- Issue
- Journal of Siberian Federal University. Mathematics & Physics. 2018 11 (3)
- Authors
- Hayotov, Abdullo R.
- Contact information
- Hayotov, Abdullo R.: V.I. Romanovskiy Institute of Mathematics Uzbekistan Academy of Sciences M. Ulugbek street, 81, Tashkent, 100125 Uzbekistan;
- Keywords
- interpolation spline; Hilbert space; norm minimizing property; Sobolev’s method; discrete argument function
- Abstract
In ∫ the present paper, using S.L. Sobolev’s method, interpolation splines that minimize the expression 1 0 (φ(m)(x)+!2φ(m�����2)(x))2dx in the space K2(Pm) are constructed. Explicit formulas for the coefficients of the interpolation splines are obtained. The obtained interpolation splines are exact for monomials 1; x; x2; : : : ; xm�����3 and for trigonometric functions sin !x and cos !x.
- Pages
- 383–396
- Paper at repository of SibFU
- https://elib.sfu-kras.ru/handle/2311/71621
Journal of Siberian Federal University. Mathematics & Physics / Construction of Interpolation Splines Minimizing the Semi-norm in the Space K2(Pm)
Full text (.pdf)