proportionality a component of deviators of
strain increments and stress increments. The stiffness matrix of the finite element is formed on the basis
of a nonlinear Lagrange functional for the loading step, expressing the equality of possible and actual
work of given loads and internal forces, with the complementary condition that the actual work of the
increments of internal forces is equal to zero on the difference in increments of deformation quantities
determined by geometric relations and using approximating expressions. An example of calculation is
given using the resulting finite element stiffness matrix.
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Shell structures are widely used in various areas of engineering — in shipbuilding, aircraft
manufacturing, in the creation of chemical engineering objects, in the aerospace industry and in
many other branches of engineering. Nonlinear behavior of the material occurs in many areas
of the considered thin-walled elements of engineering structures. To determine the stress-strain
state in such areas, numerical calculation methods are usually used, among which the most
widely used is the FEM in the formulation of the displacement method, when displacements
and their derivatives of different orders are taken as nodal unknowns. A disadvantage of the
FEM in the displacement method version is the lack of compatibility in terms of deformations
at the boundaries between adjacent elements. To overcome this drawback, the FEM began to be
used in a mixed version, where kinematic unknowns (displacements and their derivatives) and
force unknowns (forces and moments) are used as nodal unknowns, where, when using bilinear
approximation, convergence in force parameters at the boundaries of adjacent finite elements
was ensured [1, 2].

The finite element method in a mixed version is used in studies of the stability of nonlinearly
deformed elastic structures [3–5], as well as in determining the stress-strain state of structures
taking into account the physical nonlinearity of the material [6–12]. In elastic-plastic deformation,
the total strains are determined by differentiating the strain energy function with respect to
stresses. Plastic strain is determined by the difference between the total and elastic strains.
Displacements and stresses are taken as unknown quantities. When using the three-field FEM
version [13], plastic multipliers are added to the nodal unknowns.

In this paper, a finite element in the form of a quadrangular fragment of the middle surface of a
thin shell with three fields of nodal unknowns: kinematic, deformation and force is developed. In
the first variant, the equations of the theory of plastic flow are used as the governing equations
at the loading step. In the second variant, the governing equations at the loading step are
obtained without separating the strain increments into elastic and plastic parts, based on the
hypothesis of proportionality of the components of the deviators of strain increments and stress
increments. To obtain the stiffness matrix of the finite element at the loading step, a nonlinear
Lagrange functional is used with the condition of zero work of the increments of internal forces
on the difference in the strain increments determined by geometric relations and found using
approximating expressions directly.

1. Geometrical relationships of a thin shell

The position of an arbitrary point M0 of the mid-surface of the shell is determined by the
radius vector

R⃗0 = xm(θα)⃗im, (1.1)

where xm, i⃗m are the coordinates and orthants of the Cartesian coordinate system; θα are the
curvilinear coordinates of the point.

The basis vectors of the point M0 are defined by the expressions

a⃗0α = R⃗0
,α; a⃗

0
3 =

a⃗01 × a⃗02
|⃗a01 × a⃗02|

=
a⃗01 × a⃗02√

a0
. (1.2)
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The derivatives (1.2) are written as components in the same basis

{a⃗0,1}
3×1

= [m]
3×3
{a⃗0}
3×1

; {a⃗0,2}
3×1

= [n]
3×3
{a⃗0}
3×1

, (1.3)

where {a⃗0,α}
1×3

T
= {a⃗01,α a⃗02,α a⃗03,α}; {a⃗0}

1×3

T
= {a⃗01 a⃗02 a⃗03}.

The displacement vector of the point M0 and its derivatives are defined in the basis of the
same point

v⃗ = vρa⃗0ρ + va⃗03; v⃗,α = fραa⃗
0
ρ + fαa⃗

0
3; v⃗,αβ = fραβ a⃗

0
ρ + fαβ a⃗

0
3, (1.4)

where the components fρα, fα, fραβ , fαβ are defined using (1.3).
Deformations and curvatures of the median surface at the point M0 are determined by the

relations [14]

∆εαβ =
1

2
(⃗a0α·v⃗,β+a⃗0β ·v⃗,α); ∆καβ =

1

2
[⃗a0α(⃗a3,β−a⃗03,β)+a⃗0β (⃗a3,α−a⃗03,α)+a⃗03,α·v⃗,β+a⃗03,β ·v⃗,α]. (1.5)

where a⃗3,α =
1√
a0

(⃗a1,α × a⃗2 + a⃗1 × a⃗2,α); a⃗α = a⃗0α + v⃗,α; a⃗α,ρ = a⃗0α,ρ + v⃗,αρ.

On the basis of (1.5) we can form a matrix relation

{∆ε}
6×1

= [L]
6×3
{∆U}
3×1

, (1.6)

where {∆ε}
1×6

T
= {∆ε11 ∆ε22 2∆ε12 ∆κ11 ∆κ22 2∆κ12}; {∆U}

1×3

T
= {∆v1∆v2∆v}.

2. Defining equations

In the first variant, the equations of plastic flow theory were used, according to which the
incremental strains at an arbitrary point of the shell are composed of elastic and plastic strains

∆εζαβ = ∆εζeαβ +∆εζPαβ . (2.1)

The elastic strain increments are determined by the relations [15]

∆εeζαβ =
1

2µ
∆σαβ − gαβλP∆σ

3

2

1− 2ν

2µ
, (2.2)

where λ, µ are the Lame parameters; ν is the transverse strain coefficient; P∆σ = ∆σρτg
ρτ —

first invariant of the stress increment tensor; gαβ , gαβ — components of the metric tensor.
Plastic strain increments in the flow theory are determined on the basis of the hypothesis of

proportionality of plastic strain increments to the components of the stress deviator

∆εζPαβ =
3

2σi
φ(σαβ −

1

3
gαβPσ)∆σi, (2.3)

where φ =
1

Ek
− 1

E1
; E1 is the modulus of the initial section of the strain diagram; Ek is the

tangent modulus of the strain diagram; ∆σi =
∂σi
∂σρτ

∆σρτ = {S}
1×3

T {∆σ}
3×1

; σi — stress intensity;

{∆σ}
1×3

T
= {∆σ11∆σ22∆σ12}.
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Based on (2.1), (2.2) and (2.3) a matrix relation is formed

{∆εζ}
3×1

= [C1]
3×3
{∆σ}
3×1

. (2.4)

In the second version of the defining relations, the hypothesis of separation of strain incre-
ments into elastic and plastic parts is not used. The defining equations are obtained on the basis
of the hypothesis of proportionality of the components of the deviators of strain increments and
stress increments

∆εαβ −
1

3
gαβP∆ε = K(∆σαβ −

1

3
gαβP∆σ), (2.5)

where K =
3

2Ex∂
; P∆ε = P∆σ

1− 2ν

E
P∆σ; P∆σ = ∆σρτg

ρτ is the first invariant of the stress

increment tensor.
Based on (2.5) a matrix relation is formed

{∆εζ}
3×1

= [C2]
3×3
{∆σ}
3×1

. (2.6)

At an arbitrary point M0 we introduce lines of increments of deformations and curvatures of
the medial surface and lines of increments of internal forces and moments of the shell section,
the relations between which are determined taking into account (2.4), (2.6) on the basis of the
Kirchhoff–Lava hypothesis

{∆S}
6×1

= [hα]
6×6
{∆ε}
6×1

. (2.7)

where
{∆S}
6×1

T
= {∆N11 ∆N22 ∆N12 ∆M11 ∆M22 ∆M12};

{∆ε} = {∆ε11 ∆ε22 2∆ε12 ∆κ11 ∆κ22 2∆κ12}.

3. Stiffness matrix of the finite element

The finite element is taken in the form of a curvilinear quadrilateral fragment of the median
surface with nodes i, j, k, l. The relations between kinematic, deformation and force parameters
for the finite element are regulated at the loading step by a nonlinear variational Lagrangian
functional with condition

ПLU =

∫
F

[
{S}
1×6

T
+

1

2
{∆S}
1×6

T

]
{∆ε}
6×1

dF −
∫
F

{∆U}
1×3

T

[
{q}
3×1

+
1

2
{∆q}
3×1

]
dF+

+
1

2

∫
F

{∆S}
1×6

T

[
{∆εg}
6×1

− {∆εa}
6×1

]
dF,

(3.1)

where the first expression means the possible and actual work of internal forces on the deformation
values of the loading step. The second expression defines the possible and actual work of the
given forces on the loading step. The third expression means the actual work of internal forces
of the loading step on the difference of deformation values determined by geometrical formulae
(through displacements) with subsequent approximation of displacements and deformation values
found by their direct approximation.
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The following kinematic nodal unknowns in the local {∆vsy} and global {∆vgy} coordinate
systems are used for the finite element under consideration

{∆vsy}
1×36

T
= {∆v1i . . .∆v1l∆v1i,ξ . . .∆v1l,ξ∆v1i,η . . .∆v1l,η∆v2i . . .∆v2l

∆v2i,ξ . . .∆v
2l
,ξ∆v

2i
,η . . .∆v

2l
,η∆v

i . . .∆vl∆vi,ξ . . .∆v
l
,ξ∆v

i
,η . . .∆v

l
,η};

{∆vgy}
1×36

T
= {∆v1i . . .∆v1l∆v1i,α . . .∆v1l,α∆v1i,β . . .∆v1l,β∆v2i . . .∆v2l

∆v2i,α . . .∆v
2l
,α∆v

2i
,β . . .∆v

2l
,β∆v

i . . .∆vl∆vi,α . . .∆v
l
,α∆v

i
,β . . .∆v

l
,β},

(3.2)

between which there is a matrix relation

{∆vsy}
36×1

= [T ]
36×36

{∆vgy}
36×1

. (3.3)

The strain {∆Ey}T and force nodal unknowns {∆Sy}T were taken as follows lines

{∆Ey}
1×24

T
= {{∆Eiy}

1×6

T {∆Ejy}
1×6

T {∆Eky}
1×6

T {∆Ely}
1×6

T };

{∆Sy}
1×24

T
= {{∆Siy}

1×6

T {∆Sjy}
1×6

T {∆Sky}
1×6

T {∆Sly}
1×6

T },
(3.4)

where {∆Eλy }
1×6

T
= {∆ελ11∆ελ222∆ελ12∆κλ11∆κλ222∆κλ12} — a string of strain and curvature incre-

ments at the nodal point; {∆Sλy }
1×6

T
= {∆N11λ∆N22λ∆N12λ∆M11λ∆M22λ∆M12λ} — line of

force and moment increments at the nodal point λ; λ = i, j, k, l.
The approximation of the increments of displacements of the internal point of the finite

element was carried out by the expression

λ = {φ(ξ, η)}
1×36

T {∆vsy}
36×1

, (3.5)

where the symbol λ is ∆v1, ∆v2, ∆v2, ∆v; the elements of the function {φ(ξ, η)} are Hermite
polynomials of degree three.

On the basis of (3.5) the matrix relations are formed

{∆U}
3×1

= [A]
3×36
{∆vsy}
36×1

; {∆ε}
6×1

= [L]
6×3
{∆U}
3×1

= [L]
6×3

[A]
3×36
{∆vsy}
36×1

= [B]
6×36
{∆vsy}
36×1

. (3.6)

Bilinear functions are used for approximation of deformations and forces on the basis of which
matrix expressions are formed

{∆ε}
6×1

= [H]
6×24
{∆Ey}
24×1

; {∆S}
6×1

= [H]
6×24
{∆Sy}
24×1

. (3.7)

Taking into account the approximating expressions (2.7), (3.3), (3.6), (3.7), the functional
(3.1) is written by the expression

ПLU = {∆Ugy }
1×36

T
[T ]

36×36

T
∫
F

[B]
36×6

{S}
6×1

dF +
1

2
{∆εy}
1×36

T
∫
F

[H]
36×6

T
[hα]
6×6

[H]
6×24

dF{∆εy}
1×24

−

−{∆Ugy }
1×36

T
[T ]

36×36

T
∫
F

[A]
36×3

T {q}
3×1

dF − 1

2
{∆Ugy }
1×36

T
[T ]

36×36

T
∫
F

[A]
36×3

T {∆q}
3×1

dF+

+{∆Sy}
1×24

T 1

2

∫
F

[H]
24×6

T
[B]
6×36

dF [T ]
36×36

T {∆Ugy }
36×1

− {∆Sy}
1×24

T 1

2

∫
F

[H]
24×6

T
[H]
6×24

dF{∆εy}
24×1

.

(3.8)
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Minimising the functional (3.8) by nodal unknowns leads to the matrix equations

∂ПLU

∂{∆εy}T
≡ [a]

24×24
{∆εy}
24×1

− [d]
24×24

[∆Sy]
24×1

= 0; (3.9)

∂ПLU

∂{∆Sy}T
≡ [b]

24×36
{∆Uy}
36×1

− [d]
24×24

T
[∆εy]
24×1

= 0; (3.10)

∂ПLU

∂{∆Ugy }T
≡ [b]

36×24

T
[∆Sy]
24×1

− {f∆q}
36×1

+ {R}
36×1

= 0, (3.11)

where [a]
24×24

=
∫
F

[H]
24×6

T
[hα]
6×6

[H]
6×24

dF ; [d]
24×24

= 1
2

∫
F

[H]
24×6

T
[H]
6×24

dF ; [b]
24×36

= 1
2

∫
F

[H]
24×6

T
[B]
6×36

dF [T ]
36×36

;

{f∆q}
36×1

= [T ]
36×36

∫
F

[A]
36×3

T {∆q}
3×1

dF ; {R}
36×1

= − [T ]
36×36

∫
F

[A]
36×3

T {q}
3×1

dF + [T ]
36×36

∫
V

[B]
6×36

{S}
36×1

dV .

From the systems (3.9), (3.10) we obtain the relations

{∆εy}
24×1

= [d]
24×24

−1
[b]

24×36
{∆Ugy }
36×1

; {∆Sy}
24×1

= [d]
24×24

−1
[a]

24×24
{∆εy}
24×1

. (3.12)

By considering (3.12), the stiffness matrix of the finite element is obtained from the system
(3.11)

[K]
36×36

{∆Ugy }
36×1

= {f∆q}
36×1

− {R}
36×1

, (3.13)

where [K]
36×36

= [b]
36×24

T

[
[dT ]−1

24×24

]
[a]

24×24
[d]

24×24

−1
[b]

24×36
— finite element stiffness matrix, which is used

to form the shell stiffness matrix.
After determining the kinematic nodal unknowns of the shell, the deformation and force nodal

unknowns are determined by (3.12).

4. Calculation example

As an example, the calculation of a shell with a medial surface in the form of a truncated
ellipsoid of rotation loaded with internal pressure of intensity q = 6 MPa. Due to axial symmetry,
the ellipsoid was modelled by a ribbon of discretisation elements oriented along the shell meridian.
The left end of the shell was rigidly clamped, the right end was free of clamping (Fig. 1). The
initial data had the following values: ellipsoid parameters a = 1.3 m; b = 0.9 m; thickness
h = 0.02 m; axial coordinate varied in the range 0 6 x 6 1.2 m. Mechanical characteristics of
the shell material: duralumin alloy E = 7.49 · 104 MPa; ν = 0.32. The yield strength of the
material is σT = 200 MPa. The deformation diagram was modelled by a two-link broken line
with linear hardening defined by the dependence

σi = 200 + 18087(εi − 0, 0023496). (4.1)

The calculations were performed with control of the convergence of the computational process
both by the number of sampling elements and by the number of loading steps. Tab. 1 shows the
results of ellipsoidal shell calculation with the number of sampling elements equal to 200 and
different numbers of loading steps. The table shows the values of normal stresses in the support
and free ends of the shell on the inner σin, outer σout and midline σmidl surfaces of the shell.
Analyses of the tabular data allow us to conclude that the computational process is stable as the
number of loading steps increases. Due to the unloaded right end of the ellipsoid, σmidlxx must be
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Fig. 1. Calculation diagram of an ellipsoidal shell

equal to zero. As Tab. 1 shows, the numerical values of σmidlxx are quite close to zero. The ring
stresses σmidltt at the free end of the ellipsoid can be calculated using the Laplace formula

σxx
R1

+
σtt
Rt

=
q

t
, (4.2)

where R1, Rt are the radii of the principal curvatures.
Given that at the free end σxx = 0, the analytical value of σtt can be obtained from (4.2).

σtt =
q

t
Rt =

6

0.02
· 0.6708 = 201.2 MPa. Comparing the analytical value of σtt, presented in

the rightmost column of Table 1, with the numerical value of σmidltt , we can conclude that the
calculation error δ = 3.38% is within acceptable limits when performing engineering calculations.

Table 1. Numerical values of stresses depending on the number of loading steps

Point σ, Number of loading steps Analytical
coordinates, x, m MPa 12 22 32 42 solution

0,00 σinxx 322.6 321.1 319.8 320.1 —
σoutxx –230.4 –228.4 –227.2 –227.9 —
σmidlxx 168.7 167.0 165.1 165.5 —

1,20 σinxx 0.039 0.025 0.032 0.033 —
σoutxx 0.041 0.030 0.036 0.036 —
σmidlxx 0.036 0.023 0.030 0.030 0,00
σintt 200.7 199.5 200.1 200.2 —
σouttt 189.5 188.3 188.9 1889 —
σmidltt 195.0 193.8 194.4 194.4 201.2

Conclusion

In the developed FEM algorithm in the three-field variant, when using bilinear approximations
for deformation and force quantities to be sought, their coherence is ensured not only at the
nodes of adjacent finite elements, but also along their boundaries. In addition, the developed
algorithm can control the location of an internal point with coordinates εi, σi on the deformation
diagram, which opens up the possibility of finding unloading zones under complex loading of shell
structures.
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Физически нелинейное деформирование оболочки
при использовании трехпольного МКЭ
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Волгоград, Российская Федерация
Анатолий П. Николаев

Волгоградский государственный аграрный университет
Волгоград, Российская Федерация

Валерия А. Пшеничкина
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Юрий В. Клочков
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Аннотация. Разработана методика реализации при шаговом нагружении алгоритма определе-
ния напряженно-деформированного состояния (НДС) тонкой оболочки на основе метода конечных
элементов (МКЭ) в трехпольной формулировке. В качестве конечного элемента принят четырех-
угольный фрагмент срединной поверхности тонкой оболочки. Узловыми неизвестными на шаге
нагружения использованы: приращения кинематических величин (приращения перемещений и их
производных); приращения деформационных величин (приращения деформаций и искривлений
срединной поверхности); приращения силовых величин (приращения усилий и моментов). Аппрок-
симация кинематических величин осуществлялась с использованием бикубических функций фор-
мы на основе полиномов Эрмита третьей степени, а величин силовых и деформационных — с
использованием билинейных функций. Для учета физической нелинейности материала оболочки
использованы определяющие уравнения в двух вариантах: первый — определяющие уравнения тео-
рии пластического течения и второй — определяющие уравнения на основе предложенной гипотезы
о пропорциональности компонент девиаторов приращений деформаций и приращений напряже-
ний. Матрица жесткости конечного элемента сформирована на основе нелинейного функционала
Лагранжа для шага нагружения, выражающего равенство возможных и действительных работ за-
данных нагрузок и внутренних усилий, с дополняющим условием равенства нулю действительной
работы приращений внутренних усилий на разности приращений деформационных величин, опре-
деляемых геометрическими соотношениями и с использованием аппроксимирующих выражений.
С использованием полученной матрицы жесткости конечного элемента дается пример расчета.

Ключевые слова: конечный элемент в трехпольной формулировке, физическая нелинейность
материала, варианты определяющих уравнений, нелинейный функционал Лагранжа с условием.
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Abstract. Flexible piezoelectric transducers, and the transducers with bridge shaped end-caps in par-
ticular, have found wide application as acoustic emitters and energy harvesting devices. In this paper,
we investigate the possibilities of using porous piezoceramics as an active element of a bridge transducer.
Particular attention is paid to taking into account the non-uniform polarization of porous piezoceramics
with the use of simplified models. A finite element analysis of the bridge piezoelectric transducer under
steady-state oscillations is performed in resonant and non-resonant modes of its operation. It is found
that the use of porous piezoceramics increases the efficiency of the transducer during oscillations near
the first frequency of electrical antiresonance.

Keywords: electroelasticity, bridge piezoelectric transducer, porous piezoceramics, non-uniform polar-
ization, resonant frequency, sensor, actuator, finite element method.
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Piezoelectric transducers are widely used in various technical devices. In order to improve
their efficiency for specific applications, it is necessary to ensure high values of individual param-
eters or quality factors. This paper presents the results of the study of a piezoelectric transducer
consisting of a piezoelectric ceramic plate polarized by thickness with two metal bridge-shaped
end-caps. Here, for the initial device we consider a bridge piezoelectric transducer with a plate
made of dense piezoelectric ceramics, which was previously studied in [1].

As modern research has shown, bridge transducers can be effectively used as part of energy
havesting devices [2–5], current sensors [6] and emitters. Various types of bridge transducers have
been analyzed in [7–11], etc. Original approaches for optimizing the bridge transducer design
were proposed in [12,13].

Another type of piezoelectric transducers similar to bridge transducers are axisymmetric
transducers, which are also called Cymbal Transducers, because their end-caps are shaped like
cymbal plates. Cymbal transducers have been studied in more details than bridge transducers.
In practical applications they are actively used as sensors or sources of renewable energy [2, 4],
as well as actuators or emitters [14].
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Improvement of the characteristics of piezoelectric devices can be achieved by using piezo-
electric composites as active materials of transducers. In particular, it is possible to use porous
piezoceramics, that are more compliant and have lower acoustic impedance, but at the same
time have some high electromechanical coupling coefficients with the values close to those of
dense piezoceramics. However, for porous piezoceramics, the influence of the inhomogeneity of
the polarization field in the vicinity of the pores on its effective properties has not been suffi-
ciently studied yet. Precise application of porous piezoceramics also requires an account of the
porosity structure microfeatures and optimization of individual material constants, geometry and
boundary conditions for a specific device.

Some of the above issues were investigated in [16–18] for Cymbal transducers with a disk made
of porous piezoceramics. In this paper, the efficiency of using porous piezoceramic materials for
a bridge piezoelectric transducer is studied in a similar manner. For the active element materials
we consider conventional dense piezoceramics and porous piezoceramics PZT-4 with the effective
moduli calculated using uniform and non-uniform polarization models [19].

1. General problem statement

1.1. Geometrical and physical data

Let us consider a bridge transducer with the geometric parameters adopted in [1]. This
transducer consists of a piezoceramic plate of length L = 12.7 (mm), width b = 12.7 (mm), and
thickness hp = 1 (mm). The end surfaces of the plate relative to its thickness are covered with
electrodes, and the piezoceramic material of the plate is polarized by thickness. On some of the
end surfaces there are metal bridge caps of width b equal to the width of the plate. Each cover
has a thickness hc = 0.3 (mm) and a maximum lift height hm = 0.35 (mm). The maximum lift
surfaces are flat and have length lm = 3 (mm), and the sections of the bridge caps connected to
the plate have lengths lc = 1.85 (mm).

This geometry, as well as the external influences and fixing conditions adopted further, make it
possible to consider one fourth of the device with the corresponding symmetry conditions during
finite element modeling. In Fig. 1, the symmetry surface of the fourth part of the transducer is
shown in the Oxz plane, related to the Cartesian coordinate system Oxyz. Along the Oy axis,
all elements of the device quarter occupy the region −b/2 6 y 6 0.

For metal overlays, we will accept the properties of brass as an elastic isotropic material with
density of ρm = 8400 (kg/m3), Young’s modulus Em = 9.5 · 1010 (N/m2) and Poisson’s ratio
νm = 0.35.

The central plate of the transducer is made of PZT-4 piezoceramics with the main direction
of polarization along the thickness. For PZT-4 piezoceramics, we will accept different material
properties. We will consider dense piezoceramics with stiffness moduli cEαβ , piezoelectric moduli
eiβ and dielectric permittivity coefficients εSij , as well as porous piezoceramics with effective
stiffness moduli cE eff

αβ , effective piezomoduli e eff
iβ and effective permittivity moduli εS eff

ij . Here and
below, Greek indices may vary from 1 to 6, and Latin indices vary from 1 to 3: α, β = 1, 2, . . . , 6,
i, j = 1, 2, 3. For the moduli of dense piezoceramics, we use the standard notations of the
theory of piezoelectricity (electroelasticity) [20]. In particular, the superscripts indicate at what
constant fields the material moduli of electroelasticity used in various constitutive relations were
determined. Thus, the superscript E means the constancy of the electric field, D means the
constancy of the electric induction field, S means the constancy of the strain fields, and T means
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Fig. 1. Geometry of the longitudinal cross-section of the bridge transducer for x > 0, y = 0

the constancy of the mechanical stress fields.
The moduli of the porous piezoceramics were determined from the initial moduli of the dense

piezoceramics as a result of numerical calculations using the effective moduli method in the
ANSYS finite element package. For this purpose, a cubic representative volume V was used,
regularly divided into n3e piezoelectric cubic finite elements, where ne is the number of finite
elements along a separate axis of the Cartesian coordinate system. Based on a given percentage
of porosity p, np = [pn3e/100] elements were randomly selected from among these elements,
where [...] is the integer part of the number, and these elements were assigned the material
properties of the pores, i.e. negligibly small elastic stiffnesses, piezomoduli and permittivities
equal to the permittivity of vacuum ε0 = 8.85 · 10−12 (F/m). The number ne was determined
by the convergence of the results of calculations of effective moduli, and as a result of numerical
experiments it was taken to be equal to 45.

Four sets of material properties were used to calculate the piezoelectric transducer. In the
basic variant (variant 0), the piezoelectric ceramics were assumed solid and uniformly polarized
along the Oz axis. In variant 1, porous piezoceramics were considered with moduli calculated
for a piezoelectric ceramic matrix uniformly polarized along the Oz axis.

In variant 2, the finite element method was used to solve the problem of dielectric electro-
statics, simulating the polarization process of porous piezoceramics in a simplified formulation,
and the polarization vectors Pem were found for each finite element with number m. Then, the
heterogeneity of the properties of the piezoceramic matrix was determined by element coordinate
systems in which the zem axis for individual finite element with number m was directed along the
vector Pem. In this variant, the moduli were considered equal to the moduli of dense ceramics
cEαβ , eiβ , ε

S
ij , but in the elementcoordinate system Oxemyemzem, and then they were recalculated

to the values cEemrαβ , eemriβ , ε
Sem
rij in the global coordinate system in accordance with the formulas

for transforming the components of the tensors when rotating the coordinate systems.
Finally, in the most realistic version 3, the properties of the piezoceramic matrix for each

finite element varied linearly between the corresponding values of the properties of unpolarized
ceramics (snpαβ , d

np
iβ = 0, εnpij ) and the properties of polarized ceramics sEemrαβ , demriβ , ε

Tem
ij , in

accordance with the formulas

sEemαβ = (1− χp)snpαβ + χps
Eem
rαβ , demiβ = χpd

em
riβ , εTemij = (1− χp)εnpij + χpε

Tem
rij , (1)

χp =

{
|Pem|/Psat |Pem| 6 κpPsat,

κp |Pem| > κpPsat.
(2)
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Here snpαβ , s
Eem
rαβ are the components of the compliance matrices of unpolarized and polarized

ceramics, which are inverse to the corresponding stiffness matrices with components cnpαβ and
cEemrαβ , εnpij = εnp, demriβ = eemriζs

Eem
rζβ , εTemrij = εSemrij +demriζe

em
rjζ , Psat = (εnp−ε0)Ec, Ec is the value of

the polarization field from the electrostatics problem simulating the polarization process, κp is the
parameter determining the possibility of "superpolarization", which we set equal to 1.2. Further,
after finding the moduli sEemrαβ , demriβ , ε

Tem
rij from (1), (2), it is easy to go to the moduli sEemrαβ , demriβ ,

εTemrij from the main calculation constitutive relations using the corresponding formulas.
The technique for finding effective moduli from solutions of static boundary value problems of

electroelasticity with linear essential boundary conditions for displacements and electric potential
for homogenous polarized piezoceramics is well known and has been described in many papers.
For non-uniformly polarized piezoceramics, we relied on the approaches presented in [19]. How-
ever, we supplemented the model sEdεT with (1), (2) when finding the moduli of unpolarized
ceramics by Hill’s averaging not only the original moduli cEαβ , ε

S
ij , but also the moduli cDαβ , ε

T
ij ,

as well as by restricting the value of κp in the "superpolarization" model. The results of calcu-
lations of the complete set of effective moduli of porous piezoceramics PZT-4 for three variants
considering heterogeneities are given in Tab. 1.

Table 1. Initial moduli of dense piezoceramics PZT-4 and effective moduli of porous piezoceram-
ics for three polarization models (cE eff

αβ · 1010 in N/m2, eiβ in C/m2, ε̃S eff
ii = εS eff

ii /ε0)

No. p (%) cE eff
11 cE eff

12 cE eff
13 cE eff

33 cE eff
44 e eff

31 e eff
33 e eff

15 ε̃S eff
11 ε̃S eff

33

0 0 13.90 7.78 7.43 11.5 2.56 –5.2 15.1 12.7 730 635
1 10 11.69 6.32 5.98 9.57 2.22 –4.24 13.41 10.92 657.5 0.85
1 20 9.53 4.92 4.61 7.73 1.88 –3.30 11.68 9.15 583.8 565.8
1 30 7.45 3.61 3.34 5.95 1.55 –2.40 9.86 7.40 510.0 427.4
1 40 5.47 2.45 2.24 4.35 1.21 –1.56 7.98 5.66 431.2 358.5
1 50 3.69 1.49 1.34 2.88 0.88 –0.83 5.89 3.99 352.3 288.4
2 10 11.69 6.32 5.95 9.54 2.22 –4.12 13.45 10.90 653.4 566.3
2 20 9.56 4.92 4.56 7.66 1.87 –3.07 11.74 9.10 576.0 497.5
2 30 7.41 3.60 3.26 5.87 1.53 –2.04 9.96 7.30 496.9 428.5
2 40 5.42 2.42 2.14 4.26 1.19 –1.14 8.06 5.55 416.2 359.2
2 50 3.64 1.47 1.26 2.84 0.86 –0.40 6.02 3.88 333.8 288.9
3 10 11.66 6.28 5.96 9.56 2.23 –3.83 13.53 10.69 666.6 567.9
3 20 9.48 4.85 4.55 7.69 1.90 –2.60 11.78 8.71 602.4 504.0
3 30 7.34 3.50 3.26 5.94 1.57 –1.56 9.92 6.79 531.0 441.3
3 40 5.36 2.31 2.13 4.32 1.24 –0.72 7.86 4.95 455.9 376.8
3 50 3.58 1.37 1.25 2.91 0.90 –0.13 5.66 3.26 371.5 308.9

As can be seen from Tab. 1, polarization models have the least effect on the effective elastic
moduli, and the greatest effect on the effective piezoelectric moduli, especially on the transverse
piezoelectric modulus e eff

31 .

1.2. System of equations for harmonic vibrations

For a bridge transducer, we will use the equations of electroelasticity, which in the steady-
state oscillation mode exp(jωt) with frequency f = ω/(2π) for the amplitude values of the
displacements uk(x) and the electric potential φ(x) we will represent in the form

σkl,l + ρω2uk = 0, Dk,k = 0, (3)
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Tα = (1 + jQ−1
d )cEαβSβ − ekαEk, Dk = ekβSβ + εSklEl, (4)

εkl = (uk,l + ul,k)/2, Ek = −φ,k. (5)

Here σkl are the components of the stress tensor; εkl are the components of the
strain tensor; {T1, T2, T3, T4, T5, T6} = {σ11, σ22, σ33, σ23, σ13, σ12}, {S1, S2, S3, S4, S5, S6} =

= {ε11, ε22, ε33, 2ε23, 2ε13, 2ε12}; Dk are the components of the electric induction vector; Ek
are the components of the electric field strength vector; ρ is the density; Qd is the mechan-
ical quality factor for the frequency-independent method of accounting for damping; j is the
imaginary unit.

For porous piezoceramics in (3) the density must be recalculated considering the porosity,
and in (4) it is necessary to use effective moduli.

Equations (3)–(5) for mechanical fields with ekβ = 0 are equations of elasticity theory with
the same method of taking into account damping, and therefore they also describe the vibrations
of elastic end-caps in a piezoelectric transducer.

Next, we will consider two types of bridge transducers for different applications. Transducer
type A is focused on the problems of energy harvesting from mechanical low-frequency pressures,
and transducer type B must operate in resonant mode and generate acoustic waves in the external
medium under electrical effects. The problems for these two types of transducers differ in the
fixing conditions and external influences.

2. Bridge transducer type A

In the transducer of type A the lower plateau z = −H (H = hc+hm+hp/2) was rigidly fixed,
and the upper plateau z = H was subjected to pressure oscillating with frequency f of amplitude
p = F/(lmb), where F is the total force. The electroded boundaries of the piezoceramic plate
are equipotential, i.e. φ = Φi, z = ±hp/2, where the electric potential values Φi are constant
for each of the two electrodes. These electrodes in transducer A were connected by an external
electric circuit with resistance R. The overall quality factor Qd of the entire device was taken to
be equal to 1000.

For the transducer A, the steady-state oscillation mode in the non-resonant frequency range
f ∈ (0, 2] (Hz) was considered, which corresponds to its use as an energy harvesting device.
When the transducer was loaded with pressure with a total force F = 800 (N), the maximum
induced electric potential difference ∆V between the electrodes was determined when they were
connected by an electric circuit with a resistance R = 2 (kΩ). The results of calculating problem
(3)–(5) for the induced electric potential difference and axial displacement at the upper central
point of the transducer {0, 0,H} depending on the porosity are shown in Fig. 2. Here and below,
curves with numbers 1–3 are constructed for porous piezoceramics with effective moduli from
the corresponding variants 1–3 of the polarization models.

As can be seen from Fig. 2 (a), the use of porous piezoceramics in the transducer plate with
bridge end-caps demonstrates the worst properties to preserve energy compared to dense. Ac-
counting for the heterogeneity of the polarization field slightly reduces the values of the induced
difference in the electrical potential compared to the model of homogeneous polarization. Mean-
while, the amplitudes of axial displacements |uz| at the upper center point of the transducer
{0, 0,H} increase with the growth of porosity (Fig. 2 (b)), which is quite natural, since porous
material is more supple than the corresponding solid. Polarization models practically do not
affect the amplitude of maximum axial displacements.
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(a) (b)

Fig. 2. Induced electric potential difference (a) and axial displacement at the top central point
(b) for transducer A made from different variants of porous piezoceramics

3. Bridge transducer type B

In the transducer B almost all external surfaces are considered stress-free, but at the extreme
edges of the plate x = L/2, y = ±hp/2 the axial displacement uz = 0 is fixed. We will consider
two cases of generating acoustic vibrations in the transducer. In the first case, the oscillations are
generated by applying a difference in electrical potentials ∆V = |Φ2−Φ1| between the electrodes
Γφ2 = {z = hp/2} and Γφ1 = {z = −hp/2}. In the second case, the external influence is the
electric current I or the charge Q = −

∫
Γφ2

D3 dΓ on one electrode, for example, on the electrode

Γφ2, with zero potential Φ1 = 0 on the other electrode, for example, on Γφ1. (Here I = ±jωQ,
and since we are considering problems for the amplitude values of displacements and electric
potential, the factor exp(jωt) is omitted everywhere.)

The transducer of type B is designed to operate as an emitter of acoustic waves into the
external medium when it is electrically excited. The investigations of its gain-frequency charac-
teristics in the steady-state oscillation mode were carried out in two stages. At the first stage,
problems were solved in ANSYS to determine the electrically active first frequencies of electrical
resonances fr1 and antiresonances fr2, and at the second stage, the amplitude-frequency char-
acteristics were constructed based on the results of calculations obtained on intervals including
the corresponding frequencies of electrical resonances and antiresonances.

Note that the frequencies of electrical resonances frk and the frequencies of electrical an-
tiresonances fak are the resonance frequencies of the device and can lead to classical resonance
phenomena under various electrical influences: the difference in electrical potentials or current.

Namely, if we consider the specification of potential difference ∆V exp(i2πft) on electrode
surfaces with the frequency f = ω/(2π) and with fixed amplitude ∆V , then in such problem at
electric resonance frequencies frk, k = 1, 2, . . . , in the absence of damping, resonance phenomena
may occur for displacements, electric current amplitudes I and electric admittance Y = I/(∆V ):

|I| → ∞, |Y | → ∞, f → frk. (6)

Another option is to excite oscillations by a harmonically changing electric current
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I exp(i2πft) with a fixed amplitude I (electric charge Q = iI/(2πf). In such a problem, reso-
nance phenomena can be observed at the frequencies of electric antiresonance fak for displace-
ments, amplitudes of the electrical potential difference ∆V and electric resistance (impedance)
Z = ∆V/I = Y −1:

|∆V | → ∞, |Z| → ∞, f → fak. (7)

Our two cases of external electrical influences correspond exactly to the capabilities of the
bridge transducer to operate at the frequencies of electrical resonances (6) and antiresonances
(7). In modal analysis in ANSYS, we solve problems with homogeneous boundary conditions
twice. First, we set zero potentials on both electrodes and find the eigenvalues, among which
the frequencies of electrical resonances may be. Then we change the boundary conditions on one
of the electrodes, making it free, i.e. with zero total charge. From this problem, we find the
eigenvalues, the set of which contains the frequencies of electrical antiresonances. Comparing the
two resulting sets and selecting electrically active frequencies with close ordinal numbers, but
differing from each other, we find the desired frequencies of the first electrical resonances and
antiresonances.

Conducting modal analysis allows us to construct amplitude-frequency characteristics more
accurately, since the boundaries of frequency sub-intervals will be close to possible resonance
frequencies (or equal to them, in problems without taking damping into account). For further
analysis, we will select the amplitude-frequency characteristics of the axial displacement |uz| at
the top central point {0, 0,H}, as well as the output charge or potential difference.

Some calculation results are shown in Figs. 3 and 4. Curve numbers 1–3 in these figures
denote the same types of porous piezoceramics as in Fig. 2. Solid curves with numbers 1–3 are
plotted for materials with a porosity of 40%, and dashed curves are plotted for materials with a
porosity of 20%. Green curves with number 0 are plotted for the dense piezoceramics material
PZT-4 (with zero porosity p = 0). The amplitude-frequency characteristics in Fig. 3 and in
Fig. 4 are plotted for different electrical effects: Fig. 3 corresponds to the problem with a given
oscillating potential difference with a modulus ∆V = 100 (V), and Fig. 4 corresponds to the
problem with a given electric charge Q = −4.25 · 10−8 (Ω) on one electrode with the second
electrode grounded. The quality factor Qd of the material of the metal end-caps was taken to be
equal to 1000, and the quality factor of the piezoceramics was considered to be equal to 500.

The main results are presented in Fig. 3 (a) and 4 (a), which show the amplitude-frequency
characteristics of the displacement at the central upper point of the transducer. Fig. 3 (b) and
4 (b) illustrate the resonance phenomena (6), (7). Thus, in the V -problem, for a given fixed
amplitude of the potential difference ∆V , an increase in the amplitudes of the electric charge
is observed at the first frequencies of electric resonance (Fig. 3 (b)), and in the Q-problem, for
a given fixed amplitude of the electric charge Q, an increase in the amplitudes of the potential
difference is observed at the first frequencies of electric antiresonance (Fig. 4 (b)).

As can be seen from Fig. 3 (a) and 4 (a), the porosity dependences of the maximum dis-
placement amplitudes in these two problems are quite different. The models of inhomogeneity
of porous piezoceramics also affect the values of the oscillation amplitudes, but not very signifi-
cantly. When setting the potential difference (Fig. 3 (a)) the amplitudes of the axial displacement
maxima at resonance frequencies decrease with increasing porosity. The dependences of the ax-
ial displacement maxima change significantly when the transducer oscillations are excited by an
electric charge (Fig. 4 (a)). Here the displacement maxima increase with increasing porosity.

Note that in all cases at the first resonance frequencies, the axial displacements of the trans-
ducer in the central end regions are an order of magnitude greater than the longitudinal dis-
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(a) (b)

Fig. 3. Displacements at the upper central point (a) and the output electric charge (b) in the
V -problem under the action of a potential difference

(a) (b)

Fig. 4. Displacements at the upper central point (a) and the output potential difference (b) in
the Q-problem under the action of an electric charge

placements of its side surfaces. Thus, the bridge transducer at the first resonance frequency
effectively generates axial oscillations. At the same time, calculations of the amplitude-frequency
characteristics at a higher resonant frequency showed a lower efficiency of excitation of axial dis-
placements. Nevertheless, in general, if we also take into account the lower acoustic impedance
of porous piezoceramics compared to dense ones, we can conclude that the use of the considered
porous piezoceramics as active materials for acoustic wave emitters is promising.

It can also be noted that the behavioral features of bridge transducers made of porous piezo-
ceramics as sensors and actuators are similar to the behavioral features of the Symbol trans-
ducer [17, 18]. In [17, 18], porous piezoceramics with metallized surface pores were also consid-
ered, but non-uniform polarization models were not taken into account. For the porous Symbol
transducer, in [17, 18], an advantage was found in using porous piezoceramics with metallized
surface pores for energy harvesting and in the V -problem for actuator applications. Therefore, it
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can be concluded that porous piezoceramics with metallized surface pores for similar applications
will also be effective for a bridge transducer. However, the technological processes for creating
such porous piezoceramics have not yet been fully developed.

Conclusion

Thus, here, a bridge piezoelectric transducer consisting of a piezoceramic plate with two
bridge-like metal end-caps was investigated using computer modelling methods. The use of
porous piezoceramics as the active material of the transducer and the consideration of various
models of non-uniform polarization were analyzed.

Two types of bridge piezoelectric transducers are considered. The first transducer is intended
for use as a "green energy" piezoelectric generator. It generated electric fields in the transducer
under low-frequency mechanical influences. For this device, the use of porous ceramics showed
lower efficiency of electromechanical conversion compared to dense ceramics.

The second type of transducer worked as an emitter of acoustic waves. It converted electrical
influences near the first resonance frequency into mechanical vibrations. In this case, when the
transducer was excited by the potential difference at the first frequencies of electrical resonances,
qualitatively similar results were obtained for the use of porous piezoceramics as for the bridge
piezogenerator. However, the bridge transducer made of porous piezoceramics showed its effi-
ciency when working at the first antiresonance frequency when its vibrations were excited by
electric current. It also turned out that considering the inhomogeneity of polarization of porous
piezoceramics is essential for precision modeling of a bridge converter, but taking into account
the inhomogeneity does not affect the qualitative characteristics.

This research was supported by the Russian Science Foundation, project no. 22-11-00302.
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Анализ влияния пористости и неоднородной поляризации
пьезокерамики на эффективность мостового преобразова-
теля как сенсора и актуатора

Андрей В. Наседкин
Анна А. Наседкина

Южный федеральный университет
Ростов-на-Дону, Российская Федерация

Аннотация. Гибкие пьезоэлектрические преобразователи с мостовыми накладками нашли ши-
рокие применения в качестве акустических излучателей и устройств накопления энергии. В на-
стоящей работы исследуются возможности использования пористой пьезокерамики в качестве ак-
тивного элемента мостового преобразователя. Особое внимание уделяется учету неоднородности
поляризации пористой пьезокерамики с применением упрощенных моделей, пригодных для прак-
тики. Проведен конечно-элементный анализ работы мостового пьезопреобразователя при устано-
вившихся колебаниях в нерезонансных и в резонансных режимах его работы. Было установлено,
что использование пористой пьезокерамики повышает эффективность преобразователя при коле-
баниях вблизи первой частоты электрического антирезонанса.

Ключевые слова: электроупругость, мостовой пьезопреобразователь, пористая пьезокерамика,
неравномерная поляризация, резонансная частота, сенсор, актуатор, метод конечных элементов.
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Université Fréres Mentouri
Constantine 25000, Algeria

Received 24.04.2024, received in revised form 29.05.2024, accepted 14.01.2025

Abstract. In this article, in the context of the conformable fractional derivative (CFD) and employing
Ehrenfest’s theorem, we investigate the classical limit of the Dirac equation within conformable frac-
tional quantum mechanics. This leads to obtaining deformed classical equations. Here, we assess the
effectiveness of Ehrenfest’s theorem in deriving the classical limit considering CFD. Also, we examine the
correspondence principle under the influence of CFD. Additionally, we obtain the conformable fractional
continuity equation.
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1. Introduction and preliminaries
The Dirac equation is a relativistic quantum mechanical equation that specifically describes

massive particles with spin- 1
2 , such as electrons. It is a fundamental equation in quantum me-

chanics, providing a framework for understanding the behavior of these particles within the realm
of relativistic effects. The classical limit of the Dirac equation can be investigated by neglect-
ing the influences of quantum mechanics. In doing so, we can describe the system’s conduct
using classical physics, providing insights into the classical aspects of the system. In the clas-
sical limit, phenomena inherent to quantum mechanics, such as interference, superposition and
entanglement, are expected to diminish at the macroscopic scale, however, this demise is not
easy to explain. In this scenario, the quantum system adheres to the classical laws of physic.
The classical limit is commonly defined in terms of the limit of a vanishing Planck’s constant,
i.e., ~ → 0 as scaled with the system’s action. In this context, Hamilton’s principle adopts its
classical expression, and all operators commute. In the following, we present some scenarios and
approaches that help explain the exploration of the classical limit of the Dirac equation. So,
one can initiate the exploration by examining the solutions of the equation under conditions of
large distances and durations, or under the conditions of large energies and momenta. Within
these limits, the effects of quantum mechanics become negligible [1]. Put differently, the classical
limit emerges if the system possesses a big quantum number, undergoes significant interactions
with its surroundings, or if its de Broglie wavelength becomes significantly smaller compared
to other relevant length measurements. A frequent example illustrating the classical limit of a
quantum system is the Bohr correspondence principle [2], which asserts that in the limit of large
quantum numbers, a quantum system exhibits conduct similar to the corresponding classical
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system. Also, the Ehrenfest’s theorem is considerably used when exploring the classical limit of
quantum mechanical systems [3]. This theorem establishes a connection between the evolution
of expected values of observables and classical equations of motion. It serves as an effective tool
for understanding the conduct of such systems. Through its application, we observe the way
quantum mechanical influences dissipate, giving way to classical dynamics [4]. In the context of
the Dirac equation, this theorem remains used to explore its classical limit, there, the quantum
influences will be very small, leading simplify the Dirac equation to its classical counterpart. In
this work, we aim to investigate whether it can be asserted that Ehrenfest’s theorem is applica-
ble to the classical limit of the Dirac equation within conformable fractional quantum mechanics
(CFQM) and under some conditions.

Extensive research in the literature [5–14] has delved into the alignment between quantum
and classical aspects. We also emphasize that other concepts may overlap with the concept of the
classical limit, such as the semiclassical and non-relativistic limits. Note that the semiclassical
limit of a quantum mechanical system, can be attained if external potentials vary slowly, like
in the case of the electrostatic potential [15]. On the other hand, the non-relativistic limit of
a relativistic quantum mechanical system as the Dirac equation [16, 17], is the limit where the
speed of the particle is much less than the speed of light, i.e., v ≪ c or low energy in front of
the rest energy, consequently, this limit permits to neglect the relativistic influences. However,
the non-relativistic and classical limits are related but distinct concepts, they address different
aspects of the system’s behavior. It is important to highlight that in many physical situations,
the classical limit and the non-relativistic limit can align, leading to similar descriptions of the
system’s conduct.

On the other side, the concept of a fractional derivative has been receiving a lot of atten-
tion in recent years, [18–20]. The fractional derivative, dating back to as early as calculus itself,

traces its origins to 1695 when L’Hospital posed inquiries to Leibniz about
dnf

dxn
when n equals

1

2
.

However, Leibniz responded that this would be "an apparent paradox, from which one day useful
consequences will be drawn" [21]. Since then, researchers have endeavored to elucidate the con-
cept of fractional derivatives, predominantly employing integral formulations. Various definitions
have emerged over time, including those by Riemann–Liouville, Caputo, Riesz, Weyl, Grьnwald,
Riesz–Caputo, Chen, and Hadamard, [22–24]. Among these, the Riemann–Liouville and Caputo
formulations stand out as the most prevalent. For further insight into diverse mathematical
aspects of fractional calculus, refer to the seminal works in [25, 26]. The fractional derivative
has played an essential role across various domains including physics, chemistry, biology, and
engineering. See, for example, [27–29].

However, a few years ago, Khalil et al. [30] introduced a new concept of derivative known as
the conformable fractional derivative (CFD). Since then, extensive studies have been conducted
on the development of CFD calculus, exploring its properties. For example, conformable frac-
tional versions of fundamental mathematical tools such as the chain rule, exponential functions,
Gronwall’s inequality, integration by parts, Taylor power series expansions, Laplace or Fourier
transforms, linear differential systems [31,32], divergence theorem [33], spherical harmonics [34],
Nikiforov–Uvarov Method [35] and PT symmetry [36] have been proposed and discussed. Also,
applications in various physical contexts [37–50].

Our objective in this study is to investigate some aspects of the Dirac equation within the
CFQM including classical limit by using the Ehrenfest’s theorem and continuity equation. This
work came as a continuation of some works on the classical and non-relativistic limits we did
before [8, 12, 16, 17, 51]. As an example, in [12], we studied the classical limit and Ehrenfest’s
theorem of the noncommutative Dirac equation in the context of minimal uncertainty in mo-
mentum. There, we explored the comparison between the classical and non-relativistic limits.
Furthermore, in [8], we have investigated Ehrenfest’s theorem from the Dirac equation in a
noncommutative phase-space.
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The rest of the paper is outlined as follows. In Section 2, the CFQM is briefly reviewed. In
Section 3, the CL of the Dirac equation in the context of CFD using the Ehrenfest’s theorem
is explored, where in sub-Section 3.1, a conformable fractional Dirac equation in presence of an
electromagnetic field is found. In sub-Section 3.2, based on the Ehrenfest’s theorem, conformable
fractional classical equations are obtained. Also, in Section 4, a conformable fractional four-vector
current density is obtained. Then, in Section 5, the correspondence principle is examined in the
context of CFD by using quantum and classical versions of the harmonic oscillator. We present
the conclusion and remarks in Section 6.

2. Brief overview on the conformable fractional
quantum mechanics

Let shortly review the postulates and basic formulas of the conformable fractional quantum
mechanics [30] we use in this work. So, for a smooth function in x, the conformable fractional
derivative is expressed as follows:

D α
x f (x) = lim

ϵ→0

f
(
x+ ϵ |x|1−α

)
− f (x)

ϵ
= |x|1−α ∂xf (x) , (1)

where 0 < α 6 1 is assumed. Note that Dα is the conformable fractional derivative operator.
At x = 0, the fractional derivative is D α

x f (0) = lim
x→0

D α
x f (x). But, the conformable partial

derivative of f in xi is defined by [33]:

∂α

∂xαi
f (x1, . . . , xm) = lim

ϵ→0

f
(
x1, . . . , xi−1, xi + ϵ |xi|1−α , . . . , xm

)
− f (x1, . . . , xm)

ϵ
. (2)

The application of the CFD in quantum mechanics is given in some literatures [37–39, 46],
leading to CFQM. However, its postulates, basics and essential properties have been well con-
structed [30,39,41]. The CFD satisfies the following properties:

The linearity:
D α
x {af (x) + bg (x)} = aD α

x f (x) + bD α
x g (x) , (3)

the Leibniz rule:
D α
x {f (x) g (x)} = [D α

x f (x)] g (x) + f (x)D α
x g (x) , (4)

the chain rule:
D α
x f (g (x)) =

df

du
(D α

x u) , (5)

where f , g be α-differentiable functions. All of the classical derivative rules, such as sum, product,
division, etc. are same as the conformable derivative. Also, the inner product in Hilbert space
related to CFQM is given as follows:

⟨f | g⟩ =
∫ ∞

−∞
g∗ (x) f (x) |x|α−1

dx. (6)

The definition of the expectation value of a physical operator O in relation to the state ψ is
as follows:

⟨ψ| Oψ⟩ =
∫ ∞

−∞
ψ∗ (x, t)Oψ (x, t) |x|α−1

dx, (7)

but O to be a Hermitian operator, one may obey

⟨ψ| Oψ⟩ = ⟨Oψ|ψ⟩ . (8)
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The fractional integral is defined as

J α
α|x f (x) =

∫ x

α

|W|α−1
f (W) dW, (9)

where f (x) is any continuous function. Furthermore, the relation between the CFD and the
fractional integral is as follows:{

D α
x J α

α|x f (x) = f (x) ,

J α
α|xD

α
x f (x) = f (x)− f (a) .

(10)

Note that the coordinate realization of α-position x̂α, and α-momentum p̂α are

x̂α = x, p̂α = −i~ααD α
x , (11)

here one can merely check that both position and momentum operators are Hermitian. Then,

from the de Broglio relation p =
~
λ

and Planck relation E =
~
T

, we have [39] x̂αψ = xψ,
p̂αψ = pαψ, which yield the following the x-representation:

x̂α = x, p̂α = −i~ααD α
x and Ĥα = −i~αD α

t , (12)

with
D α
x = |x|1−α ∂

∂x
, and D α

t = |t|1−α ∂

∂t
, (13)

where ~α =
h

(2π)
1
α

, and Ĥα is a α-Hamiltonian operator. Note that the α-position operator

has dimension of length while the α-momentum operator has dimension of momentumα and
α-Hamiltonian operator has dimension of energyα. In CFQM, the commutator of the α-position
operator and α-momentum operator is

[x̂α, p̂α] = i~αα |x̂|
1−α

. (14)

...Also, in Section 4, a conformable fractional four-vector current density is obtained. Then, the
correspondence principle is examined in the context of CFD by comparing the quantum and
classical versions of the harmonic oscillator. Finally, we present the conclusion and remarks in
Section 6."

3. Classical limit of the conformable fractional Dirac
equation

In this section, we extend the Dirac equation to the CFQM and subsequently employ it to
investigate some classical aspects.

3.1. 3D conformable fractional Dirac equation
The conformable fractional form of the Dirac equation is given as follows [39,46]:{

i~αγµ∂αµ −mαcα
}
ψ (xµ) = 0, (15)

where 0 < α 6 1, which we call the fractional and γµ =
(
γ0, γk

)
) are the Dirac matrices.

Now, by multiplying equation (14) from the left by γ0 and separating the time and the spatial
parts, one can have {

i~α
(
γ0
)2
∂α0 − i~αγ0γk∂αk − γ0mαcα

}
ψ (−→x , t) = 0, (16)
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with
(
γ0
)2

= 1. Then, supposing that

ψ (−→x , t) = ψ (−→x ) e− i
~αE

α tα

α , (17)

with i~α
1

c
∂α0 = i~α

1

c
D α
t , the time-independent Dirac equation in interaction with an electro-

magnetic four-potential Aµ =
(
Φα,
−→
Aα

)
(in SI units) reads{

cα−→α ·
(−̂→p α − e−→Aα (

−→x )
)
+ eΦα + βmαc2α

}
ψ (−→x ) = Eαψ (−→x ) , (18)

where ψ (−→x , t) =
(
ϕ (−→x , t) χ (−→x , t)

)T is the bispinor in the Dirac representation. The Dirac
matrices −→α = γ0−→γ and β = γ0 satisfy the following anticommutation relations

{αi, αj} = 2δij , {αi, β} = 0, α2
i = β2. (19)

Then in more elegant simple form, we have{
cα−→α ·

−̂→
Πα + eΦα + βmαc2α

}
ψ (−→x ) = Eαψ (−→x ) , (20)

where the minimal substitution −̂→p α − e
−→
Aα (

−→x ) =
−̂→
Πα. Next, we move to employ the obtained

conformable fractional Dirac equation (20) to explore the classical limit through Ehrenfest’s
theorem.

3.2. Ehrenfest’s theorem in the context of CFQM
Ehrenfest’s theorem, originating from the Dirac equation, establishes that the time evolu-

tion of expected values of observables in quantum mechanics aligns with classical equations of
motion. Essentially, it suggests that the average conduct of a quantum system corresponds to
classical physics. Additionally, it is noteworthy that this theorem applies to all quantum systems.
However, in the present context, we are computing the time derivatives of position and kinetic
momentum operators for Dirac particles interacting with an electromagnetic field in the context
of CFQM. However, the equation of motion for an arbitrary operator F̂ is expressed as follows:

dF̂
dt

=
∂F̂
∂t

+
i

~

[
Ĥ , F̂

]
, (21)

where Ĥ is the Hamiltonian operator. Now, let start with the operator of position

d−̂→x
dt

=
∂−̂→x
∂t

+
i

~

[
Ĥα,
−̂→x
]
=
i

~

[
Ĥα,
−̂→x
]
, (22)

and the Hamiltonian operator from equation (20) is given as:

Ĥ α = cα−→α ·
−̂→
Πα + eΦα + βmαc2α, (23)

subsequently, the commutator expressed in equation (22) is as follows:[
Ĥ α,

−̂→x
]
= cα

[−̂→α · −̂→p α, −̂→x ]− ecα [−̂→α · −→Aα,
−̂→x
]
+ e

[
Φα,
−̂→x
]

+mαc2α
[
β̂, −̂→x

]
,

(24)

The position operator x̂ is diagonal with respect to the spinor indices, i.e., −̂→x ψ = −→x ψ and
contains no differentiation, thus

[
β̂, −̂→x

]
=
[−̂→α , −̂→x ] = 0, then for three arbitrary vectors

−→
A 1,
−→
A 2

and
−→
A 3 we use the identity
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[−→
A 1
−→
A 2,
−→
A 3

]
=
[−→
A 1,
−→
A 3

]−→
A 2 +

−→
A 1

[−→
A 2,
−→
A 3

]
. (25)

Then, we obtain [−̂→α · −̂→p α, −̂→x ] = −i~αα |x̂|1−α −̂→α , (26)

also [−→
Aα,
−̂→x
]
=
[
Φα,
−̂→x
]
= 0, (27)

because both
−→
Aα, Φα are functions of x.

Therefore, we obtain
d−̂→x
dt

=
1

~
~αα cα |x̂|

1−α −̂→α . (28)

Let us subsequently examine how the operator (28) acts on the Dirac spinor. By focusing on
individual components ψ, we obtain

dx̂

dt
ψ = ±1

~
~αα cα |x̂|

1−α
ψ, (29)

where the eigenvalues of −̂→α are ±1. This result has no classical analogue, as the Dirac particle,
despite the effects considered, continues to move at the speed of light cα.

So, to better understand the behaviour of a particle velocity obtained from the classical limit
of Dirac equation within the framework of CFQM, we plot equation (29)

Fig. 1 represents the variation of the velocity with respect to the fractional parameter α
for different values of x. But, Fig. 2 represents the variation of the velocity with respect to x
for different values of the fractional parameter α. However, the velocity as a function of the
fractional parameter behaves as a Gaussian where it is symmetric around the central value of
the distribution (α = 0.6). The curve peaks at the mean and decreases symmetrically on either
side, i.e., zero and unity. Also, in Fig. 2, the effect of the fractional parameter on the variation
of the velocity is shown, which appears to be considerable at α = 0.6.

Fig. 1. Velocity versus α for x=0.001,1,10,100

Now, the equation of motion for the kinetic momentum operator
−̂→
Π = −̂→p − e

c

−→
A is
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Fig. 2. Velocity versus x for α = 0.1, 0.4, 0.6, 0.8

d
−̂→
Π

dt
=
∂
−̂→
Π

∂t
+
i

~

[
Ĥ α,

−̂→
Π

]
= −e∂

−→
A

∂t
+
i

~

[
Ĥ α,

−̂→
Π

]
, (30)

consequently, the commutator is given by[
Ĥ α,

−̂→
Π

]
=
[
Ĥ α,

−̂→p
]
− e

[
Ĥ α,

−→
A
]
. (31)

First, we compute the initial commutator in equation (31)[
Ĥ α,

−̂→p
]
= cα

[−̂→α · −̂→p α, −̂→p ]− cαe [−̂→α · −→Aα,
−̂→p
]
+ e

[
Φα,
−̂→p
]

+mαc2α
[
β̂, −̂→p

]
,

(32)

with
[
β̂, −̂→p

]
=
[−̂→α , −̂→p ] = 0 as β̂ and −̂→α are independent of the spatial coordinates. Furthermore,

we obtain [
Φα,
−̂→p
]
= i~

[−→
∇ , Φα

]
= i~

(−→
∇Φα − Φα

−→
∇
)
, (33)

then making use of equation (33), we have[
Φα,
−̂→p
]
ψ = i~

(−→
∇Φα − Φα

−→
∇
)
ψ = i~

(−→
∇Φα

)
ψ, (34)

and [−̂→α · −̂→p α, −̂→p ] = 1

~
~αα
[
|x̂|1−α , −̂→p

] −̂→α · −̂→p . (35)

Also [−̂→α · −→Aα,
−̂→p
]
= −i~

∑
i,j

α̂i [(Aα)i ,∇j ] ej , (36)

then, taking into account the effect of equation (36) on ψ, we find[−̂→α · −→Aα,
−̂→p
]
ψ = i~

∑
i,j

α̂i (∇j (Aα)i ψ − (Aα)i∇jψ) ej = i~
∑
i,j

α̂i (∇j (Aα)i) ejψ. (37)
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Now, we move on to the second commutator in equation (31), thus, we have[
Ĥ α,

−→
A
]
= cα

[−̂→α · −̂→p α,−→A]− cαe [−̂→α · −→Aα,
−→
A
]
+ e

[
Φα,
−→
A
]

+mαc2α
[
β̂,
−→
A
]
.

(38)

Subsequently, we proceed to calculate each commutator in equation (38), starting with[−̂→α · −̂→p α,−→A] = −i~αα ∑
i,j

α̂i

[
|x̂|1−α∇i, Aj

]
ej , (39)

and its act on ψ yields [−̂→α · −̂→p α,−→A]ψ = −i~αα |x̂|
1−α∑

i,j

α̂i (∇iAj) ejψ. (40)

Note that in equations (34, 40), the gradient acts on
−→
A only. Then, we proceed with[

β̂,
−→
A
]
=
[−̂→α ,−→A] = 0, (41)

and [
Φα,
−→
A
]
=
[−→
Aα,
−→
A
]
= 0. (42)

Now, in total, we have

d
−̂→
Π

dt
= −e

{
∂
−→
A

∂t
+
(−→
∇Φα

)}
+ ecα

∑
i,j

(α̂i)

(
∇j (Aα)i −

1

~
~αα |x̂|

1−α∇iAj
)
ej

+
1

~
~αα cα

[
|x̂|1−α ,

−→
∇
] −̂→α · −̂→p . (43)

Then, with

−
−→
E α =

∂
−→
A

∂t
+
−→
∇Φα, (44)

and if Aα =
1

~
~αα |x̂|

1−α−→
A , one has

d
−̂→
Π

dt
= e
−→
E α + e

1

~
~αα cα |x̂|

1−α∑
i,j

(α̂i) (∇jAi −∇iAj) ej +
1

~
~αα cα

[
|x̂|1−α ,

−→
∇
] −̂→α · −̂→p . (45)

By applying equation (28) and performing some simplifications, we obtain

1

~
~αα cα |x̂|

1−α∑
i,j

(α̂i) (∇jAi −∇iAj) ej =
∑
i,j

(vi) (∇jAi −∇iAj) ej = −→v × curl
−→
A. (46)

Subsequently, we have

d
−̂→
Π

dt
= e

(−→
E α +−→v ×

−→
B
)
+

1

~
~αα cα

[
|x̂|1−α ,

−→
∇
] −̂→α · −̂→p , (47)

with curl
−→
A =

−→
B . As evident, equation (47) represents a α-Lorentz force in the classical case,

describing the force exerted by the electromagnetic field on an electron with an electric charge e.
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Similar to the velocity in equation (28), the impact of CFQM on the Lorentz force is prominently
featured in equation (47). In the limit of α→ 1, we obtain

d
−̂→
Π

dt
= e

(−→
E +−→v ×

−→
B
)
, (48)

which corresponds to the classical form of the Lorentz force.
Let us now turn to a discussion of our results. It is evident that −̂→x does not adhere to classical

equations of motion. However, a classical equation of motion can be determined for the operator
−̂→
Π . Interestingly, equation (47) formally resembles its classical counterpart, but it is important
to note that expectation values from equation (48) are not practical due to the Zitterbewegung,
with a reduction in velocity. At best, projecting the even contributions from (48) yields result
relevant to a classical single-particle description. Equation (47) highlights how CFD alters the
Lorentz force, introducing deformations as a result. Likewise, equation (28) shows that CFD also
affects velocity. Notably, the application of CFQM are found to impact Ehrenfest’s theorem.

4. Conformable fractional continuity equation

We define ψ ≡ ψ†γ0, where ψ† is the complex conjugate of the row vector corresponding to
the column vector ψ. Then, by taking the adjoint of equation (16):

ψ
{
−i~αγ0∂α0 + i~α

(
γk
)†←−
∂ α −mαcα

}
= 0, (49)

with
←−
∂ α = ∂αk acts from the right on ψ, also, from the Hermicity of γµ, we have

(γµ)
†
= γ0γµγ0, and

(
αk
)†

= αk. (50)

Also, the Dirac equation and its adjoint can be obtained through the variation of the action
using the conformable fractional Lagrangian density, which is expressed as follows

Lα = −i~αcαψγµ∂αµψ −mαc2αψψ. (51)

Then, if one performs variation with respect to ψ, the result is the adjoint Dirac equation.
Conversely, varying it with respect to ψ yields the Dirac equation. However, from equations (16),
(49), we can obtain the following the α-continuity equation

ψγk
←−
∂ αψ − ψγ0∂α0 ψ + ψγ0∂α0 ψ − ψγk∂αk ψ = 0. (52)

In a more elegant concise form, equation (52) becomes

D α
µ J µα = D α

t ρα +D α
x J kα = 0, (53)

where the four-vector α-current density (the α-probability density and the α-probability flux) is
given as follows

J µα :

{
ρα = ψγ0ψ = ψ†ψ = |ψ|2 ,

J kα = ψγkψ = ψ†αkψ.
(54)

One can see from equation (54) that CFQM does not affect the four-vector current. However,
the continuity equation itself is affected.
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5. Correspondence principle in CFQM
The correspondence principle asserts that the behavior of systems described by the theory of

quantum mechanics mirrors classical physics when quantum numbers become large. For example,
at high energies, quantum calculations must align with classical counterparts. Here, we attempt
examine how large quantum numbers can give rise to classical conduct. Consider the following
conformable fractional quantum harmonic oscillator [39]:

En = ~ω
(
2n+ l +

3

2

) 1
α

, (55)

n, l are quantum numbers, with ω is the angular frequency of the oscillator. The energy is
usually described by the single quantum number N = 2n+ l. (N = 0, 1, 2, . . . ) But, the classical
fractional harmonic oscillator in three dimensions is

E =
1

2
mαω2αx

α

α
. (56)

Thus, from equations (55) and (56), the quantum number has the value

N =
xα

2

~α2ααα
mα2

ω(2α
2−α) − 3

2
. (57)

Now, for typical values m=1 Kg, ω = 1 rad.s−1, and x = 1m, one can get

N =
1

~α2ααα
− 3

2
. (58)

Then, for a better understanding the correspondence limit between quantum and classical
harmonic oscillator, we plot equation (58).

Fig. 3. N versus α (plot of equation (58))

In Fig. 3, we can see that only when the fractional parameter approaches unity, the system
is in the correspondence limit, and for α = 1,

N =
1

2~
− 3

2
= 0.474126× 1034, (59)

which is a very large number; this, in turn confirms that the system is in the correspondence
limit.
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6. Conclusion and remarks
In this research, we have analytically investigated the classical limit of the Dirac equation

interacting with electromagnetic potential within the CFQM, employing Ehrenfest’s theorem.
Our analysis successfully reveals the influence of the CFD on the classical limit, resulting in
α-deformed classical equations. Our results confirm the feasibility of achieving the classical limit
within the framework of CFDM. Once again, Ehrenfest’s theorem proves effective in deriving
classical limit of the Dirac equation, irrespective of the effects present in the relativistic system.
Therefore, we emphasize the importance of such type of theorems. Moreover, it is shown that
the inclusion of CFD does not alter the current density four-vector. Additionally, CFD appears
to affect the correspondence limit between the quantum system and its classical counterpart.

Clearly, our findings serve as a valuable resource for further investigations, including nonrela-
tivistic and semiclassical limits, as well as scenarios involving other types of fractional derivatives.
Expanding this study to encompass more general cases, such as particles with arbitrary higher
spins, would be a promising avenue for future research. Notably, in the limit as α → 1, the α-
deformed Dirac and the obtained classical equations reduce to those of ordinary QM, confirming
that our findings are consistent with and reducible to those found and discussed in the literature.

Funding
This research received no external funding.

Conflicts of Interest
The author declares no conflict of interest.

References
[1] Paul A.Tipler, Ralph A.Llewellyn, Modern Physics, (5ed.) W.H. Freeman and Company,

2008.
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Аннотация. В этой статье в контексте конформной дробной производной (CFD) и с использовани-
ем теоремы Эренфеста мы исследуем классический предел уравнения Дирака в рамках конформной
дробной квантовой механики. Это приводит к получению деформированных классических уравне-
ний. Здесь мы оцениваем эффективность теоремы Эренфеста при выводе классического предела
с учетом CFD. Также мы исследуем принцип соответствия под влиянием CFD. Кроме того, мы
получаем конформное дробное уравнение непрерывности.
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Abstract. This research paper investigates the dynamics of a Friedmann–Robertson–Walker cosmolog-
ical model characterized by perfect fluid pressure and barotropic bulk viscous pressure. By obtaining
exact solutions to Einstein’s field equations with a time-varying periodic deceleration parameter, the
study reveals periodic behaviour in most parameters, attributed to the influence of a cosine function
in the deceleration parameter. The analysis delves into the physical and dynamical implications of this
model, particularly highlighting how negative pressure contributes to the late-time expansion of the
universe.
Keywords: bulk viscous fluid, time period, decelerating parameter, accelerating expansion.
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1. Introduction and preliminaries
Recent observational evidence, notably from Riess et al. (1998) [1] confirms that our universe

is expanding at an accelerating rate. This accelerated expansion, particularly the "dark energy
era"(Weinberg 1998) [2] , presents a significant cosmological puzzle. The driving force behind
this acceleration is thought to be a mysterious entity with huge negative pressure. Numer-
ous candidates have been proposed to explain dark energy, including the cosmological constant,
quintessence, phantom energy, tachyon fields, and Chaplygin gas (Tegmark et al. 2004 [3]; Pad-
manabhan et al. 2002 [4]; Bento et al. 2002 [5]; Nojiri et al. 2003 [6]). Another intriguing epoch
in the universe’s history is the inflationary phase, a period of rapid expansion preceding the
radiation-dominated era. Proposed in the early 1980s, inflation addresses shortcomings of the
standard Big Bang model (Guth 1981 [7]; Linde 1983 [9], 1994 [8]). While Planck observations
have provided constraints on inflationary parameters, direct observational evidence remains elu-
sive. Modified gravity theories offer a compelling framework to explain both early and late-time
acceleration. These theories, such as f(R) gravity, Gauss–Bonnet gravity (f(G)), and f(T) gravity,
modify Einstein’s general relativity. For instance, replacing the Einstein–Hilbert action with a
function f(R) of the Ricci scalar R can yield cosmic acceleration. Copeland et al. provide a com-
prehensive review of f(R) gravity, while Bamba et al. [10]. review dark energy models with early
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inflation and late-time acceleration. Harko et al. (2011) [11] introduced f(R,T) gravity, a modi-
fied theory incorporating both the Ricci scalar R and the trace T of the energy-momentum tensor
Reddy et al. (2012, 2013) [12, 13] investigated LRS Bianchi type-II and type-III cosmological
models within this framework. Santhikumar et al. (2017) [15] studied accelerating cosmological
model in f(R,T) gravity. Explaining the current accelerating expansion and the transition from
a decelerating past is crucial in cosmological modeling. A varying deceleration parameter offers
a mechanism to describe this phase transition in isotropic and anisotropic universe models. The
deceleration parameter quantifies the rate at which the universe’s expansion slows down. Studies
of oscillating universe models with quintom matter demonstrate alternating phases of decelera-
tion and acceleration, with a periodically varying Hubble parameter and keeps positive for time
periodic deceleration parameter (TPVDP) (M. Shen and L. Zhao, 2014) [16]. Time periodically
varying deceleration parameter models within f(R,T) gravity, investigated by Aktas and A?lin
(2017) [17], show vanishing string tension density in a cyclic universe scenario. N. Ahmed and
Alamri (2019) [18] suggest that the late-time acceleration could arise from a negative cosmolog-
ical constant with a TPVDP. Hulka and Singh (2022) [19] find that positive energy density and
negative pressure throughout the universe’s evolution guarantee late-time expansion. Motivated
by these investigations, this paper explores a Friedmann-Robertson-Walker viscous cosmological
model with a TPVDP within the framework of f(R,T) gravity. The paper is structured as fol-
lows: Section 2: Brief reviews on f(R,T) gravity and its field equations of the model. Section 3:
Presents solutions to the field equations. Section 4: Analyzes the physical properties of the
model. Section 5: conclusions.

2. Brief reviews on f(R,T) gravity and its field equations
of the model

Assuming the universe to be homogeneous and Isotropic, the FRW metric can be written as

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θd∅2

)]
(1)

where a(t) is the scale factor of the universe and k = –1, 0, +1 represents the model for open,

flat and closed universe respectively

The filed Eg. of f(R,T) gravity are driven from Hilbert–Einstein type variational principal

by taking the action

S =
1

16k

[ ∫
{f(R, T ) + Lm}

√
−g d4x

]
(2)

where f(R,T) is an orbitrary function of the Ricci scalar “R”.”T” is the trace of stress-energy

tensor of the matter “ Tij” and “Lm” is the matter Lagrangian density

we define the stress energy tensor of the matter as

Tij =
−2
√
g

δ(
√
−gLm)

δ8ij (3)

And its trace by T = 8ij Tij respectively

By Assursing that Lmof matter depends only on the metric tensor components 8ij and not on

its derivatives, we obtain

T ij = gijLm − 2
∂Lm
∂8ij (4)
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Now by varying the action “ S” of the gravitational field with respect to the metric tensor

components gij,we obtain the field equation of f(R,T) gravity as

f(R, T )Rij −
1

2
f(R, T )gij + (gij �−∇i∇j) fR(R, T ) = 8πTij − fT (R, T )Tij − fT (R, T )θij (5)

where θij = Tij + gijLm − 2glk ∂2Lm
∂gij∂glm (6)

where fR =
δf(R, T )

?R
, fT=

δf(R, T )

?T
and � = ∇i∇i (7)

∇i is the covariant derivative and Tij is the standard matter energy-momentum tensor derived
from Lagrawgian Lm. It may be noted that when f(R,T)≡ f(R) the eq. 5 yields, the field equation
of f(R) gravity.

The problem of the perfect fluid described by an energy density ρ, effective pressure and four
velocity-ui is complicated since that is no unique definition of the matter Lagrangian. However,
here, we assume that the stress energy tensor of the matter is given below

and the matter Lagrangian can be taken as Lm = −−→p and we have

ui∇i∇j = 0, uiuj = 1 (8)

With the use of equation (6) , we obtain for the variation of stress energy tensor of perfect fluid
the expression

θij = −2Tij −−→p gij (9)

Generally, the field equations also depends through the tensor θij, on the physical nature of the
matter field. Hence, in the case of f(R,T) gravity depends on the nature matter source,we obtain
serval theoretical models corresponding to each choice of f(R,T)

Assusing
f(R, T ) = R+ 2f(T ) (10)

as a first choice where f(T) is an arbitrary function of the trace of stress-energy of matter.
We get the gravitational field equation of f(R,T) gravity from equation (5) as

Rij −
1

2
Rgij = 8πTij − 2f1(T )Tij − 2f1(T )θij+f(T )gij (11)

Where the prime denotes differentiation with respect to the argument.
If the matter source is a perfect fluid then the field equations become

Rij −
1

2
gijR = 8πTij + 2f1(T )Tij +

[
2−→p f

′
(T ) + f(T )

]
gij (12)

Using co-moving coordinates and particular choice of the function given by (Herko et. al. 2011)

f(T ) = µT, µ is constant (13)

Rij −
1

2
8ijR = 8πTij + 2µTij + [2−→p µ+ µT ] gij (14)

3. Field equations
Using Equation & we obtain

2
ä

a
+

(
ȧ

a

)2

+
k

a2
= (8π + 3µ)−→p − µρ (15)

– 245 –



M. Ramanamurty . . . FRW Viscous Cosmological Model with Time Periodically . . .

3

(
ȧ

a

)2

+ 3

(
k

a2

)
= −(8π + 3µ)ρ+ µ−→p (16)

where an overhead dot denotes differentials with respect to t.
Solution and the Model
From the above two independent field Equations & the field equations are highly non-linear

in nature and therefore we use the following placesible physical condition

(i) For baratropic fluid the combined effect of proper pressure and the barotropic bulk viscous
pressure can be expressed as

−→p = p− 3H = ϵρ (17)

where p =∈0 ρ, 0 6∈06 1 (18)

(ii) We use the time periodically varying decleration parameter (TPVDP) of the form [16]

q = mCos(nt)− 1 (19)

where m and n are positive constants. This type of deceleration parameter is known as TPVDP.
The deceleration parameter play a role in determine the nature of the constructed

models of the Universe i.e decelerating (or) accelerating in nature. According to the range
values of “q” the universe exhibits the expansion in the following way [20, N.Hulke et.al (2020)],
[21, G.P.Singh et.al (2020)].

q > 0 : Decelerating expansion

q = 0: Expansion with constant rate

−1 < q < 0 : Accelerating power law expansions

q = −1: Exponential expansion / de sitter expansion

q < −1 : Super exponential expansion.

From the consideration form of “q” in Eg(20), the deceleration parameter shows periodic nature
due to the presence of cos(nt).

The deceleration parameter “q” lies in the interval −(m+ 1) 6 q 6 (m− 1).

Here we observed that

(i) For m=0, the deceleration parameter q=–1 and the universe exhibits exponential expansion
de sitter expansion.

(ii) For m ∈ (0, 1), the deceleration parameter “q” becomes negative and leades to decelerated
expansion in the periodic way.

(iii) For m=1, q lies in the interval [−2, 0] it indicates that the universe enolves from expension
with constant rate to super exponential expansion in a periodic way followed by accelerating
power law expansion to de sitter expansion.

(iv) For m > 1, phase transition taken place from deceleratives phase to accelerations phase
in a periodic way where the universe starts will a deceleratives expansion and evolves to
super exponential expansion.

By N. Hulke (2022) [19] the following are rang of the parameter m for fixed “n” values.
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n 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Inter 0.34 6 0.35 6 0.37 6 0.39 6 0.43 6 0.49 6 0.59 6 0.74 6 1.02 6 1.70 6
of m 6 m 6 m 6 m 6 m 6 m 6 m 6 m 6 m 6 m 6
m 0.64 0.66 0.69 0.74 0.82 0.94 1.11 1.39 1.93 3.20

Clearly for n=0.01 & 0.34 6 m 6 0.64 reshows us q < 0 it represent the model is accelerating
in nature for n=0.10 & 1.70 6 m 6 3.20, the model show phase transion from decelerating phase
to accelerating phase. Here q is from positive to negative. Hence the complete phase transition
scenario of the model is discussed in this range only. In order to obtaion the Hubble parameter
from equation we used the relation between Hubble parameter and deceleration parameter on

q =
1

dt

(
1

H

)
− 1 (20)

Hubble parameter

H =
ȧ

a
(21)

Deceleration parameter

q =
−ȧa
ȧ2

(22)

By Eq (19) & (21) we have
H =

w

mSin(nt) + nl
(23)

where “l” is integration constant and we obtain

a(t) = c · exp

{
2√

nlm−m2
tan−1

(
nltan

(nt
2

)
+m

√
nlm−m2

)}
(24)

where c is integration constant

ds2 = −dt2 + c2 · exp

{
4√

nlm−m2
tan−1

(
nl tan

(nt
2

)
+m

√
nlm−m2

)}
×

×
[

dr2

1− kr2
+ r2

(
dθ2 + sin2θd∅2

)]
(25)

4. Physical properties of the model
Eq (25) represents FRW Viscous fluid model. Using equation (15)–(18) & (23), (24)
Density

ρ =

[
1

ε− (8π + 3µ)

] [
3

(
ȧ

a

)2

+ 3

(
k

a2

)]
(26)

ρ =

[
3

ε− (8π + 3µ)

][(
n

n sinnt+ nl

)2
]
+

+ k

[
c · exp

{
2√

nlm−m2
tan−1

(
nl tan

(nt
2

)
+m

√
nlm−m2

)}]−1

(27)
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Fig. 1. Energy Density ρ Vs. Time t

The behavior energy density ρ(t) of from the Fig. 1 is the term involving sin(nt) introduces
oscillations in the function. The exponential term in the denominator influences the decay or
growth, depending on the parameter values. Certain values of t may lead to singularities (e. g.,
when the denominator of trigonometric terms approaches zero).

Bulk viscour pressure

−→p = ε

((
3

ε− (8π + 3µ)

)[(
n

n sin nt + nl

)2
]
+

+ k

[
c · exp

{
2√

nlm−m2
tan−1

(
nl tan

(nt
2

)
+m

√
nlm−m2

)}]−1)
(28)

Pressure

p = ε0ρ = ε0

([
3

ε− (8π + 3µ)

][(
n

n sinnt + nl

)2
]
+

+ k

[
c · exp

{
2√

nlm−m2
tan−1

(
nl tan

(nt
2

)
+m

√
nlm−m2

)}]−1)
(29)

The Behavior of p(t) from the Fig. 2 is the sine term causes periodic oscillations, which
dominate the behavior at certain intervals. The exponential term in the denominator moderates
the magnitude of pressure, depending on the constants n, l,m, n. Singularities may arise at
specific t values due to the denominators in the equation becoming close to zero.
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Fig. 2. Pressure p Vs. Time

Bulk viscous coefficient

ξ =

(
p− ερ
3H

)
= (ε0 − ε)×

×


[

3
ε−(8π+3µ)

] [(
n

n sinnt+nl

)2]
+ k

[
c · exp

{
2√

nlm−m2
tan−1

(
nl tan( nt

2 )+m√
nlm−m2

)}]−1

3 w
m sin(nt)+nl


(30)

Fig. 3. Bulk viscous coefficient ξ(t) Vs. Time t

The Behaviour of Bulk Viscous Coefficient ξ(t), from the Fig. 3 is the interplay of pressure
p , density ρ, and the oscillatory nature of sin(nt) introduces both periodic and nonlinear varia-
tions. The denominator msin(nt)+nl may approach zero at specific points, leading to spikes or
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singularities in ξ(t). The exponential term moderates the coefficient, while the sin(nt) dependent
term introduces periodicity.

Now we discuss the physical nature of the universe represented by eq. (26)–(30). In these two
cases universe has a finite life time. It starts a Big bang at t=0. The energy density the scale
factor of the universe diverse on finite time, so that the universe has a Biggd (Caldwel et al.,
2003) [22]. Also as t −→ ∞ the energy density, Pressure, the hubbles parameter, Coefficient
of Bulk viscous, viscous pressure vanish. It can be seen that the late times the deceleration
parameter because negative. So that the universe accelerates which is in accordance with the
recent scenario of accelerated expansion of the universe. It may also be observed that the energy
density is always positive irrespective of the fact that the curvature k is positive (or) not.

5. Conclusion
This paper investigated a Friedmann–Robertson–Walker cosmological model within the

framework of f(R,T) gravity, as formulated by Harko et al. The model incorporates a time-
periodically varying deceleration parameter and considers the pressure of a perfect fluid. Exact
solutions to the field equations were obtained using the time-periodically varying deceleration
parameter proposed by Ming and Lang. A barotropic equation of state relating the metric po-
tential and bulk viscous pressure was employed to obtain a determinate solution. The resulting
cosmological model describes a spatially expanding, non-rotating, and non-singular universe. By
fixing the constant parameter n, we observed distinct behaviours of the deceleration parameter.
For n = 0.01, the deceleration parameter remains negative throughout the universe’s evolution,
indicating perpetual acceleration. Conversely, for n = 0.10, the universe undergoes periodic
transitions between decelerating and accelerating phases. The Hubble parameter was calculated
based on the deceleration parameter, reflecting the universe’s expansion history. The key find-
ings of this study are: The choice of a time-periodically varying deceleration parameter leads to
periodic behavior in almost all cosmological parameters investigated. The model demonstrates
the possibility of a universe transitioning between phases of deceleration and acceleration. The
specific behaviour of the universe’s expansion is sensitive to the choice of model parameters,
highlighting the importance of observational constraints. Future work could explore the impli-
cations of this model for structure formation, the cosmic microwave background radiation, and
the nature of dark energy.
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Вязкая космологическая модель FRW с периодически
изменяющимся во времени параметром замедления
в f(R,T)гравитации

М.Раманамурти
Раджамаханти Сантикумар

Институт технологии и менеджмента Адитьи, Теккали
Шрикакулам, Андхра-Прадеш, Индия-532203

К.Собханбабу
Университетский инженерный колледж-JNTUK, Нарасараопет

Андхра-Прадеш-Индия-522616

Аннотация. В этой исследовательской работе изучается динамика космологической модели
Фридмана–Робертсона–Уокера, характеризующейся давлением идеальной жидкости и баротроп-
ным объемным вязким давлением. Получая точные решения уравнений поля Эйнштейна с изменя-
ющимся во времени периодическим параметром замедления, исследование выявляет периодическое
поведение большинства параметров, приписываемое влиянию косинусной функции в параметре за-
медления. Анализ углубляется в физические и динамические следствия этой модели, в частности,
подчеркивая, как отрицательное давление способствует расширению Вселенной в поздние времена.

Ключевые слова: объемная вязкая жидкость, период времени, параметр замедления, ускоренное
расширение.
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Introduction

The problem of global warming is one of the most important modern scientific problems. The
emission of CO2 is one of the causes leading to global changes in the Earth’s climate.

Geological storage of carbon dioxide in deep geological formations is considered a key tran-
sition method for reducing greenhouse gas emissions into the atmosphere and, therefore, their
feedback on the climate. Such method has been used for several decades in applications related
to enhanced oil recovery. A number of industrial, demonstration and pilot projects are underway,
and the processes and techniques associated with geological carbon dioxide storage have been
theoretically and experimentally studied. Deep saline formations are geological units that are
estimated to have the highest storage potential due to their worldwide distribution. Methods
for modelling and monitoring CO2 storage in such formations are rapidly developing in many
parts of the world. The basic assumption underlying the modelling of such processes is that after
CO2 injection, the void space within the formation is occupied by two fluids: natural brine and
injected CO2 [1].

Two-phase models are also applied to describe CO2 sequestration in producing gas fields.
In [2], CO2 sequestration scenarios through three injection wells in a producing gas field located
in the river Po sedimentary basin (Italy) are modeled with the ultimate goal of understanding
the geomechanical consequences of CO2 injection. The process is analyzed from a geomechanical
point of view, with the following main issues being addressed: prediction of possible vertical
uplift of the earth and the corresponding impact on the surface infrastructure; assessment of the
stress state induced in the reservoir with possible formation of fractures and analysis of the risk
of activation of existing faults.
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In the paper [3] a poromechanical model is developed to determine how chemical carbonation
reactions can affect the mechanical behavior of well cement in the context of CO2 storage. A
multiphase model is also considered, in which the pore fluid consists of dissolved components
and a solvent (water).

Thus, the mathematical model of two-phase filtration in a poroelastic medium is quite relevant
and describes well the processes of CO2 storage. A large number of works are devoted to
mathematical modeling of the process of carbon dioxide burial under various conditions. Most
of the known models do not take into account the variable porosity of the solid skeleton. Usually
porosity is a given function or is assumed to be constant. However, taking into account variable
porosity seems important, since it can lead to the detection of cracks and the release of CO2 to the
surface during burial. The mathematical model we consider takes into account the compressibility
of the solid skeleton and its poroelastic properties, i.e. variable porosity.

Work using variable porosity has been conducted since the 1920s. A relationship was dis-
covered between the burial depth of sedimentary rocks and porosity. In particular, there is an
exponential dependence of porosity on depth [4]. One of the first tools for constructing mod-
els of poroelastic media was the Terzaghi effective stress concept, which takes into account the
mobility of the skeleton and its poroelastic properties [5]. Further, the theory of poroelasticity
was developed in the works of Bio [6], where porosity was also a function of effective pressure.
Porosity depended on pressure (but the deformation of the porous skeleton was not considered)
in [7]. A model of two-phase filtration in a deformable porous medium was proposed in [8], in
which the motion of a solid skeleton was described based on an analogue of Terzaghi’s principle
and a modified linear Hooke’s law. The justification issues were not considered in this work.
This was done in works [9,10], where particular solutions were constructed in models of zero and
first approximations. In the case of single-phase filtration in a deformable porous medium, the
mathematical theory of the process was constructed in works [11–13].

1. Governing equations

We consider a system of differential equations describing the motion of two immiscible fluids in
a deformable viscoelastic medium. The continuity equations for each phase, taking into account
variable porosity in the absence of phase transitions, are as follows [15]:

∂(ρ1s1ϕ)

∂t
+∇ · (ρ1ϕs1v⃗1) = 0,

∂(ρ2s2ϕ)

∂t
+∇ · (ρ2ϕs2v⃗2) = 0, s2 + s1 = 1,

∂(1− ϕ)ρ3
∂t

+∇ · ((1− ϕ)ρ3v⃗3) = 0.

(1)

Here ρ1, ρ2, ρ3, v⃗1, v⃗2, v⃗3 are true phase densities and velocities, respectively (1 is the wetting
fluid, 2 is the non-wetting fluid, 3 is the solid deformable skeleton), s1, s2 are fluid saturations,
ϕ is the porosity.

Instead of the equations of conservation of momentum in the theory of two-phase filtration,
a generalized Darcy law for liquid phases is used, taking into account the motion of a solid
skeleton [16,17]:

s1ϕ(v⃗1 − v⃗3) = −K0(ϕ)
k01(s1)

µ1
(∇p1 − ρ1g⃗), (2)

s2ϕ(v⃗2 − v⃗3) = −K0(ϕ)
k02(s2)

µ2
(∇p2 − ρ2g⃗), (3)
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where p1, p2 are fluid pressures, k01(s1), k02(s2) are permeabilities, µ1, µ2 are dynamic viscosities,
g⃗ is the acceleration vector of gravity. Taking into account capillary forces means that the phase
pressures p2 and p1 differ by the magnitude of the capillary jump: p2− p1 = pc(s1), pc(s1) is the
capillary pressure (is a given function).

The system of equations (1)–(3) with respect to the sought functions of pressures, phase
velocities and saturations of immiscible liquids moving in a non-deformable porous medium, in
the isothermal case (the temperature in the flow is constant) is closed either by the assumption
of incompressibility of liquids, i.e. the densities are assumed to be constant, or by an equation
of state relating the densities and pressures of the phases.

The resulting mathematical model in the case of a stationary porous medium v⃗3 = 0 is called
the Musket–Leverett model (in the case of the absence of a capillary jump — the Buckley–
Leverett model). The mathematical theory of the process for the Musket–Leverett model was
justified in the monograph [18].

The fundamental point is to take into account the compressibility of the porous medium.
Work using variable porosity began in the 1920s in connection with attempts to mathematically
model filtration processes in sedimentary rocks [4]. At first, simple dependences of porosity on
depth were used (see review in [19]]), obtained on the basis of experimental data. Then more
complex dependences appeared for porosity through effective pressure [5], which, according to
Terzaghi’s concept, is defined as the difference between the total pressure and the fluid pressure.
This position reflects the fact that the fluid bears part of the load. In this approach, the relation-
ship between the deformation of the skeleton of the solid matrix and the processes of fluid flow
is fundamental. Experimental data on unknown porosity are contained in the works of [20,21].

The Maxwell-type relationship between porosity and effective pressure pe is as follows [22–24]:

∇ · v⃗3 = −(α(ϕ)pe + β(ϕ)
dpe
dt

), (4)

where α(ϕ), β(ϕ) are given functions that depend on porosity (parameters of the medium that are

responsible for viscosity and elasticity, respectively),
d

dt
=

∂

∂t
+(v⃗3 ·∇) is the material derivative.

The effective pressure pe and the pressures in the liquid phases p1, p2 and the solid p3 phases are
related by the relations:

ptot = ϕpf + (1− ϕ)p3, pe = (1− ϕ)(p3 − pf ), pf = s1p1 + s2p2. (5)

The balance equation of forces for the system as a whole has the form [22,23,25]:

∇ptot = ρtotg⃗+∇·
(
(1− ϕ)η

(
∂v⃗3
∂x⃗

+

(
∂v⃗3
∂x⃗

)∗))
, ρtot = ϕρf+(1−ϕ)ρ3, ρf = s1ρ1+s2ρ2, (6)

where ptot is the total pressure, ρtot is the total density, η is the viscosity of the porous skeleton,
∗ is the symbol for the transposition operation. Here, the approach is used in which the deviator
of the stress tensor in the liquid phase is neglected, because the viscosity of the liquid is much
smaller than the shear viscosity of the skeleton.

Thus, the system of equations (1)–(6), describing the motion of two immiscible liquids in a
deformable porous medium, takes the form [14]:

∂(ρ1s1ϕ)

∂t
+∇ · (ρ1ϕs1v⃗1) = 0,

∂(ρ2s2ϕ)

∂t
+∇ · (ρ2ϕs2v⃗2) = 0,

∂(1− ϕ)ρ3
∂t

+∇ · ((1− ϕ)ρ3v⃗3) = 0,

(7)
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s1ϕ(v⃗1 − v⃗3) = −K0(ϕ)
k01(s1)

µ1
(∇p1 − ρ1g⃗),

s2ϕ(v⃗2 − v⃗3) = −K0(ϕ)
k02(s2)

µ2
(∇p2 − ρ2g⃗),

(8)

∇ · v⃗3 = −(α(ϕ)pe + β(ϕ)
dpe
dt

),
d

dt
=

∂

∂t
+ (v⃗3 · ∇), (9)

ptot = ϕpf + (1− ϕ)p3, pe = (1− ϕ)(p3 − pf ), p2 − p1 = pc(s1), (10)

∇ptot = ρtotg⃗ + div

(
(1− ϕ)η

(
∂v⃗3
∂x⃗

+

(
∂v⃗3
∂x⃗

)∗))
, ρtot = ϕρf + (1− ϕ)ρ3. (11)

This model is quite complex for investigation, relatively new and has not been studied in suf-
ficient detail. In the paper [26] a similar system of equations is investigated, for which some exact
solutions are obtained in the thin layer approximation in the model case. In the paper [14] the
solvability of the model problem in the Hele–Shaw cell approximation for the equations (7)–(11)
is established. In the one-dimensional case for the system (7)–(11) at a constant temperature
and single-phase filtration, the dependence of the liquid phase density on the pressure and in
the absence of phase transitions, local solvability is established in [11]. With constant densities,
global solvability is proved in [12]. In the papers [27, 28] the problems of two-phase filtration in
a deformable medium with known porosity are considered. The purpose of this work is to study
the stability of the stationary solution of the general system of equations (7)–(11).

2. A study of the stability of the problem of the motion
of two immiscible fluids in a poroelastic medium

2.1. Steady-state solution of the system

To find an analytical solution to the system (7)–(11) we will use the following hypotheses:

•fluids and solid skeletons are incompressible, that is, ρ0i = const (i = 1, 2, 3);

• gravity acceleration and capillary jump are equal to zero: −→g = 0, pc = 0.

We consider a stationary solution in which the phase velocities are zero (v⃗1 = v⃗2 = v⃗3 = 0),
and the porosity and saturation are constant:

ϕ = ϕ0, s1 = s01, s2 = s02, (ϕ0, s01, s
0
2) ∈ (0, 1).

From the equation (11) it follows that ptot = h = const.

From the absence of a capillary jump it follows that p1 = p2.
Under these assumptions, equations (7)–(11) are satisfied automatically. From equation (9)

it follows that pe = 0. From the equation for effective pressure: pe = ptot − pf we establish that
ptot = pf = p1 = p2 = p3 = h.
Thus, the steady-state solution has the form:

s1 = s01, s2 = s02, v⃗1 = v⃗2 = v⃗3 = 0, ϕ = ϕ0, p1 = p2 = p3 = h.
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2.2. Perturbed solution

The perturbed solution of the system (7)–(11) is sought in the vicinity of the stationary one
and has the following form [29]:

v⃗1 = ⃗̄v1, v⃗2 = ⃗̄v2, v⃗3 = ⃗̄v3, s1 = s01 + s̄1, s2 = s02 + s̄2,

ϕ = ϕ0 + ϕ̄, s01 + s02 = 1, s̄1 + s̄2 = 0,

p1 = p̄1 + h, p2 = p̄2 + h, p3 = p̄3 + h, p̄2 = p̄1.

where the functions v3, v1, v2, p1, p2, p3, s1, s2, ϕ are small and have continuous derivatives. The
functional parameters K0(ϕ), k01(s1), k02(s2) can be represented as:

K0(ϕ) = K0(ϕ
0) +K ′

0(ϕ
0)ϕ,

k01(s1) = k01(s
0
1) + k′01(s

0
1)s1,

k02(s2) = k02(s
0
2) + k′02(s

0
2)s2,

α(ϕ) = α(ϕ0) + α′(ϕ0)ϕ̄, β(ϕ) = β(ϕ0) + β′(ϕ0)ϕ̄.

Substituting the perturbed solution into the system (7)–(11) and discarding the nonlinear terms,
we arrive at the following linear system (for convenience, we omit the dashes from above):

∂(1− ϕ)
∂t

+ (1− ϕ0)∇ · v⃗3 = 0, (12)

ϕ0
∂(s1)

∂t
+ s01

∂(ϕ)

∂t
+ ϕ0s01∇ · v⃗1 = 0, (13)

ϕ0
∂(s2)

∂t
+ s02

∂(ϕ)

∂t
+ ϕ0s02∇ · v⃗2 = 0, (14)

s01ϕ
0(v⃗1 − v⃗3) = −K0(ϕ

0)
k01(s

0
1)

µ1
∇p1, (15)

s02ϕ
0(v⃗2 − v⃗3) = −K0(ϕ

0)
k02(s

0
2)

µ2
∇p2, (16)

∇ · v⃗3 = (1− ϕ0)
(
α(ϕ0)(p3 − p1) + β(ϕ0)

∂(p3 − p1)
∂t

)
, (17)

(1− ϕ0)∇p3 + ϕ0∇p1 = η(1− ϕ0)(∆v⃗3 +∇(∇ · v⃗3)). (18)

To find v⃗3 we add the continuity equations (12)–(14). We get:

∇ · v⃗3 = − ϕ0

1− ϕ0
(
s01∇ · v⃗1 + s02∇ · v⃗2

)
. (19)

After adding the equations (15), (16), and apply the div operator to both parts of the resulting
equality we get:

∇ · (ϕ0s01v⃗1 + s02ϕ
0v⃗2)− ϕ0∇ · v⃗3 = −K0(ϕ

0)

(
k01(s

0
1)

µ1
+
k02(s

0
2)

µ2

)
.

Taking into account the relation (19), we obtain

∇ · v⃗3 = K0(ϕ
0)

(
k01(s

0
1)

µ1
+
k02(s

0
2)

µ2

)
∆p1. (20)
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Taking the div operator to both parts of the equation (18) and, taking into account the previous
equality, we obtain

(1− ϕ0)∆p3 = 2ηK̃(1− ϕ0)∆2p1 − ϕ0∆p1. (21)

Equation (17) taking into account (20) will take the form

K̃∆p1 = (1− ϕ0)
(
α(ϕ0)(p3 − p1) + β(ϕ0)

∂(p3 − p1)
∂t

)
,

where K̃ = K0(ϕ
0)

(
k01(s

0
1)

µ1
+
k02(s

0
2)

µ2

)
. Taking the operator ∆ to the previous equation, we

get

K̃∆2p1 = α(ϕ0)((1−ϕ0)∆p3)−α(ϕ0)(1−ϕ0)∆p1+β(ϕ0)
∂

∂t
((1−ϕ0)∆p3)−β(ϕ0)(1−ϕ0)

∂

∂t
(∆p1).

Taking into account equation (21), we have the equation for p1

∂

∂t
(∆p1)−A∆2p1 −B

∂

∂t
(∆2p1) + C∆p1 = 0, (22)

where

A= K̃
2α(ϕ0)η(1− ϕ0)− 1

β(ϕ0)
, B= 2ηK̃(1− ϕ0), C=

α(ϕ0)

β(ϕ0)
, K̃= K0(ϕ

0)

(
k01(s

0
1)

µ1
+
k02(s

0
2)

µ2

)
.

Let us describe the scheme for finding all the desired functions. After finding p1 from the
equation (22) we find p2, since pc = 0 and, therefore, p1 = p2. We also obtain divv3 from (20).
We find p3 from (21), and then we find v3 from (18). We can find v1 and v2 from (15), (16), and
ϕ from (12). From (13) we find s1, and, therefore, s2, since s1 + s2 = 1.

We now seek a plane wave solution of the form [30]

p1 = p̂1 exp(st) exp(ik · x), s = ξ − iη̄,

where k is the wave vector of the plane wave, η̄ is related to the velocity of propagation V by
V = η̄/|k|, where |k| is the wave number.

Substituting this representation into (22), we obtain

p̂1k
2(s+Ak2 +Bsk2 + C) = 0.

The solutions p̂1 = 0 represent transverse waves. We also have that

ξ = −k
2K̃(2α(ϕ0)η(1− ϕ0)− 1) + α(ϕ0)

β(ϕ0)(1 + 2ηK̃(1− ϕ0)k2)
. (23)

From this equation we obtain the relationship between the degree of growth of the harmonic
ξ perturbations and its wavelength (wave number |k| = 2π/λ). For ξ > 0 the perturbations grow
exponentially and, therefore, the initial solution is unstable, for ξ < 0 the perturbations decay
and the solution is stable. It is easy to see that ξ > 0 for |k| ∈ (0, kc), where

kc =

(
α(ϕ0)

K̃(1− 2α(ϕ0)η(1− ϕ0))

)1/2

,

if the condition 1 > 2αη(1− ϕ0) is satisfied.
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Note that in the absence of viscosity in the skeleton and the prevalence of its elastic properties,
i.e., when α = 0, we have unstable perturbations, since it is easy to see from the equality (23)
that ξ > 0 for any initial data of the equations. In the presence of viscosity and when the
condition is satisfied

1 < 2ηα(1− ϕ0) (24)

the process will be stable, since there are no real kc. Therefore, viscosity can stabilize the process
under consideration. In the absence of skeleton elasticity (β = 0) we have kc = ∞ and the
solution is always unstable. Therefore, elasticity also contributes to the stabilization of the
process. In other words, the process will be stable if the (24) condition is met and the skeleton
has viscoelastic properties.

The study was supported by the Russian Science Foundation grant no. 23-71-10045,
https://rscf.ru/project/23-71-10045/.
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Фильтрация двух несмешивающихся жидкостей
в вязкоупругой пористой среде

Маргарита А.Токарева
Александр А. Папин

Алтайский государственный университет
Барнаул, Российская Федерация

Аннотация. В рамках теории взаимодействующих континуумов получены определяющие уравне-
ния для движения двух несмешивающихся жидкостей в пороупругом скелете. Исследована устой-
чивость стационарного решения системы.

Ключевые слова: пороупругость, двухфазная фильтрация, закон Дарси, устойчивость, вязко-
упругость.
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Introduction

In 1967, Newcomb [11] introduced the notion of compactness modulo an ideal. Rančin [16]
and Hamlett and Janković [6] further investigated this notion and obtained some more properties
of compactness modulo an ideal. Császár [5] introduced the notion of hereditary classes as a
generalization of ideals. In [13], a minimal structure and a minimal space (X,m) are introduced
and investigated. Recently, the present authors [1,3,4] introduced and studied the notions related
to compactness modulo hereditary classes.

In this paper, we define a subset A of a hereditary m-space (X,m, H) to be m-H-compact
relative to X if for every cover U of A by m-open sets of X, there exists a finite subset U0 of
U such that A \ ∪ U0 ∈ H. We obtain several properties of these sets. And also, we define
and investigate two kinds of strong forms of H-compact relative to X. Moreover, for a function
f : (X,m, H) → (Y, n) we define a hereditry class JH = {B ⊂ Y : f−1(B) ∈ H } and by using
hereditry classes f(H) and JH on Y we obtain several preservation theorems.

1. Preliminaries

Definition 1.1. A subfamily m of the power set P(X) of a nonempty set X is called a minimal
structure (briefly m-structure) [13] on X if ∅ ∈ m and X ∈ m.
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By (X,m), we denote a nonempty set X with a minimal structure m on X and call it an
m-space. Each member of m is said to be m-open and the complement of an m-open set is said
to be m-closed. For a point x ∈ X, the family {U : x ∈ U and U ∈ m} is denoted by m(x).

Definition 1.2. Let (X,m) be an m-space and A a subset of X. The m-closure mCl(A) and
mInt(A) of A [10] are defined as follows:

(1) mCl(A) = ∩{F ⊂ X : A ⊂ F,X \ F ∈ m},
(2) mInt(A) = ∪{U ⊂ X : U ⊂ A,U ∈ m}.

Lemma 1.3. (Maki et al. [10]). Let X be a nonempty set and m a minimal structure on X. For
subsets A and B of X, the following properties hold:

(1) A ⊂ mCl(A) and mCl(A) = A if A is m-closed,
(2) mCl(∅) = ∅, mCl(X) = X,
(3) If A ⊂ B, then mCl(A) ⊂ mCl(B),
(4) mCl(A) ∪mCl(B) ⊂ mCl(A ∪B),
(5) mCl(mCl(A)) = mCl(A).

Definition 1.4. A minimal structure m of a set X is said to have property B [10] if the union
of any collection of elements of m is an element of m,

Lemma 1.5. (Popa and Noiri [13]). Let (X,m) be an m-space and A a subset of X.
(1) x ∈ mCl(A) if and only if U ∩A ̸= ∅ for every U ∈ m(x).
(2) Let m have property B. Then the following properties hold:
(i) A is m-closed if and only if mCl(A) = A,
(ii) A is m-open if and only if mInt(A) = A.

Definition 1.6. A nonempty subfamily H of P(X) is called a hereditary class on X [5] if it
satisfies the following properties: A ∈ H and B ⊂ A implies B ∈ H. A hereditary class H is
called an ideal [9], [17] if it satisfies the additional condition: A ∈H andB ∈H impliesA ∪B ∈ H.

A minimal space (X,m) with a hereditary class H on X is called a hereditary minimal
space (briefly hereditary m-space) and is denoted by (X,m,H). The notion of ideals has been
introduced in [9] and [17] and further investigated in [8].

Lemma 1.7. [11] For a function f : (X, τ)→ (Y, σ) and ideals I and J , the following properties
hold:

(1) if f is surjective and I is an ideal on X, then f(I) = {f(A) : A ∈ I} is an ideal on Y ,
(2) if f is injective and J is an ideal on Y , then f−1(J) = {f−1(B) : B ∈ J} is an ideal

on X.

Lemma 1.8. Let (X,m, H) be a hereditary m-space, f : (X,m, H) → (Y, n) a function and
JH = {B ⊂ Y : f−1(B) ∈ H }. Then the following properties hold:

(1) JH is a hereditary class on Y ,
(2) if f is injective, then H ⊂ f−1(JH),
(3) if f is surjective, then JH ⊂ f(H),
(4) if f is bijective, then JH = f(H).

Proof. (1) Let A ⊂ B and B ∈ JH , then f−1(A) ⊂ f−1(B) ∈ H. Hence f−1(A) ∈ H and
A ∈ JH . Therefore, JH is a hereditary class on Y .

(2) Since f is injective, for any A ∈ H, f−1(f(A)) = A ∈ H and f(A) ∈ JH . Therefore,
A ∈ f−1(JH) and H ⊂ f−1(JH).

(3) For any B ∈ JH , f−1(B) ∈ H. Since f is surjective, B = f(f−1(B)) ∈ f(H) and hence
JH ⊂ f(H).

(4) The proof is obvious by (2) and (3). 2
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Definition 1.9. Let (X,m) be m-space. A subset A of X is said to be m-compact relative to
X [14] if for each cover {Uα : α ∈ ∆} of A by m-open sets of X, there exists a finite subset ∆0

of ∆ such that A ⊂ ∪{Uα : α ∈ ∆0}.

Definition 1.10. A m-space (X,m) is said to be m-compact [14] if the set X is m-compact
relative to X.

Definition 1.11. A function f : (X,m)→ (Y, n) is said to be
(1) M -continuous [13] if for each x ∈ X and each n-open set V containing f(x), there exists

an m-open set U containing x such that f(U) ⊂ V ,
(2) M -open if f(U) is n-open in (Y, n) for every m-open set U of (X,m).

Lemma 1.12 ( [13]). Let m have property B. Then a function f : (X,m) → (Y, n) is M -
continuous if and only if f−1(V ) ∈ m for every V ∈ n.

2. On m-H-compact spaces
Definition 2.1. Let (X,m, H) be a hereditary m-space.

(1) A subset A of X is said to be m-H-compact relative to X if for every cover {Uα : α ∈ ∆}
of A by m-open sets of X, there exists a finite subset ∆0 of ∆ such that A\∪{Uα : α ∈ ∆0} ∈ H.

(2) (X,m H) is called an m-H-compact space if X is m-H-compact relative to X.

Remark 2.2. Let (X,m, H) be a hereditary m-space. If H = {∅}, then "m-H-compact relative
to X" coincides with "m-compact relative to X".

Theorem 2.3. Let (X,m, H) be a hereditary m-space. For a subset A of X, the following
properties are equivalent:

(1) A is m-H-compact relative to X;
(2) for every family {Fα : α ∈ ∆} of m-closed sets of X such that A ∩ (∩{Fα : α ∈ ∆}) = ∅,

there exists a finite subset ∆0 of ∆ such that A ∩ (∩{Fα : α ∈ ∆0}) ∈ H.

Proof. (1) ⇒ (2): Let {Fα : α ∈ ∆} be a family of m-closed sets of X such that A∩ (∩{Fα : α ∈
∆}) = ∅. Then, we have A ⊂ X \ (∩{Fα : α ∈ ∆}) = ∪{X \Fα : α ∈ ∆}. Since X \Fα is m-open
for each α ∈ ∆, by (1) there exists a finite subset ∆0 of ∆ such that A \ (∪{X \Fα : α ∈ ∆0}) ∈
H. Therefore, we have

A ∩ (∩{Fα : α ∈ ∆0}) = A ∩ [X \ ∪{(X \ Fα : α ∈ ∆0})] = A \ (∪{X \ Fα : α ∈ ∆0}) ∈ H.

(2) ⇒ (1): Let {Uα : α ∈ ∆} be any cover of A by m-open sets of X. Then A∩ (X \ ∪{Uα : α ∈
∆}) = A ∩ (∩{X \ Uα : α ∈ ∆}) = ∅. Since X \ Uα is m-closed for each α ∈ ∆, by (2) there
exists a finite subset ∆0 of ∆ such that A ∩ (∩{X \ Uα : α ∈ ∆0}) ∈ H. Therefore, we have

A ∩ (∩{X \ Uα : α ∈ ∆0}) = A ∩ (X \ ∪{Uα : α ∈ ∆0}) = A \ ∪{Uα : α ∈ ∆0} ∈ H.

This shows that A is m-H-compact relative to X. 2

Corollary 2.4. For a hereditary m-space (X,m, H), the following properties are equivalent:
(1) (X,m, H) is m-H-compact;
(2) for every family {Fα : α ∈ ∆} of m-closed sets of X such that ∩{Fα : α ∈ ∆} = ∅, there

exists a finite subset ∆0 of ∆ such that ∩{Fα : α ∈ ∆0} ∈ H.

Definition 2.5. Let (X,m, H) be a hereditary m-space. A subset A of X is said to be
(1) Hmg-closed [2] if mCl(A) ⊂ U whenever A \ U ∈ H and U is m-open,
(2) mg-closed [12] if mCl(A) ⊂ U whenever A ⊂ U and U is m-open.
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Remark 2.6. We note the following:
(1) If H = {∅}, then {∅}mg-closed and mg-closed are coincide.
(2) If A is Hmg-closed, then A is mg-closed. The converse is not always true as shown by

the following example due to [15].

Example 2.7. Let X = R, m = {∅, R} ∪ {(r,∞) : r ∈ R} and H = {H : H ⊆ Q ∩ [0,∞) or
H ⊆ Q ∩ (−∞, 0]}. If A = Q, then

(1) A is mg-closed because if A ⊆ U and U ∈ m, then U = R and mCl(A) = R ⊆ U .
(2) A is not Hmg-closed because if U = (0,∞), then U ∈ m and A \ U = Q \ (0,∞) =

Q ∩ (−∞, 0] ∈ H but mCl(A) = R is not contained in (0,∞).

Theorem 2.8. Let (X,m, H) be a hereditary m-space, m have property B and A,B subsets of
X such that A ⊂ B ⊂ mCl(A), then the following properties are hold:

(1) if A is m-H-compact relative to X and Hmg-closed, then B is m-compact relative to X,
(2) if B is m-H-compact relative to X and A is mg-closed, then A is m-H-compact relative

to X.

Proof. (1): Suppose that A ism-H-compact relative toX and A isHmg-closed. Let {Uα : α ∈ ∆}
be any cover of B by m-open sets of X. Then {Uα : α ∈ ∆} is a cover of A by m-open sets
of X. Since A is m-H-compact relative to X, there exists a finite subset ∆0 of ∆ such that
A \ ∪{Uα : α ∈ ∆0} ∈ H. Since A is Hmg-closed , mCl(A) ⊂ ∪{Uα : α ∈ ∆0}. Since
B ⊂ mCl(A), we have B ⊂ ∪{Uα : α ∈ ∆0}. Therefore, B is m-compact relative to X.

(2): Suppose that B is m-H-compact relative to X and A is mg-closed. Let {Uα : α ∈ ∆}
be any cover of A by m-open sets of X. Since A is mg-closed, we have B ⊂ mCl(A) ⊂ ∪{Uα :

α ∈ ∆}. Since B is m-H-compact relative to X, there exists a finite subset ∆0 of ∆ such that
B \ ∪{Uα : α ∈ ∆0} ∈ H. Since A ⊂ B,A \ ∪{Uα : α ∈ ∆0} ∈ H. Therefore, A is m-H-compact
relative to X. 2

Corollary 2.9. Let (X,m, H) be a hereditary m-space. If A is Hmg-closed and A ⊂ B ⊂
mCl(A), then the following properties are equivalent:

(1) A is m-H-compact relative to X;
(2) B is m-H-compact relative to X.

Theorem 2.10. Let (X,m, H) be an ideal m-space. If subsets A and B of X are m-H-compact
relative to X, then A ∪B is m-H-compact relative to X.

Proof. Let U = {Uα : α ∈ ∆} be any cover of A ∪B by m-open sets of X. Then U is a cover of
A and B by m-open sets of X. Since A and B are m-H-compact relative to X, there exist finite
subsets ∆A and ∆B of ∆ and subsets HA and HB of H such that A ⊂ ∪{Uα : α ∈ ∆A} ∪HA

and B ⊂ ∪{Uα : α ∈ ∆B} ∪HB . Hence we have A ∪ B ⊂ ∪{Uα : α ∈ ∆A ∪∆B} ∪ (HA ∪HB).
Since H is an ideal, we have (A ∪ B) \ ∪{Uα : α ∈ ∆A ∪ ∆B} ∈ H. This shows that A ∪ B is
m-H-compact relative to X. 2

The assumption "ideal m-space" in Theorem 3.10 can not be replaced by "hereditary m-
space" as shown by the following example which is due to Qahis et at. [15].

Example 2.11. Let X = R be the real numbers, m = τ the usual topology, and H = {H ⊆ R :
H ⊆ (0, 1) or H ⊆ (1, 2)}. If A = (0, 1) and B = (1, 2), then

(1) A and B are m-H-compact relative to X.
(2) A ∪B is not m-H-compact relative to X.

Proof. (1) The proof is obvious.
(2) The family {(1/n, 2 − 1/n) : n ∈ Z+}, where Z+ is the family of positive integers,
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is a cover of A ∪ B by m-open sets of X. For any finite subsets {n1, n2, . . . , ni} of Z+, put
N = max{n1, n2, . . . , ni}. Then we have (A ∪ B) \ ∪{(1/n, 2 − 1/n) : 1 6 i 6 n} = (A ∪ B) \
(1/N, 2 − 1/N) = (0, 1/N ] ∪ [2 − 1/N, 2) /∈ H. Therefore, A ∪ B is not m-H-compact relative
to X. 2

Theorem 2.12. Let (X,m, H) be a hereditary m-space, and A,B be subsets of X. If A is
m-H-compact relative to X and B is m-closed, then A ∩B is m-H-compact relative to X.

Proof. Let {Uα : α ∈ ∆} be a cover of A ∩ B by m-open sets of X. Then A \ B ⊂ X \ B
and X \ B is m-open. Then {Uα : α ∈ ∆} ∪ {X \ B} is a cover of A by m-open sets of
X. Since A is m-H-compact relative to X, there exists a finite subset ∆0 of ∆ such that
A ⊂ (∪{Uα : α ∈ ∆0}) ∪ {X \B} ∪H0, where H0 ∈ H. Then we have

(A ∩B) ⊂ (∪{Uα ∩B : α ∈ ∆0}) ∪ (H0 ∩B) ⊂ ∪{Uα : α ∈ ∆0} ∪H0.

Therefore, (A∩B) \∪{Uα : α ∈ ∆0} ⊂ H0 ∈ H. This shows that A∩B is m-H-compact relative
to X.

Corollary 2.13. If a hereditary m-space (X,m, H) is m-H-compact and B is m-closed, then B
is m-H-compact relative to X.

Theorem 2.14. If f : (X,m, H) → (Y, n, f(H)) is a surjective M -continuous function and A
is m-H-compact relative to X, then f(A) is n-f(H)-compact relative to Y .

Proof. Suppose that A is m-H-compact relative to X. Let {Vα : α ∈ ∆} be any cover of f(A)
by n-open sets of Y . For each x ∈ A, there exists α(x) ∈ ∆ such that f(x) ∈ Vα(x). Since f
is M -continuous, there exists an m-open set Ux containing x such that f(x) ∈ f(Ux) ⊂ Vα(x).
Since {Ux : x ∈ A} is an m-open cover of A and A is m-H-compact relative to X, there
exists a finite subset A0 of A such that A ⊂ ∪{Ux : x ∈ A0} ∪ H0, where H0 ∈ H and hence
f(A) ⊂ ∪{f(Ux) : x ∈ A0} ∪ f(H0) ⊂ ∪{Vα(x) : x ∈ A0} ∪ f(H0). Therefore, f(A) \ ∪{Vα(x) :
x ∈ A0} ⊂ f(H0) ∈ f(H). Therefore, we have f(A)\∪{Vα(x) : x ∈ A0} ∈ f(H). This shows that
f(A) is n-f(H)-compact relative to Y . 2

Corollary 2.15. If f : (X,m, H) → (Y, n, f(H)) is a surjective M -continuous function and
(X,m, H) is m-H-compact, then (Y, n, f(H)) is n-f(H)-compact.

Theorem 2.16. Let f : (X,m) → (Y, n, J ) be an M -open bijective function. If B is n-J -
compact relative to Y , then f−1(B) is m-f−1(J)-compact relative to X.

Proof. Since f−1 : (Y, n, J )→ (X,m) is an M -continuous bijection, by Theorem 3.14 the proof
is obvious. 2

Corollary 2.17. Let f : (X,m) → (Y, n, J ) be an M -open bijective function and (Y, n, J ) is
n-J -compact, then (X,m, f−1(J )) is m-f−1(J )-compact.

Theorem 2.18. If f : (X,m, H) → (Y, n) is an injective M -continuous function and A is
m-H-compact relative to X, then f(A) is n-JH-compact relative to Y.

Proof. Let {Vα : α ∈ ∆} be any cover of f(A) by n-open sets of Y . For each x ∈ A, there
exists α(x) ∈ ∆ such that f(x) ∈ Vα(x). Since f is M -continuous, there exists an m-open set Ux
containing x such that f(Ux) ⊂ Vα(x). Then {Ux : x ∈ A} is an m-open cover of A. Since A is m-
H-compact relative to X, there exists a finite subset A0 of A such that A ⊂ ∪{Ux : x ∈ A0}∪H0

for some H0 ∈ H and f(A) ⊂ ∪{f(Ux) : x ∈ A0} ∪ f(H0) for some H0 ∈ H. Therefore,
f(A) ⊂ ∪{Vα(x) : x ∈ A0}∪f(H0). Since f is injective, f−1(f(H0)) = H0 ∈ H and f(H0) ∈ JH .
Consequently, we obtain f(A)\∪{Vα(x) : x ∈ A0} ∈ JH . This shows that f(A) is n-JH -compact
relative to Y .
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3. Strongly m-H-compact spaces

Definition 3.1. Let (X,m, H) be a hereditary m-space.
(1) A subset A of X is said to be strongly m-H-compact relative to X if for every family

{Uα : α ∈ ∆} of m-open sets of X such that A \ ∪{Uα : α ∈ ∆} ∈ H, there exists a finite subset
∆0 of ∆ such that A \ ∪{Uα : α ∈ ∆0} ∈ H.

(2) (X,m, H) is said to be strongly m-H-compact if X is strongly m-H-compact relative to X.

Theorem 3.2. Let (X,m, H) be a hereditary m-space. For a subset A of X, the following
properties are equivalent:

(1) A is strongly m-H-compact relative to X;
(2) for every family {Fα : α ∈ ∆} of m-closed sets of X such that A∩ (∩{Fα : α ∈ ∆}) ∈ H,

there exists a finite subset ∆0 of ∆ such that A ∩ (∩{Fα : α ∈ ∆0}) ∈ H.

Proof. (1) ⇒ (2): Let {Fα : α ∈ ∆} be a family of m-closed sets of X such that A∩ (∩{Fα : α ∈
∆}) ∈ H. Then A \ ∪{X \ Fα : α ∈ ∆}) = A \ (X \ ∩{Fα : α ∈ ∆}) = A ∩ (∩{Fα : α ∈ ∆}) ∈
H. Since X \ Fα is m-open for each α ∈ ∆ and A is strongly m-H-compact relative to X by
(1), there exists a finite subset ∆0 of ∆ such that A \ ∪{X \ Fα : α ∈ ∆0} ∈ H. This implies
thatA ∩ (∩{Fα : α ∈ ∆0}) = A \ (X \ (∩{Fα : α ∈ ∆0})) = A \ ∪{X \ Fα : α ∈ ∆0} ∈ H.

(2) ⇒ (1): Let {Uα : α ∈ ∆} be a family of m-open sets of X such that A \ ∪{Uα : α ∈ ∆} ∈
H. Then {X \ Uα : α ∈ ∆} is a family of m-closed sets of X and also A \ ∪{Uα : α ∈
∆} = A ∩ (X \ ∪{Uα : α ∈ ∆}) = A ∩ (∩{X \ Uα : α ∈ ∆}) ∈ H. Thus by (2) there
exists a finite subset ∆0 of ∆ such that A ∩ (∩{X \ Uα : α ∈ ∆0}) ∈ H. Therefore, we have
A \ ∪{Uα : α ∈ ∆0} = A ∩ (X \ ∪{Uα : α ∈ ∆0}) = A ∩ (∩{X \ Uα : α ∈ ∆0}) ∈ H. This shows
that A is strongly m-H-compact relative to X. 2

Corollary 3.3. For a hereditary m-space (X,m, H), the following properties are equivalent:
(1) (X,m, H) is strongly m-H-compact;
(2) for every family {Fα : α ∈ ∆} of m-closed sets of X such that ∩{Fα : α ∈ ∆} ∈ H, there

exists a finite subset ∆0 of ∆ such that ∩{Fα : α ∈ ∆0} ∈ H.

Theorem 3.4. Let (X,m, H) be a hereditary m-space and m have property B. If A is Hmg-
closed and A ⊂ B ⊂ mCl(A), then the following properties are equivalent:

(1) A is strongly m-H-compact relative to X;
(2) B is strongly m-H-compact relative to X.

Proof.(1) ⇒ (2): Suppose that A is strongly m-H-compact relative to X. Let {Uα : α ∈ ∆} be
a family of m-open sets of X such that B \ ∪{Uα : α ∈ ∆} ∈ H. Then A \ ∪{Uα : α ∈ ∆} ∈
H. Since A is strongly m-H-compact relative to X, there exists a finite subset ∆0 of ∆ such
that A \ ∪{Uα : α ∈ ∆0} ∈ H. Since A is Hmg-closed, mCl(A) ⊂ ∪{Uα : α ∈ ∆0}. Since
B ⊂ mCl(A), we have B \ ∪{Uα : α ∈ ∆0} ⊂ mCl(A) \ ∪{Uα : α ∈ ∆0} = ∅ ∈ H. Therefore, B
is strongly m-H-compact relative to X.

(2) ⇒ (1): Suppose that B is strongly m-H-compact relative to X. Let {Uα : α ∈ ∆} be any
family of m-open sets of X such that A \ ∪{Uα : α ∈ ∆} ∈ H. Since A is Hmg-closed, we have
B ⊂ mCl(A) ⊂ ∪{Uα : α ∈ ∆}. Since B is strongly m-H-compact relative to X, there exists a
finite subset ∆0 of ∆ such that B \ ∪{Uα : α ∈ ∆0} ∈ H. Since A ⊂ B,A \ ∪{Uα : α ∈ ∆0} ∈
H. Hence, A is strongly m-H-compact relative to X. 2

Theorem 3.5. Let (X,m, H) be an ideal m-space. If subsets A and B of X are strongly m-H-
compact relative to X, then A ∪B is strongly m-H-compact relative to X.
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Proof. Let {Uα : α ∈ ∆} be any family of m-open sets of X such that (A∪B)\∪{Uα : α ∈ ∆} ∈
H. Then A \ ∪{Uα : α ∈ ∆} ∈ H and B \ ∪{Uα : α ∈ ∆} ∈H. Since A and B are strongly
m-H-compact relative to X, there exist finite subsets ∆A and ∆B of ∆ and subsets HA and HB

of H such that A ⊂ ∪{Uα : α ∈ ∆A}∪ HA and B ⊂ ∪{Uα : α ∈ ∆B}∪ HB . Hence we have
(A ∪ B) ⊂ ∪{Uα : α ∈ ∆A ∪∆B} ∪ (HA ∪HB). Since H is an ideal, we have (A ∪ B) \ ∪{Uα :

α ∈ ∆A ∪∆B} ∈ H. This shows that A ∪B is strongly m-H-compact relative to X. 2

Theorem 3.6. Let (X,m, H) be a hereditary m-space and A,B be subsets of X. If A is strongly
m-H-compact relative to X and B is m-closed, then A ∩ B is strongly m-H-compact relative
to X.

Proof. Let {Uα : α ∈ ∆} be a family of m-open sets of X such that (A ∩ B) \ ∪{Uα : α ∈ ∆} ∈
H. Then {Uα : α ∈ ∆}∪{X \B} is a family of m-open sets of X such that A\ [(X \B)∪ (∪{Uα :

α ∈ ∆})] ∈ H. Since A is strongly m-H-compact relative to X, there exists a finite subset ∆0 of
∆ such that A ⊂ ∪[{Uα : α ∈ ∆0} ∪ {X \B}] ∪H0, where H0 ∈ H. Then we have

(A ∩B) ⊂ [∪{Uα ∩B : α ∈ ∆0}] ∪ (H0 ∩B) ⊂ [∪{Uα : α ∈ ∆0}] ∪H0.

Therefore, (A∩B)\∪{Uα : α ∈ ∆0} ⊂ H0 ∈ H. This shows that A∩B is strongly m-H-compact
relative to X. 2

Corollary 3.7. If a hereditary m-space (X,m, H) is strongly m-H-compact and B is m-closed,
then B is strongly m-H-compact relative to X.

Theorem 3.8. If f : (X,m, H) → (Y, n), where m has property B, is a bijective M -continuous
function and A is strongly m-H-compact relative to X, then f(A) is strongly n-f(H)-compact
relative to Y.

Proof. Suppose that A is strongly m-H-compact relative to X. Let {Vα : α ∈ ∆} be any family
of n-open sets in Y such that f(A)\∪{Vα : α ∈ ∆} ∈ f(H). Then f(A) ⊂ ∪{Vα : α ∈ ∆}∪f(H0)

for some H0 ∈ H. Since f is bijective, A = f−1(f(A)) ⊂ ∪{f−1(Vα) : α ∈ ∆} ∪H0 and hence
A \ ∪{f−1(Vα) : α ∈ ∆} ∈ H. Since f is M -continuous, by Lemma 2.12 {f−1(Vα) : α ∈ ∆}
is a family of m-open sets of X. Since A is strongly m-H-compact relative to X, there exists a
finite subset ∆0 of ∆ such that A \ ∪{f−1(Vα) : α ∈ ∆0} ∈ H. Hence we have A ⊂ ∪{f−1(Vα) :

α ∈ ∆0} ∪ HA, where HA ∈ H and f(A) ⊂ ∪{Vα : α ∈ ∆0} ∪ f(HA). Therefore, we have
f(A) \ ∪{Vα : α ∈ ∆0} ∈ f(H). This shows that f(A) is strongly n-f(H)-compact relative to Y .

2

Corollary 3.9. If f : (X,m, H) → (Y, n), where m has property B, is a bijective M -continuous
function and (X,m, H) is strongly m-H-compact, then (Y, n, f(H)) is strongly n-f(H)-compact.

Theorem 3.10. If f : (X,m, H)→ (Y, n), where m has property B, is an M -continuous injective
function and A is strongly m-H-compact relative to X, then f(A) is strongly n-JH-compact relative
to Y.

Proof. Suppose that A is strongly m-H-compact relative to X. Let {Vα : α ∈ ∆} be any family
of n-open sets in Y such that f(A) \ ∪{Vα : α ∈ ∆} ∈ JH . Then f(A) ⊂ ∪{Vα : α ∈ ∆} ∪ J0 for
some J0 ∈ JH . Then A ⊂ f−1(f(A)) ⊂ ∪{f−1(Vα) : α ∈ ∆}∪f−1(J0) and hence A\∪{f−1(Vα) :

α ∈ ∆} ∈ H. Since f is M -continuous, {f−1(Vα) : α ∈ ∆} is a family of m-open sets of X.
Since A is strongly m-H-compact relative to X, there exists a finite subset ∆0 of ∆ such that
A \ ∪{f−1(Vα) : α ∈ ∆0} ∈ H. Hence we have A ⊂ ∪{f−1(Vα) : α ∈ ∆0} ∪H0, where H0 ∈ H
and f(A) ⊂ ∪{Vα : α ∈ ∆0} ∪ f(H0). Since f is injective, we have f(A) \ ∪{Vα : α ∈ ∆0} ∈ JH
and hence f(A) is strongly n-JH -compact relative to Y . 2
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Corollary 3.11. If f : (X,m, H)→ (Y, n), where m has property B, is a bijective M -continuous
function and (X,m, H) is strongly m-H-compact, then (Y, n) is strongly n-JH-compact.

4. Super m-H-compact spaces

Definition 4.1. Let (X,m, H) be a hereditary m-space.
(1) A subset A of X is said to be super m-H-compact relative to X if for every family

{Uα : α ∈ ∆} of m-open sets of X such that A \ ∪{Uα : α ∈ ∆} ∈ H, there exists a finite subset
∆0 of ∆ such that A ⊂ ∪{Uα : α ∈ ∆0}.

(2) (X,m, H) is said to be super m-H-compact if the set X is super m-H-compact relative
to X.

Theorem 4.2. Let (X,m, H) be a hereditary m-space. For a subset A of X, the following
properties are equivalent:

(1) A is super m-H-compact relative to X;
(2) for every family {Fα : α ∈ ∆} of m-closed sets of X such that A∩ (∩{Fα : α ∈ ∆}) ∈ H,

there exists a finite subset ∆0 of ∆ such that A ∩ (∩{Fα : α ∈ ∆0}) = ∅.

Proof. (1) ⇒ (2): Let {Fα : α ∈ ∆} be a family of m-closed sets of X such that A∩ (∩{Fα : α ∈
∆}) ∈ H. Then {X \ Fα : α ∈ ∆} is a family of m-open sets of X. Then A \ ∪{(X \ Fα) : α ∈
∆} = A∩ [X \(X \∩{Fα : α ∈ ∆})] = A∩(∩{Fα : α ∈ ∆}) ∈ H. Since A\∪{(X \Fα) : α ∈ ∆} ∈
H, by (1) there exists a finite subset ∆0 of ∆ such that A ⊂ ∪{(X \Fα) : α ∈ ∆0}. This implies
that A ∩ ({Fα : α ∈ ∆0}) = ∅.

(2) ⇒ (1): Let {Uα : α ∈ ∆} be a family of m-open sets of X such that A \ ∪{Uα : α ∈ ∆} ∈
H. Then {X \ Uα : α ∈ ∆} is a family of m-closed sets of X and A ∩ (∩{X \ Uα : α ∈ ∆}) =
A ∩ (X \ ∪{Uα : α ∈ ∆}) ∈ H. Thus by (2) there exists a finite subset ∆0 of ∆ such that
A ∩ (∩{X \ Uα : α ∈ ∆0}) = ∅; hence A ⊂ ∪{Uα : α ∈ ∆0}. This shows that (X,m, H) is super
m-H-compact. 2

Corollary 4.3. For a hereditary m-space (X,m, H), the following properties are equivalent:
(1) (X,m, H) is super m-H-compact;
(2) for every family {Fα : α ∈ ∆} of m-closed sets of X such that ∩{Fα : α ∈ ∆} ∈ H, there

exists a finite subset ∆0 of ∆ such that ∩{Fα : α ∈ ∆0} = ∅.

Theorem 4.4. Let (X,m, H) be a hereditary m-space, where m has property B, and A,B subsets
of X such that A ⊂ B ⊂ mCl(A), then the following properties are hold:

(1) if A is super m-H-compact relative to X and mg-closed, then B is super m-H-compact
relative to X,

(2) if A is strongly m-H-compact relative to X and Hmg-closed, then B is super m-H-compact
relative to X,

(3) if B is m-compact relative to X and A is Hmg-closed, then A is super m-H-compact
relative to X.

Proof. (1): Suppose that A is superm-H-compact relative toX andmg-closed. Let {Uα : α ∈ ∆}
be a family of m-open sets of X such that B \ ∪{Uα : α ∈ ∆} ∈ H. Then A \ ∪{Uα : α ∈ ∆} ∈
H. Since A is super m-H-compact relative to X, there exists a finite subset ∆0 of ∆ such that
A ⊂ ∪{Uα : α ∈ ∆0}. Since A is mg-closed, mCl(A) ⊂ ∪{Uα : α ∈ ∆0}. Since B ⊂ mCl(A), we
have B ⊂ ∪{Uα : α ∈ ∆0}. Therefore, B is super m-H-compact relative to X.

(2): Suppose that A is strongly m-H-compact relative to X and Hmg-closed. Let {Uα : α ∈
∆} be a family of m-open sets of X such that B\∪{Uα : α ∈ ∆} ∈ H. Then A\∪{Uα : α ∈ ∆} ∈
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H. Since A is strongly m-H-compact relative to X, there exists a finite subset ∆0 of ∆ such
that A \ ∪{Uα : α ∈ ∆0} ∈ H. Since A is Hmg-closed, mCl(A) ⊂ ∪{Uα : α ∈ ∆0}. Since
B ⊂ mCl(A), we have B ⊂ ∪{Uα : α ∈ ∆0}. Therefore, B is super m-H-compact relative to X.

(3): Suppose that B is m-compact relative to X and A is Hmg-closed. Let {Uα : α ∈ ∆} be
any family of m-open sets of X such that A \ ∪{Uα : α ∈ ∆} ∈ H. Since A is Hmg-closed, we
have B ⊂ mCl(A) ⊂ ∪{Uα : α ∈ ∆}. Since B is m-compact relative to X, there exists a finite
subset ∆0 of ∆ such that B ⊂ ∪{Uα : α ∈ ∆0}. Since A ⊂ B,A ⊂ ∪{Uα : α ∈ ∆0}. Therefore,
A is super m-H-compact relative to X. 2

Corollary 4.5. Let (X,m, H) be a hereditary m-space and m have property B. If A is Hmg-
closed and A ⊂ B ⊂ mCl(A), then the following properties are equivalent:

(1) A is super m-H-compact relative to X;
(2) B is super m-H-compact relative to X.

Theorem 4.6. Let (X,m, H) be a hereditary m-space. If subsets A and B of X are super
m-H-compact relative to X, then A ∪B is super m-H-compact relative to X.

Proof. Let {Uα : α ∈ ∆} be any family of m-open sets of X such that (A∪B)\∪{Uα : α ∈ ∆} ∈
H. Then A \ ∪{Uα : α ∈ ∆} ∈ H and B \ ∪{Uα : α ∈ ∆} ∈ H. Since A and B are super m-H-
compact relative to X, there exist finite subsets ∆A and ∆B of ∆ such that A ⊂ ∪{Uα : α ∈ ∆A}
and B ⊂ ∪{Uα : α ∈ ∆B}. Hence we have (A ∪ B) ⊂ ∪{Uα : α ∈ ∆A ∪∆B}. This shows that
A ∪B is super m-H-compact relative to X. 2

Theorem 4.7. Let (X,m, H) be a hereditary m-space and A,B be subsets of X. If A is super
m-H-compact relative to X and B is m-closed, then A∩B is super m-H-compact relative to X.

Proof. Let {Uα : α ∈ ∆} be a family of m-open sets of X such that (A ∩ B) \ ∪{Uα : α ∈ ∆} ∈
H. Then {Uα : α ∈ ∆} ∪ {X \ B} is a family of m-open sets of X such that A ⊂ [(X \ B) ∪
(∪{Uα : α ∈ ∆})] ∪ H0, where H0 ∈ H. Since A is super m-H-compact relative to X, there
exists a finite subset ∆0 of ∆ such that A ⊂ [∪{Uα : α ∈ ∆0}] ∪ {X \ B}. Then we have
(A∩B) ⊂ ∪{Uα∩B : α ∈ ∆0} ⊂ ∪{Uα : α ∈ ∆0}. This shows that A∩B is super m-H-compact
relative to X. 2

Corollary 4.8. If a hereditary m-space (X,m, H) is super m-H-compact and B is m-closed,
then B is super m-H-compact relative to X.

Theorem 4.9. If f : (X,m, H)→ (Y, n), where m has property B, is a bijective M -continuous
function and A is super m-H-compact relative to X, then f(A) is super n-f(H)-compact relative
to Y.

Proof. Suppose that A is super m-H-compact relative to X. Let {Vα : α ∈ ∆} be any family of
n-open sets in Y such that f(A) \ ∪{Vα : α ∈ ∆} ∈ f(H). Then f(A) ⊂ ∪{Vα : α ∈ ∆} ∪ f(H0)

for some H0 ∈ H. Since f is bijective, A = f−1(f(A)) ⊂ ∪{f−1(Vα) : α ∈ ∆} ∪H0 and hence
A\∪{f−1(Vα) : α ∈ ∆} ∈ H. Since f is M -continuous, {f−1(Vα) : α ∈ ∆} is a family of m-open
sets of X. Since A is super m-H-compact relative to X, there exists a finte subset ∆0 of ∆ such
that A ⊂ ∪{f−1(Vα) : α ∈ ∆0}. Hence we have f(A) ⊂ ∪{Vα : α ∈ ∆0} and hence f(A) is super
n-f(H)-compact relative to Y . 2

Corollary 4.10. If f : (X,m, H)→ (Y, n), where m has property B, is a bijective M -continuous
function and (X,m, H) is super m-H-compact, then (Y, n, f(H)) is super n-f(H)-compact.
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Theorem 4.11. If f : (X,m, H)→ (Y, n), where m has property B, is an M -continuous function
and A is super m-H-compact relative to X, then f(A) is super n-JH-compact relative to Y.

Proof. Suppose that A is super m-H-compact relative to X. Let {Vα : α ∈ ∆} be any family of n-
open sets in Y such that f(A)\∪{Vα : α ∈ ∆} ∈ JH . Then f(A) ⊂ ∪{Vα : α ∈ ∆}∪J0 for some
J0 ∈ JH . Then A ⊂ f−1(f(A)) ⊂ ∪{f−1(Vα) : α ∈ ∆} ∪ f−1(J0) and hence A \ ∪{f−1(Vα) :

α ∈ ∆} ⊂ f−1(J0) ∈ H. Since f is M -continuous, {f−1(Vα) : α ∈ ∆} is a family of m-open sets
of X. Since A is super m-H-compact relative to X, there exists a finte subset ∆0 of ∆ such that
A ⊂ ∪{f−1(Vα) : α ∈ ∆0}. Hence we have f(A) ⊂ ∪{f(f−1(Vα)) : α ∈ ∆0} ⊂ ∪{Vα : α ∈ ∆0}.
Therefore, f(A) is super n-JH -compact relative to Y . 2

Corollary 4.12. If f : (X,m, H) → (Y, n), where m has property B, is a surjective M -
continuous function and (X,m, H) is super m-H-compact, then (Y, n) is super n-JH-compact.

Remark 4.13. We have the following relationships:

super m-H-compact relative to X ⇒ strongly m-H-compact relative to X,
⇓ ⇓

m-compact relative to X ⇒ m-H-compact relative to X.

Remark 4.14. The following examples show that "m-compact relative to X" and "strongly
m-H-compact relative to X" are independent of each other.

Example 4.15. Let R be the set of real numbers with the usual topology, X = [1, 2] and
m = {X ∩ (a, b) : a < b, a, b ∈ R}. Then it is clear that (X,m) is a topological space and an
m-space. Let H = {∅, {1}, {2}}. Observe that (X,m) is m-compact relative to X but (X,m,H)
is not strongly m-H-compact relative to X. In fact if Un = (1+ 1

n , 2] for all integer number n > 1,
then X \ ∪n>1Un = {1} ∈ H. If we take N = max{n1, n2, · · · , nk}, k ∈ Z and n1, n2, · · · , nk are
integer numbers then X \ ∪ki=1Uni

= X \ (1 + 1
N , 2] = [1, 1 + 1

N ] /∈ H.

Example 4.16. Let R be the set of real numbers with the usual topology τ . Let X = (0, 1),
m the relative topology of τ on X and H = {A : A ⊆ (0, 1)} then (X,m,H) is strongly m-H-
compact relative to X but (X,m) is not m-compact relative to X. Because an m-open cover
{(0 + 1

n , 1−
1
n ) : n ∈ Z+} of X has no finite subcover.
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Свойства mH-компактов в наследственных
m-пространствах

Ахмад Аль-Омари
Университет Аль-аль-Байт

Мафрак 25113, Иордания
Такаши Ноири

Яцусиро-си, Кумамото-кен, Япония

Аннотация. Пусть (X,m, H) — наследственное m-пространство. Подмножество A из X называ-
ется H-компактным относительно X, если для любого покрытия U из A m-открытыми множе-
ствами из X существует конечное подмножество U0 из U такое, что A \ ∪ U0 ∈ H. Мы получаем
несколько свойств этих множеств. А также мы определяем и исследуем два вида сильных форм
H-компактности относительно X.

Ключевые слова: наследственное m-пространство, H-компактность, сильная H-компактность,
супер H-компактность.
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Abstract. In this paper, we establish the existence and uniqueness of positive solutions for fractional
Volterra-Fredholm integro-differential equation. This equation incorporates Caputo–Hadamard frac-
tional derivatives and is defined with initial conditions. Our proof methodology relies on the Schauder
fixed point theorem, the Banach contraction principle, upper and lower solution concepts, and their
applications. To illustrate the significance of our theoretical findings, we also present a compelling
example.
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1. Introduction and preliminaries

Fractional calculus introduces the extension of derivative and integral concepts to non-integer
orders, representing a relatively recent area of exploration. Noteworthy contributions in this
domain have been made by researchers like Kilbas et al. [17] and Podlubny [23], among others.
The investigation of equations involving fractional differentiation and integration holds particular
significance due to their broad applicability in various scientific and technological fields, spanning
both natural and engineering domains. It’s worth mentioning that many researchers have focused
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on studying the positivity properties of solutions for these equations, as evidenced by numerous
references [1–6,8, 9, 13–16] and the citations therein.

In recent times, the examination of Hadamard Fractional Differential Equations (Hadamard
FDEs) has gained considerable significance. Notably, there has been substantial progress in
the understanding of Hadamard derivatives in the context of differential equations. For a
comprehensive exploration of the Hadamard fractional derivative, please refer to the following
sources: [7, 10,12,18,19].

In [20], we study the solutions of the nonlinear fractional differential equation involving the
Caputo–Hadamard operator.

This paper study of the existence and uniqueness of positive solutions of the fractional
Caputo–Hadamard nonlinear Volterra–Friedholm integrol-differential equations,

CDw
1 u(r) = κ(r, u(r)) +

∫ r

1

k0(r, ϖ, u(ϖ))dϖ +

∫ ξ

1

k1(r, ϖ, u(ϖ))dϖ +Dw−1
1 }(r, u(r)), r ∈ ψ. (1)

The Initial Conditions

u(1) = λ0, u′(1) = λ1 > 0, ψ = [1, ξ] (2)

where 1 < w 6 2, κ : ψ × N × N × N → N, and two additional functions } : ψ × N → N

and ζ : ψ → N are introduced as continuous functions. It is important to note that } exhibits a
non-decreasing behavior on the set u and λ1 > }(1, λ0).

This paper is organized as follows. In Sect. 2., we introduce fundamental definitions and
results. In Sect. 3., we present the existence and uniqueness of positive solution for problem
(1)–(2). In Sect. 4., we provide an example to illustrate our results.

2. Auxiliary results

Before presenting our primary results, we offer the essential definitions, preliminary details
and assumptions that will be employed in our subsequent discourse. For see [11,21,22,24–30].

Consider the set ψ defined as ψ = (1, ξ]. Let C(ψ) represent the Banach space comprising all
continuous functions defined on ψ, equipped with the norm defined as:

∥u∥ = sup{|u(r)| : r ∈ ψ}.

Furthermore, let B be a nonempty closed subset of C(ψ), which can be defined as:

B = {u(r) ∈ C(ψ) : u(r) > 0, ∀r ∈ ψ}.

Definition 2.1 ( [13]). The Hadamard fractional integral of order w , is defined as

Iw1 u(r) =
1

Γ(w)

∫ r

1

(
ln

r

ϖ

)w−1

u(ϖ)
dϖ

ϖ
, w > 0. (3)

Definition 2.2 ( [27]). The definition of the Caputo–Hadamard fractional derivative of order w
is given, where u : [1,∞) −→ N.

Dw
1 u(r) =

1

Γ(υ −w)

∫ r

1

(
ln

r

ϖ

)υ−w−1(
r
d

dr

)υ
u(ϖ)

dϖ

ϖ
, υ − 1 < w < υ. (4)
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Lemma 2.3 ( [27]). Let υ − 1 < w 6 υ, υ ∈ N and u ∈ Cυ(ψ). Then the Caputo–Hadamard
fractional differential equation

(IwDwu)(r) = u(r)

(Iw1 D
w
1 u)(r)) = u(r)−

υ−1∑
j=0

uj(1)

Γ(j + 1)
(ln r)j .

Theorem 2.4 (Schauder’s [28]). Consider a non-empty, closed, and convex subset Ω within a
Banach space denoted as s. Let ℵ : Ω→ Ω be a continuous, compact operator. In such a scenario,
it can be asserted that ℵ possesses a fixed point within the set Ω.

Theorem 2.5 ("Banach’s fixed point theorem" [28]). Let Ω be a non-empty complete metric
space and κ : Ω → Ω, is contraction mapping. Then, there exists a unique point ϖ ∈ Ω such
that Φ(ϖ) = ϖ.

Definition 2.6. Let a, a0 ∈ N+, and a0 > a For any u ∈ [a, a0], we define the upper-control
function U(r, u) = supd6τ6u κ(r, τ) and lower-control function L(r, u) = infu6τ6d0 κ(r, τ) Obvi-
ously, U(r, u) and L(r, u) are monotonous non-decreasing on [a, a0] and

L(r, u) 6 κ(r, u) 6 U(r, u)

3. Principal findings

In this section, we will present the results pertaining to the existence and uniqueness of
Eq. (1), subject to the condition (2). Prior to delving into the proof of our primary findings, we
will introduce the following set of hypotheses:

(∆1) Let u∗, u∗ ∈ B such that a 6 u∗(r) 6 u∗(r) 6 a0 such that

Dwu∗(r)−
∫ r

1

k0(r, ϖ, u∗(ϖ))dϖ −
∫ ξ

1

k1(r, ϖ, u∗(ϖ))dϖ −Dw−1}(r, u∗(r)) > U(r, u∗(r))

Dwu∗(r)−
∫ r

1

k0(r, ϖ, u∗(ϖ))dϖ −
∫ ξ

1

k1(r, ϖ, u∗(ϖ))dϖ −Dw−1}(r, u∗(r)) 6 L(r, u∗(r))

(∆2) There exist positive constants δκ, δk0 , δk1 and δ} such that

∥κ(r, u(r))− κ(r, u0(r))∥ 6 δκ∥u− u0∥, r ∈ ψ, u, u0 ∈ N

∥}(r, u(r))− }(r, u0(r))∥ 6 δ}∥u− u0∥, r ∈ ψ, u, u0 ∈ N

∥k0(r, ϖ, u(ϖ))− k0(r, ϖ, u0(ϖ))∥ 6 δk0∥u− u0∥

∥k1(r, ϖ, u(ϖ))− k1(r, ϖ, u0(ϖ))∥ 6 δk1∥u− u0∥, (r, ϖ) ∈ G, u, u0 ∈ N

where G = {(r, ϖ) : 0 6 ϖ 6 r 6 ξ}.
The functions u∗ and u∗ are respectively called the pair of upper and lower solutions for the

problem (1)–(2).

Lemma 3.1. If u ∈ C(ψ), u(2) and
∂}
∂r

exists, then u is a solution to problem (1)–(2) if and
only if

u(r) =
1

Γ(w)

∫ r

1

(
ln

r

q

)w−1
[
κ(q, u(q)) +

∫ q

1

k0(q, ϖ, u(ϖ))dϖ +

∫ ξ

1

k1(q, ϖ, u(ϖ))dϖ
]dq
q

+

+ λ0 + (λ1 − }(1, λ0)) ln r+
∫ r

1

}(q, u(q))
dq

q
(5)
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Proof. Let u(r) be a solution of (1)–(2). First we write this equation as

Iw1 D
w
1 u(r) = Iw1

[
κ(r, u(r)) +

∫ r

1

k0(r, ϖ, u(ϖ))dϖ +

∫ ξ

1

k1(r, ϖ, u(ϖ))dϖ +Dw−1}(r, u(r)
]

In view of Lemma 2.3, we get

u(r) = u(1) + u′(1) ln r+ Iw1 D
w−1}(r, u(r))+

+ Iw1

[
κ(r, u(r)) +

∫ r

1

k0(r, ϖ, u(ϖ))dϖ +

∫ ξ

1

k1(r, ϖ, u(ϖ))dϖ
]
=

= I1Iw−1
1 Dw−1}(r, u(r))+

+ Iw1

[
κ(r, u(r)) +

∫ r

1

k0(r, ϖ, u(ϖ))dϖ +

∫ ξ

1

k1(r, ϖ, u(ϖ))dϖ
]
+

+ I1
(
}(r, u(r)− }(1, u(1))

)
+

+ Iw1

[
κ(r, u(r)) +

∫ r

1

k0(r, ϖ, u(ϖ))dϖ +

∫ ξ

1

k1(r, ϖ, u(ϖ))dϖ
]
=

= u(1) + u′(1) ln r− }(1, u(1)) ln r+
∫ r

1

}(q, u(q))
dq

q
+

+
1

Γ(w)

∫ r

1

(
ln

r

q

)w−1[
κ(q, u(q)) +

∫ q

1

k0(q, ϖ, u(ϖ))dϖ +

∫ ξ

1

k1(q, ϖ, u(ϖ))dϖ
]dq
q

=

=
1

Γ(w)

∫ r

1

(
ln

r

q

)w−1[
κ(q, u(q)) +

∫ q

1

k0(q, ϖ, u(ϖ))dϖ +

∫ ξ

1

k1(q, ϖ, u(ϖ))dϖ
]dq
q
+

+ λ0 + (λ1 − }(1, λ0)) ln r+
∫ r

1

}(q, u(q))
dq

q

Conversely, suppose u satisfies (5), then applying CDw to both sides of(5), we obtain

Dw
1 u(r)= Dw

1

(
1

Γ(w)

∫ r

1

(
ln

r

q

)w−1[
κ(q, u(q))+

∫ q

1

k0(q, ϖ, u(ϖ))dϖ+

∫ ξ

1

k1(q, ϖ, u(ϖ))dϖ
]dq
q
+

+

∫ r

1

}(q, u(q))
dq

q
+ λ0 + (λ1 − }(1, λ0)) ln r

)
=

= Dw
1 I

w
1

[
κ(q, u(q)) +

∫ q

1

k0(q, ϖ, u(ϖ))dϖ +

∫ ξ

1

k1(q, ϖ, u(ϖ))dϖ
]
+Dw

1 I
w
1 }(q, u(q))

dq

q
+

+Dw
1

(
λ0 + (λ1 − }(1, λ0)) ln r

)
=

= κ(r, u(r)) +

∫ r

1

k0(r, ϖ, u(ϖ))dϖ +

∫ ξ

1

k1(r, ϖ, u(ϖ))dϖ +Dw−1
1 }(r, u(r))

Moreover, the initial conditions u(1) = λ0, and u′(1) = λ1 hold. This completes the proof

To transform (5) for compatibility with Schauder’s fixed point theorem, we introduce the
operator ℵ : Ω −→ Ω as follows:

(ℵu)(r) =
1

Γ(w)

∫ r

1

(
ln

r

q

)w−1[
κ(q, u(q)) +

∫ q

1

k0(q, ϖ, u(ϖ))dϖ +

∫ ξ

1

k1(q, ϖ, u(ϖ))dϖ
]dq
q

+

+

∫ r

1

}(q, u(q))
dq

q
+ λ0 + (λ1 − }(1, λ0)) ln r (6)
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Theorem 3.2. Assuming that conditions (∆1)− (∆2) are satisfied, it can be deduced that there
is at least one positive solution to the problem described by equations (1)–(2).

Proof. Consider the set Φ defined as follows: Φ = {u ∈ B : u∗(r) 6 u(r) 6 u∗(r), r ∈ ψ}. This set
is equipped with the norm |u| = {maxr∈ψ |u(r)| : |u| 6 ℓ}. As a result, we have that ℵ represents
a convex, bounded, and closed subset of the Banach space C(ψ). It’s worth noting that the
continuity of the operator ℵ can be inferred from the continuity of the functions κ, }0, }1, and }.
Additionally, if u ∈ Φ, it implies the existence of positive constants Υκ, Υk0 , Υk1 , and Υ}. such
that

max{κ(r, u(r)) : u(r) 6 ℓ} 6 Υκ

max{}(r, u(r)) : u(r) 6 ℓ} 6 Υ}

max{k0(r, ϖ, u(ϖ)) : r, ϖ ∈ ψ, u(ϖ) 6 ℓ} 6 Υk0

max{k1(r, ϖ, u(ϖ)) : r, ϖ ∈ ψ, u(ϖ) 6 ℓ} 6 Υk1
Then

|(ℵu)(r)| = 1

Γ(w)

∫ r

1

(
ln

r

q

)w−1[
|κ(q, u(q))|+

∫ q

1

|k0(q, ϖ, u(ϖ))dϖ|+
∫ ξ

1

|k1(q, ϖ, u(ϖ))dϖ|
]dq
q
+

+

∫ r

1

|}(q, u(q))|dq
q

+ |λ0 + (λ1 − }(1, λ0)) ln r| 6

6 Υκ(ln ξ)
w

Γ(w+ 1)
+

(Υk0 + Υk1)(ln ξ)
w+1

Γ(w+ 2)
+ λ0 +

(
λ1 + ζ∗ + Υ}

)
ln ξ

where ζ∗ = |}(1, λ0)|, thus

∥(ℵu)(r)∥ 6 Υκ(ln ξ)
w

Γ(w+ 1)
+

(Υk0 + Υk1)(ln ξ)
w+1

Γ(w+ 2)
+ λ0 +

(
λ1 + ζ∗ + Υ}

)
ln ξ

Consequently, the set ℵ(Φ) is uniformly bounded.
Now, we proceed to establish the equicontinuity of ℵ(Φ). For each u∈Φ. Then for r1, r2 ∈ [1.ξ]
with r1 < r2, we have

|(ℵu)(r1)− (ℵu)(r2)| =

=
1

Γ(w)

∫ r1

1

[(
ln

r1
q

)w−1

−
(
ln

r2
q

)w−1
]
|κ(q, u(q))|dq

q
+

1

Γ(w)

∫ r2

r1

(
ln

r2
q

)w−1

|κ(q, u(q))|dq
q
+

+
1

Γ(w)

∫ r1

1

[(
ln

r1
q

)w−1

−
(
ln

r2
q

)w−1
][ ∫ q

1

|k0(q, ϖ, u(ϖ))|dϖ +

∫ ξ

1

|k1(q, ϖ, u(ϖ))|dϖ

]
dq

q
+

+
1

Γ(w)

∫ r2

r1

(
ln

r2
q

)w−1
[∫ q

1

|k0(q, ϖ, u(ϖ))|dϖ +

∫ ξ

1

|k1(q, ϖ, u(ϖ))|dϖ

]
dq

q
+

+

∫ r2

r1

|}(q, u(q))|dq
q

+ (λ1 + ζ∗)(ln r2 − ln r1) 6

6 Υκ
Γ(w+ 1)

[
2
[
ln

r2
r1

]w
+
[
ln r1

]w − [ ln r2]w]+ (Υk0 + Υk1)

Γ(w+ 2)

[
2
[
ln

r2
r1

]w+1

+
[
ln r1

]w+1

−

−
[
ln r2

]w+1
]
+ Υ}

[
ln

r2
r1

]
+ (λ1 + ζ∗)

[
ln

r2
r1

]
6

6 2Υκ
Γ(w+ 1)

[
ln

r2
r1

]w
+

2(Υk0 + Υk1)

Γ(w+ 2)

[
ln

r2
r1

]w+1

+ (λ1 + ζ∗ + Υ})
[
ln

r2
r1

]
−→ 0 as r1 −→ r2
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The convergence is independent of of u within Φ, indicating that ℵ(Φ) is uniformly equicontinuous.
By invoking the Arzela-Ascoli theorem, we can conclude that ℵ : Φ −→ B is a compact operator.
To apply the Schauder fixed point theorem, the only remaining requirement is to demonstrate
that ℵ(Φ) ⊂ Φ. For any u ∈ Φ, then u∗(r) 6 u(r) 6 u∗(r) and by (∆1), we have

(ℵu)(r) = 1

Γ(w)

∫ r

1

(
ln

r

q

)w−1[
κ(q, u(q)) +

∫ q

1

k0(q, ϖ, u(ϖ))dϖ +

∫ ξ

1

k1(q, ϖ, u(ϖ))dϖ
]dq
q
+

+

∫ r

1

}(q, u(q))
dq

q
+ λ0 + (λ1 − }(1, λ0)) ln r 6

6 1

Γ(w)

∫ r

1

(
ln

r

q

)w−1[
U(q, u(q)) +

∫ q

1

k0(q, ϖ, u(ϖ))dϖ +

∫ ξ

1

k1(q, ϖ, u(ϖ))dϖ
]dq
q
+

+

∫ r

1

}(q, u(q))
dq

q
+ λ0 + (λ1 − }(1, λ0)) ln r 6

6 1

Γ(w)

∫ r

1

(
ln

r

q

)w−1[
U(q, u∗(q)) +

∫ q

1

k0(q, ϖ, u∗(ϖ))dϖ +

∫ ξ

1

k1(q, ϖ, u∗(ϖ))dϖ
]dq
q
+

+ λ0 + (λ1 − }(1, λ0)) ln r+
∫ r

1

}(q, u∗(q))
dq

q
6

6 u∗(r)

and

(ℵu)(r) = 1

Γ(w)

∫ r

1

(
ln

r

q

)w−1
[
κ(q, u(q)) +

∫ q

1

k0(q, ϖ, u(ϖ))dϖ +

∫ ξ

1

k1(q, ϖ, u(ϖ))dϖ

]
dq

q
+

+

∫ r

1

}(q, u(q))
dq

q
+ λ0 + (λ1 − }(1, λ0)) ln r >

> 1

Γ(w)

∫ r

1

(
ln

r

q

)w−1
[
L(q, u(q)) +

∫ q

1

k0(q, ϖ, u(ϖ))dϖ +

∫ ξ

1

k1(q, ϖ, u(ϖ))dϖ

]
dq

q
+

+

∫ r

1

}(q, u(q))
dq

q
+ λ0 + (λ1 − }(1, λ0)) ln r >

> 1

Γ(w)

∫ r

1

(
ln

r

q

)w−1
[
L(q, u∗(q)) +

∫ q

1

k0(q, ϖ, u∗(ϖ))dϖ +

∫ ξ

1

k1(q, ϖ, u∗(ϖ))dϖ

]
dq

q
+

+ λ0 + (λ1 − }(1, λ0)) ln r+
∫ r

1

}(q, u∗(q))
dq

q
>

> u∗(r)

As a result, we have u(r) 6 (ℵu)(r) 6 u(r), which means that ℵ(Φ) ⊂ Φ. In accordance with
the Schauder fixed point theorem, the operator ℵ possesses at least one fixed point, denoted as
u ∈ Φ. Consequently, problem (1)–(2) has at least one positive solution.

Theorem 3.3. Assume that (∆2) is satisfied and

∆ =

[
δκ(ln ξ)

w

Γ(1 +w)
+

(δk0 + δk1)(ln ξ)
1+w

Γ(2 +w)
+ δ}(ln ξ)

]
< 1 (7)

Then problem (1)–(2) has a unique positive solution.

Proof. It follows from Theorem 3.2 that problems(1)–(2) have at least one positive solution.
Therefore, all that remains is for us to demonstrate that the operator defined in (6) is a contrac-
tion in Φ. In actuality, we have for each u, u0 ∈ Φ,

|(ℵu)(r)− (ℵu0)(r)| =
1

Γ(w)

∫ r

1

(
ln

r

q

)w−1∣∣∣κ(q, u(q))− κ(q, u0(q))∣∣∣dq
q

+
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+
1

Γ(w)

∫ r

1

(
ln

r

q

)w−1
(∫ q

1

∣∣k0(q, ϖ, u(ϖ))− k0(q, ϖ, u0(ϖ))
∣∣dϖ +

+

∫ ξ

1

∣∣k1(q, ϖ, u(ϖ))− k1(q, ϖ, u0(ϖ))
∣∣dϖ)dq

q
+

+

∫ r

1

∣∣}(q, u(q))− }(q, u0(q))
∣∣dq
q

6

6
[
δκ(ln ξ)

w

Γ(w+ 1)
+

(δk0 + δk1)(ln ξ)
w+1

Γ(w+ 2)
+ δ}(ln ξ)

]
∥u− u0∥

The contraction ℵ is derived from (7). According to Theorem 2.5, it asserts the existence of
a unique fixed point for the equation ℵ, which corresponds to the sole positive solution of the
equations (1)–(2). With this, we conclude the proof.

4. An application

As an application of our result, With an integral boundary condition, we examine the frac-
tional Volterra-Fredholm integro-differential equation as follows:

D
4
3
1 u(r)−D

1
3
1

[
u(r)

3er−1

]
=

cos(r)

9+ er2−1

(
u(r)

|u|+ 1

)
+

1

5

∫ r

1

e−2(ϖ2−r2)u(ϖ)dϖ +

∫ e

1

e−ϖ
2r

20
u(ϖ)dϖ

u(1) = 1, u′(1) = 1

(8)

Since κ is continuous positive functions, k0,k1 and } are non-decreasing on k. For k,k0 ∈ N+

and r ∈ (1, e] we have:

|κ(r, u)− κ(r, u0)| =
∣∣∣∣ cos(r)

9 + er2−1

(
|u|
|u|+ 1

− u0
|u0|+ 1

)∣∣∣∣ 6
6 1

9 + er2−1

(
|u− u0|

(|u|+ 1)(|u0|+ 1)

)
6

6 1

10
|u− u0|

|}(r, u)− }(r, u0)| =
∣∣∣∣ |u|3er−1

− |u0|
3er−1

∣∣∣∣ 6 1

3er−1
|u− u0| 6

6 1

3
|u− u0|

|k0(r, ϖ, u(ϖ))− k0(r, ϖ, u0(ϖ))| =
∣∣∣∣ |u|
5e(ϖ2−r2)

|u0|
5e2(ϖ2−r2)

∣∣∣∣ 6 1

5e2(ϖ2−r2)
|u− u0| 6

6 1

10
|u− u0|

and

|k1(r, ϖ, u(ϖ))− k1(r, ϖ, u0(ϖ))| =
∣∣∣∣ |u|
5e(ϖ2−r2)

|u0|
10e(ϖ2r)

∣∣∣∣ 6 1

10e(ϖ2r)
|u− u0| 6

6 1

20
|u− u0|
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Currently, the conditions (∆1)− (∆3) is fulfilled, given that

w =
4

3
, ξ = e, δκ =

1

10
, δ} =

1

3
, δk0 =

1

10
, δk1 =

1

20
.

subsequently, through a series of calculations, it is determined that.

∆ =

[
δκ(ln ξ)

w

Γ(1 +w)
+

(δk0 + δk1)(ln ξ)
1+w

Γ(2 +w)
+ δ}(ln ξ)

]
∼= 0.314 < 1

Then by Theorem 3.3, the equation (8) has a unique positive solution.
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Новые результаты по положительным решениям для
нелинейных дробных производных Капуто-Адамара
интегро-дифференциальных уравнений
Вольтерра-Фредгольма

Абдулрахман А.Шариф
Факультет математики
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Таиз, Йемен
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Университет доктора Бабасахеба Амбедкара Маратвады
Аурангабад-431 004 (MS), Индия

Аннотация. В этой статье мы устанавливаем существование и единственность положительных
решений для дробного интегро-дифференциального уравнения Вольтерра-Фредгольма. Это урав-
нение включает дробные производные Капуто–Адамара и определяется начальными условиями.
Наша методология доказательства опирается на теорему Шаудера о неподвижной точке, принцип
сокращения Банаха, концепции верхнего и нижнего решения и их приложения. Чтобы проиллю-
стрировать значимость наших теоретических выводов, мы также приводим убедительный пример.

Ключевые слова: дробное интегро-дифференциальное уравнение Вольтерра–Фредгольма, поло-
жительные решения, метод неподвижной точки
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Introduction
Isaac Newton, in a letter to Oldenburg [1], outlined the idea of an algorithm for finding a

solution to an algebraic equation F (z, w) = 0 in the form of a series with a fractional exponent of
the variable z. Now it is called the Newton diagram method. It should be noted that Newton did
not consider the question of the convergence of the resulting series. For the first time, the fact
that the solutions obtained by the Newton diagram method converge in a certain neighborhood
of zero was proved by Victor Puiseux in [2]. This fact is called Puiseux’s theorem.

The next stage in the development of interest in this issue were works using techniques
equivalent to resolving the singularities of algebraic curves in modern terminology. Namely,
for an algebraic curve V , defined by the equation F (w, z) = 0, are constructed a non-singular
curve V̄ and a map ϕ : V̄ → V such that the restriction ϕ : V̄ \ ϕ−1(Vsing) → V \ Vsing is a
birational isomorphism. The map ϕ is a composition of blow-ups of singular points (σ−processes).
For a non-singular curve V̄ identification of regular branches in a neighborhood of points from
ϕ−1(Vsing) is possible due to the implicit function theorem. These branches are mapped by ϕ
into solutions of the equation F (z, w) = 0, which are given by convergent series. A thorough
presentation of this approach to finding solutions to the equation F (z, w) = 0, in the language
of modern algebraic geometry is given in the [3, 5, chapter 2], as well as in [4, section 8.4].

Puiseux’s theorem can also be obtained from other considerations, for example, from the
expansion of the polynomial F (z, w) into the product of irreducible Weierstrass polynomials with
respect to the variable z. By considering each irreducible polynomial separately, it is possible
to construct a local parameterization of the branch of the curve it defines. Each of the formal
solutions of the equation F (z, w) = 0 coincides with one of the obtained parameterizations, and
is thus convergent. A detailed proof of this fact can be found in the monograph [4, section 8.3].

For some classes of equations, the proof of Puiseux’s theorem can be obtained without using
the constructions discussed above. This paper presents one such class of equations whose coef-
ficients are convergent Puiseux series. It is shown that all convergent solutions can be obtained
immediately from the Newton diagram of the original equation, and, in particular, intermediate
resolutions of singularities can be omitted. Thus, the proposed method is of interest for assessing
the theoretical complexity of solving equations of the form F (z, w) = 0.

∗a.chigur@inbox.ru
†lopatin@mi-ras.ru

c⃝ Siberian Federal University. All rights reserved
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1. Newton’s diagram and statement of the main theorem
In this paper we consider an arbitrary equation of two complex variables

F (z, w) =
∑

(β,α)⊂A⊂N2

aβαz
αwβ =

∑
β

Aβ(z)w
β = 0, (1)

where Aβ(z) ∈ C[z].

Definition 1. A Puiseux series in one variable is a formal algebraic expression of the form

f(z) =

+∞∑
n=n0

anz
n
m ,

where n0 is an integer, m is natural (for m = 1 the result is a Laurent series), coefficients an
taken from some ring R.

Definition 2. Newton’s diagram N(F ) of equation (1) is the set of compact faces of the un-
bounded polyhedron c.h. (∪Pβ), where Pβ = {(β, s) : s > α} (c.h. denotes the convex hull).

Let us give a brief description of Newton’s algorithm.
It is necessary to find all solutions w = w(z) of equation (1) in the form of Puiseux’s series:

F (z, w(z)) = 0.

The strategy for finding solutions w(z) is the following:
Let w(z) = czσ + w̃(z), where w̃ is a series of monomials of degree > σ and let σ =

p

q
. Then

F (z, w(z)) =
∑

(β,α)∈A

aβαz
α(czσ + w̃)β =

∑
(β,α)∈A

(aβαc
βzα+

p
q β + o(zσβ+α)).

In order for F (z, w(z)) ≡ 0, it is necessary that the quantity

α+
p

q
β =

1

q
(αq + pβ)

reaches a minimum on A in at least two points, i.e. on some edge τ ⊂ N(F ). So, the condition
on σ =

p

q
is as follows:

(1) N(F ) has an edge τ with the slope σ, i.e. with the directing vector (q, p).
And the condition on c:

(2) c is a nonzero solution to the equation∑
(β,α)∈τ

aαβc
β = 0.

The number of such roots (taking into account multiplicity) is equal to the length of the projection
τ onto the β axis.

Let us formulate the main result of this work.

Theorem. Let the equation F (z, w) = 0 be such that each edge of its Newton diagram does
not contain integer points other than the vertices. Then each of its solutions, obtained using
Newton’s algorithm, is a convergent Puiseux series.
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2. Auxiliary statements
We precede the proof of the theorem with several auxiliary statements.

Lemma 1. Let G ⊂ C be a bounded domain with piecewise smooth boundary and let f ∈ O(Ḡ)
have a unique zero a ∈ G in Ḡ of multiplicity 1. Then for any φ ∈ O(Ḡ) the following formula
holds:

1

2πi

∫
∂G

φ
df

f
= φ(a) (2)

Proof. It follows immediately from Cauchy’s theorem and the residue formula for a meromorphic
function at a simple pole:

1

2πi

∫
∂G

φ
df

f
= resz=a

φf ′

f
=
φ(a)f ′(a)

f ′(a)
= φ(a).

Note: If in the lemma we assume that f has a finite number of simple zeros a1, a2, . . . , aN ∈ G
in Ḡ, then by the residue theorem and formula (2) we get

1

2πi

∫
∂G

φ
df

f
=

N∑
i=1

φ(aj). (3)

In particular, when φ ≡ 1, we obtain a formula known from the complex analysis course

1

2πi

∫
∂G

df

f
= N.

Let us now assume that a is a zero of f of multiplicity µ, i.e. in a neighborhood U of point a

f(z) = (z − a)µψ(z), ψ(a) ̸= 0.

Then, for any sufficiently small complex ξ, the function f(z)− ξ has in U exactly µ simple roots
zj(ξ), tending to a as ξ− > 0. Indeed, let us make the biholomorphic change (ξ − z)ψ

1
µ (z) = w

(here is a branch of the radical ψ
1
mu (z) can be chosen in U since ψ(a) ̸= 0). Then the function

f(z)−ξ takes the form wµ−ξ, which shows that it has µ simple roots tending to zero as ξ− > 0.
According to (1) and (2)

1

2πi

∫
∂U

φ(z)
df(ξ)

f(ξ)
=

1

2πi
lim
ξ−>0

∫
∂U

φ(z)
d[f(ξ)− ξ]
f(ξ)− ξ

= lim
ξ−>0

µ∑
j=1

φ(zj(ξ)) = µφ(a).

From here, using the residue theorem, we get

Theorem 1 (on logarithmic residue). Let G ⊂ C be a bounded domain with piecewise smooth
boundary and f ∈ O(Ḡ) has a finite number of zeros aj ∈ G of multiplicities in Ḡ µj. Then for
any φ ∈ O(Ḡ)

1

2πi

∫
∂G

φ
df

f
=
∑
j

µjφ(aj).

In particular, for φ ≡ 1 the integral on the left is equal to the number of zeros of the function
f , taking into account their multiplicities.

Consider a function in (ζ, z) ∈ C2 holomorphic at the origin and having a Taylor expansion
of the form

Φ(ζ, z) = zP (ζ, z) +
∑
i+j>d

aijz
iζj , (4)

where d > 2, P is a homogeneous polynomial of degree d− 1, and P (ζ, 0) ̸= 0, that is, P has a
monomial of the form aζd−1.
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Theorem 2 (A. P. Yuzhakov). The equation Φ(ζ, z) = 0 has a solution (branch) of the form

z = z(ζ) =
∑
k>2

ckζ
k.

Proof. Let us choose the weight with respect to which the monomial azζd−1 has minimal degree
in expansion (3). As such a weight we can take

(
3
2 , 1
)
. Since each monomial ziζj with respect to

this weight has a degree
3

2
i+ j =

1

2
i+ (i+ j),

and it is easy to see that on the Newton diagram it reaches its minimum value at a single point
(i, j) = (1, d− 1).

Let us denote θ(ζ, z) = Φ(ζ, z)− azζd−1. Then on the skeleton |z| = r
3
2 , |ζ| = r we have

|azζd−1| = |a|rd+ 1
2 ;

|θ(ζ, z)| = r
1
2+d+ϵα(r),

where ϵ > 0 and α(r) is bounded. Consequently, for a sufficiently small r on the set
{
|z| = r

3
2

}
×{r

2
6 |ζ| 6 r

}
there is an inequality

|azζd−1| > |θ(ζ, z)| (5)

Considering Φ(ζ, z) as a function of z in the circle |z| 6 r
3
2 with parameter ζ from the ring

K =
{r
2
6 |ζ| 6 r

}
, according to Rouche’s principle, we obtain that it has a single zero in the

indicated circle z = z(ζ).
By the logarithmic residue formula

(
applied to G =

{
|z| < r

3
2

}
, ϕ(z) = z

)
:

z(ζ) =
1

2πi

∫
|z|=r

3
2

zΦ′
z(ζ, z)

Φ(ζ, z)
dz.

As an integral over the compact set |z| = r
3
2 of a continuous integrand that holomorphically

depends on the parameter ζ from the ring K, the function z(ζ) is holomorphic in this ring.

Let z(ζ) =
+∞∑

k=−∞
ckζ

k be the Laurent expansion for z(ζ), convergent at least in the ring K.

The coefficient ck is represented by the integral

ck =
1

2πi

∫
|ζ|=ρ

z(ζ)

ζk+1
dζ =

1

(2πi)2

∫
|ζ|=ρ
|z|=r

3
2

zΦ′
z(ζ, z)

ζk+1Φ(ζ, z)
dzdζ, (6)

where
r

2
6 |ρ| 6 r.

Recall that
Φ(ζ, z) = azζd−1 + θ(ζ, z),

where θ is a series in ziζj , for which i+ j > d.
Due to the inequality (4) on the skeleton |ζ| = ρ, |z| = r

1
2 there is an expansion into a series

of geometric progression

1

Φ
=

1

azζd−1(1 + θ
azζd−1 )

=

∞∑
l=0

(−1)l θl

(azζd−1)l+1
,
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convergent uniformly on the skeleton. The integrand expression will then expand into the series

∞∑
l=0

(−1)l ζ
−k−1zΦ′

zθ
l

(azζd−1)l+1
.

The degree of the numerator is equal to −k − 1 + d+ dl = −k − 1 + d(l+ 1), and the degree
of the denominator is equal to d(l + 1). Therefore, the integral of each term is equal to zero if
−k − 1 > −2, that is, if k < 1.

Thus, ∀k < 1 the Laurent coefficient ck = 0, thereby z(ζ) is holomorphic at zero, and z(0) = 0.
It is easy to show (taking into account the form of θ = z2p′ + θ′, where p′ is homogeneous of
degree d− 2, and ordθ′ > d+ 1), so c1 = 0.

3. Proof of Puiseux’s theorem
Now we prove the main theorem of two-dimensional algebraic geometry.
Let F (z, w) be a polynomial of two variables whose Newton diagram N(F ) has an edge with

ends (α, p+ β) and (q + α, β).
We also assume that the edge has no other integer points, so F has the form

(azp + bwq)wαzβ +
∑

ip+jq>αp+(p+β)q

aijw
izj .

The selected two terms can be normalized so that a = 1, b = −1 :

(zp − wq)wαzβ +
∑

ip+jq>αp+(p+β)q

aijw
izj .

The change zp = ξq, z = ξ
q
p gives

(zp − wq)wαξ
βq
p +

∑
ip+jq>αp+(p+β)q

aijw
iξ

pj
q .

But ξq − wq = (ξ − w)(ξq−1 + ξq−2w + · · ·+ wq−1), which means function F will look like

(ξ − w)P (ξ, w) +
∑

ip+jq>αp+(p+β)q

aijw
iξ

pj
q .

After the change ξ − w = u we get

uP (ξ, ξ − u) +
∑

ip+jq>αp+(p+β)q

aijw
iξ

pj
q .

But according to Yuzhakov’s theorem there is a solution (holomorphic) u = u(ξ),

therefore, w = ξ − u(ξ) = z
p
q + series in powers of z

1
q .

4. Comparison with the singularity method
Let us illustrate with an example when the proven theorem leads to the goal faster than

the technique of resolving the singularities of algebraic curves. Thus, the given result can be
considered as an interesting fact for assessing the theoretical complexity of solving an equation
of the form F (z, w) = 0.
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Consider an equation of the form

G(z, w) = azαwβ +
∑

i+j>α+β

aijz
iwj = 0

and satisfying the conditions of Theorem 1. This function has a singular point (0, 0) of order
α + β. Recall that a σ-process centered at the point (0, 0) is (for the case of a plane curve) a
transformation which in the affine part of the projective plane is a mapping ϕ : C2 → C2 , which
in coordinates has the form: (u, v)→ (u, uv). After substituting z = u, w = vu we get:

uα+β(avβ +
∑
i+j>d

ui+j−(α+β)vj) = uα+βG̃(u, v) = 0,

from which it is clear that the point (0, 0) remains singular for the function G̃(u, v). This is due
to the fact that the tangent cone at the point (0, 0) for the curve G(z, w) has multiple components
(a component z = 0 of multiplicity α and a component w = 0 of multiplicity β). According to
the construction of the resolution, it is necessary to continue blow up the singular point, i.e. at
least more than one step is required. At the same time, the use of Theorem 1 immediately allows
us to obtain a convergent solution.
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Еще одно доказательство теоремы Пьюизо
об алгебраической функции

Максим И. Бузурный
Илья А. Лопатин

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. В работе дано более простое доказательство теоремы Пьюизо об алгебраической
функции для многочленов специального вида.

Ключевые слова: диаграмма Ньютона, ряд Пьюизо, особая точка, полином Вейерштрасса.
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