- Issue
- Journal of Siberian Federal University. Engineering & Technologies. 2018 11 (1)
- Authors
- Koziratsky, Anton A.; Mamajanyan, Ervand A.; Shmarov, Andrei N.
- Contact information
- Козирацкий, А.А.: Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина» Россия, 394064, Воронеж, ул. Старых Большевиков, 54а; Мамаджанян, Е.А.: Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина» Россия, 394064, Воронеж, ул. Старых Большевиков, 54а; Шмаров, А.Н.: Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина» Россия, 394064, Воронеж, ул. Старых Большевиков, 54а; Koziratsky, Anton A.: Military Education and Research Centre of Military-Air Forces «Military-Air Academy Named After Professor N.E. Zhukovsky and Yu.A. Gagarin» 54а Starykh Bolshevikov Str., Voronezh, 394064, Russia; akoziratskiy@gmail.ru; Mamajanyan, Ervand A.: Military Education and Research Centre of Military-Air Forces «Military-Air Academy Named After Professor N.E. Zhukovsky and Yu.A. Gagarin» 54а Starykh Bolshevikov Str., Voronezh, 394064, Russia; Shmarov, Andrei N.: Military Education and Research Centre of Military-Air Forces «Military-Air Academy Named After Professor N.E. Zhukovsky and Yu.A. Gagarin» 54а Starykh Bolshevikov Str., Voronezh, 394064, Russia: Shmarov-an@mail.ru
- Keywords
- probability of successful object detection; multi-sensor intelligence systems; signal-tonoise ratio; Dempster-Shafer evidence theory
- Abstract
Based on Dempster-Shafer evidence theory, a method was developed and analysis of effectiveness was implemented of low visibility objects detection with multi-sensor intelligence systems. Dependence of successful object detection probability from number of sensors in intelligence system was found. Their effectiveness and signal-to-noise ratio on output of optimal detector of each sensor.
- Pages
- 37-42
- Paper at repository of SibFU
- https://elib.sfu-kras.ru/handle/2311/70392
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).