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Abstract. The article presents the results of direct numerical simulation of mercury flow in a horizontal
pipe under non-uniform bottom heating in the presence of a transverse magnetic field. The study focuses
on the analysis of hydrodynamics and heat transfer under conditions of thermogravitational convection
induced by localized heating and magnetohydrodynamic effects. It is shown that the transverse magnetic
field significantly suppresses transverse velocity components, stabilizes the flow, and alters the structure
of convective vortices, leading to anisotropy in turbulent transport and the formation of characteristic
Hartmann and boundary layers. Analysis of velocity and temperature fields reveals regimes of instability
suppression and restructuring of large-scale circulation. A comparison of statistical characteristics of
temperature fluctuation intensities, as well as dimensionless quantities, with experimental data [1] is
performed. The comparison and analysis of the obtained results enhance the understanding of processes
occurring in liquid metals under the combined influence of gravitational, thermal, and electromagnetic
fields, which is of interest for the development of cooling systems in nuclear reactors with liquid metal
coolants.

Keywords: liquid metal, DNS, convection, MCF, heat transfer, transverse magnetic field.
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Introduction

Fusion technologies development involves studying of liquid metals (LM) behavior under the
influence of strong magnetic field combined with high thermal loads [2]. In tokamak-type reactors,
LM can be used in tritium breeding systems, for thermal protection, and as coolants in the blanket
and divertor [3]. The hydrodynamics and heat transfer of LM flowing through channels under
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conditions typical for a fusion reactor blanket are the subject of the present research. One of
the interesting phenomena that may negatively affect the performance of designed facilities is
the occurrence of abnormally high-amplitude, low-frequency temperature fluctuations in the LM
flow. As shown, for example, in the review [4], their appearance is possible in various geometric
configurations and is caused by the combined effect of buoyancy forces and magnetic field.

The study of such effects began with the experimental work [5], where abnormally high
quasiperiodic temperature fluctuations of mercury were observed under mixed turbulent con-
vection and transverse magnetic field in a horizontally oriented tube heated from below. The
experiments were conducted under the following parameter conditions: Re = 104, Gr = 3.5 · 107,
Ha = 0 ÷ 300. In the absence of a magnetic field, temperature fluctuations within the mercury
flow are similar to those in developed turbulent flow, taking into account the peculiarities of
mixed convection. Increasing the magnetic induction to Ha = 100 leads to flow laminarization
and almost complete suppression of flow fluctuations. Further increase to Ha = 300 alters the
flow structure such that the amplitude of fluctuations, generated at a single frequency, sharply
increases to high values.

Work [6] presents a detailed investigation at the parameter conditions Re = 104, Gr = 4.4·107,
Ha = 0÷ 300, where anomalous fluctuation within mercury under mixed convection in a trans-
verse magnetic field were also detected. Numerical simulation of a similar problem using the
DNS (Direct Numerical Simulation) method was carried out in several studies [7,8], providing a
more comprehensive understanding of how temperature fluctuations arise as the flow structure
reorganizes. Despite a considerable number of studies, the behavior of flows at very high param-
eter values (Gr и Ha) remains not fully clear. For instance, under blanket conditions, expected
thermal loads correspond to Gr ∼ 1010 − 1012, and magnetic fields up to Ha ∼ 104. Preliminary
results, particularly obtained from numerical models based on asymptotic two-dimensional ap-
proximations at high Ha numbers, indicate that regimes with magneto-convective temperature
fluctuations will occur even at high Ha and Gr, and the amplitudes of these fluctuations may
reach hundreds of degrees [9]. Some practically important configurations, however, are still in-
sufficiently studied. In particular, this concerns extending the region of magnetic field influence
on the flow, which better reflects the real situation in the blanket. Expanding the range of inves-
tigated parameters and increasing the magnetic field interaction zone was the primary objective
of this work.

1. Research methodology

1.1. Problem statement

The flow and heat transfer of mercury in a horizontal pipe are investigated. The pipe is
uniformly heated along its length and non-uniformly around its perimeter (the lower half is
heated at a constant heat flux q1(z) = const ̸= 0, while the upper half is thermally insulated
– q2(z) = 0). The pipe is placed in the gap of an electromagnet with a constant transverse
magnetic field B (Fig. 1). This configuration corresponds to an unstable density stratification
due to heating. Thermogravitational convection significantly affects heat transfer under forced
flow of the liquid metal, giving rise to intense secondary convective flows.

The experimental part of the work, with which the numerical calculations are compared, was
carried out on the RK-3 facility. The description of the facility is provided in [10].

The experimental setup employs a test section consisting of a stainless steel pipe with a length

– 6 –
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Fig. 1. The test section in the studied configuration: total length of 80 diameters, a special
inlet section for generating a turbulent velocity field at the entrance to the magnetic field z/d ∈
[−32,−5] (length — 27 diameters), the region of homogeneous magnetic field z/d ∈ [−5, 47]

(length — 52 diameters), and the heating zone z/d ∈ [0, 43] (length – 43 diameters)

of L = 2 m, an inner diameter of d = 19 mm, and a wall thickness of δw = 0.5 mm, terminating in
a mixing chamber with an outlet nozzle. The inner surface of the pipe was polished using cast-iron
lapping tools. The test section comprises, in turn, a hydrodynamic stabilization region longer
than 60 diameters and a subsequent heating area. Along the length of the latter (43 diameters),
a ribbon-type two-section indirect heater is installed to provide non-uniform circumferential heat
loading. The design of this section is identical to that used in [6]. The origin of the coordinate
system (z = 0) coincides with the beginning of the heating zone.

Local measurements of the temperature field were performed using invasive immersion probes.
The probe possesses sufficient strength and rigidity to withstand buoyancy forces and the dynamic
pressure of the incoming mercury flow. An important advantage of the probe technique is the
ability to avoid errors in determining heat transfer coefficients introduced by the so-called contact
thermal resistance, which arises due to the displacement of liquid metal oxides and other possible
impurities from the wall. The probe method was employed to measure temperature fields. Some
of the experimental results are partially described in [11].

Flow parameters for the numerical simulations were chosen to closely match those of the
experimental studies in [1]. The thermophysical properties of mercury were assumed constant
and set to their values at an average mercury temperature of 30◦C [12], as listed in Tab. 1.

The main flow regimes under investigation corresponded to an average flow velocity u up to
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Table 1. Thermophysical properties of mercury

Property Value

Density ρ, kg/m3 1.352 · 104

Kinematic viscosity ν, m2/s 1.12 · 10−7

Thermal conductivity λ, W/(m·K) 8.64

Specific heat capacity Cp, J/(kg·K) 139.2

Electrical conductivity σ, (Om·m)−1 1.04 · 106

Thermal expansion coefficient β, 1/K 1.809 · 10−4

Prandtl number Pr = λ/(ρCpν) 0.0248

0.012 m/s, a magnetic field induction B0 in the uniform region up to 2.7 T, and an average heat
flux on the heated wall section q = (q1 + q2)/2 ≡ 27.5 kW/m2 (see Tab. 2).

1.2. Physical model

We consider unsteady forced pipe flow of a viscous incompressible fluid with constant prop-
erties. The fluid mass flow rate is maintained constant and equal to G = ρu(πd2/4) = const.
To account for the influence of the magnetic field, we employ the quasi-static (inductionless)
MHD approximation [7], which essentially assumes that under the conditions of small mag-
netic Reynolds number Rem = udσµ0 ≪ 1 and magnetic Prandtl number Prm = νσµ0 ≪ 1

(µ0 being the magnetic permeability of vacuum), the induced magnetic field b is much smaller
than the externally applied magnetic field B0, and the induced electric currents in Ohm’s law
j = σ(E + u × B0) change "instantaneously" with variations in the velocity field. Thus, the
interaction between the moving electrically conducting medium and the magnetic field reduces
to a one-way influence of the magnetic field on the flow. Neglecting the Coulomb component
of the electromagnetic force, this influence is represented in the momentum equation for the
continuum by the Ampere force Fem = j × B0. Density variations caused by temperature in-
homogeneities due to heating of the lower part of the pipe are taken into account only in the
momentum equation (Boussinesq approximation [7]). By neglecting viscous and Joule dissipa-
tion in the enthalpy balance equation of the flow, we obtain the system of equations governing
the continuum dynamics under an externally applied magnetic field, consisting of the continuity
equation (1), the momentum equation (2), and the enthalpy balance equation (3), expressed in
terms of temperature:

∇ · u = 0, (1)

∂u

∂t
+ (u · ∇)u = −∇p/ρ+ ν∇2u+ Fem/ρ+ gβ(T − T0), (2)

∂T

∂t
+ (u · ∇)T =

λ

ρcp
∇2T, (3)

where ρ, ν, β, λ, cp are the density, kinematic viscosity coefficient, thermal coefficient of volume
expansion, thermal conductivity, and isobaric heat capacity of the fluid, respectively, T0 is the
flow temperature at the inlet to the heated region, and g is the gravitational acceleration vector.

To compute the electric current density and the Ampere force in equation (2), Kirchhoff’s
law ∇ · j = 0 is used. Applying this to Ohm’s law, taking into account E = −∇φ, yields the
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Poisson equation for the electric potential:

∇2φ = ∇ · (u×B0). (4)

By introducing characteristic scales (see Tab. 2) for the quantities appearing in equations (2)–(4),
one can obtain the system of equations in dimensionless form:

∇ · ũ = 0, (5)

∂ũ

∂t̃
+ (ũ · ∇)ũ = −∇p̃+Re−1∇2ũ+Ha2Re−1 [−∇φ̃+ ũ× eb]× eb +GrqRe

−2θeg, (6)

∇2φ̃ = ∇ · (ũ× eb), (7)

∂θ

∂t̃
+ (ũ · ∇)θ = (RePr)−1∇2θ, (8)

where the dimensionless Reynolds (Re), Grashof (Grq), and Hartmann (Ha) numbers are the
governing similarity criteria of the problem (see Tab. 2), and eb =

{
B̃r, B̃ϕ, B̃z

}
and eg =

{g̃r, g̃ϕ, 0} are the dimensionless vectors of the external magnetic field induction and gravity,
respectively.

Table 2. Characteristic scale parameters of the problem and the corresponding dimensionless
similarity criteria

Name Parameter Value

Length scale Pipe diameter d, mm 19

Velocity scale Flow velocity u, mm/s 4÷ 12

Time scale t0 = d/u, s 1.61÷ 4.61

Pressure scale p0 = ρu2, Pa 0.22÷ 1.95

Reynolds number Re = ud/ν 7 · 103 ÷ 20 · 103

Magnetic induction scale B0, T 0÷ 2.7

Electric current density scale j0 = σuB0, A/m2 3.3 · 104

Electric potential scale φ0 = udB0, V 0.6 · 10−3

Hartmann number Ha = B0d
√
σ/ρν 0÷ 1350

Temperature scale ∆T = qd/λ, K 60.5

Grashof number Grq = gβqd4/ν2λ 6.05 · 107

1.3. Boundary conditions

Inlet conditions. In the experiment, an isothermal fluid flow enters the magnetic field region
under turbulent flow conditions (Recr ∼ 2200 for pipe flow) with a fully developed velocity
profile. To replicate these conditions in the numerical model, an additional isothermal section of
length 27 diameters is introduced, at the inlet of which a velocity field is prescribed (Fig. 2.a),
simulating a "honeycomb" insert with m = 31 holes, a number determined through preliminary
test simulations. A parabolic distribution of the axial velocity, corresponding to the flow rate
per hole, is specified within each honeycomb cell, with additional random velocity fluctuations of
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about 1% of the bulk velocity superimposed. The flow downstream of the honeycomb, consisting
of interacting and decaying jets, naturally develops into a turbulent flow by the end of this special
section, which then enters the magnetic field region (Fig. 2.b).

Fig. 2. Special section for forming the boundary condition of the velocity field: a — "honey-
comb" insert, b — instantaneous longitudinal velocity field behind the honeycomb (fragment for
z/d ∈ [−32,−22])

Wall conditions. Given the relatively thin pipe wall thickness δw/d ≃ 0.025, the walls were not
explicitly included in the simulation. We neglect heat conduction within the wall and assume
that the relative electrical conductivity of the wall is much smaller than that of the fluid, Cw ≡
σwδw/(σd) ≪ 1 (in the experiment Cw ∼ 0.02), meaning the walls are electrically insulating.
The boundary conditions at the "fluid–solid wall" interface are set as follows: for velocity – the

no-slip condition u|w = 0; for temperature – the second-kind boundary condition λ
∂T

∂n

∣∣∣∣
w

= q(z),

where q = q1(z) is a constant positive heat flux in the heating zone on the lower half of the pipe,
and q = q2 = 0 on the upper half of the pipe and outside the heating zone; for electric potential

– the normal component of the current density is zero, jn|w = σ

(
∂φ

∂n

) ∣∣∣∣
w

= 0.

External magnetic field. The non-uniform magnetic field of the electromagnet was modeled using
expressions for a two-dimensional dipole approximation [13]. Thus, at the inlet and outlet regions
of the magnetic field, the magnetic induction vector has two components: Bx and Bz, whose
values were compared with experimental data.

Outlet conditions. At the outlet, a convective (mixed) boundary condition was applied for

velocity:
∂u

∂t
+ u

∂u

∂z
= 0; for temperature – the second-kind (Neumann) boundary condition

∂T

∂z
= 0; and for electric potential at both inlet and outlet – the Neumann boundary condition

∂φ

∂z
= 0, which corresponds to the situation where the induced current does not leave the

considered flow domain.

1.4. Numerical procedure

The problem was solved using direct numerical simulation (DNS) with a conservative second-
order finite-difference scheme on a structured collocated grid [14] in cylindrical coordinates
(r, ϕ, z). Its accuracy and efficiency in simulating flows at high Hartmann numbers have
been demonstrated, for example, in [15]. Details and specific features of the method for
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cylindrical coordinates are described in [7]. Simulations were performed on a grid consist-
ing of N = Nr × Nϕ × Nz = 128 × 256 × 4096 nodes, uniform in the axial z-direction and
azimuthal angle ϕ, and non-uniform in the radial direction according to the transformation
r = d tanh (Arη)/(2 tanh (Ar)), with grid clustering near the pipe walls controlled by the param-
eter Ar, where η ∈ [0, 1] is a transformed coordinate corresponding to a uniform computational
grid. The number of grid points and the wall clustering parameter were selected based on prelimi-
nary simulations assessing grid convergence, ensuring adequate resolution of turbulent scales and
thin near-wall Hartmann layers. The time step was set to δt = 10−3 in dimensionless convective
units, which is significantly smaller than the Kolmogorov time scale of turbulence.

1.5. Calculation of parameters

Statistical parameters. The standard root mean square deviation (RMS) is used to calculate the
fluctuation intensity. This value can be obtained by averaging over time ∆t any measured or
simulated parameter g(t) after the quasi-steady state has been reached:

g =
1

∆t

∫ ∆t

0

g(t)dt ≃ 1

n

n∑
k

gk, (9)

σ2
g =

1

∆t

∫ ∆t

0

[g(t)− g)]
2
dt ≃ 1

n

n∑
k

(gk − g)2, (10)

To estimate the amplitude spectrum of fluctuations for g(t), the discrete Fourier transform Aj(fj)

was used, implemented in the Python programming language:

g(t) =

+∞∑
j=−∞

Aje
iωjt; Aj =

1

∆t

∫ ∆t

0

g(t)e−iωjtdt ≃ 1

n

n∑
k

gke
−i2πjk/n; ωj = 2πfj (11)

Heat transfer coefficients. In heat transfer problems involving flow through channels, one can
introduce the bulk (or mass-averaged) fluid temperature T , defined based on the thermal balance
of the moving fluid over the heated section:

T (z̃) = T0 +
q(πd2z̃)

Gcp
≡ T0 +

4qd/λ

RePr
z̃, (12)

while the corresponding dimensionless temperature is:

θ(z̃) =
T (z̃)− T0

∆T
≡ 4z̃

RePr
. (13)

The dimensionless local heat transfer coefficient (Nusselt number) is defined using the New-
ton–Rihmann relation α = q/(Tw − T ) as:

Nul(z̃) =
αl(z̃)d

λ
=

qd

λ
[
Tw,l(z̃)− T (z̃)

] ≡ 1

θw.l(z̃)− θ(z̃)
, (14)

where Tw,l is the wall local temperature.
The mean Nusselt number is defined based on the perimeter-averaged wall temperature,

Tw =
1

π

2π∫
π

Tw,l dϕ, in the transverse section z̃:
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Nu(z̃) =
1

θw(z̃)− θ(z̃)
. (15)

Since it is problematic in experiments to precisely position the sensor at a specific angular
coordinate (there is always uncertainty in its placement), we will use the temperature averaged
near the lower generatrix of the pipe (ϕ = 270± 15◦) for comparing local Nusselt numbers.

2. Results and discussion

The numerical simulation was performed for three different Reynolds numbers: 7 · 103, 104,
and 1.5 · 104, with a Grashof number Grq = 6.05 · 107 and Hartmann numbers varying from
0 to 1350, corresponding to the experimental parameters (see Tab. 2). The time required to
reach quasi-steady-state regimes did not exceed ∼ 75 dimensionless convective units (c.u.) for
all simulations. After achieving the quasi-steady state, the transient velocity and temperature
fields obtained from solving the governing equations (5–8) were averaged over a period of ∼ 100

c.u. This duration corresponds to twice the flow-through time across the heated section and
was therefore considered sufficient to obtain fully developed flow characteristics. The results
were analyzed and compared both along the length of the heated section and at a characteristic
cross-section z/d = 37 from the start of heating (see Fig. 1).

2.1. Flow structure

After entering the working section, the flow is subjected to two body forces: buoyancy force
and electromagnetic (ponderomotive) force, which govern the formation of the initial hydrody-
namic and thermal entry regions, as well as the transformation of the flow structure (see e.g. [4]).
The ponderomotive force, arising from the interaction between induced electric currents in the
fluid and the applied magnetic field, decelerates the flow in the central region and accelerates
it near the solid walls perpendicular to the direction of the magnetic induction – within the
so-called Hartmann boundary layers. A second effect of the magnetic field is turbulence suppres-
sion, governed by the mechanism of "Joule dissipation" of kinetic energy in the Hartmann layers,
which depends on the Hartmann number. The resulting laminarized flows are generally unstable,
particularly with respect to two-dimensional perturbations in the form of vortical structures with
axes aligned along the magnetic field. The buoyancy force acts within the heated section of the
flow. In a horizontal pipe heated from below, this force induces paired helical (secondary) flows,
resulting from the superposition of the axial forced flow and the free convective motion of heated
fluid — rising along the heated lower wall and descending in the central region of the pipe.

Both of these effects are confirmed by the simulation results. Fig. 3 shows instantaneous
distributions of the axial velocity in the cross-section located z/d = 37 units downstream from
the start of the heating section. In the absence of a magnetic field (Ha = 0, Fig. 3a), the velocity
field exhibits spatial inhomogeneity typical for turbulent flow. The velocity maximum shifts
toward the lower half of the pipe, and the velocity iso-contours (isotachs) become distorted due
to the influence of buoyancy forces. When a magnetic field is applied (Ha = 100, Fig. 3b), the
overall axial symmetry of the flow field is restored. The magnetic field decelerates the central part
of the flow, reduces turbulent velocity fluctuations, and stabilizes vortical structures, promoting
the formation of counter-rotating vortex pairs with axes aligned in the streamwise direction.
With further increase in the magnetic field strength (Ha = 220, Fig. 3c), flow perturbations are
almost entirely suppressed. At Ha = 300 (Fig. 3d), the flow transitions to a different type of
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secondary motion. In this regime, distinct boundary layer structures emerge near the solid walls:
Hartmann layers at ϕ = 0◦ and 180◦, and Roberts layers at ϕ = 90◦ and 270◦ (see e.g [16]).

Fig. 3. The fields of instantaneous axial velocity uz (top) and streamlines constructed from
transverse velocity components [ux, uy] (bottom) in the cross-section at z/d = 37 from the
heating start for different Hartmann numbers: Re = 104, Grq = 6.05 · 107

The flow transformation along the length of the heated section is illustrated in Fig. 4, which
shows isosurfaces of transverse velocity and temperature. At Ha = 0 and Ha = 100, secondary
flows in the form of streamwise (longitudinal) vortex structures are observed (Fig. 4a–b). The
intensity of these vortices decreases with increasing Hartmann number. In this regime, the flow
remains relatively well macroscopically mixed, as evidenced by the temperature isosurfaces. In
the range from Ha = 220 to Ha = 300, a transition occurs to a completely different flow struc-
ture, characterized by disturbances (vortex formations) with axes aligned along the magnetic
field direction (Fig. 4c–d). The intensity of these structures grows along the heated section and
depends on the Hartmann number. These vortices distort the isothermal surfaces; however, the
temperature field remains well stratified. With further increase in the Hartmann number, the
intensity of these structures and the disturbances they induce gradually diminish. The tempera-
ture field becomes more uniform and approaches a distribution characteristic of conductive heat
transfer in the fluid volume, particularly in the lower part of the pipe (Fig. 4e–f).

2.2. Temperature fluctuations

Fig. 5 shows the time-dependent temperature fluctuations relative to the mean value and
their corresponding power spectra for the flow regime with Re = 104, Grq = 6.05 · 107, and
Ha = 0; 100; 300; 700. For comparison with experimental measurements, a point located near the
lateral generatrix of the pipe at r/r0 = 0.75 (indicated in Fig. 1) in the cross-section at z/d = 37

from the start of the heated section was selected.
The obtained simulation results show good agreement with experimental data and, impor-

tantly, confirm the flow structure transformation described in Section 2.1. At Ha = 0 (Fig. 5a),
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Fig. 4. Isosurfaces of instantaneous vertical velocity uy and temperature θ within the heated
section z/d ∈ [0 ÷ 37] are presented for various Hartmann numbers at Re = 104 and Grq =

6.05 ·107. The scales of transverse and streamwise coordinates are related as 1:4 for visualization
purposes
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Fig. 5. Comparison of temperature fluctuation measurements in the experiment (1) and numer-
ical simulation (2) near the side generator in the heated region (z/d = 37, ϕ = 0, r/r0 = 0.75):
left – oscillograms of temperature fluctuations [1]; right – amplitude spectrum of the signal for
various Hartmann numbers: Re = 104, Grq = 6.05 · 107

temperature fluctuations typical of turbulent mixed convection in a pipe are observed. When
Ha = 100 (Fig. 5b), temperature fluctuations are almost completely suppressed, indicating flow
laminarization, as turbulent temperature fluctuations are inherently linked to velocity fluctua-
tions. As the Hartmann number increases further, at Ha = 300 (Fig. 5c), temperature fluctua-
tions reappear with a quasi-harmonic character and exhibit dominant frequencies in the range of
3÷ 4 Hz in the spectrum. With even stronger magnetic field (Ha = 700, Fig. 5d), the intensity
of temperature fluctuations and their spectral energy decrease significantly, suggesting a return
to a more stable, less fluctuating flow regime dominated by diffusive heat transfer.

Tab. 3 presents the intensity of temperature fluctuations, σθ = σT /∆T , as a function of the
Hartmann number for different Reynolds numbers, obtained both experimentally and from nu-
merical simulations. The results show good qualitative agreement, with some minor quantitative
discrepancies. For all considered Reynolds numbers, the dependence of temperature fluctua-
tion intensity on the Hartmann number follows the same general trend: initially, the intensity
decreases up to Ha ∼ 200, then increases again reaching a maximum around Ha ∼ 400, and
finally decreases sharply at higher Hartmann numbers, approaching nearly zero at Ha & 700.
This non-monotonic behavior reflects the complex interplay between magnetic stabilization, flow
structuring, and the development of magnetohydrodynamic instabilities aligned with the mag-
netic field. Good qualitative and, in many cases, quantitative agreement is observed between
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experimental and computational results at the corresponding data points. It is worth noting that
the Reynolds number significantly influences both the amplitude and frequency of temperature
fluctuations in the region of peak fluctuation intensity. With increasing Re, the fluctuation inten-
sity decreases noticeably, while the dominant frequency increases. This indicates that stronger
forced convection suppresses the development of large-scale flow structures with axes aligned
along the magnetic field, enhancing their advection through the heated section and reducing
their residence time, thereby limiting their growth. The characteristic frequency f , determined
from the peak in the power spectrum, increases with Re, consistent with faster convective trans-
port of disturbances. This trend further supports the conclusion that higher flow rates impede
the formation and amplification of magnetically aligned vortices, leading to weaker thermal fluc-
tuations despite the presence of secondary motion.

Table 3. Temperature fluctuation intensity σθ = σT /∆T and characteristic frequency f (deter-
mined from the peak of spectra) near the lateral generatrix of the pipe (ϕ = 0◦, r/r0 = 0.75) at
cross-section z/d = 37. Values are given as experimental / numerical (where available)

Experiment / Simulation

Re 7 · 103 104 1.5 · 104

Ha σθ f [Hz] σθ f [Hz] σθ f [Hz]

0 0.028 / 0.025 – / – 0.024 / 0.020 – / – 0.021 / 0.017 – / –

200 0.049 / – 1.97 / – 0.047 / 0.045 3.63 / – 0.007 / – 6.32 / –

300 0.063 / – 2.23 / – 0.075 / 0.078 2.84 / 2.71 0.012 / – 6.28 / –

400 0.063 / 0.059 1.82 / 1.61 0.079 / 0.080 3.63 / – 0.008 / 0.014 6.73 / 6.24

550 0.065 / – 1.67 / – 0.056 / 0.065 3.63 / – 0.004 / – 6.013 / –

700 0.076 / 0.070 – / – 0.024 / 0.020 – / – 0.003 / – – / –

1000 0.042 / – – / – 0.004 / 0.008 – / – 0.003 / – – / –

2.3. Heat transfer

The intensity of heat transfer between the moving fluid and the pipe wall can be evaluated
using the local Nusselt number (14), the perimeter-averaged Nusselt number (15), as well as
directly through the wall temperature distribution in the region of interest. In the considered
configuration, the upper part of the pipe is unheated, so the primary focus lies on the wall
temperature distribution and heat transfer coefficients in the lower, heated portion of the pipe.

Fig. 6 shows the circumferential distribution of wall temperature at the cross-section z/d = 37,
located within the thermally developed region. At the upper generatrix (ϕ = 90◦), the wall
temperature is minimal due to the absence of heating. Nevertheless, the largest discrepancies
between experimental and numerical results are observed in this region under applied magnetic
fields (Ha > 0), where convective heat transfer is suppressed and thermal conduction becomes the
dominant heat transfer mechanism. This deviation is likely due to the absence of a solid wall in
the computational model that would allow for lateral heat conduction from the heated lower part
to the unheated upper part of the pipe, as occurs in the physical experiment. For all cases with
Ha > 0, the maximum wall temperature occurs at the lower generatrix (ϕ = 270◦), indicating
deteriorated heat transfer in this region. Moreover, as the Hartmann number increases, the
wall temperature rises, implying a reduction in the local heat transfer coefficient. This trend is
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attributed to the magnetic field’s suppression of turbulent transport and damping of longitudinal
vortex structures driven by free convection. These vortices, which enhance mixing and heat
removal under non-magnetic conditions, are progressively inhibited as Ha increases. Despite some
quantitative deviations — particularly in the unheated zone — the experimental and numerical
results show good qualitative agreement in the heated lower region, especially considering the
uncertainties inherent in temperature measurements. The simulations adequately capture the
overall trend of heat transfer degradation with increasing magnetic field strength.

Fig. 6. Distribution of dimensionless wall temperature along the perimeter of the pipe cross-
section at z/d = 37 for various Hartmann numbers: Re = 104, Grq = 6.05 · 107

Fig. 7 presents the variation of local Nusselt numbers along the heated section, determined at
the lower generator region taking into account uncertainty in the probe position (ϕ = 270◦±15◦),
as well as the perimeter-averaged Nusselt numbers over the heated part of the cross-section. In
the absence of a magnetic field (Ha = 0), three characteristic regions are observed in the Nusselt
number distribution: 0÷ 5 diameters – the initial thermal entrance region, corresponding to the
development of the temperature field; 5÷15 diameters – the onset of buoyancy forces’ influence on
the flow and the formation of temperature fields corresponding to the mixed convection regime;
and 15÷43 diameters – the thermally stabilized heat transfer regime, where temperature changes
nearly linearly along the length, and the Nusselt number reaches a nearly constant value of ∼ 10.
The averaged Nusselt numbers are slightly lower than the local ones – convective transport is
more intense near the lower generator than near the lateral walls of the pipe. At Ha = 100,
turbulent transport is suppressed, and the formation of stabilized temperature fields occurs
under the action of two body forces and extends over 15 ÷ 20 diameters downstream. The
Nusselt numbers decrease, and the averaged values remain slightly lower than the local ones —
the influence of secondary flows with axes aligned along the pipe on heat transfer persists. A
different situation arises with the change in flow structure (Ha > 220). The influence of buoyancy
forces is practically negligible under complete suppression of turbulent transport. The Nusselt
number values for different Ha almost coincide and reach levels typical of laminar flows. At the
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same time, the averaged Nusselt numbers become higher than the local values — the change in
flow structure deteriorates fluid motion near the lower generator and increases the role of the
lateral generators in heat removal from the wall. The values of local Nusselt numbers for all
regimes are in good agreement with the experimental results, taking into account measurement
uncertainties.

Fig. 7. Distribution of local (a) and average (b) Nusselt numbers along the length of the heating
zone for various Hartmann numbers: Re = 104, Grq = 6.05 · 107

Conclusions

The magnetic field and heating significantly alter the flow structure and the dynamics of
temperature fluctuations in a liquid metal flow. In the absence of a magnetic field (Ha = 0),
a turbulent flow is observed, with streamlines deformed under the action of buoyancy forces.
A moderate magnetic field (Ha = 100) suppresses turbulence and velocity/temperature fluctua-
tions, leading to flow laminarization. With further increase in the Hartmann number (Ha = 300),
quasi-harmonic temperature fluctuations emerge, associated with vortex structures aligned along
the magnetic field direction. An increase in the Reynolds number reduces the amplitude of
these fluctuations at high Ha, indicating competition between forced convection and magneto-
convective effects.

Comparison of statistical and spectral characteristics between experiment and simulation
confirms the reliability of the numerical model. Analysis of temperature fluctuations standard
deviation and spectra shows good agreement between experimental and computational data. This
is particularly important for model validation, as spectral features — such as dominant frequencies
of ∼ 3÷ 4Hz at Ha = 300 — reflect key physical mechanisms underlying flow reorganization.

The analysis of not only time-averaged parameters (e.g., Nusselt numbers) but also the spec-
tral composition of temperature fluctuations enables a comprehensive assessment of both the
accuracy of the numerical simulations (DNS) and the consistency of experimental measure-
ments. This combined approach confirms that the applied physical approximations – such as
the quasi-static MHD approximation, neglect of the induced magnetic field, and the Boussinesq
approximation – are adequate within the investigated parameter range (Re ∼ 104, Ha 6 1350),
and also helps identify the limits of model applicability under more extreme conditions.
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Сравнительный анализ экспериментальных и расчетных
данных по турбулентному течению жидкого металла
в трубе под действием поперечного магнитного поля
и нагрева снизу
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Аннотация. В статье представлены результаты прямого численного моделирования течения рту-
ти в круглой горизонтальной трубе при неоднородном нижнем обогреве в присутствии поперечно-
го магнитного поля. Исследование посвящено анализу гидродинамики и теплообмена в условиях
термогравитационной конвекции, индуцированной локализованным нагревом, и магнитогидроди-
намических эффектов. Показано, что поперечное магнитное поле существенно подавляет попе-
речные компоненты скорости, стабилизирует течение и изменяет структуру конвективных вихрей,
приводя к анизотропии турбулентного переноса и формированию характерных гартмановских и
пограничных слоёв. Анализ полей скорости и температур позволяет выявить режимы подавления
неустойчивости и перестройки крупномасштабной циркуляции. Проведено сравнение статистиче-
ских характеристик интенсивностей пульсаций температуры, а также безразмерных величин с экс-
периментальными данными [1]. Сравнение и анализ полученных результатов позволяет расширить
понимание о процессах, происходящих в жидких металлах при совместном действии гравитаци-
онных, тепловых и электромагнитных полей, что представляет интерес для разработки систем
охлаждения в ядерных реакторах с жидкометаллическими теплоносителями.

Ключевые слова: жидкий металл, DNS, конвекция, МКФ, теплообмен, поперечное магнитное
поле.
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Abstract. The paper presents the results of the development and verification of a computational
technique for modeling two-phase immiscible flows in porous media, taking into account the transfer of
polymers that change the rheology of fluids in the process of their flow. The mathematical model is
based on the Navier–Stokes equations and the VOF method. The model includes a convective-diffusion
concentration transfer equation with a constant effective diffusion coefficient. Within the framework
of this model, the rheology of the displacing fluid is described by a nonlinear model of viscoplastic
media (Herschel–Bulkley) based on the generalized viscosity approach. The rheological parameters
of the model depend on the local polymer concentration. To regularize the effective viscosity and
eliminate infinite values, an approach with exponential regularization of the shear rate at small values is
used. The developed calculation methodology has been tested and verified to show that the numerical
solutions found with this methodology are qualitatively and quantitatively in good agreement with known
analytical solutions and with numerical solutions obtained using the Ansys Fluent reference CFD solver.

Keywords: digital models of porous media, immiscible displacement, non-Newtonian flow, polymer
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Introduction

Modern numerical modeling methods enable the creation of complex hydrodynamic reservoir
models based on geological data, which is important for analyzing and optimizing oil production
processes. Currently, specialized software systems are widely used to simulate thermal, gas, and
physico-chemical methods of influencing oil formations with the view of predicting the effec-
tiveness of various technologies for increasing oil recovery [1–2]. Digital twins of deposits allow
simulating various development scenarios in real time, choosing optimal production methods,
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and predicting reservoir behavior taking into account a variety of factors [3]. Digital twins com-
bining the Internet of Things systems for data collection and predictive analytics systems are
becoming a powerful tool for managing oil fields [4–5]. A special place in numerical modeling
of oil and gas fields is occupied by the development of mathematical models and software for
describing multiphase flows in rocks at the micro- and nano-scales. This is especially true for
complex deposits with low-permeability formations. This area of modeling is called "digital core
technologies" [6–7]. A digital core is a high-precision 3D model of a rock based on microtomog-
raphy or other high-resolution scanning methods. Such models are used for numerical modeling
of filtration processes and oil recovery at the pore level. In the last decade, a large number of
studies aimed at developing and improving numerical methods for modeling multiphase flows at
the pore scale have been carried out. A large number of different methods have been developed
in this area. These are, first of all, methods of direct numerical modeling of the interface. In
this approach, the computational domain is formed directly from the data on the pore structure
of the core, obtained using three-dimensional tomography. Next, a multiphase flow is modeled
using well-known computational methods or those with a movable interface, adapted to capillary
flows. Among the mesh methods, the most common are those based on the VOF method [8],
the Level Set method [9], and various options of Phase Field methods [10]. Among the particle
methods for modeling digital core problems, various options of the Boltzmann lattice equation
(LBM) method have become the most widespread [11]. Another type of mesh-free methods is the
smoothed particle method (SPH). It is also used to model flows in porous media, though much
more rarely [12]. Mesh methods are more conservative and use fewer approximations. Particle
methods are computationally faster. In addition to direct methods for modeling flows in porous
media, a large number of approximate ones, based on the use of semi-analytical techniques, are
actively used. The latter include the method of inscribed spheres [13] and the capillary tube
bundle method [14]. They are very fast and allow making estimates of capillary pressure curves
and relative phase permeability, but they are not universal because of a large number of the
used assumptions. The more universal of the semi-analytical methods are pore-network meth-
ods [15]. In this group, the actual pore space is simplified to two separate elements: the pores,
which contain the bulk of the liquids, and the channels that connect the pores and through
which the flow is transported. The pore-network models significantly surpass the models with
direct resolution of the interface in counting speed and are more accurate than semi-analytical
methods. A review of the literature shows that, in general, the digital core field is currently
developing intensively. The models are gradually becoming more complex and expanded to take
into account a larger number of physical phenomena that occur in a porous medium during oil
production: three-phase flows, phase transitions, the formation of asphaltenes and paraffins, the
transfer and adsorption of surfactants, etc. [16]. An important property that must be taken
into account when developing digital core models is fluid rheology. This is especially important
when modeling the process of oil displacement with polymer solutions that have non-Newtonian
rheology in order to increase the efficiency of oil recovery by increasing viscosity. Despite the
current intense development of numerical modeling for the study of multiphase flows in digital
core models, there are still many unresolved issues related to improving the performance and
reliability of the developed computational algorithms and software. This paper presents the re-
sults of verification of a computational technique for modeling the two-phase immiscible flows in
porous media, taking into account the transfer of polymers that change the rheology of fluids in
the flow.

1. Mathematical model of two-phase immiscible
non-Newtonian flow in digital core models

Previously, based on the software core of the domestic SigmaFlow CFD software package
[17–19], a numerical method was developed to describe the unsteady flow of immiscible liquids
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in three-dimensional digital core models with interfacial resolution. It was based on the Navier-
Stokes model for an incompressible liquid and the Volume of Fluid method (VOF) [20] and took
into account the surface tension forces and the effects of surface wetting, as well as the effect of
the transfer of modifying additives (surfactant/polymer solutions and nanosuspensions) in the
process of oil recovery [21–22]. The problem statement is as follows. At the initial moment,
the porous medium is filled with a displaced liquid (index 2), usually oil. Next, a displacing
liquid (index 1) is supplied to the porous medium, usually an aqueous solution. The displacing
and displaced liquids do not mix with each other. In this case, a polymer additive with a mass
concentration ϕ may be present inside the aqueous phase. In this case, within the framework of
the VOF method, the two-phase medium is considered as a single-liquid medium consisting of
two components, and has a continuous distribution of density and viscosity, depending on the
volume fraction of the liquid in the cell α:

ρ = αρ1(ϕ) + (1− α)ρ2; µ = αµ1(ϕ) + (1− α)µ2. (1)

The motion of a liquid is described by the Navier–Stokes equations for an incompressible
medium:

▽ · u = 0 (2)

ρ

(
∂u

∂t
+ (u · ▽)u

)
= −▽ p+▽ · (2µS) + (ρ− ρ∞)g + (fc −▽pc), (3)

where u is the velocity vector, p is the dynamic pressure, S = 0.5(▽u+▽uT ) is the strain rate
tensor, ρ∞ is the characteristic density, fc is the bulk surface tension force, and pc is the capillary
pressure.

The equation for the transfer of the volume fraction of liquid in a cell has the form:

∂α

∂t
+▽ · (uα) = 0. (4)

The calculation of capillary forces, which are described in this case within the framework of
the CSF (continuum surface force) approach [23], plays a key role in modeling the flow in porous
media:

fc = σ(ϕ)knsδs, (5)

where σ(ϕ) is the coefficient of interfacial tension and the curvature of the interface is determined
by the distribution of the volume fraction:

k = ▽ · ns, (6)

where the normal to the interface is:
ns =

▽α
| ▽ α|

. (7)

On solid surfaces, the contact angle θ(ϕ) is used to determine the direction of the normal
vector to the interface of liquids at the contact line:

ns = nw cos(θ(ϕ)) + sw sin(θ(ϕ)), (8)

where nw is the normal to a solid surface and sw is the unit tangential vector to the surface at
the contact line of liquids.

The equation for capillary pressure has the form:

▽ · ▽pc = ▽ · fc. (9)

As already mentioned, in order to increase the efficiency of displacing oil from a porous
medium, a polymer ϕ is added to water for changing the properties of the displacing liquid,

– 23 –



Dmitriy V. Guzei . . . Verifying a Numerical Technique for Modeling Two-phase . . .

primarily the viscosity. The transfer equation of the polymer concentration ϕ in the aqueous
phase α has the form:

∂(αϕ)

∂t
+▽ · (uαϕ)−▽ · (αDϕ ▽ ϕ) = 0, (10)

where Dϕ is the diffusion coefficient of the polymer in water [m2/s]. The addition of a polymer
leads to a change in the properties of the aqueous solution. The dependence of the interfacial ten-
sion coefficient and the wetting edge angle of the displacing liquid on the polymer concentration
ϕ is given by the power formula:

σ(ϕ) = σ0
(
1 + c1ϕ+ c2ϕ

2
)
, (11)

θ(ϕ) = θ0
(
1 + c1ϕ+ c2ϕ

2
)
, (12)

where σ0 and θ0 are the values of these parameters for water, c1 and c2 are the correlation
coefficients, determined from experiments for each of the properties under consideration.

The numerical implementation is based on the modified transfer equation [21–22]:

∂(ϕ)

∂t
+▽ · (uϕ+ (1− α)urϕ)−▽ · (αDϕ ▽ ϕ) = 0. (13)

The most important property that must be taken into account when oil is displaced by
polymer solutions is fluid rheology. In this regard, this work determines non-Newtonian rheology
of a displacing fluid based on the Herschel–Bulkley model. The effective viscosity of the aqueous
polymer solution is calculated using the formula:

µ1(ϕ) =
(
τy(ϕ) + kv(ϕ)γ̇

n(ϕ)
f

)
/γ̇f , (14)

where τy(ϕ) is the limiting voltage, kv(ϕ) is the indicator of consistency and n(ϕ) is the indicator
of the degree of a liquid, which depend on the concentration of the additive ϕ. The presence of
an impurity affects the rheological properties. In this version of the model, the dependence of the
coefficients of the Herschel–Bulkeley model on the polymer concentration is given as a quadratic
polynomial:

τ(ϕ) = τ0
(
1 + c1ϕ+ c2ϕ

2
)
, (15)

n(ϕ) = n0
(
1 + c1ϕ+ c2ϕ

2
)
, (16)

kv(ϕ) = kv,0
(
1 + c1ϕ+ c2ϕ

2
)
, (17)

where τ0, n0 and kv,0 are the base values of the parameters and c1 and c2 are the coefficients of
the model obtained for each of the parameters.

When modeling viscoplastic flows, there is a known problem of the occurrence of singularity
in the flow regions with the shear rate equal to zero. For viscoplastic fluids with a nonzero
limiting stress τ0 in the flow region |τ | < τ0, the shear rate tends to zero, which is why the
effective viscosity of the liquid increases indefinitely. In order to overcome this difficulty, various
regularizations of the initial rheological models are used. The simplest option involves artificially
limiting the effective viscosity of the liquid in the region |τ | < τ0 by a certain maximum value
µmax : µ = max (µ, µmax). The second approach proposed for Bingham liquids in [24] is to
approximate the expression for effective viscosity by an exponential function:

µ (γ̇) =
kγ̇ + τ0

(
1− e−mγ̇/Γ̇

)
γ̇

, (18)

which, when γ̇ tends to zero, allows limiting the effective viscosity. The exponential multiplier
m must be large enough (in most papers, its value ranges from 100 to 3000).
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For the more general case of the Herschel–Bulkley fluid, in our work, an approach with
exponential regularization of the shear rate at small values is used to regularize the effective
viscosity and eliminate infinite values:

˜̇γ = γ̇/
(
1− e−mγ̇/γ̇ref

)
, (19)

where γ̇ref is the characteristic shear rate for the problem under consideration and m is the
regularization parameter.

Thus, the viscosity of a two-component medium depends on the proportion of liquid, polymer
concentration, and flow shear rate:

µ = µ1 (γ̇f , ϕ)α+ µ2 (1− α) . (20)

On solid walls, impermeability and no-slip conditions are set for velocity and a zero normal
derivative is set for pressure. The velocity, the fraction of the displacing phase, and the polymer
concentration ϕ are recorded at the input boundary. At the output boundary, a condition of
the flow uniformity is set; it is expressed in the equality of the normal derivatives of all scalar
quantities to zero.

The calculations are performed in a non-stationary formulation, and the time step is bounded
using the algorithm proposed in [25] and is additionally limited by the value of the convective
Courant number (CFL) at the interface, which, by default, does not exceed 0.1. The numerical
method is based on the methodology [26] developed specifically for recovery problems. The main
details of the algorithm are described in detail in our works [21–22].

2. Test results of a computational algorithm
for non-Newtonian fluid flow problems

The developed calculation methodology was tested and verified. The problems of single-
phase and multiphase immiscible flow of non-Newtonian fluids in a rectangular, flat and circular
channel were considered. The calculated data were compared with analytical dependences and
the results of calculations obtained in the Ansys Fluent software product.

2.1. A single-phase flow of polymer solution in a flat channel
First, a single-phase isothermal flow of a power-law liquid in a rectangular flat channel was

considered. The channel width in the calculations was 0.01 m and the length was 1 m. An
orthogonal grid with a total number of calculation nodes equal to 75,000 was used. The flow
of a polyacrylamide polymer (PAA) solution with different concentrations was examined. The
concentration of polyacrylamide in solutions ranged from 0.01 to 0.1 wt.%. To obtain data on
the rheological characteristics of the polymer solution, its dynamic viscosity coefficient depending
on the shear rate was in advance measured using a Brookfield DV2TL rotary viscometer. The
viscometer had a specified error of ±2%, depending on the range used. The measurements
were carried out for a temperature of 25℃. An analysis of experimentally obtained flow and
viscosity curves has shown that the rheology of PAA solutions is well described by a power law
model, which is a special case of the Herschel–Bulkley model τ = kvγ̇

n, where kv is the liquid
consistency coefficient and n is the flow index. The dependence of rheological parameters on
the concentration of polyacrylamide is shown in Tab. 1. The concentration of 0% in the table
corresponds to water. These parameters are set to calculate the flow of the polymer solution in
the channels.

At the entrance to the computational domain, a constant velocity value of 0.005 m/s was
preset. The Neumann boundary condition was set at its output. The boundary no-slip and
impermeability conditions were set on the channel walls. The results of calculations performed
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Table 1. Dependence of rheological parameters on PAA concentration

% n kv, Pa×sn

0 1 0.001
0.01 0.8103 0.005606
0.05 0.45559 0.25862
0.1 0.50166 0.44057

using the developed numerical methodology were compared with those obtained using Ansys
Fluent. The calculations were realized on the same grid. To do this, the computational grid from
SigmaFlow was transferred to Ansys Fluent. A comparison of the velocity profiles at the outlet
of a rectangular flat channel for water and various concentrations of polymer solution obtained
during calculations on SigmaFlow and Ansys Fluent is shown in Fig. 1. As can be seen from the
presented graphs, there is a good agreement between the calculated velocity profiles obtained
with the used software products for solutions with different concentrations of polyacrylamide.
The maximum difference does not exceed 0.1%.

Fig. 1. Velocity profile in a flat channel for solutions with different concentrations of polyacry-
lamide

In addition to the velocity profiles in the channel, the magnitude of the pressure drop in the
channel was compared for polyacrylamide solutions with different concentrations. Fig. 2 shows
a graph of the pressure drop versus concentration for calculations performed on SigmaFlow and
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Ansys Fluent. The discrepancy between the calculated differential pressure values obtained with
SigmaFlow and Ansys Fluent does not exceed 0.5%.

Fig. 2. Dependence of pressure drop on polymer concentration

2.2. A single-phase flow of polymer solution in a circular microchannell

Below, a single-phase isothermal flow of a polymer solution in a straight circular microchannel
is considered. The channel diameter in the calculations is equal to 10 microns, and its length
is 100 microns. The computational grid is built based on voxel geometry, and the total number
of its calculation nodes is equal to 489,000. At the entrance to the computational domain, a
constant velocity value of 0.005 m/s is set. Calculations are performed for polyacrylamide poly-
mer solutions. The rheological properties of the polyacrylamide polymer used in the calculations
are shown in Tab. 1. The results of the calculations performed using the developed numerical
methodology are compared with those obtained on Ansys Fluent. The calculations are performed
on a single grid, and for this purpose, the computational grid from SigmaFlow is imported into
Ansys Fluent. As a result of calculations, the distributions of viscosity, pressure, and velocity
fields in a straight circular channel have been obtained. As an example, Figs. 3–5 show com-
parisons of the viscosity, velocity, and pressure fields in the central section of the channel for a
single-phase flow of a polyacrylamide solution with a mass concentration of 0.01% for SigmaFlow
and AnsysFluent. The most indicative in this case is the effective viscosity distribution shown in
Fig. 3. As can be seen, the viscosity in the flow core increases significantly due to a decrease in
the shear rate. This leads to velocity profile flattening with decreasing index n. Apparently, the
obtained distributions of viscosity, velocity, and pressure fields for different solvers are in good
qualitative agreement with each other.

Fig. 6 shows a comparison of velocity profiles at the outlet from a straight circular channel
for water and various concentrations of polymer solution obtained during calculations performed
with SigmaFlow and Ansys Fluent. As can be seen from the presented graphs, there is a good
agreement between the calculated velocity profiles obtained on the used software products for
solutions with different concentrations of polyacrylamide.

In addition, the calculated dependences of the pressure drop in the channel for polyacrylamide
solutions were compared with the analytical solution. For this purpose, it was expedient to
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Fig. 3. Distribution of the dynamic viscosity coefficient for SigmaFlow (a) and AnsysFluent (b)

Fig. 4. Velocity field distribution for SigmaFlow (a) and AnsysFluent (b)

Fig. 5. Distribution of the pressure field for SigmaFlow (a) and AnsysFluent (b)

consider the established flow area, for which the analytical solution is accurate. For an established
laminar flow of a power-law fluid in a straight circular channel, the exact solution for the pressure
drop has the form [27]:

∆P =
2kL

r

(
3n+ 1

πr3n
Q

)n

, (21)

where k is the consistency index, n is the exponent, L is the channel length, r is the channel
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Fig. 6. Velocity profile in a straight circular channel for solutions with different concentrations
of polyacrylamide

radius, and Q is the volumetric flow rate of the liquid. As can be seen from the graph shown
in Fig. 7, the differential pressure values obtained using our methodology and Ansys Fluent are
in good agreement with each other, and the maximum discrepancy between the results does not
exceed 1%. The discrepancy between the calculated differential pressure values obtained with
SigmaFlow and the analytical dependence does not exceed 5%.

2.3. A two-phase flow of polymer solution in a circular micro-channel

Further, to verify the calculation method, a two-phase flow in a circular microchannel was
considered. The diameter of the channel in the calculations was equal to 10 microns, and its
length was 100 microns. At the initial moment, the channel was filled with oil. At the entrance
to the computational domain, a polymer solution with a concentration of 0.1% was supplied.
The physical properties of the oil used in the calculations were: density of 727.42 kg/m3 and
viscosity of 0.048 Pa×s. The previously measured value of the interfacial tension coefficient in the
calculations was set to 0.0253 N/m. In the calculation, two variants of the value of the contact
angle on the wall of the circular channel were considered: 20 and 150 degrees. The first value of
the contact angle corresponded to the flow of the polymer solution in the impregnation mode,
i.e., the displacing liquid (polymer solution) moistened the surface better than the displaced
liquid. The second value of the contact angle corresponded to the drainage mode, when the
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Fig. 7. Dependence of pressure drop on polyacrylamide concentration

displacing liquid wetted the channel walls worse. At the entrance to the computational domain,
the constant velocity value of 0.005 m/s was set. In the calculations, patterns of the phase
distribution during drainage and impregnation, as well as the distribution of pressure and velocity
fields, were obtained. A qualitative comparison of the dynamics of the displacement fluid front
motion was carried out. A quantitative comparison was also realized for the dependences of the
volume of the displacing liquid and the pressure drop in the channel on time. Figs. 8–9 show
the patterns of phase distribution in the drainage process at various points in time. As can

Fig. 8. Dynamics of the displacement fluid front motion in the mode of drainage with polymer
solution

be seen from the comparison of the distributions, the dynamics of motion along the channel
and the shape of the meniscus for both calculation methods are qualitatively similar in both
drainage and impregnation modes. The quantitative verification results are shown in Fig. 10,
presenting the behavior of the volume fraction of the wetting phase and the pressure drop in the
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Fig. 9. Dynamics of the displacement fluid front motion in the mode of impregnation with
polymer solution

channel over time. The volume fraction in the channel up to the moment of the displacement
fluid breakthrough from the computational domain depends linearly on the injection time, which
corresponds to the law of conservation of mass for incompressible liquids. The behavior of the
total pressure is determined by the contribution of the capillary and hydrodynamic components.
During impregnation, the capillary pressure is negative, while during drainage it is positive. The
hydrodynamic component of pressure decreases as a more viscous liquid exits the channel and
is replaced by water. After the displacing liquid leaves the computational domain, the pressure
drop value corresponds to a single-phase flow. In general, as can be seen from the graphs in
Fig. 10, both calculation programs generally agree well with each other. The observed slight
differences in the behavior of the pressure drop at the moment, when the displacing liquid exits
the computational domain, are due to the nuances of the implementation of boundary conditions.

Fig. 10. Dependence of water volume and pressure drop on time during drainage and impregna-
tion with polymer solution
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Conclusion

A mathematical model and numerical technique have been developed to describe multiphase
flows in three-dimensional digital models of porous media. It is based on the VOF method and
takes into account the transfer of polymer concentration during flooding and its effect on the
rheology of the displacing fluid. Within the framework of this model, the rheology of the flooding
fluid was described by a nonlinear model of viscoplastic media (Herschel–Bulkley) based on the
generalized viscosity approach. The rheological parameters of the model depended on the local
polymer concentration, which in turn was determined by solving the convective-diffusion transfer
equation. To regularize the effective viscosity and eliminate infinite values, an approach with
exponential regularization of the shear rate at small values was used. The developed calculation
methodology has been tested and verified. The problems of single-phase and multiphase immisci-
ble flow of non-Newtonian fluids in a rectangular, flat and circular channel have been considered.
The calculated data have been compared with analytical dependences and the results of calcu-
lations, obtained with the Ansys Fluent software product. Testing and verification have shown
that the numerical solutions found with the developed numerical methodology are qualitatively
and quantitatively in good agreement with known analytical solutions and with those obtained
using the Ansys Fluent reference CFD solver.

This research was supported by the Russian Science Foundation grant no. 23-79-30022,
https://rscf.ru/project/23-79-30022/.

References

[1] Cheng-yan LIN , Yu-qi WU, Li-hua REN, Yang WANG, Wei-chao YAN, Xiao-long SUN,
Xian-guo ZHANG, Yi-min ZHANG, Review of digital core modeling methods, Progress in
Geophysics 33(2018), no. 2, 679–689 (in Chinese).

[2] G.Li, J.Zhao, Y.Liu, Z.Xiao, S.Cui, B.Wei, C.Zhang, Y.Mao, Y.Xia, L.Xu, J.Sun, Z.Hu,
Research on multi-scale digital core construction of carbonate rock with fractures and caves
characteristics: a case study of Dengying formation carbonate rocks in Sichuan Basin, Front.
Earth Sci., 13(2025), 1528829. DOI: 10.3389/feart.2025.1528829

[3] J.Yun, S.Kim, J.Kim, Digital Twin Technology in the Gas Industry: A Comparative Sim-
ulation Study, Sustainability, 16(2024), 5864. DOI: 10.3390/su16145864

[4] V.N.Bykova, E.Kim, M.R.Gadzhialiev, V.O.Musienko, A.O.Orudzhev, E.A.Turovskaya,
Application of a digital twin in the oil and gas industry, Actual Problems of Oil and Gas,
1(2020), no. 28, 8 (in Russian). DOI: 10.29222/ipng.2078-5712.2020-28.art8

[5] E.B.M.Meza, D.G.B.d.Souza, A.Copetti, A.P.B.Sobral, G.V.Silva, I.Tammela, R.Cardoso,
Tools, Technologies and Frameworks for Digital Twins in the Oil and Gas Industry: An
In-Depth Analysis, Sensors, 24(2024), 6457. DOI: 10.3390/s24196457

[6] S.K.Dhar,V.Nandipati, A.Bhattacharya, Digital Core-New Tool for Petrophysical Evalua-
tion and Enhanced Reservoir Characterization, SPE Oil and Gas India Conference and
Exhibition, 2019. DOI: 10.2118/194635-MS

[7] S.A.Idrisova, M.A.Tugarova, E.V.Stremichev, B.V.Belozerov, Digital core. integration of
carbonate rocks thin section studies with results of routine core tests, PROneft’. Profes-
sional’no o nefti, 2(2018), 36–41 (in Russian). DOI: 10.24887/2587-7399-2018-2-36-41

– 32 –



Dmitriy V. Guzei . . . Verifying a Numerical Technique for Modeling Two-phase . . .

[8] A.Q.Raeini, B.Bijeljic, M.J.Blunt, Numerical modelling of sub-pore scale events in two-
phase flow through porous media, Transp. Porous Media, 101(2014), no. 2, 191–213.
DOI: 10.1007/s11242-013-0239-6

[9] O.Dorn, R.Villegas, History matching of petroleum reservoirs using a level set technique,
Inverse Problems, 24(2008), no. 3, 035015. DOI: 10.1088/0266-5611/24/3/035015

[10] S.Junjie, L.Cheng, R.Cao, Z.Jia, G.Liu, Phase-field simulation of imbibition for the matrix-
fracture of tight oil reservoirs considering temperature change, Water 13(2021), no. 7, 1004.
DOI: 10.3390/w13071004

[11] H.Liu, Q.Kang, C.R.Leonardi, Multiphase lattice Boltzmann simulations for porous media
applications, Comput. Geosci., 20(2016), no. 4, 777–805. DOI: 10.1007/s10596-015-9542-3

[12] A.M.Tartakovsky, P.Meakin, Pore scale modeling of immiscible and miscible fluid flows
using smoothed particle hydrodynamics, Adv. Water Resour, 29(2016), no. 10, 1464–1478.
DOI: 10.1016/j.advwatres.2005.11.014

[13] D.Silin, T.Patzek, Pore space morphology analysis using maximal inscribed spheres, Phys.
A, 371(2006), no. 2, 336–360. DOI: 10.1016/j.physa.2006.04.048

[14] S.Cheng, M.Fu, F.A.Kulacki, Characterization of a porous transducer using a capillary
bundle model: Permeability and streaming potential prediction, Int. J. Heat Mass Transf.,
118(2018), 349–354. DOI: 10.1016/j.ijheatmasstransfer.2017.10.128

[15] A.Hosseinzadegan, A.Raoof, H.Mahdiyar, E.Nikooee, M.Ghaedi, J.Qajar, Review on pore-
network modeling studies of gas-condensate flow: Pore structure, mechanisms, and imple-
mentations, Geoenergy Science and Engineering, 226(2023), 211693.

[16] W.Song, F.Liu, Y.Li, Y.Yang, Pore scale modeling of fluid transport in complex reservoirs:
Multi-scale digital rock construction, flow experiments and simulation methods, Capillarity,
11(2024), no. 3, 81–88. DOI: 10.1002/2014WR015959

[17] A.A.Dekterev, A.A.Gavrilov, A.V.Minakov, State-of-the-art capability of using the Sig-
maFlow CFD code for solving thermophysical problems, Modern Science: Researches, Ideas,
Results, Technologies., 2(2010), no. 4, 117–122 (in Russian).

[18] A.A.Dekterev, K.Yu.Litvintsev, A.A.Gavrilov, E.B.Kharlamov, S.A.Filimonov, Freely dis-
tributed SIGMA FW software complex for simulation of hydrodynamics and heat trans-
fer, J. Siberian Federal University. Engineering and Technology, 10(2017), no. 4, 534–542
(in Russian).

[19] A.A.Gavrilov, Computational algorithms and software complex for numerical simulation of
non-Newtonian fluids flows in an annular channel, Dissertation Abstract, Cand. Sc. Physics
and Mathematics, 05.13.18 – Mathematical modeling, numerical methods, and software
complexes, 2014 (in Russian).

[20] C.W.Hirt, B.D.Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries,
J Comput Phys., 39(1981), no. 4, 201–225.

[21] A.A.Gavrilov, D.V.Guzei, A.A.Dekterev, A.V.Minakov, Verification of a numerical method
for modeling two-phase flows of immiscible liquids with the transfer of modifying additives
in three-demensional digital core models, J. Sib. Fed. Univ. Math. Phys., 17(2024), no. 6,
817–828. EDN: XYDYVJ

– 33 –



Dmitriy V.Guzei . . . Verifying a Numerical Technique for Modeling Two-phase . . .

[22] A.A.Gavrilov, D.V.Guzei, A.I.Pryazhnikov, A.S.Yakimov, A.V.Minakov, Development and
microfluidic testing of a new numerical algorithm and software for modeling immiscible fluid
flows in digital core models, J. Fuel, 386(2025), 134253. DOI: 10.1016/j.fuel.2024.134253

[23] J.U.Brackbill, D.B.Kothe, C.Zemach, A continuum method for modeling surface tension, J.
Comput Phys., 100(1992), no. 2, 335–354.

[24] T.C.Papanastasiou, Flows of Materials with Yield, Journal of Rheology, 31(1987), no. 5,
385–404.

[25] S.Popinet, Numerical models of surface tension, Annu. Rev. Fluid Mech, 50(2018), 49–75.
DOI: 10.1146/annurev-fluid-122316-045034

[26] Q.Raeini, M.J.Blunt, B.Bijeljic, Modelling two-phase flow in porous media at the pore
scale using the volume-of-fluid method, J. Comput. Phys., 231(2012), 5653–5668. DOI:
10.1016/j.jcp.2012.04.011

[27] W.L.Wilkinson, Non-Newtonian fluids: Fluid Mechanics, Mixing and Heat Transfer,
Oxford: Pergamon Press, 1960, 138.
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Аннотация. В работе представлены результаты разработки и верификации расчетной методики
для моделирования двухфазных несмешивающихся потоков в пористых средах с учетом переноса
полимеров, меняющих реологию флюидов в процессе течения. Математическая модель основана
на уравнениях Навье–Стокса и методе жидкости в ячейках VOF. Модель включает конвективно-
диффузионное уравнение переноса концентрации с постоянным коэффициентом эффективной
диффузии. В рамках данной модели реология вытесняющего флюида описывается нелинейной
моделью вязкопластических сред (Гершеля–Балкли) на основе подхода обобщенной вязкости. Рео-
логические параметры модели при этом зависят от локальной концентрации полимера. Для ре-
гуляризации эффективной вязкости и исключения бесконечных значений применяется подход с
экспоненциальной регуляризацией величины скорости сдвига при малых значениях. Проведено
тестирование и верификация разработанной расчетной методики. В результате тестирования и
верификации было показано, что численные решения, полученные с помощью разработанной чис-
ленной методики, качественно и количественно хорошо согласуются с известными аналитическими
решениями и с численными решениями, получаемыми с помощью эталонного CFD решателя Ansys
Fluent.

Ключевые слова: цифровые модели пористых сред; несмешивающееся вытеснение; неньютонов-
ское течение, растворы полимеров; VOF метод; тестирование.
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The relevance of the study of phase-dependent conductivity of zirconium dioxide nanopow-
ders ZrO2−x (1.5 6 x 6 2.0) is due to a combination of fundamental and applied factors as-
sociated with the unique properties of this oxide and its polymorphism. [1–4] Zirconium diox-
ide exists in three main crystalline modifications – monoclinic, tetragonal and cubic, each of
which demonstrates fundamentally different conductivity behavior. [5, 6] The monoclinic phase
(m-ZrO2) is characterized by extremely low electrical conductivity and high activation energy
(Ea = 1.5− 1.8 eV in an oxidizing environment), which makes it practically an insulator at tem-
peratures below 1000 ◦C. In contrast, the tetragonal modification (t-ZrO2), stabilized at small
particle sizes or external stresses, has a significantly higher content of oxygen vacancies and
demonstrates n-type conductivity with a lower transfer barrier (Ea = 0.7− 1.0 eV) [7]. The cu-
bic phase (c-ZrO2), which is the most symmetrical, provides optimal channels for the migration
of oxygen ions, and upon partial reduction is capable of exhibiting mixed ion-electron conduc-
tivity, reaching values comparable to doped YSZ (σ ∼ 10−1 S/cm at 1000 ◦C) [8]. A significant
contribution to the increase in conductivity is also made by the formation of suboxide inclusions
(e.g. Zr3O), which are formed upon deep reduction and act as conducting bridges along grain
boundaries, sharply increasing the electron component σ. Thus, it is the phase state and de-
fect structure that determine the magnitude and nature of the conductivity of ZrO2−x, and the
transition from m- to t- and c-phases is accompanied by an increase in σ by several orders of
magnitude. [9–12]

In ZrO2−x nanostructures, a universal frequency response is often recorded: at very low
frequencies σ ≈ σdc ≈ const (flat region on the σ(f) graph), turning into an increase in σ at
higher f . In the Jonscher model, such a frequency dependence is described by the law:

σ(ω) = σdc +Aωn. (1)

Below a certain threshold ωmin ("critical frequency"), a plateau of constant current is observed,
and at ω ≫ ωmin σ(ω) grows as ωn (usually n ≈ 0.5–1). For dispersion media, there is no sharp
"development", and the σ∞ limit is practically not visible at very high frequencies. For ZrO2−x

nanopowders, it is interesting to track the behavior of σ(f) from 1 Hz to 108 Hz.
At low frequencies, grain boundary and interface effects (Maxwell–Wagner, polarization at

the electrodes) often dominate, which results in a flattening or tilted section on the impedance
hodograph. Then, at medium and high frequencies, the dispersion part behaves — σac ∼ ωn.
Thus, experiments on such systems show that at small f , the conductivity can be lower and
depend on the sample geometry, and at f > kHz–MHz, an increase in σ(ω) is seen, which obeys
the Jonscher law well. The transition from direct current to alternating current σdc → σac is
determined by the vacancy concentration and the charge transfer mechanism: the more vacancies,
the higher ωmin.

Thus, the relevance of studying the phase-dependent conductivity of ZrO2−x is determined
by a number of factors:

1. Fundamental importance as a model system for studying defective electronics and transfer
mechanisms in oxides;

2. The need to develop new materials for fuel cells, sensors, membranes and ReRAM devices;

3. The ability to control electrical properties through morphology, phase composition and
synthesis conditions;

4. The prospect of targeted control of the ratio of ionic and electronic conductivity due to the
concentration of oxygen vacancies and suboxide inclusions.
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All this makes the studies of undoped ZrO2−x (1.5 6 x 6 2.0) not only relevant, but also key
for the development of modern materials science and practical applications in the field of energy
and electronics.

1. Experimental part

The formation of zirconium dioxide nanoparticles (ZrO2−x) in a vacuum chamber by gas-
phase deposition or plasma synthesis methods goes through several key stages that determine
the morphology, size and crystalline structure of the resulting particles [13–15]. In the first stage,
evaporation of the starting material, for example, metallic zirconium, leads to the formation
of a vapor phase that reacts with oxygen, initiating oxidation processes and the formation of
nanoparticle nuclei. An important role is played by the environment containing argon and
oxygen, since collisions of particles in the gas phase affect the rate of nucleation and further
growth of nanoparticles. Under optimal conditions, stable crystalline phases are formed, among
which the monoclinic and tetragonal modifications of ZrO2 dominate, and their ratio depends
on the degree of oxygen saturation and the cooling rate of the particles.

After the nucleation stage, the process of coagulation and growth of nanoparticles begins, dur-
ing which individual nuclei collide, merge and stabilize. Depending on the precipitation kinetics
and the concentration of the gas mixture, the particles can grow to a certain size or, conversely,
remain within a few nanometers if the conditions are not conducive to agglomeration. Factors
such as the density of zirconium vapor, the presence of oxygen and the ambient temperature
determine the final properties of the nanoparticles, including their size range, degree of crys-
tallinity and possible structural defects. With oxygen deficiency, oxygen-deficient nanoparticles
containing vacancies can form, which leads to a change in their electrophysical characteristics.
Thus, control over the synthesis parameters allows one to control the morphology and phase
composition of zirconium dioxide nanoparticles.

A vacuum chamber with an arc evaporator mounted on the side wall and connected to an
inverter power source providing an arc discharge current of 100 A was used to synthesize ZrO2−x

nanoparticles (Fig. 1). The experimental setup and the dependence of the powder properties on
the spraying conditions are described in detail in [13–15]. The cathode with a diameter of 80 mm
and a length of 100 mm was made of a zirconium alloy with a purity of 99.99% and mounted on
a copper current lead with water cooling. The reaction chamber with a diameter of 0.6 m and a
height of 0.6 m had double walls and stainless steel flanges.

The samples were obtained at vacuum chamber pressures of 90, 60 and 30 Pa (hereinafter
referred to as samples N90, N60, N30) using argon as the plasma-forming gas. The oxygen
content in the gas mixture was 20% for all pressures. Oxygen was supplied to the reactor in
such a way as to form a uniform shell around the cathode. The reactor was pre-evacuated to
a base pressure of 10−2 Pa. The reaction products were collected for 20 min on a hemispher-
ical water-cooled stainless steel substrate located at a distance of 200 mm from the cathode.
A typical powder yield under the described vacuum-arc synthesis conditions was estimated at
approximately 150–180 mg/min, which in total amounted to ∼3.0–3.6 g per 20-min synthesis
session.

Powder diffraction data for all samples (N90, N60, N30) were obtained at room temperature
on a Bruker D8 Advance diffractometer with Cu-Kα radiation (λ = 0.1540 nm) and a linear
detector for Rietveld analysis. The 2θ measurement step was 0.01◦, and the counting time
was 0.2 s per step. The PDF-4+ databases of the International Center for Diffraction Data
(ICDD) were used to analyze the crystal structure of the experimental X-ray diffraction patterns.
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Fig. 1. Scheme of the synthesis process of experimental samples [13]

Transmission electron microscopy (TEM) of ZrO2 nanoparticles was performed on a JEOL JEM-
2100 high-resolution electron microscope with an accelerating voltage of 200 kV.

Photoluminescence spectra were obtained on a modular OmniFluo-900 spectrofluorimeter
(Zolix Instruments, China), which allows measurements of emission and excitation spectra in a
stationary mode. The device is equipped with:

• Excitation source — a high-pressure xenon lamp (150 W) with a spectral range of
200–1100 nm

• Excitation and emission monochromators.

• R13456 PMT detector (wavelength range of 185–980 nm)

Holders for solid samples were used, measurements were carried out at room temperature in the
"front-face" measurement geometry. The results were automatically corrected for the spectral
sensitivity of the recording system.

The excitation wavelength of 280 nm was chosen to study the photoluminescence of stabi-
lized zirconium dioxide nanopowders, since it lies in the range corresponding to the absorption
maximum of defect centers, primarily oxygen vacancies and F-centers, typical of such materials.
At a photon energy of about 4.43 eV, electrons are effectively excited from the valence band or
deep traps to levels located near the conduction band, which provides bright defect emission in
the range of 420–550 nm. In contrast to the harder UV (244–266 nm), the use of 280 nm reduces
the intensity of the scattered background and the risk of photodegradation of the sample, while
maintaining high sensitivity of the method.

IR spectral studies were carried out on a Vertex 80V vacuum Fourier spectrometer (Bruker)
in the wavelength range of 5000–370 cm−1 with a spectral resolution of 0.2 cm−1. Sample
preparation was performed as follows:

1. Thorough grinding of KBr crystals in an agate mortar with an agate pestle

2. Thorough grinding of 0.008–0.02 g of the measured sample in an agate mortar with an
agate pestle

– 38 –



Igor V. Karpov . . . Impedance Characteristics and Phase-dependent . . .

3. Mixing and additional grinding of the prepared KBr powder and sample in an agate mortar
with an agate pestle. The range of proportions is 1/10–1/200 by weight depending on the
optical density in the measured IR range

4. Final drying of the obtained powder for up to 30 min in a microwave oven at minimum
heating mode (10%)

5. Pressing approximately 0.2 g of the mixture in a 13 mm mold, resulting in a transparent
or translucent tablet with a diameter of 13 mm

To determine the electrophysical characteristics of the obtained samples, the impedance spec-
troscopy method was used using the E5061B vector network analyzer (Agilent Technology). The
samples for the studies were prepared in the form of tablets with a diameter of 13 mm and a
thickness of 1 mm by pressing under a pressure of 200 MPa. The relative density of the pressed
samples without sintering was estimated by the hydrostatic weighing method taking into account
the theoretical density of stoichiometric ZrO2 (5.68 g/cm3) and was ∼ 65–70%. High porosity
contributes to a decrease in the effective permittivity and an increase in dielectric losses due to
air gaps playing the role of low-dielectric inclusions. Before measurements, the samples were
calcined at 200 ◦C to remove moisture.

The dielectric properties were specifically studied in the green state, since our main goal
was to evaluate the effect of synthesis parameters and phase composition on the nanopowder
itself, without additional structural changes caused by high-temperature sintering. To perform
impedance measurements, a thin indium layer was rolled onto the end surfaces of the samples or
graphite electrodes with a minimum (1–5 Ω) transition resistance were used. The measurement
process was reduced to recording the impedance modulus |Z| and the phase shift between current
and voltage (φ) in the frequency range from 102 to 108 Hz. The obtained data allow us to calculate
the real Z ′(f) = |Z| · cosφ and imaginary Z ′′(f) = |Z| · sinφ components of the impedance.

2. Results and discussion

X-ray diffraction analysis. Almost all peaks, except for a small number of small peaks of
unknown impurities, were indexed by the monoclinic and tetragonal phases of ZrO2, as well
as the suboxide phase of Zr3O. Therefore, these structures were taken as a starting model for
the Rietveld refinement, which was performed using TOPAS 4.2 software [16]. The atomic
coordinates were fixed during the refinement, since the structures are known. The refinements
were stable and gave low R-factors (Tab. 1, Fig. 2).

Rietveld refinement was used to accurately determine the crystallite size in all samples. In-
strumental peak broadening was estimated using a silicon standard and subsequently taken into
account in the crystallite size estimation process.

Fig. 3 shows a typical transmission electron microscopy image of ZrO2 nanoparticles. Ac-
cording to the results, ZrO2 nanopowder is highly agglomerated spherical particles.

Agglomeration of nanoparticles is caused by a combination of thermodynamic, structural
and technological factors. The main reason is the high specific surface area of nanoparticles
and the excess surface energy associated with it, due to which the system tends to minimize
free energy through adhesion and coarsening of particles. An additional contribution is made
by electrostatic interactions arising from the presence of charged defects, oxygen vacancies and
suboxide fragments of Zr3O on the surface, which form local centers of attraction and "gluing".
The arc synthesis process itself also plays a significant role: in high-temperature plasma, particles
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Table 1. Main parameters for sample processing and refinement

Sample Phase Content Space group Cell parameters
Rwp, Rp, χ2

(%) (Å)

N90
m-ZrO2 45(1) P21/c a = 5.137(4)

b = 5.214(4)
c = 5.312(4)
β = 99.174(9)

6.23, 4.9, 1.37

t−ZrO2 52(1) P42/nmc a = 3.583(3)
c = 5.178(4)

Zr3O 3(1) P6322 a = 5.622(4)
c = 5.211(4)

N60
m −ZrO2 10(1) P21/c a = 5.125(3)

b = 5.223(3)
c = 5.314(3)
β = 98.88(1)

6.47, 5.16, 1.34

t −ZrO2 75(1) P42/nmc a = 3.623(3)
c = 5.185(4)

Zr3O 15(1) P6322 a = 5.673(4)
c = 5.228(4)

N30 t− ZrO2 90(1) P42/nmc a = 3.535(3)
c = 5.173(4)

6.12, 5.30, 1.11

Zr3O 9(1) P6322 a = 5.647(5)
c = 5.535(4)

are generated in the gas phase and, upon rapid cooling, tend to condense into aggregates [17].
Surface defects and non-stoichiometry additionally enhance interparticle adhesion, and in the
post-synthetic period, agglomeration is fixed due to the adsorption of moisture and gases from
the air, which stabilizes the aggregates and makes them resistant to mechanical separation. Thus,
the agglomeration of ZrO2 in vacuum-arc synthesis is a natural consequence of the high surface
energy of nanoparticles, the defectiveness of their structure and the features of formation in
plasma.

The FTIR spectra of three zirconium dioxide nanopowder samples, shown in Fig. 4, demon-
strate characteristic group bands corresponding to various structural modifications of ZrO2 and
possible impurity compounds.

Region 3500–3000 cm−1.In the specified range of wave numbers, broad bands are observed,
which can be associated with the stretching vibrations of O–H groups. This may indicate the
presence of hydroxyl (OH−) groups on the particle surface, which is typical of nanomaterials
subject to moisture adsorption.

In the region of 1700–1300 cm−1 in the IR spectra of zirconium dioxide nanopowders, bands
are observed that can be associated with the deformation vibrations of water molecules (δ(O–H)).
These vibrations are typical of water in a physically adsorbed or chemically bound state on the
surface of nanoparticles. Deformation vibrations of water occur when the H–O–H bond angle
changes and are usually accompanied by more intense bands in the region of 3200–3500 cm−1,
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Fig. 2. X-ray diffraction patterns of the indicated samples of "black" zirconium dioxide ZrO2−x

characteristic of the stretching vibrations of O–H groups. In the presented spectra, the intensity
of the bands in the region of 1700–1600 cm−1 is most pronounced in samples N30 and N60,
indicating a higher degree of hydration of their surface. This may be due to the presence of
hydroxyl groups Zr–OH), which help retain water molecules, as well as the porous structure of
the nanopowder, which ensures effective moisture adsorption. In sample N90, the intensity of
this band is significantly lower, which may indicate a smaller number of surface-bound water
molecules or a denser packing of nanoparticles, preventing adsorption. Thus, the analysis of this
band allows us to estimate the level of hydration of the particle surface, their ability to absorb
water and interaction with the environment.

The differences in the intensity of the bands in the region of 1700–1600 cm−1, corresponding
to the deformation vibrations of water (δ(O–H)), are due to the structural differences between
the three samples. Samples with a higher proportion of the tetragonal phase (such as N30 and
N60) exhibit a more porous morphology and a higher concentration of surface hydroxyl groups.
Such a microstructure provides more adsorption sites and promotes the retention of physically
adsorbed and bound water, which leads to more intense absorption bands. In contrast, sample
N90 with a lower content of the tetragonal phase and a denser, less defective structure has fewer
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Fig. 3. TEM image of the indicated samples of "black" zirconium dioxide ZrO2−x

Fig. 4. Fourier transform infrared spectroscopy (FTIR) spectra of ZrO2−x nanoparticle obtained
by different gas mixture pressure

hydroxyl groups and fewer active sites for water adsorption, which leads to a decrease in the
intensity of the bands in this region. In other words, changes in the phase composition and
defect density directly affect the water absorption capacity of the nanopowders and are reflected
in the observed IR spectra.

Region 800–500 cm−1. The main bands correspond to vibrations of Zr–O bonds in different
phases of zirconium dioxide. For all samples, peaks are observed in the region of 500–750 cm−1,
characteristic of the tetragonal and monoclinic phases of ZrO2. Sample N30, containing 90%
of the tetragonal modification, demonstrates the highest bands, which is confirmed by a strict
understanding of the tetragonal structure. In sample N90, where the tetragonal phase is reduced
to 52%, a weakening of the characteristic bands and possible appearance of new signals are
observed, indicating a partial appearance of oxide in the monoclinic form. Sample N60 (75% of
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the tetragonal phase and 15% Zr3O) contains enhanced bands in the region of 600–650 cm−1,
which can be associated with the presence of oxygen-deficient Zr3O compounds and phenomena
associated with the presence of oxygen vacancies. The enhancement and small shifts of these
bands, especially in the samples with higher Zr3O content and predominant tetragonal phase,
indicate distortions of the oxygen sublattice. Such spectral features should be due to vibrations
of Zr–O bonds in the presence of oxygen vacancies and defect complexes formed under oxygen-
deficient synthesis conditions. Thus, combining the phase analysis (confirming the presence of
oxygen-deficient Zr3O phases) with the observed changes in the FTIR bands, we concluded that
the spectra reflect structural defects and oxygen vacancies in the material. Thus, the FTIR
analysis, confirmed by the phase composition of the samples, reveals the presence of hydroxyl
and carbonate groups on the surface of the nanoparticles and also indicates possible structural
defects and oxygen formations, especially in the samples with high Zr3O content.

The photoluminescence spectra of all three samples (N30, N60, N90) upon excitation at 280
nm demonstrate a similar structure: in the blue region (400–500 nm), a maximum is stably
recorded in the region of 443–446 nm, and in the green region (500–600 nm), a wide maximum
at about 515–520 nm. In the ultraviolet range (320–400 nm), comparatively weaker emission is
observed, and in the red zone (>600 nm), a smooth decreasing “tail” is formed.

Sample N30 (Fig. 5) is characterized by a pronounced blue band with a maximum at about
445 nm, smoothly turning into the green region with a maximum at ∼520 nm; the relative
contribution of the visible range within the spectrum itself prevails over the UV component,
which indicates the dominance of bandless recombination paths through defect centers [18].

Fig. 5. Photoluminescence spectra of ZrO2−x nanoparticles obtained at different pressures of the
gas mixture.
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The spectrum of sample N60 is generally identical in shape to samples N30/N90 (the same
maxima at ∼445 nm and ∼515 nm), while within the spectrum itself the UV component appears
somewhat more noticeable relative to the visible part, which gently hints at a larger share of
near-band transitions with an unchanged set of luminescence centers.

The spectrum of sample N90 also reproduces the general picture with maxima at ∼443–446
nm (blue zone) and ∼515 nm (green zone) and a smooth red tail; relative to its own UV part, it
is close to N30, but may demonstrate a slightly more pronounced short-wave contribution.

Taken together, this indicates that the main emitting centers of the samples are the same
(coinciding positions of the maxima in the blue and green regions), and the differences are
carefully expressed, quantitative in nature and concern mainly the internal shares of the UV and
visible components within each spectrum.

Comparative analysis of the impedance spectra, phase angle and specific conductivity of
three vacuum-arc synthesized ZrO2−x nanopowders (Figs/ 6, 7) — sample N30 (t-ZrO2 90%,
Zr2O 9%), sample N60 (t-ZrO2 75%, m-ZrO2 10%, Zr3O 15%) and sample N90 (t-ZrO2 52%,
m-ZrO2 45%, Zr3O 3%) — shows that the electrical response is determined by the balance of the
bulk conductivity of the tetragonal phase, the barrier properties of grain boundaries associated
primarily with the monoclinic component, and the presence of suboxide (quasi-metallic) Zr3O
bridges.

Fig. 6. Frequency dependence of the impedance modulus |Z|(f ) and phase (f ) of ZrO2−x nanopar-
ticles

At low frequencies, the absolute impedance modulus |Z| is maximum for the most heterophase
and "boundary-dominated" sample N60 (about 2.3·104 Ohm at 100 Hz), which reflects the high
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Fig. 7. Frequency dependence of the real (Z’) and imaginary (Z”) components of the impedance
of ZrO2−x nanoparticles

contribution of grain boundary resistance Rgb due to the significant proportion of m-ZrO2;
followed by sample N30 (1.4·104 Ohm at 100 Hz), which, despite the significant proportion
of the conducting phase Zr3O (9%), retains a noticeable barrier contribution and pronounced
polarization at the interfaces; the minimum |Z| is demonstrated by sample N90 (1.15·104 Ohm
at 100 Hz), where the high content of t-ZrO2 and moderate impurity of Zr3O form relatively
continuous transport paths. With increasing frequency, all three materials are characterized
by a decrease in Z′ and Z′′ (and, accordingly, |Z|), but the "speed" of the transition from the
intergranular-limited regime to the bulk regime differs: sample N90 switches to resistive behavior
the fastest (φ tends to 0◦ faster, noticeable "rectification" is already in the MHz range), sample
N30 is slower (it retains a more pronounced capacitive character and a "long tail" of dispersion),
sample N60 occupies an intermediate position.

The impedance phase confirms this picture: for sample N90 at low frequencies φ is about –46◦

(strong capacitive component due to Maxwell–Wagner interfacial polarization) [19–21], but with
increasing f φ rapidly increases (decreases in absolute value), which indicates the dominance of
Rbulk of the tetragonal matrix; for sample N60 φ starts less negative (about 35◦ at 100 Hz),
which is consistent with more "resistive" grain boundaries, but retains noticeable dispersion
effects wider in frequency, reflecting the heterogeneity of the contact areas of the t/m phases
and the statistics of the barriers; for sample N30 φ is close to –40 . . . –45◦ at low f, similar
to sample N90, but further evolution is less rapid due to competition: Zr3O accelerates the
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resistive response, while increased heterogeneity enhances the CPE behavior. The real part of
the specific conductivity σ′(ω) for all samples increases monotonically with frequency and is well
described by the Jonscher law σ(ω)=σdc+An: at low f σ′ is small and is determined primarily
by tunneling/activation through Rgb (boundaries control the transport), at high f bulk transport
in t-ZrO2 begins to dominate with the participation of oxygen vacancies and local states of
Zr3+, and a steeper rise in σ′ is observed for samples with Zr3O due to shunting paths. In
terms of conductivity ranking over the entire frequency range, sample N90 leads (the highest σ′),
followed by sample N30 (which is associated with increased Rgb) and sample N60 closes (high σ′

at high f due to 15% Zr3O, but more noticeable interfacial polarization at low f ). The imaginary
part of σ′′(ω) also increases with frequency and reflects dielectric losses: for sample N60 it is
relatively higher over a wide range due to the distribution of relaxation times, for sample N90
it is more quickly "displaced" by bulk conductivity, and for sample N30 a balance is formed
between interface losses and resistive shunting.

As a result, sample N90 is optimal for the transition to high-frequency bulk conductivity
(Fig. 8) (minimum losses and the least intergranular confinement), sample N60 exhibits the most
pronounced interfacial polarization and high barriers (the largest |Z| and the smallest σ′ at
low f), and sample N30 combines accelerated high-frequency transport (due to 9% Zr3O) with
preserved dispersion and CPE behavior due to structural heterogeneity.

Fig. 8. Frequency dependence of the real (σ′) and imaginary (σ′′) components of the conductivity
of ZrO2−x nanoparticles
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Thus, the study of the impedance characteristics of three zirconium dioxide nanopowders
synthesized under vacuum-arc discharge conditions showed that the electrical response of the
system is determined not only by the ratio of the phase components, but also by the synthesis
parameters, in particular, the gas pressure in the vacuum chamber. At reduced pressure, a more
reducing environment is formed, promoting the formation of Zr3O suboxide, which plays the
role of conducting shunts, reducing intergranular barriers and accelerating the transition to bulk
conductivity; this explains the increased Zr3O content and accelerated high-frequency response
in sample N30. On the contrary, at higher gas pressure, intense oxidation of particles in the
plasma and stabilization of the monoclinic modification occur, which leads to an increase in the
proportion of m-ZrO2 and an increase in the barrier properties of grain boundaries – characteristic
of sample N60, where the impedance was maximum and the conductivity was minimum. Further
increase in pressure (sample N90) ensures the predominance of the tetragonal phase with small
inclusions of suboxide, which leads to the formation of an optimal combination of phases: a high
proportion of t-ZrO2 provides effective volume transport, and a moderate admixture of Zr3O
creates additional transport paths without excessive heterogeneity. As a result, it was sample
N90 that demonstrated the lowest impedance over the entire frequency range, while sample
N60 showed a pronounced CPE behavior, and N30 occupied an intermediate position, where
low pressure enhanced the suboxide component and determined a combination of accelerated
high-frequency response with preserved polarization dispersion.

The study was carried out with the help of the grant of the Russian Science Foundation
no. 24-29-00374, https://rscf.ru/project/24-29-00374/.
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Аннотация. В работе представлены результаты исследования диэлектрических характеристик
нестабилизированного нанопорошка диоксида циркония (ZrO2−x), полученного методом вакуумно-
дугового осаждения при различных давлениях аргоно-кислородной плазмы. Проведён комплекс-
ный анализ фазового состава, морфологии, фотолюминесцентных свойств и импедансных характе-
ристик трёх образцов, различающихся по содержанию тетрагональной, моноклинной и субоксидной
фаз. Установлено, что электрический отклик материалов определяется взаимодействием объёмной
проводимости тетрагональной матрицы, барьерных эффектов межзеренных границ (особенно в
присутствии m-ZrO2) и шунтирующего влияния проводящей фазы Zr3O. Образец с наименьшим
содержанием тетрагональной фазы демонстрирует минимальный импеданс, тогда как наиболее
гетерофазный состав характеризуется выраженной межфазной поляризацией и высокими диэлек-
трическими потерями.

Ключевые слова: оксид циркония, вакуумная дуга, физическое осаждение из паровой фазы,
фазовая стабильность.
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Abstract. The results of numerical modeling of airflow and heat transfer in a horizontally oriented
single-row bundle consisting of six finned heated tubes under thermogravitational conditions are pre-
sented. The study is performed for the bundles with a compact tube arrangement and varying fin pitch.
The cases without and with the rectangular exhaust shafts of different heights installed above the bundle
have been investigated. For the most compact bundle configuration in the absence of a shaft in the con-
sidered range of moderate values of the Grashof number (up to 5.5×105), a good agreement was obtained
between the calculated integral Nusselt number at the tube surface and experimental data taken from
the literature. The combination of the fin pitch (spatial arrangement on the tubes) and the shaft height
determined in computations allowed to obtain the optimal bundle design with the highest intensity of
heat removal.
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Introduction
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dependability and cost-effectiveness [1]. The most commonly used heat exchangers consist of
tube bundles with external fins.

The intensity of heat transfer from the tube surfaces is influenced to a large extent by thermal
conditions and the geometric characteristics of the bundle, including its design as well as the
shape and positioning of the fins. The efficiency of heat exchangers can be noticeably enhanced
by placing an exhaust shaft above it, which leads to strengthening the flow adjacent to the
tube surfaces. The challenge of choosing the best finning configuration and tube arrangement in
bundles is always relevant due to the large range of technologies and operational conditions.

In recent decades, the long-dominant analytical approaches have been largely replaced by
experimental and numerical studies on the problem of horizontally oriented finned tubes in the
free convection mode using up-to-date methods and tools [1]. The related research has been
mainly focused on single tubes with different geometric configurations and thermal conditions.

A number of experimental studies were aimed at investigations of the influence of the diameter
of carrying tubes and fins, the number of fins, fin spacings and shapes, and the operating Rayleigh
number on integral heat transfer rate (see, for example, [2, 3]). Based on the measurement results,
generalized correlations have been proposed for calculating the mean Nusselt number depending
on the geometric parameters and the Rayleigh number. Only a few experiments have studied
features of local heat transfer in the inter-fin gaps with varying fin diameter, shape and spacing
[4, 5].

A series of thorough experimental studies were devoted to tube bundles consisting of industrial
finned tubes located in a free space (for example, [6–8] and links in them). The influence of the
temperature difference between the tube base and ambient air, the longitudinal and transversal
distances between tubes, the number of rows in the bundles, and the finning factor on the mean
Nusselt number was analyzed.

The results of relatively recent experimental investigations for tube bundles with different
numbers of rows and with an exhaust shaft are presented, in particular, in [9, 10]; the effects of
the Rayleigh number, inter-tube and inter-fin spacing, the finning factor and shaft height on the
mean Nusselt number and some local heat transfer characteristics were explored.

Numerical studies of free-convective heat transfer from a single horizontal finned tube have
become relatively widespread since the 2010s. The calculations were based mainly on simplified
spatial settings and stationary conditions; the values of the regime criteria and the geometric
parameters of the tubes and fins were varied in order to discover optimal design with the best
heat transfer properties [11–13].

The work [14] contains some key results of unsteady computations of laminar free convective
flow and heat transfer in a single-row tube bundle, performed at a modern level on fairly detailed
grids with varying transversal tube pitch and the temperature difference between the carrying
tube and ambient air, performed under conditions close to the experiments [8]. In addition
to comparison with the experiments on the mean Nusselt number, special attention has been
paid to local features of the velocity and temperature fields and their influence on the integral
characteristics.

The results of a numerical study of the influence of an exhaust shaft on the flow structure,
local and integral heat exchange during unsteady thermogravitational airflow through a double-
row bundle of finned tubes are given in [15]. Relevant experimental data on the values of the
mean Nusselt number have been obtained in [10], showing that the installation of the shaft entails
an increase in the intensity of heat removal up to three times.

Thus, numerical studies that systematically model the flow and heat transfer in tube bundles
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with an emphasis on subtle local effects with a joint assessment of the influence on processes of
such parameters as the inter-fin distance, thermal conditions, and the presence of an exhaust
shaft of different heights above the bundle are very limited.

The present paper is focused on investigations of thermogravitational airflow near a horizontal
single-row tube bundle consisting of six heated finned tubes at moderate values of the Grashof
number (up to 5.5×105). Numerical modeling of the airflow and heat transfer is carried out for
the cases with different geometrical configurations of the tube bundles (various fin pitches) and
different heights of a rectangular exhaust shaft that was installed above the bundles. For the
case without a shaft and with the most compact configuration of the bundles, the comparison
with experimental data [8] on integral heat transfer rate in the considered range of the Grashof
number values is performed.

1. Problem formulation and computational aspects

1.1. Geometrical model

The computational domain for the problem examined is presented in Fig. 1a,b. The single-
row tube bundle consists of six horizontally oriented identical tubes. It is assumed that the
bundle is unlimited in the axial direction, and the flow is periodic in the z-direction with the fin
pitch. Additionally, the flow is considered symmetrical with respect to the middle plane of the
inter-fin gap.

Fig. 1. The computational domain shown in two planes: a) z = Const and b) x = Const; the
cases with different geometrical configurations of the tube bundle, variable parameter: c) the fin
pitch (s/D) and d) the shaft height (H/D)

The following geometrical parameters of the tube bundle were set. The external diameter
of the carrying tube was equal to d = 26.4 mm, the diameter of the solid aluminum fins was
D = 2.15d, the transversal distance between tubes S corresponded to the dimensionless parameter
σ = S/D = 1.02, and the fin thickness δ = 0.01D. The fin pitch along the tube s was varied from
s0 = 0.04D (the most compact configuration of the bundle) to 0.13D (Fig. 1c). Calculations with
different tube bundle fashions were carried out both for the cases with a rectangular exhaust shaft
installed above the bundle (the height H was equal to 4.5D and 9D) and for the cases without
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a shaft (H = 0). Schemes of the computational domain for the cases with different values of H
are shown in Fig. 1d. The shaft contains a plane wall (barrier) located above the tubes with the
numbers n = 2 and n = 3 (n is counted from the bundle side) to prevent the large-scale upward
airflow.

The computational setup includes a side plate that is located near the bundle and prevents
global airflow movement in the x-direction (Fig. 1d, case H = 0). The width and the height of
the plate were about D × 0.09D. The boundaries far from the tube bundle are located at least
at a distance of 6D from the bundle and the shaft.

Note that the geometrical configuration with the most dense arrangement of the fins (s = s0)
without a shaft is close to that considered in the experimental research [8].

1.2. Boundary conditions

The following conditions were set for the problem at the boundaries of the computational
domain. The boundaries far from the tube bundle were open; the ambient air temperature was
imposed to T0 = 22.1◦C on them. The temperature of the tube base, Tw, was assumed to be
constant and varied from 37 to 244◦C. The corresponding values of the relative temperature
difference (the buoyancy parameter) εT = (Tw – T0)/T0 varied from 0.05 to 0.7. The values of
buoyancy velocity estimated as Vb = (gεT d)0.5 were in the range 12 . . . 44 cm/s. The values of
the Grashof number Gr = (ρVbd/µ )2 varied from 3.7×104 to 5.5×105, and the dynamic viscosity
µ and density ρ of air were taken at the ambient temperature T0. The values of the Rayleigh
number Ra = Gr·Pr were in the range of 2.6×104 to 3.9×105, and the Prandtl number was
Pr = 0.7. The given values indicate that the airflow near the tube bundle was laminar.

The side plate and the shaft with the barrier (Fig. 1d) were considered to be thermally
insulated; at these boundaries the no-slip conditions were set.

1.3. Mathematical model and computational aspects

The numerical simulation is carried out on the basis of the Navier–Stokes system of governing
equations, written for a perfect viscous gas with variable physical properties. The problem was
solved in a conjugate formulation: heat transfer along the fins of the tubes was calculated together
with the flow.

The unstructured grids consist of hexahedral elements that clustered to the wall surfaces were
used. The size of the grids was varied from 140 (H = 0) to 300 (H = 9D) thousand cells. Auto-
matic generation of computational grids for the cases with various geometrical parameters was
organized using ANSYS Meshing. Computations have been performed using the CFD package
ANSYS Fluent. The spatial discretization was done with the second-order upwind scheme for
convective terms, and also the second-order pressure interpolation method was assigned.

The second-order implicit time integration scheme was applied. The time step was equal to
0.02 s, and it was chosen to provide the values of the Courant number less than 1. The duration
of the processed sample, related to the statistically steady flow regime, was about 120 s, which
for all the cases provided at least 540 characteristic times, estimated as ts = d/Vb.
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2. Results and discussion

2.1. Airflow structure inside the tube bundle: influence of the fin spac-
ing

Typical airflow structure that forms near the tube bundle is shown in Fig. 2a using visual-
izations of the dimensionless velocity V /Vb and temperature T ∗ = (T – T0)/(Tw – T0) fields in
the middle section of the inter-fin space for the most compact geometrical configuration (s = s0)
and at εT = 0.7 (Gr = 5.5×105). Note that for all the cases considered, the flow near the
tube bundle is significantly unsteady. The thermal plume formed above the bundle periodically
(approximately once every half of the time period, ts) detached from the surface of the tubes.
The fields and integral characteristics of heat transfer presented and discussed in the paper are
averaged in time.

Under the action of buoyancy forces, the air below the bundle moves towards the heated
tubes with area-averaged velocity values of about Vin = 0.09Vb (the corresponding value of the
Reynolds number Re = ρVind/µ = 68), passes through the inter-fin space of the tubes, where
the values of velocity locally reach 0.4Vb, and the inter-tube gap with the higher values of about
1.2Vb. Above the tube bundle, the area of the increased velocity and temperature values take
place, reflecting the presence of the thermal plume. In the inter-fin space, the temperature field
is almost uniform.

Fig. 2. Distributions of velocity magnitude (left column) and temperature (middle column) in
the plane passing through the middle section of the inter-fin space and the local Nusselt number
at the wall surface for n = 3 (right column) for the cases with different fin spacing s/D: a) 0.04,
b) 0.09 and c) 0.13, for all the cases — εT = 0.7, H = 0

In the absence of a shaft, increasing the fin pitch by two times or more noticeably intensifies
the airflow in the tube bundle and above it (Fig. 2). For the case with increased fin pitch,
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the values of velocity in the bundle are comparable with buoyancy velocity. The Reynolds
number for the case with s/D = 0.09 is equal to Re = 240 (Vin = 0.33Vb), and for the case with
s/D = 0.13− Re = 305 (Vin = 0.41Vb). The temperature field in the tube bundle has become
spatially non-uniform.

2.2. Heat transfer parameters of the tubes: influence of the fin spacing

The distributions of a local Nusselt number Nuloc = qw,loc d /λ (Ts − T0) at the surface of
the fins are presented in Fig. 2 (right column) for the cases with different fin spacing and at
εT = 0.7. In this formula, qw,loc is the local heat flux, Ts is the local fin surface temperature, and
the thermal conductivity coefficient was calculated based on the ambient temperature (the value
of λ = 0.0261 W/(mK) was taken). In the absence of a shaft, very low efficiency of the fin surface
takes place for the case with the most compact configuration (Fig. 2a): heat removal is realized
mainly from the periphery of the fins (indicated by dashed lines), and the contribution of their
inner part is relatively small. The low efficiency occurs due to uniform temperature distribution
in the inter-fin space.

With an increase in the inter-fin pitch, the values of the local Nusselt number are also increased
noticeably (Fig. 2). The integral (averaged over the tube bundle surfaces) values of the Nusselt
number <Nu> related to the value of s/s0 for the cases with different fin pitch and values of the
buoyancy parameter are shown in Fig. 3a. It has been established that by varying the fin pitch,
it is possible to escalate the effective heat transfer from the tube bundle surface by more than two
times compared to the configuration with the largest number of the fins. The optimal (among
those considered) fin pitch with the maximum value of the effective Nusselt number depends on
the buoyancy parameter, and it is observed for the cases with s/D = 0.09 at 0.2 6 εT 6 0.7 and
for the case with s/D = 0.11 at a fixed εT = 0.05.

Fig. 3. a) The effective Nusselt number for the cases with different fin spacing at H = 0,
b) comparison of computational and experimental [8] data on Nun values dependent on the
Grashof number, the case with s/D = 0.04, H = 0

For the case without a shaft and with the most compact configuration of the tube bundle, the
comparison with experimental data available from the literature [8] has been performed. Fig. 3b
presents the experimental (for the tube with n = 3) and computational (indicated as "CFD")
data of the Nusselt number Nun = <qw,n> d /λ (Tw – T0), where <qw,n> is the mean heat flux
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over the surface of tube n. CFD data plotted in the range of Nun values for the tubes with the
numbers n = 1, 2 and 3.

The values of dimensionless heat transfer obtained in calculations, averaged over the surface
of the middle tube of the bundle, are in good agreement with the experimental data in the
examined range of the Grashof number. Computations show that for the side tube (with n = 1),
the value of Nun is noticeably lower than for the central tube (with n = 3); maximum differences
in Nun values are detected for the case with εT = 0.7 and reach 24%.

2.3. Effects of the shaft height

In the presence of the shaft, the airflow through the bundle is significantly more intense in
the region above the bundle, as expected, and less concentrated near the symmetry boundary.
The flow distribution for the case with s = s0 is presented in Fig. 4a,b for H/D = 4.5 and
9, correspondingly. The volume flow rate under the bundle increases with the growth of the
H/D ratio, and it corresponds to the values of the Reynolds number Re = 260, Vin = 0.35Vb
(H/D = 4.5), and Re = 440, Vin = 0.6Vb (H/D = 9). The maximum values of the velocity in
the tube bundle significantly exceed Vb.

Fig. 4. a,b) Distributions of the velocity magnitude in the plane passing through the middle
section and c,d) the local Nusselt number at the wall surface for n = 3 for the cases with
different shaft height H/D: a,c) 4.5, b,d) 9, for all the cases – s = s0, εT = 0.7

Figs. 4c,d show the distributions of the local Nusselt number (Nuloc) over the surface of the
fin (for the tube with n = 3), calculated for the cases with different H/D ratios. The area of
the fin with Nuloc > 1 (indicated by the dashed line) significantly increases with increasing the
height of the shaft. The values of the mean effective Nusselt number for the cases with different
heights of the shaft and by varying the buoyancy parameter are presented in Fig. 5.

The effective Nusselt number for the most compact bundle increases by about three times for
the case with the shaft height of H/D = 4.5 and by six times for the case with H/D = 9. For the
optimal fin pitch (s/D = 0.09), the shaft encourages the Nu number to increase by two times for
the case with H/D = 9 and by one and a half for the case with H/D = 4.5. A further increase
in fin pitch leads to a relatively small effect of the shaft: shaft installation whose height is 10
times greater than the diameter of the fins leads to an increase in the Nusselt number by only
1.5 times. Data on the effective Nusselt number for the cases with the shaft demonstrates that
the most compact configuration with the densest arrangement of the fins becomes well suited for
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Fig. 5. The mean effective Nusselt number for the cases with different shaft height and fin
spacing; the buoyancy parameter εT : a) 0.05, b) 0.2 and c) 0.7

the shaft with the height H/D > 9. Among the considered cases, the optimal value of the fin
pitch is s/D = 0.09, since it provides the highest level of heat removal in a wide range of values
of the buoyancy parameter εT and shaft height H.

Conclusion

Numerical modeling of the airflow and heat transfer in the single-row bundle of heated finned
tubes under the action of free convective forces was carried out. The cases without and with the
shaft installation above the tube bundle were considered.

The validation of the methods and tools used was performed for the case with the most
compact tube bundle configuration: good agreement was obtained between the calculated average
heat transfer from the surface of the tube and the experimental data available from the literature
in the considered range of the buoyancy parameter (or the Grashof number).

In the absence of a shaft, the flow movement through the bundle with dense tube location is
characterized by a relatively low level of velocity fields comparable with the values of buoyancy
velocity. The compact tube bundle configuration provided a low level of the effective Nusselt
number. The configuration with optimal fin pitch provides the highest values of airflow velocity
and the effective Nusselt number.

In order to intensify significantly free convective airflow in the tube bundle, installation of the
exhaust shaft could be used. The mean effective Nusselt number for the most compact bundle
was greatly increased by increasing the shaft height. The customized combination of the fin
pitch (spatial occupancy of the bundle) and the shaft height led to the optimal tube bundle
configuration with the highest level of heat removal.

The study was supported by the Russian Science Foundation, grant no. 24-49-10003. Calcu-
lations were carried out using computational resources of Peter the Great St. Petersburg Poly-
technic University Supercomputing Center (https://scc.spbstu.ru).
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Аннотация. Представлены результаты численного моделирования термогравитационного течения
воздуха и теплообмена в горизонтальном однорядном пучке из шести оребренных нагретых труб.
Расчеты выполнены для пучка с тесным расположением труб при варьировании шага оребрения.
Рассмотрены постановки задач с установленной над пучком вытяжной шахтой прямоугольного
сечения разной высоты и без шахты. Для наиболее сжатого пучка без шахты получено хорошее
согласие рассчитанного интегрального числа Нуссельта на поверхности несущей трубы с доступны-
ми из литературы данными экспериментов в рассмотренном диапазоне умеренных значений числа
Грасгофа (до 5.5×105). Сочетание шага ребер (пространственного расположения на трубах) и вы-
соты шахты позволяет получить оптимальную конфигурацию пучка с наибольшей интенсивностью
отвода тепла.

Ключевые слова: воздушное охлаждение, теплообменные аппараты, трубные пучки, оребренные
трубы, межреберное расстояние, вытяжная шахта, термогравитационная конвекция, численное мо-
делирование.
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Abstract. This paper investigates the reduction of boron oxide deposited by vacuum thermal evap-
oration on aluminum and samarium surfaces using optical methods of Raman spectroscopy (RS) and
spectral ellipsometry. Raman peaks corresponding to vibrations of β-rhombohedral boron (β-B).were de-
tected in the spectra of these samples. Spectral ellipsometry was used to determine the optical constants
and thickness of the nanoscale boron film in the spectral range from 270 nm to 1000 nm.
Keywords: thin film ellipsometry, Cauchy formula, boron oxide reduction.
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To obtain the Raman spectra, a Confotec MR200 Raman microscope (SOL Instruments)
with excitation wavelength of 532 nm was used. Measurements were performed by 40x objective
with a focal length of 0.63 mm. Ellipsometric studies were carried out on a SPEL-7LED spec-
tral automatic ellipsometer (Russia, Fryazino) in the spectral range from 270 nm to 1000 nm
(1.24–2.4 eV, incidence angle φ=70◦) [1, 2]. A boron oxide film B2O3 was deposited on a polished
mirror surface of aluminum using the vacuum thermal evaporation method on a VUP-5M unit
(Fig. 1).

Ellipsometric measurements of the surface showed that thickness of the obtained B2O3 layer
on the aluminum substrate is 530–533 nm (Fig. 2). Fig. 2 shows the experimental and theoretical
spectra of the ellipsometric angles ∆ and Ψ. It turned out that experimental data are best
described by spectra corresponding to a two-layer model containing an aluminum substrate and
layers of aluminum and boron oxides. In this case, the optical data of the substrate (metal) were
taken from [3], the parameters of the natural oxide film of Al2O3 were taken from the standard
library of the SPEL program, and the dispersion of the optical parameters of the upper boron

∗n168@mail.ru https://orcid.org/0000-0002-4976-1295
c⃝ Siberian Federal University. All rights reserved
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oxide layer was selected using the Cauchy formula [4]:

nfilm.2(λ) = nm + b2/(1/λ2 – 1/λ2m) (1)

kfilm.2(λ) = km + c2/(1/λ2 – 1/λ2m) (2)

where, nm =1.355 and km =0.007 are the refractive index and absorption coefficient at a wave-
length of λm =550 nm, the dd parameter, which introduces correction for the inhomogeneity of
thickness of the sample upper film, was equal to 3. The thickness of the natural oxide film on
the aluminum surface was 6–7 nm. The refractive index of the sputtered boron oxide turned out
to be slightly lower (1.35) than that of a pure bulk B2O3 sample, whose refractive index at a
wavelength of λ=500 nm usually varies in the range of 1.4–1.46. This fact is explained by the
hydration processes of the deposited film due to the absorption of water from the air after the
sample is extracted from the deposition chamber.

Fig. 1. Scheme of boron oxide deposition on polycrystalline aluminum and samarium using the
VUP-5M installation (residual pressure in the chamber is P= 2·10-4 Pa)

Fig. 2. Model and experimental curves of ellipsometric angles ∆ and Ψ of the Al sample surface
after deposition of boron oxide

After deposition, the sample was annealed in a vacuum furnace in an argon atmosphere
(pressure P = 182 kPa) at a temperature of 630◦C for one hour. At a temperature of 480◦C, the
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boron oxide melted, and upon further heating, a reduction reaction of boron oxide by aluminum
occurred on the aluminum surface.

The spectral dependencies of the angles ∆ and Ψ, measured on the surface of the sample with
an aluminum substrate after annealing in argon, are presented in Fig. 3. As can be seen, the total
film thickness has significantly decreased. The experimental dependencies are also described by
a model curve for a two-layer structure. In this case, the optical parameters of the bottom layer
correspond to an aluminum oxide film with a thickness of approximately 12–13 nm. The top
layer corresponds to the optical data of a pure polycrystalline boron film of similar thickness
(10–13 nm). The spectra of the optical constants of pure boron used for modeling this structure
were obtained by us earlier on a bulk polycrystalline sample [5].

Fig. 3. Model and experimental curves of ellipsometric angles ∆ and Ψ of the sample surface
after annealing in argon at temperature of 630◦C for 60 minutes

Fig. 4 shows the Raman spectra detected on the surface of the sample (the substrate is bulk
aluminum). The spectra of this sample contain Raman peaks at frequencies of 186, 349, 532,
570, 995, 1098, and 1210 cm–1, which, according to the literature [6], correspond to vibrations
of β-rhombohedral boron (β-B), as well as carbon peaks at frequencies of 1350 and 1615 cm–1,
which are also detected in the spectrum of the aluminum substrate. Moreover, compared to the
substrate, at some points on the coating surface the peak at 1350 cm–1 becomes sharply narrowed
and highly intense, indicating a higher degree of carbon ordering.

In the spectra of the bulk aluminum substrate, recorded on the uncoated area of the film
sample, numerous Raman scattering peaks were found at frequencies of 338, 405, 488, 565, 656,
747, 822, 909, 1010, 1095 cm–1, which can be attributed to vibrations of Al-O bonds in AlO4

tetrahedra and AlO6 octahedra [7–9]. These peaks are also detected on the coating surface,
which may indicate the presence of aluminum oxides on the coating surface (or suggest that the
boron coating is too thin, causing the laser to also capture subsurface signals from the aluminum
oxide of the substrate during focusing).

Thus, under annealing conditions in an inert atmosphere, a thin semi-transparent film of
reduced boron is formed from the boron oxide film via aluminothermy.

The possibility of boron reduction from the oxide film was also demonstrated on a substrate
made of samarium, a metal that is more chemically active than aluminum. As in the previous
case, the polycrystalline samarium substrate had a polished, mirror-like surface. Deposition of the
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Fig. 4. Raman spectra detected on the surface of the sample (substrate - massive aluminum)

boron oxide (B2O3) film was carried out in the same installation (VUP-5M) using an analogous
amount of boron oxide charge and the same distance from the substrate to the evaporator (Fig. 1).

According to Raman spectroscopy data (Fig. 5), the spectra of this sample, in addition to
peaks from the samarium substrate, exhibits the following Raman peaks: a peak at 599 cm–1

corresponding to vibrations of icosahedral boron atoms near oxygen atoms (B(3)-O); a peak at
953 cm–1 corresponding to B2O3 vibrations; and peaks at 715, 1126, and 1250 cm–1, which,
according to literature data [6], correspond to vibrations of β-rhombohedral boron (β-B).

Fig. 5. Raman spectra detected on the sample surface (substrate – massive samarium)

Thus, the methodological conditions for obtaining nanoscale boron films from a vacuum-
deposited boron oxide film using a substrate made of a chemically active metal are demonstrated.

The work was carried out in accordance with the state assignment of the Institute of Solid State
Chemistry of the Russian Academy of Sciences (Ural Branch) (Registration no. 124020600007-8).
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Аннотация. В данной работе оптическими методами спектроскопии комбинационного рассеяния
(КРС), спектральной эллипсометрии исследован процесс восстановления оксида бора, нанесенно-
го вакуумным термическим испарением на поверхности алюминия и самария. По данным КРС
на спектрах данных образцов обнаружены рамановские пики, соответствующие колебаниям β-
ромбоэдрического бора (β-B). Методом спектральной эллипсометрии определены оптические по-
стоянные и толщина наноразмерной пленки бора в диапазоне спектра от 270 до 1000 нм.

Ключевые слова: эллипсометрия тонких пленок, формула Коши, восстановление оксида бора.
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Abstract. We prove that the irreducible components of the infinite series of stable rank 2 vector
bundles on complex three-dimensional projectice space with odd determinant, constructed in 2019 by
A. S. Tikhomirov, S. A. Tikhomirov, and D. A. Vasiliev, always have a dimension higher than the dimen-
sion predicted by the deformation theory.
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Introduction

Over the past decade, the studies on the number-theoretic properties of sheaves, bundles, their
invariants and components in moduli spaces have formed an independent field of interest. Below,
we give an overview of the studies in this field. In [1], the authors study the number-theoretic
properties of the irreducible Ein components of stable bundles with even determinant. In [2],
the authors obtain the formulas for the dimensions of these components for the cases of even
and odd determinants. In [3], these properties are studied for the bundles whose isomorphism
classes form Ein components. In this study, the authors present the explicit formulas for the
spectra of modified instanton bundles introduced by C. Almeida, M. Jardim, A. S. Tikhomirov,
and S. A.Tikhomirov in 2021 in [4] and the formulas for the dimensions of the moduli spaces of
these bundles. In [5], the authors give formulas for finding the exact number of the two types
of irreducible Vedernikov components of stable bundles with an even determinant. Moreover,
the authors find a criterion for the existence of these components for an arbitrary second Chern
class c2 = n. In [6], the author constructs an infinite series of irreducible components of the
moduli space of stable rank 3 sheaves on P3 with an even determinant, proves the rationality of
the components of this series, and gives the formulas for their dimensions for an arbitrary value
of the first Chern class. In [7], the authors construct an infinite series of smooth irreducible
components of the moduli space of symplectic vector bundles of arbitrary even rank 2r, (r > 1)
and, as a special case, they obtain an infinite series of irreducible components of the moduli space
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†satikhomirov@mail.ru https://orcid.org/0000-0002-7409-8464
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of rank 2 stable bundles on P3. We note that the formulas for the second Chern class of the
bundles in this series are polynomial expressions in an increasing number of integer parameters.

Furthermore, in [8], the authors consider the moduli space of semistable reflexive rank 2
sheaves of on P3 and prove the uniqueness of irreducible components of the two infinite series
constructed by M. Jardim, D. G. Markushevich, and A. S.Tikhomirov in 2017 for the case of an
even determinant in [9] and by C.Almeida, M. Jardim, and A. S. Tikhomirov in 2022 for the case
of an odd determinant in [10]. Finally, in [11] and [12], the authors construct four more infinite
series of irreducible components of the moduli space of semistable reflexive rank 2 sheaves on
P3. They study these series from the number-theoretical point of view, two of them for the case
of an even determinant and another two for the case of an odd determinant. We note that the
components of the series constructed in the four articles mentioned in this paragraph have the
dimensions predicted by the deformation theory.

In [13], the authors construct two series of irreducible, rational components of the moduli
space of stable reflexive rank 2 sheaves on P3, one series for the even and one for the odd determi-
nant, and present formulas for the dimensions of these components. In [14], the authors presented
a full classification stable rank 2 bundles on P3 with odd determinant, second Chern class c2 6 8

and positive minimal monads based on their spectra, a key number-theoretic characteristics of
bundles.

The dimensions of the components constituted by the equivalence (isomorphism) classes of
various kinds of sheaves are of particular interest within the number-theoretic study framework.
Sometimes researchers manage to establish explicit formulas for these dimensions, or show that
these dimensions coincide with those predicted by the deformation theory. But this is not
always the case. For example, in [15], L. Ein constructed two series of components of stable
rank 2 bundles on P3, one for the case of an even determinant, and another for the case of an
odd determinant. Yet, he did not present any formulas for computing the dimensions of these
components, later called the "Ein components" (see [1] and later works of the authors). This
problem remained open until 2019, when in [2] the authors presented the explicit formula for
computing these dimensions together with the lists of the Ein components for certain ranges of
values of the second Chern class containing the dimensions of the components.

At the present moment for the majority of the cases of the components of the infinite series
constructed by various authors there is no clear understanding of how the dimensions of these
components relate to the dimensions predicted by the deformation theory.

Recall that for the case of stable rank 2 bundles on P3 with an even determinant, the famous
mathematical instanton components have the expected dimension (see [16, 17]). In contrast, for
stable rank 2 bundles on P3 with an odd determinant, the question of how the dimensions of
the components of the known infinite series relate to the expected dimensions has never been
posed in the publications available, even when the authors managed to obtain specific formulas
for these dimensions.

At the same time, it is traditionally believed that questions related to the "geography",
i.e. the location and geometry of the components of sheaves of various kinds, play crucial
role in the study of their moduli spaces [18], with the dimension being both a numerical and
geometric characteristic of a component. Moreover, when exploring the geography of components,
searching for new components, or studying the relationships between certain components, the
fact that their dimensions coincide or not coincide can indicate the same relationship between
the components themselves. In particular, it was precisely the coincidence of the dimensions
of the Vedernikov components with the dimensions of a subfamily of Ein components of stable
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rank 2 bundles on P3, first discovered via computational experiment, that led to the guess about
the coincidence of these components themselves, which later received a rigorous proof in [5].
Similarly, studying dimensions with other characteristics, made it possible to discover and prove
the fact that the Hartshorne families are an infinite series of components, which is a subset of
the Ein components [3].

In [19], the authors constructed an infinite series of stable rank 2 bundles on P3 with odd de-
terminant. The present study is focused on the question of how the dimensions of the components
of these series are related to expected (i.e., predicted by the deformation theory) dimensions.

1. Results

By Z+ = {1, 2, 3, . . .} denote the set of positive integers. Let

n = 4m+ 2ε+ a(a+ 1), where m ∈ Z+, ε ∈ {0, 1} and a > 2(m+ ε) + 3. (1)

In [19, Theorem 2], the authors prove the existence an irreducible family of stable vector
bundles Mn = Mn(a,m, ε). Its dimension is given by

dimMn(a,m, ε) = 4

(
a+ 3

3

)
+ 2

(
a+ 3

2

)
− (2m+ ε)(2a− 19)− 17. (2)

The expected dimension of Mn(a,m, ε) is

dim0 Mn(a,m, ε) = 8n− 5. (3)

The authors also pointed out that the closure of such a family in the Gieseker–Maruyama
moduli scheme B(−1, n) of stable rank 2 bundles with odd determinant and second Chern class
c2 = n > 1 on P3 is a component, and the set Σ1 of such components is an infinite series, different
from all previously known.

Computational experiment conducted for 100 pairs of values of a and m for ε = 0 and for 100
pairs of values a and m for ε = 1 shows that the dimension of Mn(a,m, ε) given by (2) is always
greater than its expected dimension given by (3). As an example, we present the computed
dimensions of Mn(a,m, ε) for a few small values of a and m for ε = 0 and ε = 1 in Tab. 1.

Table 1. dimMn(a,m, ε) and dim0 Mn(a,m, ε) computed for small values of a and m

a m ε dimMn dim0 Mn a m ε dimMn dim0 Mn

5 1 0 281 267 7 1 1 568 491
6 1 0 405 363 8 1 1 762 619
7 1 0 563 475 9 1 1 998 763
7 2 0 573 507 9 2 1 1000 795
8 1 0 759 603 10 1 1 1280 923
8 2 0 765 635 10 2 1 1278 955
9 1 0 997 747 11 1 1 1612 1099
9 2 0 999 779 11 2 1 1606 1131
9 3 0 1001 811 11 3 1 1600 1163

10 1 0 1281 907 12 1 1 1998 1291

Computational experiment conducted for 100 pairs of values of a and m for ε = 0 and for 100
pairs of values a and m for ε = 1 shows that the dimension of Mn(a,m, ε) given by (2) is always
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greater than its expected dimension given by (3). As an example, we present the computed
dimensions of Mn(a,m, ε) for a few small values of a and m for ε = 0 and ε = 1 in Tab. 1.

This observation has led us to the conjecture stated in the following theorem which we were
able to prove.

Theorem 1.1. For n, m, ε and a satisfying (1), the inequality

dimMn(a,m, ε) > dim0 Mn(a,m, ε)

holds, where the dimension dimMn(a,m, ε) and the expected dimension dim0 Mn(a,m, ε) are
given by (2) and (3), respectively.

Proof. Consider the difference

dimMn(a,m, ε)− dim0 Mn(a,m, ε) =
2

3
a3 − 3a2 +

13

3
a− 2εa− 4ma+ 3ε+ 6m− 2.

It is easy to see that

dimMn(a,m, ε)− dim0 Mn(a,m, ε) =
1

3
(a2 − 3a− 3ε− 6m+ 2)(2a− 3). (4)

We also note that (1) implies that a > 5 which, in turn, yields 2a − 3 > 0. Consequently, the
right-hand side of (4) is positive whenever

F (a,m, ε) = a2 − 3a− 3ε− 6m+ 2

is positive.
We now show that F (a,m, ε) > 0 for ε = 0 and for ε = 1.
Let ε = 0. Then F (a,m, 0) = a2−3a−6m+2. The roots of the equation a2−3a−6m+2 = 0

are

a1,2 =
3±

√
24m+ 1

2
.

Note that, for ε = 0, the last inequality in (1) is a > 2m+ 3. We show that this yields

a >
3 +

√
24m+ 1

2
.

In other words, we need to show that

2m+ 3 >
3 +

√
24m+ 1

2
,

or
4m+ 3 >

√
24m+ 1. (5)

Note that 4m+ 3 > 0 and 24m+ 1 > 0 since m > 1. Square both sides of (5) to get

16m2 + 24m+ 9 > 24m+ 1, or 16m2 + 8 > 0,

which is true for any real m.
Thus, if a > 2m + 3 then a is greater than the larger root of the quadratic polynomial

F (a,m, 0) with respect to a. Since the leading coefficient of F (a,m, 0) is positive, the graph of
F (a,m, 0) for any fixed m is a parabola that opens upward. This means that F (a,m, 0) > 0 for
any fixed m > 1 and a > 2m+ 3 which completes the proof for the case ε = 0.
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Now consider the case ε = 1 and use similar argument. We have F (a,m, 1) = a2−3a−6m−1,
and the equation a2 − 3a− 6m− 1 = 0 has the roots

a1,2 =
3±

√
24m+ 13

2
.

Note that, for ε = 1, the last inequality in (1) is a > 2m+ 5. We show that this yields

a >
3 +

√
24m+ 13

2
.

In other words, we need to show that

2m+ 5 >
3 +

√
24m+ 13

2
,

or
4m+ 7 >

√
24m+ 13. (6)

Note that 4m+ 7 > 0 and 24m+ 13 > 0 since m > 1. Square both sides of (6) to get

16m2 + 56m+ 49 > 24m+ 13, or 16(m+ 1)2 + 20 > 0,

which is true for any real m.
Thus, if a > 2m + 5 then a is greater than the larger root of the quadratic polynomial

F (a,m, 1) with respect to a. Since the leading coefficient of F (a,m, 1) is positive, the graph of
F (a,m, 1) for any fixed m is a parabola that opens upward. This means that F (a,m, 1) > 0 for
any fixed m > 1 and a > 2m+ 5 which completes the proof for the case ε = 1.

We conclude our note by extending the results obtained in [19], as the theorem below imme-
diately follows from Theorem 2.1.

Theorem 1.2. The components of the series Σ1 of stable rank 2 vector bundles with odd de-
terminant on P3 constructed in [19, Theorem 2] always have a dimension higher than the one
predicted by the deformation theory.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation (Agreement no. 075-02-2025-1790).
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О размерностях компонент стабильных расслоений
ранга 2 с нечетным детерминантом на P3

Алексей А. Кытманов
Институт перспективных технологий и промышленного программирования

МИРЭА — Российский технологический университет
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Сергей А. Тихомиров

Ярославский государственный педагогический университет им. К. Д. Ушинского
Ярославль, Российская Федерация

Аннотация. В работе доказывается утверждение о том, что неприводимые компоненты бесконеч-
ной серии стабильных расслоений ранга 2 с нечетным детерминантом на комплексном трехмер-
ном проективном пространстве, построенной в 2019 году А. С. Тихомировым, С. А. Тихомировым и
Д. А. Васильевым, всегда имеют размерность выше ожидаемой по теории деформаций.

Ключевые слова: векторные расслоения, пучки, пространство модулей, размерности компонент.
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Abstract. This paper investigates incomplete R-function expansion formulae from a fractional calculus
perspective. We reveal the underlying links between fractional calculus operators and incomplete R-
functions through rigorous mathematical computation and analysis. Through the taking advantage of
the Leibniz formula within fractional differentiation, our goal is towards acquire new expansion formulae
that provide new perspectives on the characteristics and behavior of these functions. The findings of
this investigation creates new directions regarding the study of fractional calculus image formulas with
incomplete R-functions and new ways to advance scientific understanding. As a particular illustration to
demonstrate our main findings, expansion formulas for additional special functions as well as incomplete
functions are derived.
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1. Overview and initial investigations

It’s been noted that in the fields of astrophysics and heat conduction, there are situations
where the usual divisions of special functions aren’t enough to solve the problem. To tackle this,
researchers have turned to incomplete gamma functions and their extensions. Lately, there’s
been exploration into incomplete hypergeometric functions [25], incomplete Wright functions
[18], incomplete H-functions [27], incomplete I-functions [10], incomplete Y -functions [12] and
various other unconventional functions using incomplete gamma functions. The most recent work
[2, 3, 20] and [21] contains more uses for incomplete special functions. Additionally, the authors
in [8] have introduced a new set of incomplete special functions called incomplete R-functions
and highlighted their unique properties. From a fractional calculus perspective, incomplete R-
function expansion formulas are investigated in this study.

To begin with of this, we keep in mind the more common incomplete gamma functions γ(ω, x)
as well Γ(ω, x), which are provided as:

γ(ω, x) =

∫ x

0

tω−1e−tdt (ℜ(ω) > 0, x > 0), (1)
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and

Γ(ω, x) =

∫ ∞

x

tω−1e−tdt (x > 0;ℜ(ω) > 0 when x = 0). (2)

When we decide to x = 0 in (2), it becomes the well-known gamma function. Moreover, defintions
(1) and (2) readily yeild to following decompostion formula:

γ(ω, x) + Γ(ω, x) = Γ(ω) (ℜ(ω) > 0). (3)

The incomplete R-functions corresponding to Rathie’s R-function in relation to the incomplete
gamma functions are characterized in the following manner, in accordance with Gupta and
Purohit [8]:

α, β
ε, δ γ

m, n
p, q (z) = α, β

ε, δ γ
m, n
p, q

[
z

∣∣∣∣∣ (u1,U1, x), (u2,U2), · · · , (up,Up)

(v1,V1), · · · , (vq,Vq)

]
=

=
1

2πi

∫
L

g(s, x)

(α+ βs)ε+δs
z−s ds,

(4)

where

g(s, x) =

γ(1− u1 − U1s, x)
m∏
j=1

Γ(vj +Vjs)
n∏

j=2

Γ(1− uj − Ujs)

q∏
j=m+1

Γ(1− vj −Vjs)
p∏

j=n+1

Γ(uj + Ujs)

, (5)

and

α, β
ε, δ Γ

m, n
p, q (z) = α, β

ε, δ Γ
m, n
p, q

[
z

∣∣∣∣∣ (u1,U1, x), (u2,U2), · · · , (up,Up)

(v1,V1), · · · , (vq,Vq)

]
=

=
1

2πi

∫
L

G(s, x)

(α+ βs)ε+δs
z−s ds,

(6)

where

G(s, x) =

Γ(1− u1 − U1s, x)
m∏
j=1

Γ(vj +Vjs)
n∏

j=2

Γ(1− uj − Ujs)

q∏
j=m+1

Γ(1− vj −Vjs)
p∏

j=n+1

Γ(uj + Ujs)

, (7)

considering that p, q,m, n are integrers in a manner that 0 < m < q, 0 < n < p, z cannot
be equivalent to zero. Further, Uj(j = 1, · · · , p) and Vj(j = 1, · · · , q) are positive numbers
and uj(j = 1, · · · , p) and vj(j = 1, · · · , q) are complex numbers. The constants α, β, ε, and
δ are selected in this case so as to make sure existence of the the right-side integral of (8).
The incomplete R-functions exist for all x > 0 along with the exactly same specifications and
assumptions as mentioned for R-function in [24].

The functions (4) and (6) readily yield the decomposition formula that follows:

α, β
ε, δ γ

m, n
p, q (z) + α, β

ε, δ Γ
m, n
p, q (z) = α, β

ε, δ R
m, n
p, q (z).

Additional characteristics of incomplete R-functions can be found in the authors’ work in [7]
and [19]. The characteristic that appears on the right side is known as the the widely recognized
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R-function, which was initially developed by Rathie [24] to investigate further issues related to
testing statistical hypotheses (see, [23]). Its definition is as follows:

α, β
ε, δ R

m, n
p, q (z) = α, β

ε, δ R
m, n
p, q

[
z

∣∣∣∣∣ (u1,U1), · · · , (up,Up)

(v1,V1), · · · , (vq,Vq)

]
=

=
1

2πi

∫
L

g(s)

(α+ βs)ε+δs
z−s ds,

(8)

wherein

g(s) =

m∏
j=1

Γ(vj +Vjs)
n∏

j=1

Γ(1− uj − Ujs)

q∏
j=m+1

Γ(1− vj −Vjs)
p∏

j=n+1

Γ(uj + Ujs)

. (9)

It has become remarkable to observe that the incomplete R-functions lead to the family of
incomplete H-functions, which are outlined under the subsequent order, for α = 1 and β = 0 (or
ε = 0 and δ = 0) (see, also [27]):

1, 0
ε, δγ

m, n
p, q (z) = α, β

0, 0 γ
m, n
p, q (z) = γm, n

p, q

[
z

∣∣∣∣∣ (u1,U1, x), (u2,U2), · · · , (up,Up)

(v1,V1), · · · , (vq,Vq)

]
=

=
1

2πi

∫
L

g(s, x)z−s ds,

(10)

and

1, 0
ε, δΓ

m, n
p, q (z) = α, β

0, 0 Γ
m, n
p, q (z) = Γm, n

p, q

[
z

∣∣∣∣∣ (u1,U1, x), (u2,U2), · · · , (up,Up)

(v1,V1), · · · , (vq,Vq)

]
=

=
1

2πi

∫
L

G(s, x) z−s ds,

(11)

where g(s, x) and G(s, x) are already defined by (5) and (7) respectively. Fox’sH-function and the
aforementioned functions are closely related. Further details regarding the H-function, including
recurrence relations, transformation formulas, integral transforms, fractional calculus, generating
functions, and applications, are available in papers [4,6,11] and research monographs [5,13–15,26].

More importantly, the following is the definition of the conventional manner Leibniz formula
for two differentiable functions, F and G:

Dn[F(t)G(t)] =
n∑

k=0

(
n

k

)
[DkG(t)][Dn−kF(t)].

Considering the derivatives of the Riemann–Liouville type, this Leibniz rule can be expanded.
This corresponds to the subsequent definition of the fractional extension of the Leibniz rule if F
and G can be two functions of class C:

Dµ[F(t)G(t)] =
∞∑
k=0

(
µ

k

)
[DkG(t)][Dµ−kF(t)] ; µ > 0, k ∈ N. (12)

Furthermore, the following is the description of the fractional derivative of order µ for f(z) of
Riemann–Liouville type (see [17]):

Dµ
z f(z) =

1

Γ(−µ)

∫ z

0

(z − t)(−µ−1)f(t)dt (ℜ(µ) < 0). (13)
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In case ℜ(µ) > 0 and m ∈ N is the most small integer with m− 1 6 R(µ) < m, afterwards

Dµ
z f(z) =

dm

dzm
Dµ−m

z f(z) =
dm

dzm

[
1

Γ(−µ+m)

∫ z

0

(z − t)−µ+m−1f(t)dt

]
. (14)

A framework for calculating the compositional representation of differential operators may be
derived using the Leibniz rule, which is an extension of the product differentiation law. This
method provides useful information on interesting expansions, generating functions, summation
formulae, and transformations associated with different special functions of one or more variables.
For further information, see [1, 9, 16, 17, 22]. In this work, our aim is to get novel expansion
formulas that offer new understanding into the properties and behavior of these incmolpete R-
functions by applying the Leibniz rule to fractional derivatives. We also construct expansion
formulae for other special functions in addition to incomplete functions to demonstrate our key
findings.

2. Main results

Here, we developed several new transformation formulas for the incomplete R-functions
through the application of Leibniz rule for fractional derivatives.

Theorem 2.1. Assume ρ > 1, ω > 0, m ∈ N and m− 1 6 R(µ) 6 m, then the subsequent result
sustains:

α, β
ε, δ Γ

m, n+1
p+1, q+1

[
czω

∣∣∣∣∣ (1− ρ, ω), (u1,U1, x), (u2,U2), · · · , (up,Up)
(v1,V1), · · · , (vq,Vq), (1− ρ+ µ, ω)

]
=

=

∞∑
k=0

(
µ

k

)
Γ(ρ)

Γ(ρ− µ+ k)
α, β
ε, δ Γ

m, n+1
p+1, q+1

[
czω

∣∣∣∣∣ (0, ω), (u1,U1, x), (u2,U2), · · · , (up,Up)
(v1,V1), · · · , (vq,Vq), (k, ω)

]
. (15)

Proof. In order (15) is proven, let us make note that F(z) = zρ−1 and

G(z) = α, β
ε, δ Γ

m, n
p, q (z) = α, β

ε, δ Γ
m, n
p, q

[
czω

∣∣∣∣∣ (u1,U1, x), (u2,U2), · · · , (up,Up)

(v1,V1), · · · , (vq,Vq)

]
.

Now that we have altered the values of F(z) and G(z) in (12), we accomplish

Dµ
[
zρ−1 α, β

ε, δ Γ
m, n
p, q (czω)

]
=

∞∑
k=0

(
µ

k

)[
Dk α, β

ε, δ Γ
m, n
p, q (czω)

] [
Dµ−kzρ−1

]
. (16)

Considering the known result of [8], i.e. the Riemann–Liouville fractional derivative of upper
incomplete R-function, we possess

Dµ
[
zρ−1 α, β

ε, δ Γ
m, n
p, q (czω)

]
=

= zρ−µ−1 α, β
ε, δ Γ

m, n+1
p+1, q+1

[
czω

∣∣∣∣∣ (1− ρ, ω), (u1,U1, x), (u2,U2), · · · , (up,Up)

(v1,V1), · · · , (vq,Vq), (1− ρ+ µ, ω)

]
. (17)

Likewise, using the definitions of (6) and (17), we get the right hand side of equation (16), as
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follows:

∞∑
k=0

(
µ

k

)[
Dk α, β

ε, δ Γ
m, n
p, q (czω)

] [
Dµ−kzρ−1

]
=

= zρ−µ−1
∞∑
k=0

(
µ

k

)
Γ(ρ)

Γ(ρ− µ+ k)
×

× α, β
ε, δ Γ

m, n+1
p+1, q+1

[
czω

∣∣∣∣∣ (0, ω), (u1,U1, x), (u2,U2), · · · , (up,Up)

(v1,V1), · · · , (vq,Vq), (k, ω)

]
. (18)

Now, the necessary result, (15), is obtained by putting the equations (17) and (18) into (16). �

The definitions (4), (6), and (12) have immediate consequences below the theorem, which is
the reason they are included below with no proof.

Theorem 2.2. Let ρ > 1, ω > 0, m ∈ N and m − 1 6 R(µ) 6 m, then the subsequent result
sustains:

α, β
ε, δ Γ

m+1, n
p+1, q+1

[
cz−ω

∣∣∣∣∣ (u1,U1, x), (u2,U2), · · · , (up,Up), (ρ− µ, ω)
(ρ, ω), (v1,V1), · · · , (vq,Vq),

]
=

=

∞∑
k=0

(
µ

k

)
Γ(ρ)

Γ(ρ− µ+ k)
α, β
ε, δ Γ

m+1, n
p+1, q+1

[
cz−ω

∣∣∣∣∣ (u1,U1, x), (u2,U2), · · · , (up,Up), (1− µ, ω)
(1, ω), (v1,V1), · · · , (vq,Vq)

]
. (19)

Theorem 2.3. Let ρ > 1, ω > 0, m ∈ N and m − 1 6 R(µ) 6 m, thereafter the subsequent
outcome sustains:

α, β
ε, δ γ

m, n+1
p+1, q+1

[
czω

∣∣∣∣∣ (1− ρ, ω), (u1,U1, x), (u2,U2), · · · , (up,Up)
(v1,V1), · · · , (vq,Vq), (1− ρ+ µ, ω)

]
=

=

∞∑
k=0

(
µ

k

)
Γ(ρ)

Γ(ρ− µ+ k)
α, β
ε, δ γ

m, n+1
p+1, q+1

[
czω

∣∣∣∣∣ (0, ω), (u1,U1, x), (u2,U2), · · · , (up,Up)
(v1,V1), · · · , (vq,Vq), (k, ω)

]
. (20)

Theorem 2.4. Let ρ > 1, ω > 0, m ∈ N and m − 1 6 R(µ) 6 m, then the subsequent result
sustains:

α, β
ε, δ γ

m+1, n
p+1, q+1

[
cz−ω

∣∣∣∣∣ (u1,U1, x), (u2,U2), · · · , (up,Up), (ρ− µ, ω)
(ρ, ω), (v1,V1), · · · , (vq,Vq),

]
=

=

∞∑
k=0

(
µ

k

)
Γ(ρ)

Γ(ρ− µ+ k)
α, β
ε, δ γ

m+1, n
p+1, q+1

[
cz−ω

∣∣∣∣∣ (u1,U1, x), (u2,U2), · · · , (up,Up), (1− µ, ω)
(1, ω), (v1,V1), · · · , (vq,Vq)

]
. (21)

3. Specific cases and final remarks

During this portion, we produce the expansion formulae for R-functions and additional incom-
plete functions as a specific example to illustrate our primary findings. In particular, throughout
x = 0 (as well as by applying the formula for decomposition), the results involving R-functions
would roughly correspond with the specific examples of the implications provided in the preceding
section, as follows:
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Theorem 3.1. Suppose ρ > 1, ω > 0, m ∈ N and m − 1 6 R(µ) 6 m, then the subsequent
consequence sustains:

α, β
ε, δ R

m, n+1
p+1, q+1

[
czω

∣∣∣∣∣ (1− ρ, ω), (u1,U1), (u2,U2), · · · , (up,Up)
(v1,V1), · · · , (vq,Vq), (1− ρ+ µ, ω)

]
=

=

∞∑
k=0

(
µ

k

)
Γ(ρ)

Γ(ρ− µ+ k)
α, β
ε, δ R

m, n+1
p+1, q+1

[
czω

∣∣∣∣∣ (0, ω), (u1,U1), (u2,U2), · · · , (up,Up)
(v1,V1), · · · , (vq,Vq), (k, ω)

]
. (22)

Theorem 3.2. Let ρ > 1, ω > 0, m ∈ N and m− 1 6 R(µ) 6 m, then the subsequent outcome
sustains:

α, β
ε, δ R

m+1, n
p+1, q+1

[
cz−ω

∣∣∣∣∣ (u1,A1), (U2,A2), · · · , (up,Ap), (ρ− µ, ω)
(ρ, ω), (v1,V1), · · · , (vq,Vq),

]
=

=

∞∑
k=0

(
µ

k

)
Γ(ρ)

Γ(ρ− µ+ k)
α, β
ε, δ R

m+1, n
p+1, q+1

[
cz−ω

∣∣∣∣∣ (u1,U1), (u2,U2), · · · , (up,Up), (1− µ, ω)
(1, ω), (v1,V1), · · · , (vq,Vq)

]
. (23)

Once more, the key results in the preceding section simply reduce to the well-known expansion
formulae for incomplete H-functions, which are recently studied by [16], on setting α = 1 and
β = 0 (or ε = 0 and δ = 0). Furthermore, the family of incomplete R-functions provides a range
of special functions (including incomplete functions) such as Fox’s H-functions, G-functions, Fox-
Wright functions, hypergeometric functions, etc., by setting specific values to the parameters.

In this paper, we have established expansion formulas for the incomplete family of R-functions
using the Leibniz formula involving Riemann-Liouville type fractional derivatives. We also derive
special cases of our main results. It’s worth noting that specific instances of our findings, such
as when x = 0 or utilizing the decomposition formula, yield new expansion formulas involving
classical Rathie’s R-functions and other generalized hypergeometric functions. Thus, we finalize
by suggesting that the results discussed herein appear to have a broad applicability and can lead
to different expansion formulas regarding a specific category of special functions, that we do leave
for anyone with an interest to explore further.
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Некоторые неполные формулы разложения R-функций,
использующие дробное исчисление

Рави Гупта
Прити Пурохит

Школа наук и технологий
Открытый университет имени Вардхмана Махавира

Кота, Индия

Аннотация. В данной работе исследуются формулы разложения неполных R-функций с точки
зрения дробного исчисления. Мы раскрываем глубинные связи между операторами дробного ис-
числения и неполными R-функциями посредством строгих математических вычислений и анализа.
Используя формулу Лейбница в дробном дифференцировании, мы стремимся получить новые фор-
мулы разложения, которые открывают новые перспективы для изучения характеристик и поведе-
ния этих функций. Результаты данного исследования открывают новые направления в изучении
формул изображения дробного исчисления с неполными R-функциями и новые пути развития
научного понимания. В качестве конкретной иллюстрации, демонстрирующей наши основные ре-
зультаты, выводятся формулы разложения для дополнительных специальных функций, а также
для неполных функций.

Ключевые слова: неполная гамма-функция, неполные R-функции, формула Лейбница, дробное
исчисление.
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Abstract. Maximal operators associated with a class of singular parametrized surfaces in R3 are an-
alyzed in the paper. Boundedness of such operators in Lebesgue Lp space for p > 2 is shown. It is
also proved that at least one of the principal curvatures does not vanish at each regular point of these
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1. Introduction and preliminaries

Let S be a hypersurface in Rn+1 with a surface measure dS. Let us denote the "average" of
f on Rn+1 along the t-dilate of the hypersurface S as

Atf(y) :=

∫
S

f(y − tx)ψ(x)dS(x), t > 0,

where ψ is a non-negative infinitely smooth function with compact support, i.e., 0 6 ψ ∈
C∞

0 (Rn+1) and f ∈ C∞
0 (Rn+1).

The associated maximal operator is defined by the following relation

Mf(y) := sup
t>0

| Atf(y) | . (1)

The maximal operator (1) is said to be bounded on Lp := Lp(Rn+1) if there exists C > 0

such that for any function f ∈ C∞
0 (Rn+1) the inequality

∥Mf∥Lp 6 C ∥f∥Lp

holds true, where ∥ · ∥Lp is the natural norm of space Lp.
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The prototype of such kind of maximal operators is Stein’s maximal function (in which S is
the Euclidean unit sphere centred at the origin). It is known [1] that spherical maximal operator
(1) is bounded on Lp(Rn) for p >

n

n− 1
, n > 3 and it is not bounded on Lp(Rn) whenever

p 6 n

n− 1
. The two dimensional case of Stein’s result was considered by Bourgain [2].

Then Greenleaf proved that maximal operator (1) is bounded on Lp(Rn+1) for n > 2 and
p > (n+1)/n when hypersurface has everywhere non-vanishing Gaussian curvature [3]. Moreover,
Greenleaf showed that if hypersurface has at least k(k > 2) non-vanishing principal curvatures
then maximal operator is bounded on Lp(Rn+1) (n > 2) for all p > (k + 1)/k. Later similar
result for more difficult case k = 1 was obtained by Sogge [4].

Also, maximal operators (1) have been investigated [5–9]. Boundedness of maximal operators
related to singular surfaces in three and multidimensional Euclidean spaces was studied [10–16].

2. Statement of the problem

Definition of the fractional power series is given in [17].

Definition 1. Let V ⊆ Rn
+ be an open connected set such that 0 ∈ V̄ , f is called a fractional

power series in set V if there is an open set W ⊆ Rn containing V̄ , a natural number N and
a real analytic function g in Φ−1

N (W ) such that the identity f = g ◦ Φ1/N holds in set V , where
ΦN : Rn → Rn is a map given by the formula ΦN (x) = (xN1 , x

N
2 , . . . , x

N
n ).

Let us consider a class of singular parametrized surfaces in R3 defined by

x1(u1, u2) = r1 + ua1
1 u

a2
2 g1(u1, u2), x2(u1, u2) = r2 + ub11 u

b2
2 g2(u1, u2),

x3(u1, u2) = r3 + uc11 u
c2
2 g3(u1, u2), (2)

where r1, r2, r3 are any real numbers, a1, a2, b1, b2, c1, c2 are non-negative rational numbers, u1 >
0, u2 > 0 and {gk(u1, u2)}3k=1 are fractional power series.

For further statements the following designations are introduced

B1 =

∣∣∣∣ a1 b1
a2 b2

∣∣∣∣ , B2 =

∣∣∣∣ b1 c1
b2 c2

∣∣∣∣ , B3 =

∣∣∣∣ a1 c1
a2 c2

∣∣∣∣ .
Lp — boundedness of the maximal operator (1) was studied in a small neighborhood of

the point (r1, r2, r3) ̸= (0, 0, 0) [10–12, 15, 16], when p > 2 and at least two of the numbers
B1, B2, B3 are non-zero. Lp (p > 2) — boundedness of the maximal operators related to singular
hypersurfaces in the multidimensional Euclidean spaces was studied [13,14].

In this paper, the case r1 = r2 = r3 = 0 in (2) is investigated. More precisely, the problem of
Lp (p > 2) — boundedness of the maximal operator (1) along the parametrized surfaces of the
form

x1(u1, u2) = ua1
1 u

a2
2 g1(u1, u2), x2(u1, u2) = ub11 u

b2
2 g2(u1, u2), x3(u1, u2) = uc11 u

c2
2 g3(u1, u2) (3)

is studied. These surfaces satisfy the following condition.

Remark 1. If at least one of the numbers B1, B2, B3 is non-zero then points of surface (3)
lying in a sufficiently small neighbourhood of the origin in R3

+ outside the coordinate planes
are regular (nonsingular). Points of surface (3) lying on the coordinate planes may be singular
(see definition 2 in [10]).
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The averaging operator associated with surface (3) is defined as follows

Ag
t f(y) =

∫
R2

+
f
(
y1 − tua1

1 u
a2
2 g1(u1, u2), y2 − tub11 u

b2
2 g2(u1, u2), y3 − tuc11 u

c2
2 g3(u1, u2)

)
×

×ψ(u1, u2)du1du2.

Then corresponding maximal operator is defined by

Mgf(y) := sup
t>0

|Ag
t f(y)|, y ∈ R3.

For the case of smooth surfaces it corresponds to a surface integral.

3. Auxiliary assertions

Let us state some necessary facts known from geometry which are used to prove main result.
As usual, the first and second fundamental forms of surfaces (3) have the following forms

G(u, du) = g11(u1, u2)du
2
1 + 2g12(u1, u2)du1du2 + g22(u1, u2)du

2
2,

L(u, du) = l11(u1, u2)du
2
1 + 2l12(u1, u2)du1du2 + l22(u1, u2)du

2
2,

respectively. Coefficients of the fundamental forms are calculated by the following formulas

gij = gij(u1, u2) = (r̄ir̄j), lij = lij(u1, u2) = (r̄ij , m̄), (4)

where r̄i =
∂r̄

∂ui
, r̄ij =

∂2r̄

∂uiuj
, i, j = 1, 2, m̄ is the unit normal vector at each regular point of

surfaces (3).
Next let us use the change of variables

u1 = u1(z1, z2), u2 = u2(z1, z2) (5)

in (3), where u1(z1, z2), u2(z1, z2) are differentiable functions in a neighbourhood of zero in R2.

Jacobi matrix of transformation (5) is denoted by J . Then the following lemma is valid.

Lemma 1. If detJ ̸= 0 then equalities |L̃− λG̃| = 0 and |L− λG| = 0 are equivalent equations,
where G̃ and L̃ are matrices of the first and second fundamental forms of surfaces (3) after the
change of variables (5).

Proof. Indeed, applying the change of coordinates (5), matrices gij are transformed by the
following rules

g̃ij(z1, z2) =
∑
k,l

gkl(u1, u2)
∂uk
∂zi

∂ul
∂zj

, k, l = 1, 2

or in the matrix form G̃ = JTGJ , and, analogously, L̃ = JTLJ (see [18], chapter 3, Sec. 16).
Obviously, principal curvatures of surfaces (3) are defined as solutions of the equation |L −

λG| = 0. It is easy to show that equality

|L̃− λG̃| = (detJ)2|L− λG|

holds true for surfaces (3). Hence, this equation indicates that lemma is correct. 2

The proof of main result of this paper is based on the following result due to Sogge [4].

Theorem 1. Let S be a smooth hypersurface in Rn, n > 2, with the property that at each x ∈ S
at least one principal curvature is non-zero. With Mf as in (1) above then Mf is bounded on
Lp(Rn) for p > 2.
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4. Main result

The main result of the paper is the following theorem.

Theorem 2. Let {gk(u1, u2)}3k=1 be fractional power series which defined in a small neighbour-
hood of the origin of coordinate system of R2 and satisfy the following conditions: gk(0, 0) ̸= 0.
Suppose that at least one of the following conditions is satisfied:

1. B1 ̸= 0 and either B2B3 ̸= 0, or B2(B2 +B1) ̸= 0, or B3(B3 −B1) ̸= 0;
2. B3 ̸= 0 and either B2B1 ̸= 0, or B2(B2 −B3) ̸= 0, or B1(B1 −B3) ̸= 0;
3. B2 ̸= 0 and either B1B3 ̸= 0, or B3(B3 −B2) ̸= 0, or B1(B1 +B2) ̸= 0.
Then there exists a small neighbourhood U of the origin in R3, such that for any function

ψ ∈ C∞
0 (U) maximal operator Mgf is bounded on Lp(R3) for p > 2.

Proof. Suppose that condition 1 is satisfied. Let us study the boundedness of maximal operator
Mgf at nonsingular points of surface (3) (see Remark 1).

Using the change of variables

u1 = 2−j1v1, u2 = 2−j2v2

in (3), one can obtain

x̃1(v1, v2) = 2−(j1a1+j2a2)va1
1 va2

2 g1(2
−j1v1, 2

−j2v2),

x̃2(v1, v2) = 2−(j1b1+j2b2)vb11 v
b2
2 g2(2

−j1v1, 2
−j2v2

)
, (6)

x̃3(v1, v2) = 2−(j1c1+j2c2)vc11 v
c2
2 g3(2

−j1v1, 2
−j2v2),

where 0, 5 6 v1 6 2, 0, 5 6 v2 6 2, j1, j2 > j0, j0 is a large number such that implies from the
smallness of the support of ψ.

Next, let us introduce the change of variables{
w1 = va1

1 va2
2 g1(2

−j1v1, 2
−j2v2)

w2 = vb11 v
b2
2 g2(2

−j1v1, 2
−j2v2),

(7)

and assume that g1(0, 0) = g2(0, 0) = 1. If g1(0, 0) < 0, g2(0, 0) < 0, then one can obtain
−g1(u1, u2),−g2(u1, u2) instead of g1(u1, u2), g2(u1, u2).

Now, calculating Jacobian of coordinate change (7), one can find

detJ1=

∣∣∣∣∣∣∣∣
∂w1

∂v1

∂w2

∂v1
∂w1

∂v2

∂w2

∂v2

∣∣∣∣∣∣∣∣ = va1+b1−1
1 va2+b2−1

2

(
B1g1(2

−j1v1, 2
−j2v2)g2(2

−j1v1, 2
−j2v2)+h(v1, v2)

)
,

where
h(v1, v2) = v1h1(v1, v2) + v2h2(v1, v2) + v1v2h3(v1, v2),

h1(v1, v2) = b2g2(2
−j1v1, 2

−j2v2)
∂g1(2

−j1v1, 2
−j2v2)

∂v1
− a2g1(2

−j1v1, 2
−j2v2)

∂g2(2
−j1v1, 2

−j2v2)

∂v1
,

h2(v1, v2) = a1g1(2
−j1v1, 2

−j2v2)
∂g2(2

−j1v1, 2
−j2v2)

∂v2
− b1g2(2

−j1v1, 2
−j2v2)

∂g1(2
−j1v1, 2

−j2v2)

∂v2
,

h3(v1, v2) =
∂g1(2

−j1v1, 2
−j2v2)

∂v1

∂g2(2
−j1v1, 2

−j2v2)

∂v2
− ∂g1(2

−j1v1, 2
−j2v2)

∂v2

∂g2(2
−j1v1, 2

−j2v2)

∂v1
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— fractional power series. It is not difficult to see that detJ1 ̸= 0 at the point (v1, v2).

Let us consider the system {
w1 = va1

1 va2
2

w2 = vb11 v
b2
2 ,

in the first quadrant R2
+ and obtain  v1 = w

b2
B1
1 w

−a2
B1

2

v2 = w
−b1
B1
1 w

a1
B1
2 .

(8)

In particular, relation (8) is in the set

{(w1, w2) ∈ R2
+ : 2−(a1+a2) 6 w1 6 2a1+a2 , 2−(b1+b2) 6 w2 6 2b1+b2}

.
Further, let us also introduce the change of variables v1 = w

b2
B1
1 w

−a2
B1

2 ĝ1

v2 = w
−b1
B1
1 w

a1
B1
2 ĝ2

(9)

where ĝ1, ĝ2 are new variables and suppose that ĝ1 ∼ 1, ĝ2 ∼ 1. As a result, system (7) implies

(ĝ1)
a1(ĝ2)

a2g1

(
2−j1w

b2
B1
1 w

−a2
B1

2 ĝ1, 2
−j2w

−b1
B1
1 w

a1
B1
2 ĝ2

)
= 1

(ĝ1)
b1(ĝ2)

b2g2

(
2−j1w

b2
B1
1 w

−a2
B1

2 ĝ1, 2
−j2w

−b1
B1
1 w

a1
B1
2 ĝ2

)
= 1.

(10)

Analogously, one can show that Jacobian of system (10) is non-zero in a small neighbourhood
of the point (0, 0, 1, 1). In view of the implicit function theorem this system has smooth solutions
with respect to ĝ1, ĝ2 of the form

g̃1(2
−j1 , 2−j2 , w1, w2) = 1 + 2−j1 h̃1(2

−j1 , 2−j2 , w1, w2) + 2−j2 h̃2(2
−j1 , 2−j2 , w1, w2),

g̃2(2
−j1 , 2−j2 , w1, w2) = 1 + 2−j1 ρ̃1(2

−j1 , 2−j2 , w1, w2) + 2−j2 ρ̃2(2
−j1 , 2−j2 , w1, w2)

in a sufficiently small neighborhood of the point (0, 0, 1, 1). Here h̃1, h̃2, ρ̃1, ρ̃2 are smooth func-
tions. It is assumed that g̃1(0, 0, 1, 1) = 1, g̃2(0, 0, 1, 1) = 1.

Then taking into account (9), one can obtain v1 = w
b2
B1
1 w

−a2
B1

2 g̃1(2
−j1 , 2−j2 , w1, w2)

v2 = w
−b1
B1
1 w

a1
B1
2 g̃2(2

−j1 , 2−j2 , w1, w2).

(11)

By applying relations (7) and (11) to equations (6), one can find

x̂1(w1, w2) = 2−(j1a1+j2a2)w1, x̂2(w1, w2) = 2−(j1b1+j2b2)w2,

x̂3(w1, w2) = 2−(j1c1+j2c2)α(w1, w2), (12)
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where α(w1, w2) = w
−B2
B1

1 w
B3
B1
2 g(w1, w2),

g(w1, w2) =
(
g̃1(2

−j1 , 2−j2 , w1, w2)
)c1(

g̃2(2
−j1 , 2−j2 , w1, w2)

)c2×
× g3

(
2−j1w

b2
B1
1 w

−a2
B1

2 g̃1(2
−j1 , 2−j2 , w1, w2), 2

−j2w
−b1
B1
1 w

a1
B1
2 g̃2(2

−j1 , 2−j2 , w1, w2)
)
.

It is well-known that second fundamental form of the surface given by parametric equations
(12) has the following form

L = L11dw
2
1 + 2L12dw1dw2 + L22dw

2
2.

Using (4), one can find

L11 = (r̄11, n̄), L12 = (r̄12, n̄), L22 = (r̄22, n̄), (13)

r̄11 =
∂2r̄

∂w2
1

, r̄12 =
∂2r̄

∂w1∂w2
, r̄22 =

∂2r̄

∂w2
2

,

n̄ = N̄ · |N̄ |−1 is unit normal vector. A normal vector N̄ in any point of surface (12) defined by

barN =

∣∣∣∣∣∣∣∣∣∣
i j k
∂x̂1
∂w1

∂x̂2
∂w1

∂x̂3
∂w1

∂x̂1
∂w2

∂x̂2
∂w2

∂x̂3
∂w2

∣∣∣∣∣∣∣∣∣∣
.

Now calculating coefficients L11, L22 and L12, one can obtain

L11 =
∂2α

∂w2
1

= Cw
−B2

B1
−2

1 w
B3
B1
2

(
B2(B2+B1)g(w1, w2)−B2B1w1

∂g(w1, w2)

∂w1
+B2

1w
2
1

∂2g(w1, w2)

∂w2
1

)
,

L22 =
∂2α

∂w2
2

= Cw
−B2

B1
1 w

B3
B1

−2

2

(
B3(B3−B1)g(w1, w2)+B3B1w2

∂g(w1, w2)

∂w2
+B2

1w
2
2

∂2g(w1, w2)

∂w2
2

)
,

L12 =
∂2α

∂w1∂w2
= −Cw

−B2
B1

−1

1 w
B3
B1

−1

2

(
B2B3g(w1, w2)−B3B1w1

∂g(w1, w2)

∂w1
+

+B2B1w2
∂g(w1, w2)

∂w2
−B2

1w1w2
∂2g(w1, w2)

∂w1w2

)
,

where C = 2−(j1c1+j2c2)
|N̄ |−1

B2
1

.

It follows from condition 1 that at least one of numbers B2B3, B2(B2+B1) and B3(B3−B1)

is not equal to zero. Therefore, at least one of coefficients L11, L12 and L22 is non-zero at each
regular point of surfaces (12) in a small neighbourhood of the origin for sufficiently large j0.

Consequently, singular surfaces (12) as well as singular surfaces given by (3) have at least one
non vanishing principal curvature at each regular point of these surfaces.

Thus, making similar arguments under conditions 2 or 3, one can show that in a small
neighbourhood of the origin of R3

+ at least one of the principal curvatures of singular surfaces
(3) is non-zero. Therefore, in view of Theorem 1 maximal operator Mgf is bounded on Lp(R3)

for p > 2. This completes the proof of Theorem 2.
Let us now consider some corollaries in connection with Theorem 2.
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Corollary 1. Let {gk(u1, u2)}3k=1 be real analytic functions defined in a small neighbourhood of
the origin of coordinate system of R2 and satisfy the following conditions: gk(0, 0) ̸= 0. Then
under assumptions of Theorem 2 its assertions are true.

Corollary 2. If conditions 1-3 of Theorem 2 are replaced with the relations
1. B1 ̸= 0, A−1

1 c̄ ̸= (1, 0)T , A−1
1 c̄ ̸= (0, 1)T , A−1

1 c̄ ̸= (0, 0)T ;
2. B2 ̸= 0, A−1

2 ā ̸= (1, 0)T , A−1
2 ā ̸= (0, 1)T , A−1

2 ā ̸= (0, 0)T ;
3. B3 ̸= 0, A−1

3 b̄ ̸= (1, 0)T , A−1
3 b̄ ̸= (0, 1)T , A−1

3 b̄ ̸= (0, 0)T ,
respectively, and other conditions are satisfied then assertions of Theorem 2 hold true. Here
A1, A2, A3 are matrices of B1, B2, B3, respectively, and ā = (a1, a2)

T , b̄ = (b1, b2)
T , c̄ = (c1, c2)

T .
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Максимальные операторы, связанные с сингулярными
поверхностями
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Самарканд, Узбекистан
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Ташкент, Узбекистан
Исмаил Экинджиоглу

Стамбульский университет Медениет
Стамбул, Турция

Аннотация. Статья анализирует максимальные операторы, ассоциированные с классом сингу-
лярных параметризованных поверхностей в R3, показывая ограниченность таких операторов в
пространстве Лебега Lp при p > 2. Также доказано, что хотя бы одна из главных кривизн не
обращается в нуль в каждой регулярной точке этих поверхностей.

Ключевые слова: максимальный оператор, оператор усреднения, дробно-степенной ряд, сингу-
лярная поверхность, главные кривизны.
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Abstract. In this paper, we use a new variant of inverse barrier method to solve a nonlinear optimization
problem. The new inverse barrier function depends on the components of the penalty vector and preserves
the properties of the original problem. The descent direction is calculated using Newton’s method, while
the step size is calculated using the tangent technique and the backtracking with interpolation technique
in parallel with Wolfe’s method.
Comparative numerical simulations are presented as a support for our approach.
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Introduction

Nonlinear optimization problems play a fundamental role in many practical applications.
They can be written in the following form:

mp = min
ξ

[g(ξ) : Bξ = q, ξ > 0]. (P )

These problems can be solved using several methods, including interior point methods, which are
recognized for their theoretical and practical efficiency. In this paper, we propose a new variant
of inverse barrier method for solving nonlinear programming problems. In this method, problem
(P ) is approximated by problem (Pr):

mpr
= min

ξ
[gr(ξ) : ξ ∈ Rn], (Pr)
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where

gr(ξ) =

 g(ξ) +

n∑
i=1

ri
ξrii

, if Bξ = q, ξ > 0

+∞ otherwise,

and r = (r1, r2, . . . , rn)
T is a strictly positive barrier vector in Rn.

The choice of the step size plays a crucial role in the efficiency and stability of interior point
algorithms. Unfortunately, its calculation is not trivial. For this reason, several strategies have
been developed to determine it. One of the most commonly used approaches is the approach of
approximate functions, which was proposed by Crouzeix and Merikhi [6] for solving semidefinite
programming problems. Based on the results of [6], numerous studies have been conducted on
this technique (see e.g., [1, 4, 5, 7, 12,13]).

In our work, we focus on calculating the step size using two techniques, tangent technique
and backtracking with interpolation technique. In contrast, the descent direction is calculated
using the classical Newton method.

This paper is organized as follows. In Section 2, we present the principle of the proposed
inverse barrier method and the convergence result. In Section 3, we solve the penalized problem
using Newton’s method for the descent direction and the two techniques mentioned above for
the step size. Section 4 contains the algorithm corresponding to this method. In Section 5, we
perform comparative numerical tests to show the efficiency of our approach. Finally, a general
conclusion is given in Section 5.

1. Inverse barrier method for nonlinear programming

Let us reconsider the nonlinear programming problem:

mp = min
ξ

[g(ξ) : Bξ = q, ξ > 0], (P )

where g : Rn −→ R is a convex and twice differentiable function, B ∈ Rm×n is a full rank matrix
and q ∈ Rm. We note by:

F = {ξ ∈ Rn : Bξ = q, ξ > 0},
F0 = {ξ ∈ Rn : Bξ = q, ξ > 0},

the sets of feasible and strictly feasible solutions of (P ).
In what follows, we assume that:

1. The set F0 is non-empty.

2. The set of optimal solutions of (P ) is non-empty and bounded.

Since (P ) is a convex problem, then solving this problem is equivalent to solve the following
system given by Karush-Kuhn-Tucker (KKT) conditions [14]

Bξ = q, ξ > 0,

BT y +∇g(ξ) = s, s > 0,

ξT s = 0,

(1)
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where y is a Lagrange multiplier.
Let (Pr) be the penalized problem associated to (P )

(Pr)

{
min gr(ξ),

ξ ∈ Rn,

1.1. Theoretical study of the penalized problem (Pr)
1.1.1. Existence

Definition 1. The function gr is called inf-compact if its recession cone
C(gr) =

{
d ∈ Rn : (gr)∞(d) 6 0

}
, reduced to the origin, where (gr)∞ is the asymptotic

function of gr, defined by:

(gr)∞(d) = lim
α→+∞

gr(ξ
∗ + αd)− gr(ξ

∗)

α
.

Lemma 1. Problem (Pr) has at least one optimal solution.

Proof. To show that problem (Pr) admits a solution, it suffices to demonstrate that gr is inf-
compact. We have

(gr)∞(d) = lim
α→+∞

gr(ξ
∗ + αd)− gr(ξ

∗)

α
=

= lim
α→+∞

g(ξ∗ + αd)− g(ξ∗)

α
+ lim

α→+∞

n∑
i=1

ri
(ξ∗i + αdi)ri

−
n∑

i=1

ri
(ξ∗i )

ri

α
=

= lim
α→+∞

g(ξ∗ + αd)− g(ξ∗)

α
,

with ξ∗ + αd ∈ F , so:

C(gr) =
{
d ∈ Rn : Bd = 0, d > 0, lim

α→+∞

g(ξ∗ + αd)− g(ξ∗)

α
6 0
}
. (2)

Since the set of optimal solutions of problem (P ) is convex, we deduce from assumption 2 that
its recession cone reduces to zero [11], i.e.,{

d ∈ Rn : Bd = 0, d > 0, g(ξ∗ + αd) 6 g(ξ∗),∀α > 0
}
= {0},

this implies that{
d ∈ Rn : Bd = 0, d > 0, lim

α→+∞

g(ξ∗ + αd)− g(ξ∗)

α
6 0
}
= {0}. (3)

from (2) and (3), we deduce that C(gr) = {0}, hence, (Pr) has at least one solution.

1.1.2. Uniqueness

Lemma 2. Problem (Pr) has a unique optimal solution.

Proof. Let H(ξ) =
n∑

i=1

ri
ξrii

, then

∇2H(ξ) = diag
(r2(r + e)

ξr+2e

)
,
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with

r2 = (r21, r
2
2, . . . , r

2
n)

T , e = (1, 1, . . . , 1)T , ξr+2e =
(
ξr1+2
1 , ξr2+2

2 , . . . , ξrn+2
n

)T
.

The matrix ∇2H is positive definite (because r > 0, ξ > 0), this implies that the function H is
strictly convex, and since g is a convex function, then gr = g+H is strictly convex, which means
that the problem (Pr) has a unique solution.

1.1.3. Convergence

In the following lemma, we show the convergence of problem (Pr).

Lemma 3. Let ξ(r) = ξr be the optimal solution of problem (Pr), then ξ∗ = lim
∥r∥→0

ξr is an

optimal solution of problem (P ), where ∥.∥ represents the Euclidean norm.

Proof. To solve problem (Pr), it is sufficient to solve the following system ∇g(ξ)− r2

ξr+e
+BT y = 0,

Bξ = q.

(4)

Let ξ ∈ F . Since the function g is convex and ξ(r) = ξr ∈ F , then

g(ξ) > g(ξ(r)) + ⟨∇g(ξ(r)), ξ − ξ(r)⟩

using (4), we obtain

g(ξ) > g(ξ(r)) +
⟨ r2

ξr+e
r

−BT y, ξ − ξ(r)
⟩
=

= g(ξ(r)) +
⟨ r2

ξr+e
r

, ξ − ξ(r)
⟩
−
⟨
BT y, ξ − ξ(r)

⟩
=

= g(ξ(r)) +
⟨ r2

ξr+e
r

, ξ − ξ(r)
⟩
−
⟨
y,Bξ −Bξ(r)

⟩
since ξ(r) ∈ F , then Bξ −Bξ(r) = 0, therefore

g(ξ) > g(ξ(r)) +
⟨ r2

ξr+e
r

, ξ − ξ(r)
⟩
,

hence

min
ξ∈F

g(ξ) > g(ξ(r)) +
⟨ r2

ξr+e
r

, ξ − ξ(r)
⟩
,

i.e.,

g(ξ(r)) 6 min
ξ∈F

g(ξ)−
⟨ r2

ξr+e
r

, ξ − ξ(r)
⟩
. (5)

Furthermore, we have

min
ξ∈F

g(ξ) 6 g(ξ), ∀ξ ∈ F ,
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then

min
ξ∈F

g(ξ) 6 g(ξ(r)). (6)

From (5) and (6), we deduce that

min
ξ∈F

g(ξ) 6g(ξ(r)) 6 min
ξ∈F

g(ξ)−
⟨ r2

ξr+e
, ξ − ξ(r)

⟩
.

If ∥r∥ → 0, then

lim
∥r∥→0

g(ξ(r)) = min
ξ∈F

g(ξ) = g(ξ∗).

2. Newton descent direction and the line search

2.1. Descent direction

Computing the descent direction requires solving the following problem:{
min
d

1
2d

T∇2gr(ξ)d+∇T gr(ξ)d,

Bd = 0.

For solving this problem, we apply the optimality condition. Thus, we obtain
(
∇2g(ξ) + diag

(r2(r + e)

ξr+2e

))
d+BT v =

r2

ξr+e
−∇g(ξ),

Bd = 0.
(7)

To show that the algorithm is well-defined, we must ensure the strict feasibility of the iterates.
To achieve this, we integrate a step size α at each iteration, such that the new iteration will be
defined by: ξk+1 = ξk + αkdk.

2.2. Line search

To calculate the step size that ensures the condition ξ + αd > 0, we minimize the function
θ : R++ → R, such that θ(α) = gr(ξ + αd), that is a convex function, so its minimum is the
solution to the following equation θ′(α) = 0. Unfortunately, solving this equation is very difficult,
especially when the problem size is large. To avoid this difficulty we use two techniques to solve
it.

2.2.1. Tangent technique

This technique involves the following steps:

1. We search for an interval [ā, b̄] which the step size α belongs to this interval, i.e.,
θ′(ā)θ′(b̄) < 0, with ā, b̄ ∈ I = [0, αmax[ and

αmax = min
i∈I

{−ξi
di

}
, (8)

with I = {i : di < 0}.
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2. Determine the tangents (T1) and (T2) at points ā and b̄, respectively, then determine the
point of intersection ᾱ of these tangents,

ᾱ =
θ(b̄)− θ(ā)− θ′(b̄)b̄+ θ′(ā)ā

θ′(ā)− θ′(b̄)
. (9)

3. Finally, we verify if |θ′(ᾱ)| 6 ϵ and in this case we take α = ᾱ. Otherwise, we have two
cases:

(a) If θ′(ā)θ′(ᾱ) < 0, we replace b̄ with ᾱ, then return to 2.

(b) If θ′(ᾱ)θ′(b̄) < 0, we replace ā with ᾱ, then return to 2.

The algorithm below details the steps involved in this technique.
Algorithm 1: Tangent technique
Input
Accuracy parameters ϵ > 0;
Calculate αmax from (8);
ā = 0; b̄ = βαmax, such that 0 < β < 1 (β is close to 1 and verifies θ′(βαmax) > 0);
α = b̄

2 ;
begin
While |θ′(α)| > ϵ do
If θ′(ā)θ′(α) < 0

b̄ := α;
else if θ′(α)θ′(b̄) < 0

ā := α;
end
Calculate α from (9);
end
If α > 1

α := 1;
end
end.

2.2.2. Backtracking with interpolation technique

The main idea behind this technique is to first determine an initial value (j = 0) for the step
size

α(j) =

{
1 if αmax > 1

ηαmax if αmax 6 1, (0 < η < 1).
(10)

Then, we verify whether the chosen value satisfies Armijo condition:

θ(α) 6 θ(0) + wαθ′(0), (11)

with w ∈ [0, 12 ], if not, we determine a new step α(j+1) ∈ [τminα
(j), τmaxα

(j)], where
0 < τmin < 1, τmin < τmax < 1, by minimizing the function θ using a quadratic polynomial as
an interpolation of θ to approximate its minimum. To model this polynomial, we use the most
current information about θ:
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
θ(0) = gr(ξ)

θ′(0) = dT∇gr(ξ)
θ(α(j)) = gr(ξ + α(j)d)

therefore, the quadratic polynomial will be defined by: Q(α) = aα2 + bα+ c, where


a =

gr(ξ + α(j)d)− gr(ξ)− α(j)dT∇gr(ξ)
(α(j))2

,

b = dT∇gr(ξ),
c = gr(ξ).

(12)

Since Q is convex, its minimum is obtained by solving the equation Q′(α∗) = 0, hence: α∗ = − b
2a .

According to Armijo condition, we have a > 0, which gives: α∗ > 0.

We summarize this technique in the following algorithm:

Algorithm 2: Backtracking with interpolation technique
Input
Initial step α0 (10); w ∈ [0, 12 ]; τmin = 0.1; τmax = 0.5;
begin
j := 0;
While θ(α(j)) > θ(0) + wα(j)θ′(0) do
s1 := τminα

(j); s2 := τmaxα
(j);

Calculate a, b and c from (12);
α(j+1) := − b

2a ;
If α(j+1) < s1
α(j+1) := s1;
else if α(j+1) > s2
α(j+1) := s2;
end
j := j + 1;
end
end.

3. Interior point algorithm for problem (P )

In this section, we present the algorithm corresponding to this method for problem (P ).

– 94 –



Aicha Kraria . . . Efficient Inverse Barrier Method for Nonlinear Optimization

Algorithm 3: Interior point algorithm for problem (P )
Input
A strictly feasible point ξ0; A barrier vector r0; Accuracy parameter ϵ > 0;
An update parameter λ ∈]0, 1[;
begin
1. ξ := ξ0; r := r0;
2. Calculate d from system (7);
While ∥d∥ > ϵ do
Calculate α using different techniques:
(Tangent technique, Backtracking with interpolation technique and Wolfe’s method)
ξ := ξ + αd;
Calculate d from system (7);
end
If ∥r∥ > ϵ

r = λr; then return to 2;
else
We obtained a good approximation of the optimal solution of (P );
end
end.

4. Numerical tests

In order to evaluate the efficiency of our approach, we conduct some numerical tests for several
examples, comparing both techniques introduced in this paper with Wolfe’s line search method.
The algorithm was implemented in MATLAB, where we have taken ϵ = 10−3 and λ = 0.1. In
the table of results, we denote by: N.I. (the number of iterations), T (the computation time in
seconds), Method 1 (the approach that uses tangent technique), Method 2 (the approach that
uses backtracking with interpolation technique), Method 3 (the approach that uses Wolfe’s line
search method).

Example 1 ( [9]). min

{
1

2
ξTQξ + cT ξ : Bξ = q, ξ > 0

}
, where

B =
(
1 1 2 1

)
, q =

(
3
)
, Q =


4 2 2 0
2 4 0 0
2 0 2 0
0 0 0 0

 , c =


−8
−6
−4
0

 .

The obtained optimal solution is: ξ∗ =
(
1.3336 0.7777 0.4444 0.0000

)T
.

Example 2 ( [3]). min

{
1

2
ξTQξ + cT ξ : Bξ = q, ξ > 0

}
, where

B =

(
−1 1 0
1 1 1

)
, q =

(
1
2

)
, Q =

2 0 0
0 2 0
0 0 0

 , c =

−2
−4
0

 .

The obtained optimal solution is: ξ∗ =
(
0.5 1.499 0.0

)T
.
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Example 3 ( [5]). min

{
1

2
ξTQξ + cT ξ : Bξ = q, ξ > 0

}
, where

B =

(
1 2 1 0
3 1 0 1

)
, q =

(
4
7

)
, Q =


2 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

 , c =


−3
−5
0
0

 .

The obtained optimal solution is: ξ∗ =
(
1 1.5 0 2.5

)T
.

Example 4 ( [3]).

min

{
1

2
ξTQξ + cT ξ : Bξ = q, ξ > 0

}
,

where

B =

 1 1.2 1 1.8 0
3 −1 1.5 −2 1
−1 2 −3 4 2

 , Q =


20 1.2 0.5 0.5 −1
1.2 32 1 1 1
0.5 1 14 1 1
0.5 1 1 15 1
−1 1 1 1 16

 ,

q =
(
9.31 5.45 6.60

)T
, c =

(
1 −1.5 2 1.5 3

)T
.

The obtained optimal solution is:

ξ∗ =
(
2.632 0.7018 1.3995 2.4643 1.0847

)T
.

The results obtained for these examples are summarized in the following Tab. 1.

Table 1. Numerical results obtained for fixed size examples

Examples Size(m,n) Method 1 Method 2 Method 3
N.I. T N.I T N.I T

Example 1 (1,4) 13 0.0587 15 0.0301 21 0.0356
Example 2 (2,3) 7 0.0379 11 0.0237 14 0.0235
Example 3 (2,4) 14 0.0491 17 0.0252 28 0.0448
Example 4 (3,5) 7 0.0256 8 0.0129 13 0.0394

Example 5 ( [2]).

min

{
1

2
ξTQξ + cT ξ : Bξ = q, ξ > 0

}
,

B(i, j) =

{
1 if (j = i or j = i+m)

0 otherwise,
, Q(i, j) =

{
1 if i = j

0 otherwise,

c(i) =

{
−1 if i = 1 : m

0 if i = m+ 1 : n,

q(i) = 2 for i = 1 : m,

where n = 2m. The obtained optimal solution is:

ξ∗(i) =

{
1.5 if i = 1 : m

0.5 if i = m+ 1 : n.
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Table 2. Numerical results obtained for example 5

Size(m,n) Method 1 Method 2 Method 3
N.I. T N.I T N.I T

(10,20) 6 0.0259 6 0.00926 9 0.0303
(100,200) 8 0.0593 7 0.03829 13 0.0599

(1000,2000) 7 2.6407 7 2.4064 14 4.7609
(1500,3000) 10 10.4664 10 10.0604 15 14.6968
(2000,4000) 10 20.9651 10 20.1461 15 29.3138

Example 6 ( [8, 10]).
min

[
f(ξ) =

n∑
i=1

ξi ln

(
ξi
ai

)]
ξi + ξi+m = qi, i = 1 : m, n = 2m

ξ > 0,

where ai ∈ R∗
+ and qi ∈ R.

We test this example for different values of m, ai and qi. The results are summarized in the
following tables.

Table 3. Case 1: ai = 1 and qi = 1

Size(m,n) Method 1 Method 2 Method 3
N.I. T N.I T N.I T

(10,20) 8 0.0247 8 0.0112 11 0.019927
(100,200) 10 0.0958 9 0.03904 14 0.065
(150,300) 10 0.0978 10 0.0678 15 0.0815

(1000,2000) 10 3.5179 10 3.7226 14 4.500
(1500,3000) 11 11.6343 11 11.3652 15 13.3785
(2000,4000) 11 21.3618 11 20.7197 15 27.9176

Table 4. Case 2: ai = 1 and qi = 6

Size(m,n) Method 1 Method 2 Method 3
N.I. T N.I T N.I T

(10,20) 8 0.0211 8 0.0104 13 0.01967
(100,200) 9 0.0570 9 0.0415 18 0.0791
(150,300) 9 0.0813 9 0.0697 18 0.1252

(1000,2000) 10 4.2298 10 4.2054 19 7.8108
(1500,3000) 11 13.1987 11 12.7618 20 23.3412
(2000,4000) 11 28.0187 11 27.447 20 48.9402

Comments

Numerical tests we have carried out show that the tangent and backtracking with interpola-
tion techniques perform unevenly in terms of number of iterations. In some examples, tangent
technique takes fewer iterations, while in others, backtracking with interpolation takes fewer.
However, in most cases, both methods converge with approximately iterations. While, Wolfe’s
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Table 5. Case 3: ai = 2 and qi = 4

Size(m,n) Method 1 Method 2 Method 3
N.I. T N.I T N.I T

(10,20) 9 0.0311 9 0.0180 17 0.0206
(100,200) 10 0.0654 10 0.0429 22 0.1018
(150,300) 10 0.1197 10 0.0642 22 0.1374

(1000,2000) 10 4.0826 10 3.7252 25 9.7089
(1500,3000) 11 12.3451 11 11.325 26 27.8858
(2000,4000) 11 24.2373 11 23.2449 26 58.7148

method always require more iterations than the other two techniques. In terms of computa-
tion time, backtracking with interpolation technique is consistently the fastest among the three
methods.
Therefore, we conclude that both techniques introduced in this paper are more efficient than
Wolfe’s method.

Conclusion
In this work, we have succeeded in enriching the field of nonlinear optimization, by introducing

a new solving method based on inverse barrier functions. In this regard, a theoretical and
numerical study was conducted.
The numerical simulations performed show that the technique of backtracking with interpolation
effectively reduces the computational cost of the proposed algorithm relative to the classical line
search.

The authors are very grateful and would like to thank the Editor-in-Chief and the anonymous
referees for their comments and suggestions which helped to improve the presentation of this
paper.
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Эффективный метод обратного барьера для нелинейной
оптимизации
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Аннотация. В данной работе мы используем новый вариант метода обратного барьера для реше-
ния нелинейной задачи оптимизации. Новая функция обратного барьера зависит от компонентов
вектора штрафа и сохраняет свойства исходной задачи. Направление спуска вычисляется методом
Ньютона, а размер шага — методом касательных и методом обратного отслеживания с интерполя-
цией параллельно с методом Вульфа.
В поддержку нашего подхода представлены сравнительные численные модели.

Ключевые слова: метод внутренних точек, нелинейное программирование, метод обратных ба-
рьеров.
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Abstract. Let F(γ)
κ,µ(ξ) = ξ+

∞∑
n=1

[
Γ(µ)

Γ(κn+ µ)

]γ

ξn+1 be the normalized Le Roy-type Mittag-Leffler func-

tion. The purpose of the present paper is to introduce two new subclasses Hγ
Σ(κ, µ, λ, τ) and Hγ

Σ(κ, µ, λ, δ)
of the function class Σ of bi-univalent functions defined by the function F(γ)

κ,µ(ξ). Furthermore, we find
estimates on the coefficients |a2| and |a3| for functions in these new subclasses. Also, we solve the
Fekete–Szegö functional problem for functions in the classes Hγ

Σ(κ, µ, λ, τ) and Hγ
Σ(κ, µ, λ, δ). Several

examples of the main results are also considered.
Keywords: analytic and univalent functions, bi-univalent functions, Le Roy-type Mittag-Leffler func-
tion, coefficients bounds.

Citation: S.K. Al-Titi, B.A. Frasin, Subclasses of Bi-univalent Functions Defined by the
Normalized Le Roy-type Mittag-Leffler Function, J. Sib. Fed. Univ. Math. Phys., 2026,
19(1), 100–110. EDN: MQBJTT.

1. Introduction and definitions

Let A denote the class of functions of the form :

f(ξ) = ξ +

∞∑
n=2

anξ
n (1.1)

which are analytic in the open unit disc U = {ξ : |ξ| < 1} . Further, by S we shall denote the class
of all functions in A which are univalent in U .

It is well-known that, if f(ξ) is analytic and univalent from a domain D1 onto a domain D2,
then the inverse function g(ξ) defined by g (f(ξ)) = ξ (ξ ∈ D1), is an analytic and univalent
mapping from D2 to D1. Moreover, by the familiar Koebe one-quarter theorem every function
f ∈ S has an inverse map f−1 that satisfies the following conditions

f−1(f(ξ)) = ξ and f
(
f−1(w)

)
= w

(
ξ ∈ U ,|w| < r0(f); r0(f) >

1

4

)
,

where
f−1(w) = w − a2w

2 + (2a22 − a3)w
3 − (5a32 − 5a2a3 + a4)w

4 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in U .
∗shrouqtiti@gmail.com https://orcid.org/0000-0001-8608-8063
†bafrasin@yahoo.com

c⃝ Siberian Federal University. All rights reserved
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Let Σ denote the class of bi-univalent functions in U . Examples of functions in the class Σ

are
ξ

1− ξ
, log

1

1− ξ
, log

√
1 + ξ

1− ξ
. However, the familiar Koebe function is not a member of Σ.

Other common examples of functions in U such as
2ξ − ξ2

2
and

ξ

1− ξ2
are also not members

of Σ.
Lewin [16] investigated the bi-univalent function class Σ and showed that |a2| < 1.51. Subse-

quently, Brannan and Clunie [6] conjectured that |a2| <
√
2. Netanyahu [19], on the other hand,

showed that max
f∈Σ

|a2| = 4/3.

The coefficient estimate problem for each of the Taylor–Maclaurin coefficients |an| (n > 3;
n ∈ N) is presumably still an open problem. Brannan and Taha [8] (see also [23]) introduced
certain subclasses of the bi-univalent function class Σ similar to the familiar subclasses S∗(τ)
and K(τ) of starlike and convex functions of order τ(0 6 τ < 1), respectively.

Following Brannan and Taha [8] (see also [23]), a function f ∈ A is in the class S∗
Σ [τ ] of

strongly bi-starlike functions of order τ(0<τ61) if each of the following conditions are satisfied:

f ∈ Σ and
∣∣∣∣arg(ξf ′(ξ)f(ξ)

)∣∣∣∣ < τπ

2
(0 < τ 6 1, ξ ∈ U) and

∣∣∣∣arg(ξg′(w)g(w)

)∣∣∣∣ < τπ

2
(0 < τ 6 1,

w ∈ U), where g is the extension of f−1to U . The classes S∗
Σ(τ) and KΣ(τ) of bi-starlike

functions of order τ and bi-convex functions of order τ , corresponding to the function classes
of starlike functions of order τ and the function classes of convex functions of order τ . For
each of the function classes S∗

Σ(τ) and KΣ(τ) , they found non-sharp estimates on the first two
Taylor–Maclaurin coefficients |a2| and |a3| (for details, see [8, 23]).

Geometric Function Theory is an important branch of complex analysis. It deals with the
geometric properties of analytic functions. Special functions are very important in the study of
geometric function theory, applied mathematics, physics, statistics and many other subjects. One
of these functions is the Mittag–Leffler function [18], widely used in the solution of fractional-
order integral equations or fractional-order differential equations.

The family of the two-parameter Mittag–Leffler functions Eκ,µ(ξ) =
∞∑

n=0

ξn

Γ(κn+ µ)
,

κ, µ, ξ ∈ C, ℜ(κ) > 0, is named after the great Swedish mathematician Gösta Magnus
Mittag–Leffler (1846–1927), who defined the function in one parameter [18], given by

Eκ(ξ) =
∞∑

n=0

ξn

Γ(κn+ 1)
, κ, ξ ∈ C, ℜ(κ) > 0.

The Mittag–Leffler function and its generalizations has many applications in physics, biology,
chemistry, engineering, and other applied sciences, making it better known among scientists.

Very recently, the study of the Mittag–Leffler function has become an interesting topic in
Geometric Function Theory. Geometric properties, including starlikeness, convexity and close-
to-convexity, of the Mittag–Leffler function Eκ,µ(ξ) were investigated by Bansal and Prajapat
in [7] and by Srivastava and Bansal (see [22] ). In fact, the generalized Mittag–Leffler function
Eκ,µ(ξ) and its extensions and generalizations continue to be used in many different contexts in
geometric function theory (see [4, 5, 9, 11,12]).

Recently, Gerhold [13] and Garra and Polito [14] independently introduced the Le Roy-

type Mittag–Leffler function, defined as F (γ)
κ,µ(ξ) =

∞∑
n=0

ξn

[Γ(κn+ µ)]
γ , κ, µ, γ > 0, ξ ∈ C. In

particular, when κ = µ = 1, F
(γ)
κ,µ(ξ) leads to the following Le Roy-type function [17] defined as

Rγ(ξ) =
∞∑

n=0

1

(n!)γ
ξn, γ > 0, ξ ∈ C. It can be easily noted that F (γ)

κ,µ(ξ) is a generalization of

the familiar Mittag–Leffler function Eκ,µ(ξ).
It is clear that the Le Roy-type Mittag–Leffler function F (γ)

κ,µ(ξ) does not belong to the family
A. Thus, it is natural to consider the following normalization of F (γ)

κ,µ(ξ) :
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F(γ)
κ,µ(ξ) = ξ [Γ(µ)]

γ
F (γ)
κ,µ(ξ) =

= ξ +

∞∑
n=1

[
Γ(µ)

Γ(κn+ µ)

]γ
ξn+1, κ, µ, γ > 0, ξ ∈ C. (1.3)

In this paper, we shall restrict our attention to the case of positive real valued κ, µ, γ and ξ ∈ U .
Observe that the function F(γ)

κ,µ contains many well-known functions as its special case, for
example, 

F(1)
0,1(ξ) = ξ/(1− ξ),

F(1)
1,1(ξ) = ξeξ,

F(1)
1,2(ξ) = eξ − 1,

F(1)
1,3(ξ) = 2(eξ − ξ − 1)/ξ,

F(1)
1,4(ξ) = (6(eξ − ξ − 1)− 3ξ2)/ξ2,

F(1)
2,1(ξ) = ξ cosh(

√
ξ),

F(1)
2,2(ξ) =

√
ξ sinh(

√
ξ),

F(1)
2,3(ξ) = 2

[
cosh(

√
ξ)− 1

]
,

F(1)
2,4(ξ) = 6

[
sinh(

√
ξ)−

√
ξ
]
/
√
ξ.

Geometric properties, including starlikeness, convexity and close-to-convexity, for the nor-
malized geometric properties of the Le Roy-type Mittag–Leffler function F(γ)

κ,µ were recently in-
vestigated by Mehrez and Das in [19]. From the normalization of the Le Roy-type Mittag–Leffler
function F(γ)

κ,µ(ξ) given by (1.3), let the function V(γ)
κ,µf(ξ) defined as follows:

V(γ)
κ,µf(ξ) = F(γ)

κ,µ(ξ) ∗ f (ξ) = ξ +

∞∑
n=2

[
Γ(µ)

Γ(κ(n− 1) + µ)

]γ
anξ

n, (ξ ∈ U). (1.4)

This paper is divided into three sections with this introduction being the first. In Section 2,
we define the class of analytic and bi-univalent functions Hγ

Σ(κ, µ, λ, τ) using the normalization
of the Le Roy-type Mittag–Leffler function, and we also find estimates on the coefficients |a2|
and |a3| for functions in these new subclasses of the function class Σ employing the techniques
used earlier by Srivastava et al. [21] (see also, [1–3,10,15,24,26]). Section 3 is devoted to solving
problems concerning the coefficients of functions in the class Hγ

Σ(κ, µ, λ, δ). Section 4 is the main
part of the paper, we find the sharp bounds of functional of Fekete–Szegö type.

In order to derive our main results, we have to recall here the following lemma [20].

Lemma 1.1. If h ∈ P then |ck| 6 2 for each k, where P is the family of all functions h analytic
in U for which ℜ(h(ξ)) > 0, h(ξ) = 1 + c1ξ + c2ξ

2 + c3ξ
3 + . . . for z ∈ U .

2. Coefficient bounds for the function class Hγ
Σ(κ, µ, λ, τ)

This section introduces our new subclass of bi-univalent functions, denoted as Hγ
Σ(κ, µ, λ, τ).

Definition 2.1. A function f (ξ) given by (1.1) is said to be in the class Hγ
Σ(κ, µ, λ, τ) if the

following conditions are satisfied:

f ∈ Σ and
∣∣∣∣ arg((V(γ)

κ,µf(ξ)
)′

+ λξ
(
V(γ)

κ,µf(ξ)
)′′)∣∣∣∣ < τπ

2
(ξ ∈ U) (2.1)
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and ∣∣∣∣ arg((V(γ)
κ,µg(w)

)′
+ λξ

(
V(γ)

κ,µg(w)
)′′)∣∣∣∣ < τπ

2
(w ∈ U), (2.2)

where γ,κ, µ > 0, λ > 0, 0 < τ 6 1 and the function g = f−1(w) given by (1.2).

In particular, a function f (ξ) given by (1.1) is said to be in the class Hγ
Σ(κ, µ, τ) if the

following conditions are satisfied:

f ∈ Σ and
∣∣∣∣ arg (V(γ)

κ,µf(ξ)
)′∣∣∣∣ < τπ

2
(ξ ∈ U) (2.3)

and ∣∣∣∣ arg (V(γ)
κ,µg(w)

)′∣∣∣∣ < τπ

2
(w ∈ U), (2.4)

where γ,κ, µ > 0, 0 < τ 6 1 and the function g = f−1(w) given by (1.2).
We begin by finding the estimates on the coefficients |a2| and |a3| for functions in the class

Hγ
Σ(κ, µ, λ, τ).

Theorem 2.2. Let f be in the class Hγ
Σ(κ, µ, λ, τ) where γ,κ, µ > 0, λ > 0, 0 < τ 6 1. Then

|a2| 6
2τ√∣∣∣∣6τ ( Γ(µ)

Γ(2κ+µ)

)γ
(1 + 2λ)− 4(τ − 1)(1 + λ)2

(
Γ(µ)

Γ(κ+µ)

)2γ∣∣∣∣
(2.5)

and

|a3| 6
τ2(

Γ(µ)
Γ(κ+µ)

)2γ
(1 + λ)2

+
2τ

3
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

. (2.6)

Proof. It follows from (2.1) and (2.2) that(
V(γ)

κ,µf(ξ)
)′

+ λξ
(
V(γ)

κ,µf(ξ)
)′′

= [p(ξ)]
κ (2.7)

and (
V(γ)

κ,µg(w)
)′

+ λξ
(
V(γ)

κ,µg(w)
)′′

= [q(w)]
τ (2.8)

where p(ξ) and q(w) in P and have the forms

p(ξ) = 1 + p1ξ + p2ξ
2 + p3ξ

3 + · · · (2.9)

and
q(w) = 1 + q1w + q2w

2 + q3w
3 + · · · . (2.10)

Now, equating the coefficients in (2.7) and (2.8), we get

2

(
Γ(µ)

Γ(κ + µ)

)γ

(1 + λ)a2 = τp1, (2.11)

3

(
Γ(µ)

Γ(2κ + µ)

)γ

(1 + 2λ)a3 = τp2 +
τ(τ − 1)

2
p21, (2.12)

−2

(
Γ(µ)

Γ(κ + µ)

)γ

(1 + λ)a2 = τq1 (2.13)
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and

3

(
Γ(µ)

Γ(2κ + µ)

)γ

(1 + 2λ)(2a22 − a3) = τq2 +
τ(τ − 1)

2
q21 . (2.14)

From (2.11) and (2.13), we get
p1 = −q1 (2.15)

and

8

(
Γ(µ)

Γ(κ + µ)

)2γ

(1 + λ)2a22 = τ2(p21 + q21). (2.16)

Now from (2.12), (2.14) and (2.16), we obtain

6

(
Γ(µ)

Γ(2κ + µ)

)γ

(1 + 2λ)a22 = τ(p2 + q2) +
τ(τ − 1)

2
(p21 + q21) =

= τ(p2 + q2) +
4(τ − 1)(1 + λ)2

τ

(
Γ(µ)

Γ(κ + µ)

)2γ

a22.

Therefore, we have

a22 =
τ2(p2 + q2)

6τ
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)− 4(τ − 1)(1 + λ)2

(
Γ(µ)

Γ(κ+µ)

)2γ . (2.17)

Applying Lemma 1.1 for the coefficients p2 and q2, we immediately have

|a2| 6
2τ√∣∣∣∣6τ ( Γ(µ)

Γ(2κ+µ)

)γ
(1 + 2λ)− 4(τ − 1)(1 + λ)2

(
Γ(µ)

Γ(κ+µ)

)2γ∣∣∣∣
.

This gives the bound on |a2| as asserted in (2.6).
Next, in order to find the bound on |a3|, by subtracting (2.15) from (2.13), we get

6

(
Γ(µ)

Γ(2κ + µ)

)γ

(1 + 2λ)a3 − 6

(
Γ(µ)

Γ(2κ + µ)

)γ

(1 + 2λ)a22 =

= τp2 +
τ(τ − 1)

2
p21 −

(
τq2 +

τ(τ − 1)

2
q21

)
. (2.18)

Upon substituting the value of a22 from (2.17) and observing that p21 = q21 , it follows that

a3 =
τ2p21

4
(

Γ(µ)
Γ(κ+µ)

)2γ
(1 + µ)2

+
τ(p2 − q2)

6
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

.

Applying Lemma 1.1 once again for the coefficients p1, p2, q1 and q2, we readily get

|a3| =
τ2(

Γ(µ)
Γ(κ+µ)

)2γ
(1 + λ)2

+
2τ

3
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

.

This completes the proof of Theorem 2.2.

Corollary 2.3. Let F(γ)
κ,1 be in the class Hγ

Σ(κ, µ, τ) where γ,κ > 0, 0 < τ 6 1.Then
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|a2| 6
2τ√∣∣∣∣6τ ( Γ(µ)

Γ(2κ+µ)

)γ
− 4(τ − 1)

(
Γ(µ)

Γ(κ+µ)

)2γ∣∣∣∣
(2.19)

and

|a3| 6
τ2(

Γ(µ)
Γ(κ+µ)

)2γ +
2τ

3
(

Γ(µ)
Γ(2κ+µ)

)γ . (2.20)

3. Coefficient bounds for the function class Hγ
Σ(κ, µ, λ, δ)

Definition 3.1. A function f(ξ) is said to be in the class Hγ
Σ(κ, µ, λ, δ) if the following condi-

tions are satisfied:

f ∈ Σ and ℜ
((

V(γ)
κ,µf(ξ)

)′
+ λξ

(
V(γ)

κ,µf(ξ)
)′′)

> δ (ξ ∈ U) (3.1)

and
ℜ
((

V(γ)
κ,µg(w)

)′
+ λξ

(
V(γ)

κ,µg(w)
)′′)

> δ (w ∈ U), (3.2)

where γ,κ, µ > 0, λ > 0, 0 6 δ < 1 and the function g is given by (1.2).

In particular, a function f(ξ) is said to be in the class Hγ
Σ(κ, µ, δ) if the following conditions

are satisfied:
f ∈ Σ and ℜ

(
V(γ)

κ,µf(ξ)
)′
> δ (ξ ∈ U) (3.3)

and
ℜ
(
V(γ)

κ,µg(w)
)′
> δ (w ∈ U), (3.4)

where γ,κ, µ > 0, 0 6 δ < 1 and the function g is given by (1.2).

Theorem 3.2. Let f be in the class Hγ
Σ(κ, µ, λ, δ) where γ,κ, µ > 0, λ > 0 and 0 6 δ < 1.Then

|a2| 6
√√√√ 2(1− δ)

3
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

. (3.5)

and

|a3| 6
(1− δ)2(

Γ(µ)
Γ(κ+µ)

)2γ
(1 + λ)2

+
2(1− δ)

3
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

. (3.6)

Proof. It follows from (3.1) and (3.2) that there exist p(ξ) and q(w) in P such that(
V(γ)

κ,µf(ξ)
)′

+ λξ
(
V(γ)

κ,µf(ξ)
)′′

= δ + (1− δ)p (ξ) (3.7)

and (
V(γ)

κ,µg(w)
)′

+ λξ
(
V(γ)

κ,µg(w)
)′′

= δ + (1− δ)q(w) (3.8)

where p(ξ) and q(w) in P and have the forms (2.10) and (2.11),respectively. Equating coefficients
in (3.7) and (3.8) yields

2

(
Γ(µ)

Γ(κ + µ)

)γ

(1 + λ)a2 = (1− δ)p1, (3.9)
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3

(
Γ(µ)

Γ(2κ + µ)

)γ

(1 + 2λ)a3 = (1− δ)p2, (3.10)

−2

(
Γ(µ)

Γ(κ + µ)

)γ

(1 + λ)a2 = (1− δ)q1 (3.11)

and

3

(
Γ(µ)

Γ(2κ + µ)

)γ

(1 + 2λ)(2a22 − a3) = (1− δ)q2. (3.12)

From (3.9) and (3.11), we get
p1 = −q1 (3.13)

and

8

(
Γ(µ)

Γ(κ + µ)

)2γ

(1 + λ)2a22 = (1− δ)2(p21 + q21). (3.14)

Now from (3.10)and (3.12) , we find that

6

(
Γ(µ)

Γ(2κ + µ)

)γ

(1 + 2λ)a22 = (1− δ)(p2 + q2)

Thus,we have ∣∣a22∣∣ 6 (1− δ)(|p2|+ |q2|)

6
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

=
2(1− δ)

3
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

which is the bound on
∣∣a22∣∣ as given in (3.5).

Next, in order to find the bound on |a3|, by subtracting (3.12) from (3.10), we get

6

(
Γ(µ)

Γ(2κ + µ)

)γ

(1 + 2λ)a3 − 6

(
Γ(µ)

Γ(2κ + µ)

)γ

(1 + 2λ)a22 = (1− δ)(p2 − q2)

or, equivalently,

a3 = a22 +
(1− δ)(p2 − q2)

6
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

.

Upon substituting the value of a22 from (3.14), we obtain

a3 =
(1− δ)2(p21 + q21)

8(1 + λ)2
+

(1− δ)(p2 − q2)

6
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

.

Applying Lemma 1.1 for the coefficients p1, p2, q1 and q2, we readily get

|a3| 6
(1− δ)2(

Γ(µ)
Γ(κ+µ)

)2γ
(1 + λ)2

+
2(1− δ)

3
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

which is the bound on |a3| as asserted in (3.6).

Corollary 3.3. Let f(ξ) be in the class Hγ
Σ(κ, µ, δ) where γ,κ > 0 and 0 6 δ < 1. Then

|a2| 6
√√√√ 2(1− δ)

3
(

Γ(µ)
Γ(2κ+µ)

)γ . (3.15)

and

|a3| 6
(1− δ)2(
Γ(µ)

Γ(κ+µ)

)2γ +
2(1− δ)

3
(

Γ(µ)
Γ(2κ+µ)

)γ . (3.16)
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4. Fekete-Szegö inequality

In this section, we will find the sharp bounds of Fekete-Szegö functional |a3 − ηa22|, η ∈ R,
for f ∈ Hγ

Σ(κ, µ, λ, τ).

Theorem 4.1. Let f(z) given by (1.1) be in the class Hγ
Σ(κ, µ, λ, τ), γ,κ, µ > 0, λ > 0 and

0 < τ 6 1. Then for some η ∈ R,

∣∣a3 − ηa22
∣∣ 6


4τ

6
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

, for 0 6 |φ(η)| 6 1

6
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

,

4τ |φ(η)| , for |φ(η)| > 1

6
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

,

where
φ(η) = (1− η)

τ

6τ
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)− 4(τ − 1)(1 + λ)2

(
Γ(µ)

Γ(κ+µ)

)2γ .
Proof. Let f ∈ Hγ

Σ(κ, µ, λ, τ). In view of (2.15), it follows from (2.18) that

a3 = a22 +
τ (p2 − q2)

6
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

. (4.1)

By using (4.1) and (2.17) for some η ∈ R, we get

a3 − ηa22 = (1− η)

 τ2(p2 + q2)

6τ
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)− 4(τ − 1)(1 + λ)2

(
Γ(µ)

Γ(κ+µ)

)2γ
+

+
τ (p2 − q2)

6
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

=

= τ

φ(η) + 1

6
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

 p2 +

φ(η)− 1

6
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

 q2

 ,
where

φ(η) = (1− η)
τ

6τ
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)− 4(τ − 1)(1 + λ)2

(
Γ(µ)

Γ(κ+µ)

)2γ .
Therefore, we have

∣∣a3 − ηa22
∣∣ 6


4τ

6
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

, for 0 6 |φ(η)| 6 1

6
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

,

4τ |φ(η)| , for |φ(η)| > 1

6
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

.

The proof is completed.

The proof of Theorem 4.2 (below) is similar to that of Theorem 4.1 and can be omitted.
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Theorem 4.2. Let f(z) given by (1.1) be in the class Hγ
Σ(κ, µ, λ, δ) where γ,κ, µ > 0, λ > 0

and 0 6 δ < 1. Then for some η ∈ R,

∣∣a3 − ηa22
∣∣ 6


4(1− δ)

6
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

, for 0 6 |ψ(η)| 6 1

6
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

,

4(1− δ) |ψ(η)| , for |ψ(η)| > 1

6
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

,

where
ψ(η) =

(1− η)

6
(

Γ(µ)
Γ(2κ+µ)

)γ
(1 + 2λ)

.

From Theorems 4.1 and 4.2, we get the following corollaries.

Corollary 4.3. Let f(z) given by (1.1) be in the class Hγ
Σ(κ, µ, τ), γ,κ, µ > 0 and 0 < τ 6 1.

Then for some η ∈ R,

∣∣a3 − ηa22
∣∣ 6


4τ

6
(

Γ(µ)
Γ(2κ+µ)

)γ , for 0 6 |φ(η)| 6 1

6
(

Γ(µ)
Γ(2κ+µ)

)γ ,
4τ |φ(η)| , for |φ(η)| > 1

6
(

Γ(µ)
Γ(2κ+µ)

)γ ,
where

φ(η) = (1− η)
τ

6τ
(

Γ(µ)
Γ(2κ+µ)

)γ
− 4(τ − 1)

(
Γ(µ)

Γ(κ+µ)

)2γ .
Corollary 4.4. Let f(z) given by (1.1) be in the class Hγ

Σ(κ, µ, δ) where γ,κ, µ > 0 and
0 6 δ < 1. Then for some η ∈ R,

∣∣a3 − ηa22
∣∣ 6


4(1− δ)

6
(

Γ(µ)
Γ(2κ+µ)

)γ , for 0 6 |1− η| 6 1,

4(1− δ)

6
(

Γ(µ)
Γ(2κ+µ)

)γ |1− η| , for |1− η| > 1.

Conclusions
In this study, we introduce two new subclasses Hγ

Σ(κ, µ, λ, τ) and Hγ
Σ(κ, µ, λ, δ) of the function

class Σ of bi-univalent functions connected to the Le Roy-type Mittag–Leffler function V(γ)
κ,µf(ξ)

given in (1.4). We have derived estimates for the Taylor–Maclaurin coefficients |a2| and |a3|
for the function in the subclasses Hγ

Σ(κ, µ, λ, τ) and Hγ
Σ(κ, µ, λ, δ). Furthermore, the Fekete-

Szegö problem for these subclasses is solved. Making use of the normalized Le Roy-type Mittag–
Leffler function V(γ)

κ,µf(ξ) could inspire researchers to derive the estimates of the Taylor-Maclaurin
coefficients |a2| and |a3| and Fekete–Szegö functional problems for functions belonging to new
subclasses of bi-univalent functions.
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Подклассы двузначных функций, определяемых
нормализованной функцией Миттаг-Леффлера
типа Ле Руа

Шрук Халдун Аль-Тити
Базем Ареф Фразин
Факультет естественных наук

Университет Аль-аль-Байт, Мафрак, Иордания

Аннотация. Пусть F(γ)
κ,µ(ξ) = ξ +

∞∑
n=1

[
Γ(µ)

Γ(κn+ µ)

]γ

ξn+1 — нормированная функция Миттаг–

Леффлера типа Ле Руа. Целью настоящей статьи является введение двух новых подклассов
Hγ

Σ(κ, µ, λ, τ) и Hγ
Σ(κ, µ, λ, δ) функционального класса Σ биоднолистных функций, определенных

функцией F(γ)
κ,µ(ξ). Кроме того, мы находим оценки коэффициентов |a2| и |a3| для функций из этих

новых подклассов. Также решается функциональная задача Фекете-Сега для функций классов
Hγ

Σ(κ, µ, λ, τ) и Hγ
Σ(κ, µ, λ, δ). Также рассматриваются несколько примеров основных результатов.

Ключевые слова: аналитические и однолистные функции, двуоднолистные функции, функция
Миттаг-Леффлера типа Ле Руа, оценки коэффициентов.
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Abstract. In this paper, we introduce a paired Meir–Keeler contraction mapping and utilize it to prove
some fixed point results in the framework of metric spaces. We also construct examples to emphasize
the usefulness and relevance of our results. Furthermore, we use an integral equation in order to validate
our newly proved results.
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1. Introduction

Fixed point theory has made remarkable contributions to various topics. Some of them are
analysis, topology and applied mathematics. It underpins many important theorems and helps
in solving equations, differential equations, integral equations, addressing optimization problems
and system dynamics. Fixed point theory was initiated by L.E. J. Brouwer. Later in 1922,
S. Banach [20] introduced a remarkable results, whose pioneering contribution laid the ground-
work for its growth, which is known as Banach contraction principle. This principle also plays
a fundamental role in the theory of metric spaces. It requires a self-mapping by using some
condition on a complete metric space in order to get fixed point. One of its primary applica-
tions lies in demonstrating the existence and uniqueness of solutions to equation, particularly
within the framework of differential equations, integral and functional equation. The results of
Banach contraction principle is used for solving equations in the analysis of iterative schemes.
Furthermore, it serves as a key tool in proving the well-posedness of many problems in nonlinear
analysis, control theory and economics.

Its impact encouraged mathematicians to extend its scope to a broader class of spaces and
function. One key area of development focused on analyzing contraction in more generalized
metric spaces that exhibit additional structural properties. For instance, b-metric space [11,22],
extended b-metric space [26], rectangular metric space [1], rectangular b-metric space [19], ex-
tended rectangular b-metric space [14], partial metric space [23], partial b-metric space [25],
C∗-algebra valued metric space [28], C∗-algebra valued partial metric space [21], C∗-algebra val-
ued b-metric space [29], C∗-algebra valued partial b-metric space [17] and there are many others,
one can see( [3, 12,13,16]).

∗rachnarathee81@gmail.com
†mailtoasim27@gmail.com

c⃝ Siberian Federal University. All rights reserved
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The Meir–keeler contraction, a generalization of Banach contraction principle was introduce
by A.Meir and E. Keeler [2]. In this contraction, we need a self-mapping in a metric space
following some properties in order to find a unique fixed point. Numerous studies have been
conducted on this topic. Some of them are mentioned as below. In 2009, C. M. Chen and
T.H. Chang [4] introduced the concept of "weaker Meir–Keeler function" and "strong Meir-
Keeler function". In 2018, U.A. K. Aksoy et. al., [27] give fixed point results using Meir–Keeler
type contraction. There are also many generalization on the topic of Meir–Keeler contraction for
that one can see( [5–8,10,24]).

In this work, we introduce paired Meir–Keeler contraction. After that we have proved fixed
point results by using paired Meir–Keeler contraction. The paper includes paired Meir–Keeler
as a central tool to investigate the solvability of a certain class of integral equations, thereby
highlighting its effectiveness in handling nonlinear structures within the framework of metric
fixed point theory.

2. Preliminaries
Now, we recall some of the basic definition that will be useful to understand our result in a

better way.
At first, we begin with a fundamental and essential definition which was given by M. R. Frechet

in 1906. The definition of standard metric space which is as follows:

Definition 2.1 ( [15]). Let U ̸= ∅. Then, a mapping dθ : U ×U → R+ is referred to be a metric
space if upcoming conditions hold, ( ∀u, v, w ∈ U):

(1) dθ(u, v) = 0 iff u = v,

(2) dθ(u, v) = dθ(v, u),

(3) dθ(u, v) 6 dθ(u,w) + dθ(w, v).

Then, we assure that the pair (U, dθ) is metric space.

Definition 2.2 ( [18]). Let T be a self mapping such that T : U → U and (U, dθ) be a metric
space. A point u ∈ U is said to be a periodic point with period n if Tnu = u. The prime period
of u is the smallest positive integer n with the value Tnu = u.

Definition 2.3 ( [9]). Let (U, dθ) be a metric space having cardinality greater than or equal to
three. A mapping T : U → U is called paired contraction if ∃ L ∈ [0, 1) such that (∀u, v, w ∈ U)

dθ(Tu, Tv) + dθ(Tv, Tw) 6 L[dθ(u, v) + dθ(v, w)].

Remark 2.1. If we put u = w or v = w in the above definition, then we are able to get
contraction mapping.

The example of paired contraction is as follows.

Example 2.1 ( [9]). Let U = {1, 2, 3} and dθ : U × U → [0,∞) be defined as ∀u, v ∈ U

dθ(u, v) =



0, if u = v

1

4
, if u, v ∈ {1, 2}, u ̸= v

1

3
, if u, v ∈ {2, 3}, u ̸= v

1

2
, if otherwise.
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A mapping T : U → U be defined as

T (u) =

{
2, if u = 2,
1, if otherwise,

Now, T (1) = 1, T (2) = 2 and T (T (3)) = 1 ̸= 3, then it is obvious that T does not have periodic

points of prime period two. Moreover, let L =
9

10

(1) dθ(T (1), T (2)) + dθ(T (2), T (3)) 6 L[dθ(1, 2) + dθ(2, 3)] =
1

2
<

33

40
.

(2) dθ(T (1), T (3)) + dθ(T (3), T (2)) 6 L[dθ(1, 3) + dθ(3, 2)] =
1

4
<

3

4
.

(3) dθ(T (3), T (1)) + dθ(T (1), T (2)) 6 L[dθ(3, 1) + dθ(1, 2)] =
1

4
<

27

40
.

(4) dθ(T (3), T (2)) + dθ(T (2), T (1)) 6 L[dθ(3, 2) + dθ(2, 1)] =
1

2
<

21

40
.

(5) dθ(T (2), T (1)) + dθ(T (1), T (3)) 6 L[dθ(2, 1) + dθ(1, 3)] =
1

4
<

27

40
.

(6) dθ(T (2), T (3)) + dθ(T (3), T (1)) 6 L[dθ(2, 3) + dθ(3, 1)] =
1

4
<

3

4
,

implies T is paired contraction.

Now, we present the following theorem given by D. Chand and Y. Rohen [9].

Theorem 2.1 ( [9]). Let T : U → U be the paired contraction and (U, dθ) be a complete metric
space having cardinality greater than or equal to three. Then T have a fixed point iff it does not
have periodic points of prime period two and the maximum number of fixed point is two.

Now, we recall the definition of Meir–Keeler contraction as given under:

Definition 2.4 ( [2]). Let (U, dθ) be a complete metric space and T : U → U be a mapping. If
for every ϵ > 0 ∃ δ > 0 such that

ϵ 6 dθ(u, v) < ϵ+ δ =⇒ dθ(Tu, Tv) < ϵ.

Then a mapping T is said to be a Meir–Keeler contraction.

3. Main Results

First of all, we give the definition of paired Meir–Keeler contraction which is the generalization
of paired contraction.

Definition 3.1. Suppose (U, dθ) be a metric space having cardinality greater than or equal to
three. A mapping T : U → U is said to be a paired Meir–Keeler contraction if for every ϵ >
0 ∃ δ > 0 such that

ϵ 6 dθ(u, v) + dθ(v, w) < ϵ+ δ =⇒ dθ(Tu, Tv) + dθ(Tv, Tw) < ϵ.

Now, we construct the example of paired Meir–Keeler contraction.
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Example 3.1. Let U = {1, 2, 3, 4} and dθ : U × U → [0,∞) be defined as ∀u, v ∈ U

dθ(u, v) =



0, if u = v
dθ(u, v) = dθ(v, u) ∀ u, v ∈ U

1, if u = 1, v ∈ U \ 1
1

10
, if u = 2, v ∈ {3, 4}

1

3
, if otherwise.

A mapping T : U → U be defined as

T (u) =

{
4, if u = 1,
2, if otherwise,

Let ϵ =
1

2
and δ = 5. Now, T (T (2)) = 2 and T (T (1)) = T (T (3)) = T (T (4)) = 2. Then, it is

obvious that T does not have periodic points of prime period two. Moreover, taking u = 3 and
v = 4,

ϵ 6 dθ(u, v) < ϵ+ δ =⇒ dθ(Tu, Tv) < ϵ

1

2
� dθ(3, 4) < 5 +

1

2
=⇒ dθ(T (3), T (4)) <

1

2

1

2
� dθ(3, 4) < 5 +

1

2
=⇒ dθ(2, 2) <

1

2

1

2
�

1

3
< 5 +

1

2
=⇒ 0 <

1

2

T is not Meir–Keeler contraction but

(1) ϵ 6 dθ(1, 2) + dθ(2, 3) < ϵ+ δ =⇒ dθ(T (1), T (2)) + dθ(T (2), T (3))
1

2
6 11

10
<

11

2
=⇒ 1

10
<

1

2
.

(2) ϵ 6 dθ(1, 2) + dθ(2, 4) < ϵ+ δ =⇒ dθ(T (1), T (2)) + dθ(T (2), T (4))
1

2
6 11

10
<

11

2
=⇒ 1

10
<

1

2
.

(3) ϵ 6 dθ(1, 3) + dθ(3, 4) < ϵ+ δ =⇒ dθ(T (1), T (3)) + dθ(T (3), T (4))
1

2
6 4

3
<

11

2
=⇒ 1

10
<

1

2
.

(4) ϵ 6 dθ(2, 3) + dθ(3, 1) < ϵ+ δ =⇒ dθ(T (2), T (3)) + dθ(T (3), T (1))
1

2
6 11

10
<

11

2
=⇒ 1

10
<

1

2
.

(5) ϵ 6 dθ(2, 1) + dθ(1, 4) < ϵ+ δ =⇒ dθ(T (2), T (1)) + dθ(T (1), T (4))
1

2
6 11

10
<

11

2
=⇒ 1

5
<

1

2
.

(6) ϵ 6 dθ(2, 3) + dθ(3, 4) < ϵ+ δ =⇒ dθ(T (2), T (3)) + dθ(T (3), T (4))
1

2
6 13

10
<

11

2
=⇒ 0 <

1

2
.

(7) ϵ 6 dθ(3, 4) + dθ(4, 2) < ϵ+ δ =⇒ dθ(T (3), T (4)) + dθ(T (4), T (2))
1

2
6 13

10
<

11

2
=⇒ 0 <

1

2
.
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(8) ϵ 6 dθ(3, 4) + dθ(4, 1) < ϵ+ δ =⇒ dθ(T (3), T (4)) + dθ(T (4), T (1))
1

2
6 4

3
<

11

2
=⇒ 1

10
<

1

2
.

(9) ϵ 6 dθ(3, 1) + dθ(1, 2) < ϵ+ δ =⇒ dθ(T (3), T (1)) + dθ(T (1), T (2))
1

2
6 2 <

11

2
=⇒ 1

5
<

1

2
.

(10) ϵ 6 dθ(4, 3) + dθ(3, 1) < ϵ+ δ =⇒ dθ(T (4), T (3)) + dθ(T (3), T (1))
1

2
6 4

3
<

11

2
=⇒ 1

10
<

1

2
.

(11) ϵ 6 dθ(4, 3) + dθ(3, 2) < ϵ+ δ =⇒ dθ(T (4), T (3)) + dθ(T (3), T (2))
1

2
6 13

30
<

11

2
=⇒ 0 <

1

2
.

(12) ϵ 6 dθ(4, 1) + dθ(1, 2) < ϵ+ δ =⇒ dθ(T (4), T (1)) + dθ(T (1), T (2))
1

2
6 2 <

11

2
=⇒ 1

5
<

1

2
.

Then it is obvious that T is paired Meir–Keeler contraction.

We now present the main result of our work.

Theorem 3.1. Suppose (U, dθ) be a complete metric space having cardinality greater than or
equal to three. A continuous function T : U → U is a paired Meir–Keeler contraction. Then the
mapping T has a fixed point iff it does not have periodic points of prime period two. Moreover,
the maximum number of fixed points is two.

Proof. Suppose T be a prime period two mapping in which there are no periodic points. Our
aim is to show that T admits fixed point. Let Tu0 = u1, Tu1 = u2 and so on such that

Tun = un+1 ∀n ∈ N0.

Now, if no element of un is a fixed point of the mapping T for every n ∈ N0 then it follows that
all terms of the sequence un are distinct. As un is not fixed point, implies un+1 = Tun ̸= un. In
addition, it follows that un+2 = T (Tun) ̸= un as prime period two does not have any periodic
points. As a results all un, un+1 and un+2, all are distinct from one another. By using the
definition of paired Meir-Keeler contraction, for every ϵ > 0 ∃ δ > 0 such that

ϵ 6 dθ(un−1, un) + dθ(un, un+1) < ϵ+ δ.

Now,

dθ(un, un+1) + dθ(un+1, un+2) = dθ(Tun−1, Tun) + dθ(Tun, Tun+1) 6
6 dθ(un−1, un) + dθ(un, un+1)− δ 6
6 dθ(un−2, un−1) + dθ(un−1, un)− 2δ 6
.
.
.

6 dθ(u0, u1) + dθ(u1, u2)− nδ.

Let ψn = dθ(un, un+1) + dθ(un+1, un+2)− δ for every n ∈ N0, then we have

ψn 6 ψn−1 − δ 6 ψn−2 − 2δ 6 . . . 6 ψ0 − nδ (1)
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Let there exists a minimal natural number j > 3 for which uj = ui holding 0 6 i 6 j − 2. It
implies that uj+1 = ui+1 and uj+2 = ui+2. Hence,

ψi = dθ(ui, ui+1) + dθ(ui+1, ui+2) = dθ(uj , uj+1) + dθ(uj+1, uj+2) = ψj

which is a contradiction to equation 1. Hence, there cannot exists such i and j. Now, suppose
∃ ϵ0 > 0 and a subsequence ψnk

such that ψnk
> ϵ0 ∀k. Then ∃ δ > 0 such that

ϵ0 6 dθ(u, v) + dθ(v, w) < ϵ0 + δ =⇒ dθ(Tu, Tv) + dθ(Tv, Tw) < ϵ0.

But by definition, we have

dθ(unk
, unk+1) + dθ(unk+1, unk+2) = ψnk

∈ [ϵ0, ϵ0 + δ),

so,

dθ(unk+1, unk+2) + dθ(unk+2, unk+3) = dθ(Tunk
, Tunk+1) + dθ(Tunk+1, Tunk+2) < ϵ0

which is a contradiction and implies ψn → 0. Now, we claim that the sequence {un} is cauchy.
For any m,n ∈ N0 with m > n and using triangular inequality.

dθ(un, um) 6 dθ(un, un+1) + dθ(un+1, un+2) + · · ·+ dθ(um−1, um) 6
6 ψn + ψn+1 + · · ·+ ψm−1 =

=

m−1∑
r=n

ψr =

= (m− n)
ϵ

2
<

< ϵ

implies {un} is a cauchy sequence. As (U, dθ) is a complete metric space let the sequence {un}
has a limit point u∗. Now, we will prove that u∗ is the fixed point of T . By the continuity of T ,
we have

u∗ = lim
n→∞

un+1 = lim
n→∞

Tun = Tu∗

which implies that u∗ is a fixed point of T .
Now, suppose three pairwise distinct fixed points, u∗, v∗ and w∗. Then Tu∗ = u∗, Tv∗ = v∗

and Tw∗ = w∗.
Now,

dθ(u
∗, v∗) + dθ(v

∗, w∗) = dθ(Tu
∗, T v∗) + dθ(Tv

∗, Tw∗) 6
6 dθ(u

∗, v∗) + dθ(v
∗, w∗)− δ

which is a contradiction. Hence, T has two fixed points.

Now, we prove the theorem for uniqueness as given under:

Theorem 3.2. Let the fixed point u∗ is a limit point of Picard iteration sequence un = Tun−1

having a starting point u0 ∈ U. Then the mapping T of Theorem 3.1 has a unique fixed point.

Proof. Suppose there exists another fixed point u∗∗ for T such that u∗ ̸= u∗∗ where un ̸=
u∗∗ ∀n ∈ N from the Theorem 3.1. It follows that all three elements u∗, u∗∗ and un are pairwise
distinct for any n ∈ N. By using triangular inequality, we get

dθ(u
∗, u∗∗) 6 dθ(u

∗, Tun) + dθ(Tun, u
∗∗) =

= dθ(u
∗, un+1) + dθ(un+1, u

∗∗)

→ 0 as n→ ∞

Hence, dθ(u∗, u∗∗) = 0 =⇒ u∗ = u∗∗. Hence, T has a unique fixed point.
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Let us now illustrate the concept with an example.

Example 3.2. In Example 3.1, we take u = 1, v = 2 and w = 4. Then from paired Meir–Keeler
contraction, we have

ϵ 6 dθ(1, 2) + dθ(2, 4) < ϵ+ δ =⇒ dθ(T1, T2) + dθ(T2, T4) < ϵ.

ϵ 6 dθ(1, 2) + dθ(2, 4) < ϵ+ δ =⇒ dθ(4, 2) + dθ(2, 2) < ϵ.

1

2
6 11

10
<

11

2
=⇒ 1

10
<

1

2
.

Hence, 2 is a unique fixed point of T .

We now provide an additional example to demonstrate the conclusion of the Theorem 3.2.

Example 3.3. Let (U, dθ) be usual metric space, where U = {un} ⊂ R for n ∈ N0 defined as
follows:

un =



5

2k
, if n = 3r,

4

2k
, if n = 3r + 1,

3

2k
, if n = 3r + 2,

where r ∈ N0 and k < 0. Now, one can easily see that (U, dθ) is a complete metric space. Suppose
a mapping T : U → U defined by Tun = un+1 ∀n ∈ N0. Now, we take u3n, u3n+1, u3n+2 in U .
Then

dθ(Tu3n, Tu3n+1) = dθ(u3n+1, u3n+2) = dθ

(
4

2k
,
3

2k

)
=

1

2k

dθ(u3n, u3n+1) =
1

2k
implies that it is not Meir–Keeler contraction ∀ k = 0, 1, 2, 3 . . . . Now,

dθ(Tu3n, Tu3n+1) + dθ(Tu3n+1, Tu3n+2) = dθ(u3n+1, u3n+2) + dθ(u3n+2, u3n+3)

= dθ

(
4

2k
,
3

2k

)
+ dθ

(
3

2k
,
5

2k

)
=

1

2k
+

2

2k
=

3

2k

dθ(u3n, u3n+1) + dθ(u3n+1, u3n+2) =
1

2k
+

1

2k
=

2

2k
>

3

2k
Hence, T is paired Meir–Keeler contraction which satisfied all the condition of Theorem 3.2.
Hence, 0 is the unique fixed point of T (as shown in the Fig. 1).

The following corollary is a result due to D. Chand and Y. Rohen [9].

Corollary 3.1. Suppose (U, dθ) be a complete metric space having cardinality greater than or
equal to three. A continuous function T : U → U is a paired contraction. Then the mapping T
has a fixed point iff it does not have periodic points of prime period two. Moreover, the maximum
number of fixed points is two.

Proof. If we replace Meir–Keeler contraction with standard contraction mapping in the
Theorem 3.1, then we get results.

The following corollary is the result of A. Meir and E.Keeler [2].

Corollary 3.2. Suppose (U, dθ) be a metric space having cardinality greater than or equal to
three. A mapping T : U → U is said to be a paired Meir–Keeler contraction if for every
ϵ > 0 ∃ δ > 0 such that

ϵ 6 dθ(u, v) + dθ(v, w) < ϵ+ δ =⇒ dθ(Tu, Tv) + dθ(Tv, Tw) < ϵ.

Proof. Put u = w or v = w in the Theorem 3.1. The intended results is established.
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Fig. 1.

4. Application

As an application of the Theorem 3.1, we establish the existence and uniqueness of solution
to the following type of integral equation.

u(ϕ) =

∫ β

α

Γ(ϕ, ξ, u(ξ))dξ + h(ϕ), ∀ϕ, ξ ∈ [α, β]. (2)

Let U = C([α, β]],R) and Γ, h ∈ C([α, β],R). Assume dθ : U × U → R+ such that

dθ(u, v) = sup
ϕ∈[α,β]

|(u(ϕ)− v(ϕ))|, ∀u, v ∈ U.

Thus, the pair (U, dθ) is a complete metric space.

Theorem 4.1. Suppose

|Γ(ϕ, ξ, u(ξ))− Γ(ϕ, ξ, v(ξ))| 6 α

(β − α)(ϵ+ δ)2
|u(ϕ)− v(ϕ)|, ∀ϕ, ξ ∈ [α, β].

This implies that integral equation 2 has a solution which is unique.

Proof. Assume T : U → U by

Tu(ϕ) =

∫ β

α

Γ(ϕ, ξ, u(ξ))dξ + h(ϕ), ∀ϕ, ξ ∈ [α, β].

As it is obvious that, u is the fixed point iff it is a solution of the integral equation 2. Now, for
any ϵ > 0 ∃ δ > 0 ∀ u, v, w ∈ U, such that ϵ =

√
α

ϵ 6 dθ(u, v) + dθ(v, w) < ϵ+ δ.
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Then

dθ(Tu, Tv) + dθ(Tv, Tw) = |T (u(ϕ))− T (v(ϕ))|+ |T (v(ϕ))− T (w(ϕ))| =

=

∣∣∣∣ ∫ β

α

Γ(ϕ, ξ, u(ξ))− Γ(ϕ, ξ, v(ξ))dξ

∣∣∣∣+
+

∣∣∣∣ ∫ β

α

Γ(ϕ, ξ, v(ξ))− Γ(ϕ, ξ, w(ξ)) + dξ

∣∣∣∣ 6
6

(∫ β

α

α

(β − α)(ϵ+ δ)2
|u(ϕ)− v(ϕ)|dξ

)
+

+

(∫ β

α

α

(β − α)(ϵ+ δ)2
|v(ϕ)− w(ϕ)|dξ

)
6

6 (α)

(β − α)(ϵ+ δ)2
sup

ϕ∈[α,β]

|u(ϕ)− v(ϕ)|
(∫ β

α

dξ

)
+

+
(α)

(β − α)(ϵ+ δ)2
sup

ϕ∈[α,β]

|v(ϕ)− w(ϕ)|
(∫ β

α

dξ

)
6

6 (α)

(ϵ+ δ)2
dθ(u, v) +

(α)

(ϵ+ δ)2
dθ(v, w) =

=
(α)

(ϵ+ δ)2
[dθ(u, v) + dθ(v, w)] 6

6 (α)

(ϵ+ δ)2
(ϵ+ δ) 6

6 (α)

(ϵ+ δ)
6

6 ϵ.

Hence, the condition of Theorem 3.1 is satisfied. So, we are able to say that T has a solution
which is unique.

Conclusion
The paper provided the concept of paired Meir–Keeler contraction and also gave fixed point

results by using paired Meir–Keeler contraction. This idea helps further generalizes the theory of
fixed point. We had also provided some example to validate the usefulness of theoretical results.
At end, we applies our results to find the solution of the system of integral equation.
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Результаты с фиксированной точкой для парного
сокращения Мейра-Килера с приложением

Рахна Рати
Мохаммад Асим

Факультет прикладных и фундаментальных наук
Университет SGT

Гуруграм (Харьяна) – 122505, Индия

Аннотация. В этой статье мы вводим парное отображение сжатия Мейра–Килера и использу-
ем его для доказательства некоторых результатов о неподвижных точках в рамках метрических
пространств. Мы также приводим примеры, подчеркивающие полезность и актуальность наших
результатов. Кроме того, мы используем интегральное уравнение для проверки наших новых ре-
зультатов.

Ключевые слова: неподвижная точка, парное сокращение Мейра–Килера, интегральное уравне-
ние.
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Abstract. A waveguide system consisting of a hexagonal array of resonators with the sixth-order sym-
metry is studied. Using deformations in the system obtained by permuting vertices on the coordination
spheres and changing the constants of coupling between the resonators, the edge states have been ob-
tained, the origin of which is explained by elementary means. The edge solutions are preserved for an
array with the complex coupling constants.
Keywords: photonic edge states, graphene crystal lattice, tight binding approximation, complex cou-
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Introduction
The one-dimensional Su–Schrieffer–Heeger (SSH) lattice model originated from physics of

condensed matter [1] has found application in describing edge states in acoustics and photon-
ics. Edge and defect modes of phononic and photonic crystals, Tamm states [2], and stable
waveguide modes of photonic topological insulators [3,4] can be described through the bulk-edge
correspondence for topologically nontrivial dispersion surfaces. Such a description opens up the
possibility of creating new materials and devices with the unique properties, which provide im-
munity to defects and disorder. In the SSH model and its generalizations to two-dimensional
lattices [5], Maxwell’s equations are used to describe the propagation of electromagnetic waves
in photonic crystals and on metasurfaces. Generalization of the crystal concept to photonic and
phononic structures allows one to cover a variety of periodic structures with a characteristic
lattice parameter on the scales from nanometers to millimeters.
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At a certain parity of the number of resonators in a chain with periodically changing strong
and weak couplings, topologically protected Tamm states arise at its edges. Among the important
problems of topological photonics, one can highlight the use of electronic topological insulators as
optical materials [3] and application of photonic topological insulators [6], in particular, to obtain
topologically stable optical Tamm states [2] and topological states on arrays of vertical-cavity
surface-emitting microlasers [7] and in photonic topological insulators assembled on an array of
ring [8] or prism resonators [9, 10].

The discovery of graphene has stimulated considerable interest in its unique properties. Along
with graphene, other materials with a hexagonal structure have been intensively studied. The
connectivity matrix corresponding to a hexagonal lattice is symmetric with a real spectrum. A
specific arrangement of strong and weak couplings between structural elements allows for the
creation of an edge vibrational eigenmode, which is preserved when introducing the complex
coupling constants. By preserving the Hermitian property of the connectivity matrix, a system
with a real spectrum is obtained. Of particular interest are specific implementations of systems
with the complex coupling constants (see, for example, [11]).

Another observation concerning the hexagonal structure is that it decomposes into numerous
concentric coordination spheres (circles). Groups of permutations of the sphere elements generate
structure symmetries that are similar in properties to moir? patterns in the frequency domain
(see, for example, [12]). These symmetries are inherent in the vibrational modes that arise in
the hexagonal structure.

1. Projection onto a plane

In this work, the eigenmodes of a resonator array forming a hexagonal lattice are examined.
To obtain a model with alternating strong and weak couplings, we project points of the positive
octant of a three-dimensional integer lattice with side length 1 onto the plane orthogonal to the
diagonal vector ed = (1, 1, 1), as shown in Figs. 1a–1c, and consider two tetrahedra in each
cell of the lattice (Fig. 1b). The tetrahedron height is ht =

√
4/3. The distance ρt between

the bases of the tetrahedra of one cell is calculated as ρt = 2ht − d, where d =
√
3 is the cube

diagonal.

Fig. 1. (a) Three-dimensional Young diagram(1, 1, 1)2. The exponent 2 denotes the number
of layers in the Young diagram. (b) Tetrahedra inside the cube are colored in red and blue.
The black line shows the distance ρt =

√
1/3 between the bases of the tetrahedra, which is half

the tetrahedron height ht =
√
4/3 (c) Projection of the spatial Young diagram onto the plane

orthogonal to the vector ed

To obtain a two-dimensional hexagonal (graphene) lattice, it is sufficient to leave only the
points for which the ratio of the projection lengths to ρt is expressed as an integer (see Fig. 1c)

– 123 –



Dmitry P. Fedchenko . . . Edge States on Hexagonal Array of Resonators . . .

in the plane p1 : x+ y + z = 0. To implement the design, we consider the orthonormal basis

uk =

[
ω0

√
3
,
ωk

√
3
,
ω2k

√
3

]T
, k = 0, 1, 2,

which consists of the eigenvectors of the circulant matrix C3 = [a0, a1, a2], aj ∈ C. Here, ω =
e2πi/3 is the primitive third root of unity. In the basis of the eigenvectors of the circulant matrix
C3, the projector onto the plane p1 will have the form P

′
= diag(0, 1, 1) and, in the standard

orthonormal basis, it is P = BP
′
B−1, where B = [u0, u1, u2] is the matrix of transformation

to a new basis, the columns of which are vectors uj . The circulant matrices form an important
class and find application in many areas of mathematics, in particular, in the graph theory [13].
Affecting the integer vectors v = (vx, vy, vz) = (i, j, k), i, j, k ∈ Z>0, by the P matrix, we will
obtain projections of these points onto the plane p1. The internal coordinates in the plane p1
are specified by the formulas ((B−1Pv)x, (B

−1Pv)y). Let us assume that the projection point
preserves the color of the tetrahedron’s base. We consider two classes of couplings. Coupling w
is called weak if adjacent nodes of the hexagonal lattice have the same color. Coupling v is called
strong if adjacent nodes are colored differently. The two nearest lattice nodes are called neighbors.
In this case, v > w are the real numbers called the coupling constants. To obtain a trivial lattice
with only the v -type couplings, we need to project the top layer of the three-dimensional Young
diagram (see Fig. 1 a). Indeed, every two cubes are adjacent along the edge one vertex of which
belongs to the blue tetrahedron and the other, to the red one. In the projection onto the plane
p1, we obtain a hexagonal lattice in which every two neighbors have different colors (Fig. 2a).
We denote the ordinal number of the resonator in the array by N ∈ [0, 42). Let us exclude
some points from the consideration so that the graph G = (V,E) had the hexagon shape and
symmetryC3, where V is the set of the graph vertices and E is the set of the graph edges.

Fig. 2. (a) Hexagonal lattice consisting of 42 resonators. The vertex color corresponds to the
tetrahedron color (see Fig. 1b). Two types of couplings (weak w and strong v) are introduced
and it is assumed that there is a strong coupling between resonators of different colors and a
weak coupling between resonators of the same color. Each vertex is assigned serial number N of
a resonator. (b) Connectivity matrix of the graph corresponding to the resonator array. Nonzero
elements of the matrix are highlighted in a special color

For the structure shown in Fig. 2a, the graph vertices are located on concentric circles with
the respective radii

r, 2r, dr(1), da(3), 4r (1)

starting from the small circle. In Eq. (1), r is the radius of the circle circumscribed around one
hexagon of the hexagonal lattice and dr (k) and da(k)(k ∈ Z>0) are the functions for calculating
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the trapezoid diagonal length:

dr(k), da(k) =
√
AB + C2 +B(D2 − C2)/(B −A),

where the parameters A,B,C,D are

A = ka, B = r
√
3/2 +A, C = r/2, D = r

for dr and
A = kr, B = r/2 +A, C = a/2, D = r

for da. Here, a =
√
2 is the two-dimensional square diagonal, which is simultaneously the

tetrahedron side (Fig. 1b).

2. Edge states of the structure

Let us write the connectivity matrix A(G) of the graph G (Fig. 2b). The units are highlighted
in bright colors. Recall that two adjacent vertices are connected by an edge. The edge’s weight,
or the coupling strength, is determined by the coloring of the adjacent vertices. Figure 1a shows
the graph in which all the coupling constants have the same v value.

The graph serves as an effective mathematical model for describing waveguide systems in
physics of solid state, photonics, and acoustics. The presence of an edge between vertices indicates
wave propagation in a specified direction. To obtain the Hamiltonian of the system in tight
binding approximation Hk = A(G)eikr, we multiply the connectivity matrix A(G) by the phase
factoreikr, where k is the quasimomentum and r is the lattice translation vector. To find the
Bloch wave function, we solve the eigenvalue problem for the equation

Hkψ = Ekψ.

In physics, a topological insulator is the state of a waveguide system that is conductive at the
boundary and prevents wave propagation in the bulk. In our search for the edge states, we
consider a simplified problem, which ignores the phase shift. To do this, we find the eigenvectors
of the connectivity matrix A(G), the elements of which yield the resonator radiation amplitudes
for the corresponding mode. A boundary or edge is defined as a set of lattice nodes that have
fewer than three neighbors. Figure 3a shows the spectrum of a structure in which the strong and
weak couplings coincide in amplitude: w = v = 0.5. When introducing a contrast (difference)
between the strong and weak coupling constants, a gap arises in the energy spectrum (Fig. 3c).
The eigenvector matrices for the structures without and with contrast are presented in Figs. 3b
and 3d, respectively. Here, eigenvalue 35 is highlighted. The corresponding mode is localized at
the boundary (see Fig. 4a).

The hexagonal lattice structure introduced by us allows for rotational symmetries. Let us
consider rotations of the concentric circles that permutate elements of a specified orbit. By
rotating the ring following the inner one by an angle of π/3, we perform a cyclic permutation of
the vertices lying on a circle of radius 2r. This yields a mode localized at the boundary of the
structure. Indeed, the investigated symmetry closes the channels for propagation of a surface
wave into the structure.

Conclusion

In this study, a waveguide system based on a hexagonal array of resonators, which is decom-
posed into concentric coordination spheres, was examined. By introducing the strong and weak
couplings between the resonators and permuting the vertices, the eigenmodes of the system with
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Fig. 3. (a) Real spectrum of a symmetric operator. Dots show the eigenvalues of the connectivity
matrix sorted in ascending order. The point with an eigenindex of 35 is marked separately in the
spectrum. (b) Each row of the matrix corresponds to a wave function, which is an eigenvector of
the resonator radiation amplitudes. (c) Spectrum with a contrast between the strong and weak
couplings: w = 0.2 and v = 0.8. (d) Matrix of eigenvectors

Fig. 4. (a) Hexagonal resonator lattice in which the coloring of the nodes located on the second
coordination sphere from the center is changed. This transformation corresponds to a rotation
of this circle by π/3 in any direction. Defects appear in the structure and the eigenstates are
localized on them. The radius of the circle representing the resonator is related to the radiation
amplitude. The mode with an Eigen index of 35 is shown. (b) Connectivity matrix of the graph
corresponding to an array of resonators with the coupling constants of two types: w = 0.2 and
v = 0.8
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different properties can be obtained. With a certain rotation of the coordination spheres and an
increase in the contrast between the strong and weak couplings, the edge solutions located in the
energy spectrum gap were obtained. The edge solutions are preserved for a structure with the
complex coupling constants.

Fig. 5. Hexagonal resonator array with a radiation vector field depicted on it. The vector
length at each point indicates the oscillation amplitude. The arrow direction corresponds to the
oscillation phase

Fig. 6. Eigenmodes of the structure with the complex coupling constants: (a) oscillation ampli-
tude and (b) oscillation phase (rad)

This study was supported by the Russian Science Foundation, project no. 24-12-00236.
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Аннотация. В статье рассматривается волноводная система, представляющая собой гексагональ-
ный массив резонаторов с симметрией шестого порядка. За счет деформаций в системе, получае-
мых перестановками вершин на координационных сферах и изменением значений констант связи
между резонаторами, были получены краевые состояния, происхождение которых объясняется эле-
ментарными средствами. Краевые решения сохраняются для массива с комплексными константами
связи.

Ключевые слова: фотонные краевые состояния, кристаллическая решетка графена, приближе-
ние жесткой связи, комплексные константы связи.
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Abstract. An important aspect in designing efficient micro heat sink devices is selecting the optimal
geometry of the internal microstructure of microchannels to minimize hydrodynamic resistance and en-
hance transverse flows. This work investigates the influence of altering the internal configuration of
microchannels with an array of cylindrical pins on the hydrodynamic features of viscous incompressible
fluid flow. The numerical approach used to solve the Stokes equations in three dimensions for asym-
metric domains is based on the boundary element method accelerated by the fast multipole method on
heterogeneous computing architectures. Validation of the developed software modules was carried out by
comparing them with experimental data obtained from microfluidic chips. A series of calculations was
performed, and new data were obtained on the effect of changing the pin packaging parameters within a
microchannel element on the intensification of transverse flows and the variation in throughput capacity.
Keywords: microchannel, microfluidics, Boundary element method, direct numerical simulation, pin
fin array, micro heat sink.

Citation: O.A. Solnyshkina, N.B. Bikkinina, K.A. Galieva, A.Z. Bulatova, I.Sh. Garifullin,
Mass Transfer Analysis in Microchannels with Single and Dual Scale Pin Fin Array
Configurations, J. Sib. Fed. Univ. Math. Phys., 2026, 19(1), 129–138. EDN: UHQSLL.

1. Motivation
Recent advances in miniaturization, increasingly complex designs, and cutting-edge develop-

ments in electronic devices have led to premature failures due to uneven thermal energy distri-
bution and localized overheating. Traditional cooling methods often prove inadequate, as they
fail to provide sufficient heat transfer intensity or cause excessive cooling in certain device re-
gions. A promising solution lies in microchannel heat exchangers, which are widely used in power
electronics, aerospace, energy systems, microelectronics, and other fields. Their key advantages
include high efficiency, compactness, a large surface-area-to-volume ratio for coolant contact,
and design flexibility. The microchannel structure is critical, as it must simultaneously maximize
heat transfer surface area while maintaining acceptable hydrodynamic losses for coolant flow.

In recent years, the electronics industry has been actively advancing three-dimensional inte-
grated circuit (3D-IC) technologies, where multiple substrates with electronic components are
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stacked in parallel with gaps of 50–100µm [1]. Such configurations significantly complicate
thermal management tasks, driving the development of efficient microscale liquid cooling sys-
tems. The design of these systems requires a thorough understanding of flow hydrodynamics and
heat transfer processes in microchannels. A critical aspect of microheat sink design is the op-
timization of the internal microchannel geometry. In practice, arrays of micropins with various
shapes—including cylindrical, triangular, rectangular, and hexagonal cross-sections are widely
employed [2–4]. However, studies indicate that the highest heat transfer performance is achieved
with circular and square pin geometries due to their optimal balance of hydraulic resistance and
thermal transfer intensity [5]. The dimensions of these elements vary depending on the device
purpose, with their height ranging from 50% to 100% of the microchannel height. The void
fraction α may also vary between 40% and 80%, with the most efficient heat exchange observed
in heat sinks featuring a void fraction of approximately 70%. In [6], the effect of increasing the
packing density of ellipsoidal pins in a microchannel on heat transfer was investigated. The re-
sults demonstrated that a denser pin arrangement enhances thermal performance by generating
vortex structures and secondary flows, thereby increasing the effective heat transfer area.

A review of the literature revealed that, despite the significant number of studies focused
on the design of microfluidic heat sinks, most research is limited to structures with uniformly
distributed pins or fins. The effectiveness of multi-scale configurations (e.g., hierarchical or frac-
tal geometries) remains virtually unexplored. Furthermore, existing studies primarily examine
microchannels with hydraulic diameters exceeding 100 µm, while the hydrodynamics of flows in
microchannels featuring non-uniform micropin arrays with heights below 100 µm has not been
sufficiently investigated. Thus, a systematic study of heat transfer and hydrodynamics in mi-
crofluidic systems with subcritical-scale non-uniform pin structures holds not only fundamental
importance for advancing microfluidic hydrodynamics but also substantial practical value for the
development of next-generation high-efficiency microheat sinks.

The objective of this study is to perform numerical analysis of the influence of secondary-scale
ordering of circular cross-section pins on both hydrodynamic resistance in a microchannel section
and intensification of transverse flows. For this class of problems, we employ for the first time
a numerical approach based on the Boundary Element Method (BEM) for three-dimensional
problems, accelerated through both a highly efficient scalable algorithm (Fast Multipole Method
(FMM)) and utilization of heterogeneous computing architectures (multi-core CPUs and graphics
processing units GPUs). This approach enables detailed investigation of hydrodynamic flow
features in microfluidic elements with non-trivial spatial pin arrangements while performing
computationally intensive simulations on a personal workstation.

2. Problem statement and numerical approach
The schematic formulation of the industrial problem, computational domain, and experi-

mental setup assembled for validation of computational modules are presented in Fig. 1. The
functional element of the microfluidic device considered in this work is modeled as a rectangu-
lar cross-section plane microchannel with cylindrical pins arranged transverse to the flow. The
simulation examines periodic flow of a viscous incompressible fluid (with dynamic viscosity and
density µ and ρ) under a constant pressure drop ∆P .

Flows at low Reynolds numbers are typical in microfluidics. In such regimes, viscous forces
dominate over inertial forces caused by fluid particle acceleration/deceleration, allowing com-
plete neglect of inertial terms in calculations. Consequently, the flow is governed by the Stokes
equations

−∇p+ µ∇2u = 0, ∇ · u = 0, (1)

where u is the fluid velocity and p is the pressure. When specifying boundary conditions, the
surface of the considered channel S is represented as a union of the impermeable side surface of
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Fig. 1. Schematic representation of problem statement and experimental setup diagram
(1 — pressure sensor, 2 — air compressor, 3 — personal computer, 4 — sensor readout mod-
ule, 5 — high-speed video camera, 6 — optical microscope, 7, 11 — fluid tanks, 8 — microfluidic
chip, 9 — pressure sensor, 10 — flow rate sensor)

the microchannel Sside (which includes the pin surfaces), the inlet section Sin, and the outlet
section Sout: S = Sin ∪ Sout ∪ Sside. The side surface of the microchannel and the flow are
assumed to be periodic with period L along the x-axis. The no-slip condition is imposed on
Sside, supplemented by periodicity conditions on Sin and Sout

u|x=0 = u|x=L = us, f |x=L = − f |x=0 + fp = fs, fp = ix∆P, (2)

where ∆P is the prescribed pressure drop over a segment of length L, us and fs are unknown
functions at the inlet and outlet sections, and f is the traction.

To solve the formulated problem, we employ a numerical approach based on the Bboundary
Element Method for three-dimensional problems. This method reduces the solution of the orig-
inal partial differential equations in the entire simulated volume to solving boundary integral
equations that connect the values of target functions only on the domain boundary. The channel
surface is discretized using a triangular mesh. The collocation method applied at the centers of
triangular elements transforms the boundary integral equations for computational points into a
system of linear algebraic equations (SLAE) with a dense nonsymmetric matrix.

For accurate flow simulations in channels with complex geometries, their surfaces must be
discretized using sufficiently refined meshes containing tens of thousands of triangular elements.
In such cases, the inevitable memory limitations of computational systems can be addressed
through a combined approach of algorithmic and hardware acceleration. The direct SLAE solu-
tion method was replaced with the Generalized Minimal Residual Method(GMRES), where the
matrix-vector multiplication module is implemented using the Fast Multipole Method. Originally
developed in the late 1980s for N-body problems, FMM reduces the computational complexity
of matrix-vector products from quadratic to linear. This highly parallelizable algorithm enables
additional acceleration through heterogeneous computing architectures and clusters [7]. The
current implementation combines OpenMP parallelization on CPUs with CUDA-enabled GPU
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acceleration. This approach enables three-dimensional simulations in asymmetric domains with
complex configurations within reasonable time on a single workstation. The methodology was
developed by the authors for Stokes equations and successfully applied to simulation of large
number of emulsion droplets in unbounded shear flows [8], dynamics of compressible bubbles in
unbounded domains [9], motion of deformable droplets in asymmetric microchannels [10], and
analysis of viscous incompressible flow features in complex 3D microchannels [11]. Detailed im-
plementation aspects, features, and validation tests for the computational modules are described
in the authors previous work [11].

3. Results and discussion
The described computational modules were thoroughly verified by comparison with known

analytical solutions for viscous flow in channels of various geometries [11]. Performance testing
results of the computational modules are presented in [10]. Mesh convergence was investigated by
comparing the calculated volumetric flow rate Q in a plane rectangular microchannel for several
mesh configurations. Six meshes were considered with the number of triangular elements N∆

ranging from 3000 to 90000, where each subsequent mesh was twice as refined as the previous
one. Fig. 2 shows the plot of relative error ϵMesh between computed Q values for different
discretizations, where ϵMesh = |Qi+1 − Qi|/Qi with Qi and Qi+1 being the flow rates for the
current and finer meshes respectively. The plot demonstrates good mesh convergence of the
implemented modules.

10
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Fig. 2. Mesh convergence testing results for BEM computational modules

The optimization of microtextured heat sinks for industrial applications requires combined
experimental and numerical approaches (Fig. 1) with data cross-validation. To validate the ob-
tained results, a series of laboratory experiments were conducted using microfluidic chips. An
experimental setup for microfluidic research was assembled and calibrated (Fig. 1), where fluid
flows in the chip were generated using a VSO-BT pressure controller (Parker Hannifin). The vol-
umetric flow rate was measured using a flow sensor (Elveflow, France). The microfluidic chip was
mounted on the stage of an Olympus IX-71 optical microscope (Olympus, Japan) coupled with a
Photron FASTCAM SA5 high-speed camera (MKOI LLC, Russia). Hydrodynamic experiments
were performed on microfluidic chips made of cross-linked polydimethylsiloxane (PDMS) polymer
fabricated by soft lithography (ELASTOSIL RT 601 A/B). Detailed experimental methodology
is described in previous publications [12,13]. For flow visualization, 1µm polymer tracer particles
were added to the fluid, and the velocity field was determined by analyzing particle dynamics
using the PIVlab software package.

This work investigates rectangular microchannels with cylindrical pins featuring hierarchical
structures achieved through controlled grouping with independent adjustment of intra-group
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(∆el) and inter-group (∆gr) spacing. Previous studies by the authors examined dual-scale pin
arrangements in 9-pin clusters ( [12,13]), revealing significant flow stagnation within such clusters
even with minor reductions in ∆el spacing. This inevitably leads to substantially degraded heat
removal efficiency from the substrate in these regions, causing dry spots and localized overheating.
Consequently, the current study focuses on 4-pin cluster configurations.

To conduct a series of laboratory experiments, microchannels with a height of h = 30 µm
were fabricated. The working region width was W = 1 mm, with pin diameter d = 110 µm and
pin height matching the total microchannel height. Two packing configurations were examined: a
single-scale uniform distribution (SP) and a dual-scale distribution (DP). The packing parameters
were varied as follows: ∆el = ∆gr = 40 µm (Fig. 3a), ∆el = ∆gr = 50 µm (Fig. 3b), ∆el = 30 µm,
∆gr = 50 µm (Fig. 3c), and ∆el = 40 µm, ∆gr = 50 µm (Fig. 3d). Consequently, the void
fraction α of the simulated microchannel section calculated as the ratio of liquid volume in the
pin configuration to the total liquid volume in a pin-free microchannel of identical dimensions
varied from 59.4% to 70.1%.

For the investigated structures, velocity field visualization was performed using flow tracer
techniques, and hydrodynamic flow patterns were analyzed at a constant pressure drop of
∆P = 1 kPa. The study demonstrated that introducing a secondary scale in the microchannel
internal structure packing significantly alters both the fluid velocity redistribution and the overall
chip throughput (Fig. 3a–d). Velocity fields were computed for analogous structures using the
developed BEM-based code (Fig. 3e–h). Fig. 3 presents a comparative analysis of the obtained
flow patterns, revealing good qualitative agreement between experimental and numerical results.

Fig. 3. Comparison of the velocity magnitude fields obtained experimentally (a)–(d) and numer-
ically (e)–(h) for structures with single ((a) and (e): α = 59.4%, (b) and (f): α = 70.1%) and
dual ((c) and (g): α = 57.0%, (d) and (h): α = 62.1%) pin distribution scales at a constant
pressure drop ∆P = 1 kPa

For numerical analysis of pin spatial distribution parameters, a series of computational ex-
periments was conducted. The study examined microchannel sections with h = 50 µm and
h = 100 µm, where the working region length and width were L = W = 1000 µm, and
pin diameter d = 50 µm. Uniform void fraction (SP) configurations were considered with
∆ = ∆el = ∆gr = 20 µm, 25 µm, 30 µm, and 35 µm, resulting in void fractions ranging
from 51% to 72%. Among the most important geometric characteristics are the height-to-pitch
ratio Ar = h/∆ and pitch-to-diameter ratio Ad = ∆/d, where ∆ is the distance between pin
surfaces. Optimal Ar values range from 2.4 to 3.1 for microchannels with hydraulic diameters on
the order of hundreds of microns [14,15]. The literature reports a wide range of Ad values from
0.22 to 2.78, and d/h ratios from 0.15 to 1.5 [16]. In the considered configurations, Ar varied
from 1.43 to 5, Ad from 0.4 to 0.7, and d/h from 0.5 to 1.
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Figs. 4 and 5 present velocity fields in the z = h/2 midplane and profiles of longitudinal
(Ux) and transverse (Uy) velocity components in the x = L/2 plane as functions of ∆el = ∆gr

variations for uniform packing. When ∆ increases from 25 µm to 35 µm (corresponding to a
decrease in Ar from 2.5 to 1.43), the maximum flow velocity increases by approximately 60%,
while the flow pattern in the channel undergoes significant changes. The results demonstrate
that a 12% increase in channel void fraction leads to an average 50% increase in maximum flow
velocity (Fig. 5).

Fig. 4. The velocity fields of longitudinal (Ux) and transverse (Uy) components in xOy and yOz
planes within microchannels featuring uniform pin distributions with ∆el = ∆gr = 25 µm and
∆el = ∆gr = 35 µm spacing

Numerical simulation of fluid flow was additionally performed in microchannels with dual-
scale pin arrangements (DP) using 4-pin clusters. The geometric parameters of microchannels
and pins remained identical to previous SP cases. The spacing between pins (∆el) and between
pin clusters (∆gr) was varied, with four combinations examined: ∆el = 20 µm, ∆gr = 25 µm;
∆el = 25 µm, ∆gr = 30 µm; ∆el = 20 µm, ∆gr = 35 µm; and ∆el = 25 µm, ∆gr = 35 µm.
The resulting void fractions ranged from 65.11% to 69.25%. Flow patterns were computed for
all configurations in the z = h/2 midplane for both longitudinal (Fig. 6) and transverse (Fig. 7)
velocity components.

Furthermore, comparative analysis of flow patterns between uniform (SP) and dual-scale (DP)
void fraction configurations revealed distinct changes in transverse flow intensity at equivalent
void fractions. For structures with SP (∆ = ∆el = ∆gr = 30 µm) and DP (∆el = 25 µm,
∆gr = 35 µm) arrangements exhibiting equal void fraction (α ≈ 69%), the introduction of dual-
scale packing increased transverse velocity intensity by 54%. Similarly, configurations with SP
(∆ = ∆el = ∆gr = 25 µm) and DP (∆el = 20 µm, ∆gr = 30 µm) at identical void fraction
(α ≈ 65%) demonstrated a 102% enhancement in transverse flow intensity through dual-scale
implementation.

In addition, a study was conducted on the change in throughput capacity of the microchannel
section with varying packing arrangements for different channel heights h = 50 µm and h =
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Fig. 5. Profiles of longitudinal (Ux) and transverse (Uy) velocity components in different cross-
sections of a microchannel with uniform pin distribution (SP) at various ∆el = ∆gr spacing
values

∆el=20mkm,∆gr =30mkm ∆el=20mkm,∆gr =35mkm ∆el=25mkm,∆gr =30mkm ∆el=25mkm,∆gr =35mkm

Fig. 6. Velocity fields of the longitudinal component (Ux) in the z = h/2 midplane of the
microchannel with dual-scale pin arrangements at varying ∆el and ∆gr spacing values

100 µm (Fig. 8). The graphs in Fig. 8 show that at equal void fraction values, the throughput
capacity of channels with uniform pin array distribution is higher than in cases with dual-scale
distribution. Moreover, for channels with h = 100 µm, which correspond to smaller d/h values
and consequently larger Ar, the difference in flow rates is more significant at lower α values
(reaching 9%), while for microchannels with height h = 50 µm, the flow rate for dual void
fraction models is 5% lower than for SP models.

In all considered cases, it is observed that as Ar values decrease, the hydraulic resistance of
the channels reduces. It is also shown that the volumetric flow rate Q differs for DP cases with
equal α: for ∆el = 20 µm, ∆gr = 35 µm it is higher than for ∆el = 25 µm, ∆gr = 30 µm by
3.5% at h = 50 µm and by 12.7% at h = 100 µm. Thus, the microchannel height significantly
affects the throughput capacity with identical internal structure.
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∆el=20mkm,∆gr =30mkm ∆el=20mkm,∆gr =35mkm ∆el=25mkm,∆gr =30mkm ∆el=25mkm,∆gr =35mkm

Fig. 7. Velocity fields of the transverse component (Uy) in the z = h/2 midplane of the mi-
crochannel with dual-scale pin arrangements at varying ∆el and ∆gr spacing values
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Fig. 8. Dependence of volumetric flow rate Q on void fraction α for various pin arrangement
configurations with increasing microchannel height

Conclusions

The conducted study demonstrates significant influence of microchannel internal geometry,
particularly cylindrical pin array configurations, on hydrodynamic characteristics of viscous in-
compressible fluid flow. Numerical simulation based on accelerated Boundary Element Method
incorporating Fast Multipole Method and heterogeneous computing architectures enabled de-
tailed investigation of flow features in complex three-dimensional microchannels. Verification
and validation against experimental data confirmed high accuracy of the developed approach
and its applicability for solving physically meaningful practical problems.

Calculations were performed and new numerical data were obtained on hydrodynamics in
microchannels with single- and dual-scale pin packing configurations, where pins constitute 100%
of the channel height. Velocity fields were constructed in various cross-sections and velocity
profiles were analyzed for different pin packing characteristics. The key result of this work is
the identification of significant influence of dual-scale pin packing on flow velocity redistribution
and transverse flow intensity. It was established that introducing a second packing scale while
maintaining overall void fraction leads to 54–102% increase in transverse flow intensity, which
may enhance heat transfer. However, this is accompanied by a moderate 5–9% reduction in
throughput capacity compared to uniformly distributed arrays.
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The study also revealed that microchannel height is a critical parameter significantly affect-
ing hydraulic resistance: for 100 µm high channels, the difference in throughput between single-
and dual-scale configurations reaches 12.7%. A new criterion characterizing flows in plane mi-
crochannels with multiple pin distribution scales was identified - the ratio of distances between
individual pins within packing groups (∆el) to distances between pin groups (∆gr). It was shown
that for microstructures with dual-scale packing at equal void fraction, the throughput increases
with decreasing ∆el/∆gr ratios.

The obtained results are of significant importance for designing next-generation microheat
sinks, enabling optimization of their geometry to achieve a balance between hydraulic resis-
tance and heat removal efficiency. The developed computational approach opens prospects for
simulation of more complex flows, including multiphase flows, in microfluidic systems. Further
research may focus on investigating the combined influence of pin geometry and their thermal
conductivity properties on heat transfer processes.

The research was supported by the Russian Science Foundation grant no. 24-19-00697
https://rscf.ru/project/24-19-00697/.

References

[1] R.Van Erp, R.Soleimanzadeh, L.Nela, G.Kampitsis, E.Matioli, Co-designing electronics with
microfluidics for more sustainable cooling, Nature, 585(2020), 211–216.
DOI: 10.1038/s41586-020-2666-1

[2] T.Yang, X.Zhang, Z.Chang, R.Xu, J.Ma, L.Xu, L.Xi, A Review on Application of Pin-Fins
in Enhancing Heat Transfer, Energies, 17(2024), no. 17, 4305. DOI: 10.3390/en17174305

[3] H.Chen, Q.Gao, Y.Zhang, X.Yang, J.Wei, P.Di Marco, Experimental study of the flow
boiling heat transfer characteristics of teardrop-like micro-pin-finned chip surface in semi-
open microchannel, Int. J. of Heat and Mass Transfer, 238(2025), 1264442.

[4] X.Rao, C.Jin, H.Zhang, J.Song, C.Xiao, A hybrid microchannel heat sink with ultra-
low pressure drop for hotspot thermal management, Int. J. of Heat and Mass Transfer,
211(2023), 124201. DOI: 10.1016/j.ijheatmasstransfer.2023.124201

[5] P.Bhandari, D.Padalia, L.Ranakoti, R.Khargotra, K.Andras, T.Singh, Thermo-hydraulic
investigation of open micro prism pin fin heat sink having varying prism sides, Alexandria
Engineering Journal, 69(2023), 457–468. DOI: 10.1016/j.aej.2023.02.016

[6] M.Bahiraei, N.Mazaheri, M.R. Daneshyar, Employing elliptical pin-fins and nanofluid within
a heat sink for cooling of electronic chips regarding energy efficiency perspective, Applied
thermal engineering, 183(2021), 116159. DOI: 10.1016/j.applthermaleng.2020.116159

[7] N.A.Gumerov, R.Duraiswami, Fast multipole methods on graphics processors, J. Comput.
Phys., 227(2008), N 18, 8290–8313.

[8] O.A.Abramova, Y.A.Pityuk, N.A.Gumerov, I.S.Akhatov, High-Performance BEM Simula-
tion of 3D Emulsion Flow, Communications in Computer and Information Science, Vol. 753,
2017, 317–330. DOI: 10.1007/978-3-319-67035-_23

[9] Y.A.Itkulova, O.A.Abramova, N.A.Gumerov, Boundary element simulations of compressible
bubble dynamics in Stokes flows, Proceedings of the ASME 2013 International Mechanical
Engineering Congress and Exposition, Vol. 7B: Fluids Engineering Systems and Technolo-
gies, 2013, V07BT08A010.

– 137 –



Olga A. Solnyshkina . . . Mass Transfer Analysis in Microchannels with Single . . .

[10] O.A.Abramova, Y.A.Itkulova, N.A.Gumerov, FMM/GPU accelerated BEM simulation of
emulsion flow in microchannels, Proceedings of the ASME 2013 International Mechanical
Engineering Congress and Exposition, Vol. 7B: Fluids Engineering Systems and Technolo-
gies, 2013, IMECE2013-63193, V07BT08A009.

[11] O.A.Solnyshkina, A.Z.Bulatova, N.B.Bikkinina, Three-dimensional simulation and analysis
of the fluid flow in contraction–expansion array microchannels, European Journal of Me-
chanics - B/Fluids, 113(2025), 204270. DOI: 10.1016/j.euromechflu.2025.204270

[12] O.A.Solnyshkina, E.S.Batyrshin, Yu.A.Pityuk, Investigation of hydrodynamic flows in mi-
cromodels of double porosity media, Fluid Dynamics, 56(2021), no.4, 451–459. DOI:
10.1134/S001546282104011X

[13] K.A.Galieva, I.Sh.Garifullin, E.S.Batyrshin, O.A.Solnyshkina, Experimental analysis of fluid
dynamics in microchannels featuring two-scale fin pin arrays, EPJ Web Conf., 321(2025),
01006. DOI: 10.1051/epjconf/202532101006

[14] J.Lee, I.Mudawar, Low-temperature two-phase microchannel cooling for high-heat-flux ther-
mal management of defense electronics, IEEE transactions on components and packaging
technologies, 32(2009), no. 2, 453–465.

[15] S.S.Bertsch, E.A.Groll, S.V.Garimella, Refrigerant flow boiling heat transfer in parallel mi-
crochannels as a function of local vapor quality, Int. J. of Heat and Mass Transfer, 51(2008),
no. 19-20 47–4787.

[16] P.Asrar, X.Zhang, C.E.Green, M.Bakir, Y.K. Joshi, Flow boiling of R245fa in a microgap
with staggered circular cylindrical pin fins, Int. J. of Heat and Mass Transfer, 121(2018),
329–342.

Исследование массопереноса в микроканалах с одним
и двумя масштабами упаковки массива пинов

Ольга А. Солнышкина
Назгуль Б.Биккинина

Карина А. Галиева
Айгузель З.Б̇улатова

Искандар Ш. Гарифуллин
Уфимский государственный университет науки и технологий

Уфа, Российская Федерация

Аннотация. Важным аспектом в конструировании эффективных микротеплообменных устройств
является подбор оптимальной геометрии внутренней структуры микроканалов с целью миними-
зации гидродинамического сопротивления и интенсификации поперечных потоков. Данная работа
посвящена исследованию влияния изменения внутренней конфигурации микроканалов с массивом
цилиндрических пинов на гидродинамические особенности течения вязкой несжимаемой жидко-
сти. Используемый численный подход для решения уравнений Стокса в трехмерном случае для
несимметричных областей основывается на методе граничных элементов, ускоренном быстрым ме-
тодом мультиполей на гетерогенных вычислительных архитектурах. Валидация разработанных
программных модулей проведена путем сопоставления с данными лабораторных экспериментов на
микрофлюидных чипах. Проведена серия расчетов и получены новые данные по влиянию изме-
нения параметров упаковки пинов внутри элемента микроканала на интенсификацию поперечных
потоков и изменение пропускной способности.

Ключевые слова: микроканалы, микрофлюидика, метод граничных элементов, прямое числен-
ное моделирование, массив пинов, микротеплообменник.
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Письмо в редакцию

Сергей В. Чеботарев
Алтайский государственный педагогический университет

Барнаул, Российская Федерация

Продолжая работать по темам, близким к материалам изложенным в моих публикациях
в Вашем журнале, я обнаружил ошибки. Ниже я обозначил фрагменты с ошибками и мои
предложения по исправлению.

А именно: в статье
S.V.Chebotarev, About limit distribution of sums of random variables, Journal of Siberian

Federal University. Mathematics & Physics, 2016, 9(1), 17–29
На странице 19 на 12-й строке сверху напечатано:
mk(η), k = 0, 1, . . . ,m.
Должно быть напечатано:
mk(η), k = 0, 1, . . . , l.

На странице 20 с первой строки сверху и до раздела Rademacher random variables
напечатано:
then we obtain

vm(π(n)) =

n∑
k=0

Pπ(n)
(k) · Bn(m, k)√

nm

∣∣∣∣exchange

xn=
2k−n√

n

=

=

√
n∑

xn=−
√
n

(
hm(xn)√

m!
+O

( 1√
n

))
·Pπ(n)

(xn) =

=
1√
m!

( √
n∑

xn=−
√
n

hm(xn)µη(xn)△

Thus

xn +O1

( 1√
n

))
→ 1√

m!
Lm(η).

It proves relation (4).
To prove (5) we use the relation

vm(π(n)) = θmvm(ξ(n)) =
vm(ξ(n))√

nm
→ 1√

m!
Lm(η). (8)

It is true for any fixed m. Taking into account that lim
n→∞

nm

Cm
n m! = 1, for a big value n we have

vm(ξ(n)) = Cm
n v̇m(ξ(n)) and

vm(ξ(n)) ∼
nm

m!
v̇m(ξ(n))

The proof of (6) is the same, and (7) follows the previous relations. �
Let us assume that the average mixed moments of the sequence ξ exist. Then their limits are

√
nmv̇m(ξ(n)) ∼

√
nm

m!

nm
· vm(ξ(n)) = m!

vm(ξ(n))√
nm

→
√
m!Lm(η).

There is a relation between limited values of the average mixed moments of this sequence and
values of moments of the limited random variable η, assuming that it exists and is absolutely
continuous.
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Theorem 2. The first r moments v̈k(ξ) = lim
n→∞

v̈k(ξ(n)), k = 1, 2, . . . , of a random variable
η are limited then and only then, when the first r of the average mixed moments mk(η), k =
1, 2, . . . , r of the sequence ξ are limited and v̈m(ξ) = hm(mη).

Proof. The statement follows from the following relation:

v̈m(ξ) =

∞∫
−∞

hm(x)µη(x) dx =

∞∫
−∞

m∑
l=0

alx
lµη(x) dx =

m∑
l=0

al

∞∫
−∞

xlµη(x) dx = hm(mη).

�
Должно быть напечатано:

then we obtain

vm(π(n)) =
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(k) · Bn(m, k)√
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=
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( 1√
n

))
·Pπ(n)
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xn=−
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hm(xn)µη(xn)△xn +O1

( 1√
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→ 1√

m!
Lm(η).

Thus

vm(π(n)) = θmvm(ξ(n)) =
vm(ξ(n))√

nm
→ 1√

m!
Lm(η).

It proves relation (4).
To prove (5) we use the relation

lim
n→∞

nm

Cm
n m!

= 1 (8)

that is true for any fixed m. Taking into account that vm(ξ(n)) = Cm
n v̇m(ξ(n)), for a big value n

we have vm(ξ(n)) ∼ nm

m! v̇m(ξ(n)) and

√
nmv̇m(ξ(n)) ∼

√
nm

m!

nm
· vm(ξ(n)) = m!

vm(ξ(n))√
nm

→
√
m!Lm(η).

The proof of (6) is the same, and (7) follows the previous relations. �
Let us denote the averaged mixed moments limit values of the sequence ξ, when it exist, as

v̈k(ξ) = lim
n→∞

v̈k(ξ(n)), k = 1, 2, . . . .

There is a relation between this limited values of the average mixed moments and values of
moments of the limited random variable η, assuming that it exists and is absolutely continuous.

Теорема 2. The first r moments mk(η), k = 1, 2, . . . , r of a random variable η are limited
then and only then, when the first r of the average mixed moments v̈k(ξ), k = 1, 2, . . . , r of the
sequence ξ are limited and v̈m(ξ) = hm(mη).

Proof. The statement follows from the following relation:

v̈m(ξ) =

∞∫
−∞

hm(x)µη(x) dx =

∞∫
−∞

m∑
l=0

alx
lµη(x) dx =

m∑
l=0

al

∞∫
−∞

xlµη(x) dx = hm(mη).
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На странице 27 в 20-й строке сверху напечатано:

v̈m(ξ̂(n)) =
vm(ξ̂(n))√

Cm
n

=
vIm(ξ̂(n))√

Cm
n

,

Должно быть напечатано:

v̈m(ξ̂(n)) =
vm(ξ̂(n))√

Cm
n

=
vIm(ξ̂(n))C

m
n√

Cm
n

= vIm(ξ̂(n))
√
Cm

n ,

На странице 27 в 24-й строке сверху напечатано:

θmsmEγ̂1,0γ̂2,0 . . . γ̂m,0 = θmsmvIm(γ̂(ns)) = θmsmvm(γ̂(ns)) = θmsmvm(γ(ns)).

Должно быть напечатано:

θmsmEγ̂1,0γ̂2,0 . . . γ̂m,0 = θmsmvIm(γ̂(ns)) = θmsmv̇m(γ̂(ns)) = θmsmv̇m(γ(ns)).

На странице 27 в 26-й строке сверху напечатано:

v̈m(ξ̂(n)) =
θmsmvm(γ(ns))√

Cm
n

= θmsmv̈m(γ(ns))

√
Cm

ns

Cm
n

.

Должно быть напечатано:

v̈m(ξ̂(n)) = θmsmv̇m(γ(ns))
√
Cm

n = θmsmv̈m(γ(ns))

√
Cm

n

Cm
ns

.

На странице 27 в 28-й строке сверху напечатано:

v̈m(ξ̂) = θms
3m
2 v̈m(γ) (16)

Должно быть напечатано:

v̈m(ξ̂) = θms
m
2 v̈m(γ) (16)

На странице 28 во 2-й строке сверху напечатано:

v̈m(γ) = θ−ms−
3m
2 v̈m(ξ̂).

Должно быть напечатано:

v̈m(γ) = θ−ms−
m
2 v̈m(ξ̂).

На странице 28 во 4-й строке сверху напечатано:

µη(x) =
1√

2πθ2s
e−

x2

2θ2s

∞∑
m=0

v̈m(ξ̂)

θms
3m
2

· hm
( x

θ
√
s

)
.

Должно быть напечатано:

µη(x) =
1√

2πθ2s
e−

x2

2θ2s
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m=0

v̈m(ξ̂)

θms
m
2
· hm

( x

θ
√
s

)
.

На странице 28 с 10-й строки сверху и до раздела References напечатано:
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Let us consider two special cases: the expression for the density of sum of sequence ξ ∈ Ξ2,

when θ =
1√
s

and θ =
1

s
√
s
. In the first case the change scale of x is conserved but the values

of mixed moments are changed. In the second case the values of the moments are conserved but
the change scale of x is changed.

Corollary 4.2. Let us assume that sequence ξ ∈ Ξ2 is given and θ =
1√
s
. Then the random

variable η
1√
n

n∑
t=1

ξt ⇒
n→∞

η

for any x ∈ R has the density distribution function

µη(x) =
1√
2π
e−

x2

2
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m=0

v̈m(ξ̂)

sm
· hm(x).

Corollary 4.3. Let us assume that sequence ξ ∈ Ξ2 is given and θ =
1

s
√
s
. Then the random

variable η
1√
n

n∑
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ξt ⇒
n→∞

η

for any x ∈ R has the density distribution function

µη(x) =
s√
2π
e−

(sx)2

2
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m=0

v̈m(ξ̂) · hm(sx).

Должно быть напечатано:
Let us consider one special case: the expression for the density of sum of sequence ξ ∈ Ξ2,

when θ =
1√
s
. In this case the simplest expression for density distribution function is obtained.

Corollary 4.2. Let us assume that sequence ξ ∈ Ξ2 is given and θ =
1√
s
. Then the random

variable η
1√
n

n∑
t=1

ξt ⇒
n→∞

η

for any x ∈ R has the density distribution function

µη(x) =
1√
2π
e−

x2

2

∞∑
m=0

v̈m(ξ̂) · hm(x).

В добавление к предыдущей корректуре моей статьи S.V. Chebotarev, About limit
distribution of sums of random variables, Journal of Siberian Federal University. Mathematics &
Physics, 2016, 9(1), 17–29 высылаю Вам еще ряд некорректностей, которые я обнаружил:

На странице 26 в строках с 11-й по 16-ю сверху напечатано:

1√
k
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τ=1

γτ =
1√
k
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)
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and
1√
k

k∑
τ=1

γτ =
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k

( n′s∑
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γτ +
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,

we obtain that

P
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6 P
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6 P
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Должно быть напечатано:
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На странице 26 в строках с 17-й по 21-ю сверху напечатано:
for x > 0.

It follows that
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and for x < 0 we have
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Должно быть напечатано:
It follows that

P
( 1√
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В статье 2017 года
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S.V.Chebotarev, On the limit distribution of sums of real random variables, Journal of
Siberian Federal University. Mathematics & Physics 2017, 10(3), 310–313
в связи с изменением формулы (16) из статьи 2016 года рассмотренной выше, замечены
следующие ошибки:

На странице 313 во 2-й строке сверху напечатано:

v̈m(ξ̂) = lim
n→∞

lim
s→∞

sm · v̈m(γ̂(n),s) = 0, ∀m > 2,

Должно быть напечатано:

v̈m(ξ̂) = lim
n→∞

lim
s→∞

s
m
2 · v̈m(γ̂(n),s) = 0, ∀m > 2,

На странице 313 в 6-й строке сверху напечатано:

v̈m(ξ̂) = lim
n→∞

lim
s→∞

sm · v̈m(γ̂(n),s) <∞, ∀m > 2,

Должно быть напечатано:

v̈m(ξ̂) = lim
n→∞

lim
s→∞

s
m
2 · v̈m(γ̂(n),s) <∞, ∀m > 2,

На странице 313 в 9-й строке сверху напечатано:

v̈m(ξ̂) = lim
n→∞

lim
s→∞

sm · v̈m(γ̂(n),s) = ∞, ∀m > 2,

Должно быть напечатано:

v̈m(ξ̂) = lim
n→∞

lim
s→∞

s
m
2 · v̈m(γ̂(n),s) = ∞, ∀m > 2.
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