Journal of Siberian Federal University. Mathematics & Physics / A Classical Aspect of the Dirac Equation in the Context of Conformable Fractional Derivative

Full text (.pdf)
Issue
Journal of Siberian Federal University. Mathematics & Physics. Prepublication
Authors
Ilyas Haouam
Contact information
Ilyas Haouam: Laboratoire de Physique Math´ematique et de Physique Subatomique (LPMPS) Universit´e Fr´eres Mentouri Constantine 25000, Algeria; ; OCRID: 0000-0001-6127-0408
Keywords
conformable fractional Dirac equation; conformable fractional continuity equation; Ehren- fest’s theorem; classical limit; correspondence principle; conformable quantum mechanics
Abstract

In this article, in the context of the conformable fractional derivative (CFD) and employing Ehrenfest’s theorem, we investigate the classical limit of the Dirac equation within conformable fractional quantum mechanics. This leads to obtaining deformed classical equations. Here, we assess the effectiveness of Ehrenfest’s theorem in deriving the classical limit considering CFD. Also, we examine the correspondence principle under the influence of CFD. Additionally, we obtain the conformable fractional continuity equation

Pages
227–240
EDN
PPVCEQ
Paper at repository of SibFU
https://elib.sfu-kras.ru/handle/2311/154454