Journal of Siberian Federal University. Mathematics & Physics / Supercritical Convection of Water in an Elongated Cavity at a Given Vertical Heat Flux

Full text (.pdf)
Issue
Journal of Siberian Federal University. Mathematics & Physics. 2021 14 (2)
Authors
Sharifulin, Vadim A.; Lyubimova, Tatyana P.
Contact information
Sharifulin, Vadim A.: Perm National Research Polytechnic University Perm, Russian Federation; OCRID: 0000-0001-9932-6622; Lyubimova, Tatyana P.: Institute of Continuous Media Mechanics Ural Branch of RAS Perm, Russian Federation; OCRID: 0000-0002-8212-2890
Keywords
thermal convection; bifurcations; fixed heat flux
Abstract

The supercritical modes of water convection are investigated at room temperature in an elongated horizontal cavityes, with a width-to-height ratios of 2 : 1 and 3 : 1. The Prandtl number is assumed to be equal to seven. A constant heat flux is set at the upper free and lower solid boundaries, and the lateral solid boundaries are assumed to be thermally insulated. Calculations carried out by the finite-difference method for values of the Rayleigh number exceeding the critical one by up to thirty times have shown that in the indicated interval of Rayleigh numbers in both cavities in the supercritical region, a single-vortex steady state is realized

Pages
184–192
DOI
10.17516/1997-1397-2021-14-2-186-194
Paper at repository of SibFU
https://elib.sfu-kras.ru/handle/2311/137974